正弦和余弦转换

合集下载

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与—α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan →cot,cot→tan。

(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】公式一:设α为任意角,终边相同的角的同一的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的与α的三角之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是时,得到α的同名函数值,即函数名不改变;②当k是时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

三角函数和e的函数的转换

三角函数和e的函数的转换

三角函数和e的函数的转换
三角函数(正弦、余弦和正切)和指数函数(以e为底的指数函数)之间存在一些转换关系。

下面是一些常见的转换公式:
1. 正弦函数和指数函数的转换:
正弦函数可以表示为指数函数的复合形式,如下所示:sin(x) = (e^(ix) - e^(-ix)) / (2i)
这个公式称为欧拉公式,其中i表示虚数单位。

2. 余弦函数和指数函数的转换:
余弦函数也可以表示为指数函数的复合形式,如下所示:cos(x) = (e^(ix) + e^(-ix)) / 2
3. 正切函数和指数函数的转换:
正切函数可以用指数函数表示为:
tan(x) = (e^(ix) - e^(-ix)) / (i * (e^(ix) +
e^(-ix)))
这些转换关系可以用来简化三角函数的计算或将三角函数的问题转化为指数函数的问题。

它们基于欧拉公式和指数函数的性质,可以在数学和物理领域的各种应用中使用。

正弦余弦转换

正弦余弦转换

正弦和余弦转换公式一转α转任意角转转相同的角的同一三角函数的转相等sin2kπαsinαcos2kπαcosαtan2kπαtanαcot2kπαcotα公式二转α转任意角πα的三角函转数与α的三角函转数之转的转系sinπαsinαcosπαcosαtanπαtanαcotπαcotα公式三任意角α 与-α的三角函转之转的转系数sinαsinαcosαcosαtanαtanαcotαcotα公式四利用公式二和公式三可以得到π-α与α的三角函转之转的转系数sinπαsinαcosπαcosαtanπαtanαcotπαcotα公式五利用公式一和公式三可以得到2π-α与α的三角函转之转的转系数sin2παsinαcos2παcosαtan2παtanαcot2παcotα公式六π/2±α与α的三角函转之转的转系数sinπ/2αcosαcosπ/2αsinαtanπ/2αcotαcotπ/2αtanαsinπ/2αcosαcosπ/2αsinαtanπ/2αcotαcotπ/2αtanα转转公式转转口转※转律转转※上面转些转转公式可以括转概转于k·π/2±αk∈Z的三角函转个数①当k是偶数转得到α的同名函转函名不改转 数即数②当k是奇数转得到α相转的余函转数即sin→coscos→sintan→cotcot→tan.奇转偶不转然后在前面加上把α看成转角转原函转的符。

数号符看号象限例如sin2παsin4·π/2αk4转偶所以取数sinα。

当α是转角转2πα∈270°360°sin2πα 0符转“”。

号所以sin2παsinα上述的转转口转是奇转偶不转符看象限。

号公式右转的符转把号α转转转角转角k·360°αk∈Z-α、180°±α360°-α所在象限的原三角函转的符可转转数号水平转转名不转 符看象限。

正弦函数的概念和转换

正弦函数的概念和转换

正弦函数的概念和转换
概念:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的值sin x与它对应,按照这个对应法则所建立的函数,表示为f(x)=sin x,叫做正弦函数。

转换:正弦和余弦的转换公式为sin(α+π/2)=cosαsin(α+3π/2)=-cosα2、sin²α+cos²α=1、sinα=±√[(1-cos2α)/2]等。

正弦为数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,而余弦为三角函数的一种,在Rt△ABC(直角三角形)中,∠A的余弦是它的邻边比三角形的斜边。

正弦和余弦转换

正弦和余弦转换

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

正弦和余弦转换

正弦和余弦转换

公式一:设α为任意角,终边相同的角的同一的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的与α的三角之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是时,得到α的同名函数值,即函数名不改变;②当k是时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

[正弦余弦正切函数值表]正弦和余弦转换50

[正弦余弦正切函数值表]正弦和余弦转换50

[正弦余弦正切函数值表]正弦和余弦转换50 篇一: 正弦和余弦转换50正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin=sinαcos=cosαtan=tanαcot=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin=-sinαcos=-cosαtan=tanαcot=cotα公式三:任意角α与-α的三角函数值之间的关系:sin=-sinαcos=cosαcot=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin=sinαcos=-cosαtan=-tanαcot=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin=-sinαcos=cosαtan=-tanαcot=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin=cosαcos=-sinαtan=-cotαcot=-tanαcos=sinαtan=cotαcot=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k2π/2±α的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.然后在前面加上把α看成锐角时原函数值的符号。

例如:sin=sin,k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈,sin<0,符号为“-”。

所以sin=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k2360°+α,-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三正切,四余弦其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα 2cotα=1sinα 2cscα=1cosα 2secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin+cos=11+tan=sec1+cot=csc同角三角函数关系六角形记忆法六角形记忆法:构造以”上弦、中切、下割;左正、右余、中间1”的正六边形为模型。

正弦和余弦转换

正弦和余弦转换

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=co tαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

cos和sin函数的转换

cos和sin函数的转换

cos和sin函数的转换cos和sin函数是数学中常见的两个三角函数,它们具有广泛的应用。

本文将从数学定义、性质和应用等方面详细介绍这两个函数。

一、cos函数cos函数是余弦函数的简称,它是一个周期函数,其定义域为所有实数。

余弦函数的图像是一条波浪形的曲线,它在单位圆上的表现形式是沿着圆的周长上的一点在x轴上的坐标。

1.1 定义与性质cos函数的定义如下:cos(x) = cos(-x) = cos(2πn + x) (n为整数)cos函数具有以下性质:(1)cos函数是偶函数,即cos(x) = cos(-x);(2)cos函数的最大值为1,最小值为-1;(3)cos函数的周期为2π,即cos(x + 2π) = cos(x);(4)cos函数在0到π范围内单调递减,在π到2π范围内单调递增。

1.2 应用领域cos函数在数学中有广泛的应用,常见的应用领域包括:(1)三角学:cos函数是三角学中的重要概念,在解三角函数方程、计算三角形边长和角度等方面起到关键作用;(2)信号处理:cos函数常用于信号的分析和处理,例如音频信号中的波形分析;(3)物理学:cos函数在物理学中描述波动、振动、周期性运动等现象时经常使用。

二、sin函数sin函数是正弦函数的简称,它也是一个周期函数,其定义域为所有实数。

正弦函数的图像是一条波浪形的曲线,它在单位圆上的表现形式是沿着圆的周长上的一点在y轴上的坐标。

2.1 定义与性质sin函数的定义如下:sin(x) = -sin(-x) = sin(2πn + x) (n为整数)sin函数具有以下性质:(1)sin函数是奇函数,即sin(x) = -sin(-x);(2)sin函数的最大值为1,最小值为-1;(3)sin函数的周期为2π,即sin(x + 2π) = sin(x);(4)sin函数在0到π/2范围内单调递增,在π/2到π范围内单调递减。

2.2 应用领域sin函数在数学和科学中有广泛的应用,常见的应用领域包括:(1)三角学:sin函数是三角学中的基本函数之一,用于解决与角度和三角形相关的问题;(2)波动和振动:sin函数可以描述波动和振动的规律,例如声波、光波等;(3)信号处理:sin函数常用于信号的分析和处理,例如调制解调、滤波等;(4)物理学:sin函数在物理学中描述波动、振动、周期性运动等现象时经常使用。

三角函数基本变换公式

三角函数基本变换公式

三角函数基本变换公式三角函数基本变换公式是在三角函数计算中常用的公式集合,通过这些公式可以将一个三角函数表达式转化为另一个等价的三角函数表达式,从而简化计算过程。

本文将介绍常用的三角函数基本变换公式,并通过实例演示其应用。

1. 正弦函数的基本变换公式正弦函数的基本变换公式可以将一个正弦函数表达式转化为其他等价的正弦函数表达式。

以下是正弦函数的基本变换公式:(1) 正弦函数的奇偶性当角度为x时,有xxx(−x)=−xxx(x)。

这个公式表明,正弦函数关于原点对称。

(2) 正弦函数的周期性当角度为x时,有xxx(x+2xx)=xxx(x),其中x为任意整数。

这个公式表明,正弦函数的周期为2x。

2. 余弦函数的基本变换公式余弦函数的基本变换公式可以将一个余弦函数表达式转化为其他等价的余弦函数表达式。

以下是余弦函数的基本变换公式:(1) 余弦函数的奇偶性当角度为x时,有xxx(−x)=xxx(x)。

这个公式表明,余弦函数是偶函数,对称于x轴。

(2) 余弦函数的周期性当角度为x时,有xxx(x+2xx)=xxx(x),其中x为任意整数。

这个公式表明,余弦函数的周期为2x。

3. 正切函数的基本变换公式正切函数的基本变换公式可以将一个正切函数表达式转化为其他等价的正切函数表达式。

以下是正切函数的基本变换公式:(1) 正切函数的奇偶性当角度为x时,有xxx(−x)=−xxx(x)。

这个公式表明,正切函数是奇函数,关于原点对称。

(2) 正切函数的周期性当角度为x时,有xxx(x+xx)=xxx(x),其中x为任意整数。

这个公式表明,正切函数的周期为x。

4. cosec函数、sec函数和cot函数的基本变换公式cosec函数、sec函数和cot函数的基本变换公式可以通过正弦函数、余弦函数和正切函数的基本变换公式导出。

以下是这些函数的基本变换公式:(1) cosec函数的基本变换公式xxxxx(x)=xxx(x)的倒数(2) sec函数的基本变换公式xxxxx(x)=xxx(x)的倒数(3) cot函数的基本变换公式xxxxx(x)=1/xxx(x)通过以上的三角函数基本变换公式,我们可以在三角函数的计算中灵活转换不同的三角函数表达式,从而简化计算过程,并得到相应的结果。

正弦和余弦转换

正弦和余弦转换

正弦和余弦转换公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式一:设α为任意角,终边相同的角的同一的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的与α的三角之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是时,得到α的同名函数值,即函数名不改变;②当k是时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二;三为切;四”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有是“+”,其余全部是“-”;第内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三正切,四余弦其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角六角形六角形记忆法:(参看图片或参考资料链接)构造以"、中切、下割;左正、右余、中间1"的为模型。

(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。

由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式⒉两角和与差的sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/(1-tan^2(α))⒋半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)⒌万能公式sinα=2tan(α/2)/(1+tan^2(α/2))cosα=(1-tan^2(α/2))/(1+tan^2(α/2))tanα=(2tan(α/2))/(1-tan^2(α/2))万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。

同理可推导余弦的万能公式。

正切的万能公式可通过正弦比余弦得到。

⒍三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))/(1-3tan^2(α))三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^2(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式:谐音、联想正弦三倍角:3元减4元3角(欠债了(被减成),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍用正弦表示,余弦的三倍角都用余弦表示。

⒎三角函数的公式sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)⒏三角函数的公式sinα ·cosβ=[sin(α+β)+sin(α-β)]cosα ·sinβ=[sin(α+β)-sin(α-β)]cosα ·cosβ=[cos(α+β)+cos(α-β)]sinα ·sinβ=-[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。

相关文档
最新文档