现代液压成形技术

合集下载

现代液压成型技术

现代液压成型技术

现代液压成型技术现代液压成型技术第1部分:液压成形技术的种类在介绍它的种类和特点之前首先让我们先了解它的定义,什么是液压成形?定义:液压成形是指利用液体作为传力介质或模具使工件成形的一种塑性加工技术,也称液力成形。

(可能文字解释有点抽象,下面请大家看一段视频),很直观的可以看到它的成形工艺大致可分为三个阶段:第一个阶段,填充阶段,将管材放在下模内,然后闭合上模,使管材内充满液体(并排除气体),将管的两端用水平冲头压封;第二个阶段,成形阶段,对管内液体加压胀形的同时两端的冲头按照设定加载曲线向内推进补料,在内压和轴向补料的联合作用下使管材基本贴近模具;第三个阶段,整形阶段,提高压力是过度区圆角完全贴靠模具而成形为所需的工件,这个阶段基本没有补料,从截面看可以把管材变为矩形、梯形、椭圆形或其他异型截面。

1.1 按使用的液体介质不同可将液压成形分为水压成形和油压成形。

1.1.1 水压成形:使用的介质为纯水或水添加一定比例的乳化油组成的乳化液1.1.2 油压成形:油压成形的介质为液压传动油或机油1.2 按使用坯料不同,可分为管材液压成形、板材液压成形、壳体液压成形。

1.2.1管材液压成形:板料(≤100MPa)和壳体液压成形(≤50MPa)使用的成形压力较低,而管材液压成形使用的压力较高(一般不超过400MPa),又称内高压成形(Internal High Pressure Forming)通过管材内部施加高压液体和轴向补料把管材压入到模具型腔使其成形为所需工件,所需管材多为电阻焊管(ERW)因其成本低且成型性好,其次是无缝管、拉拔管(DOM)激光焊管(成型性最佳)。

1.2.1.1变径管内高压成形技术变径管内高压成形是以管材作坯料,通过管材内部施加高压液体和轴向补料把管材压入到模具型腔使其成形为所需工件,把管材的圆截面变为矩形、梯形、椭圆形或其他异型截面。

(板书演示)1.2.1.2弯曲轴线变截面管件内高压成形弯曲轴线管件内高压成形工艺过程包括弯曲、预成形、内高压成形等主要工序。

现代液压成形技术

现代液压成形技术

薄壁多通管内高压成形技术
缺陷形式:支管顶部 破裂、主管起皱、Y 型支管过渡区内凹 多通管件的应用: 1.排气歧管:内壁光滑、 壁厚薄、质量轻

内高压成形设备和模具


内高压成形机由合模压 力机、高压源、水平缸、 液压泵站、水压系统和 计算机控制系统六部分 组成。 工作过程:闭合模具— 施加合模力—对管材内 填充加压介质—管端密 封—按加载曲线施加内 压和轴向进给—增压整 形—卸压—去合模力— 退回冲头—开模
板材充液拉深成形技术

介质传递载荷,使板材在传力介 质的压力作用下 贴靠凸模以实现金属零件的成形。 成形工艺过程如图所示; 板材充液拉深特点: 1.成形极限高 2.尺寸精度高、表面质量好 3、道次少 4、成本低 适用范围:适用于筒形、锥形、抛 物线形盒形领域的等变形程度超 过普通拉深成形极限的板材零件 eg:航天领域整流罩、头套以及汽 车领域的发动机等覆盖件。
现代液压成形技术
目录




一· 概论 二· 内高压成形技术 三· 液力胀接和液压冲孔 四· 板材充液拉深成形技术 五· 封闭壳体无模液压成形技术一· 概论

加工技术,也称为液力成形。 分类:按使用的液体介质不同,分为:水压成形和油压成形。 按使用的坯料不同,分为:1)管材液压成形(内高压成形)2)板料液压 成形.3)壳体液压成形 特点:(1)仅需要凹模或凸模,省去模具加工费用和时间,壳体液压成形不需要 凸 凹模 (2)液体具有实时可控性
基本原理:采用液体作为传力
封闭壳体无模液压成形技术


基本过程:先由平板或经过 辊弯的单曲率壳板组焊成封 闭多面壳体,然后再封闭多 面壳体内充满液体介质(通 常为水),并通过一个加压 系统向封闭多面壳体内施加 内压,在内压作用下,壳体 产生塑性变形而逐渐趋向于 球壳。 对于单曲率壳体,该工艺的 主要工序为:下料—弯卷— 组装焊接—液压成形

液压成型

液压成型

图1 空心异形截面零件引言液压成形技术同冲压,焊接等传统的成形技术相比,是一门新型的金属成形技术。

为了解决汽车,航空航天等领域的一些复杂的工艺问题和技术要求,从20世纪50年代起,德、美、日等国科学家在相关领域内先后提出了内高压成形技术和板料液压成形技术。

1985年我国科学家王仲仁教授发明了球形容器无模液压成形技术,提出了壳体液压成形技术。

近几年,依托于计算机控制技术和高压液压系统的发展,液压成形技术迅速发展。

目前,很多复杂结构的零件都可以通过该技术批量地加工生产。

一、液压成形技术的概述1.1 液压成形的定义和分类液压成形也称为液力成形是指利用液体作为传力介质或模具使工件成形的一种塑性加工技术。

按使用的液体介质不同,液压成形分为水压成型和油压成型;按使用的配料不同,液压成形分为管材液压成形,板料液压成形和壳体液压成形。

板料和壳体液压成形使用的成形压力较低,而管材液压成形使用的压力较高,又称为内高压成形,本文中称管材液压成形为内高压成形。

1.2 液压成形的特点现代液压成形技术的主要特点表现在两个方面:①液压成形技术仅需要凸模和凹模中的一个,或者不使用任何模具,这样可以省去一半,甚至不需要花费制造模具的费用和加工时间,而且液体作为凸模可以成形很多刚性凸模无法成形的复杂零件。

②液体作为传力介质具有实时可控性,通过液压闭环伺服系统和计算机控制系统可以按给定的曲线精确控制压力,确保工艺参数在设定的数值内,并且随时间可变可调,大大提高了工艺柔性。

二、内高压成形技术2.1 内高压成形技术的原理及分类内高压成形技术是用管材作为原材,通过对官腔内施加液体压力及在轴向施加负荷作用,使其在给定模具型腔内发生塑性变形,管壁与模具内表面贴合,从而得到所需形状零件的成形技术。

内高压成形技术主要可以整体成型轴线为二维或三维曲线的异形截面空心零件,从材料的初始圆截面可以成形为矩形,梯形,椭圆形或其他异形的封闭界面,如图1所示。

液压成形

液压成形
液压成形
充液拉伸:在凹模中充满了液体,利用凸模(带动板料) 进入凹模时所建立的反向液压而成形的方法。 特点: 1.由于反向液压的作用,使板料与凸模紧紧贴合,所以拉 伸件内测精度提高;同时,由于产生“摩擦保持效果”, 缓 和了板料在凸模圆角处的径向应力,提高了传力区的承载 能力; 2.在凹模圆角处,板料不直接与凹模接触,而是与液体接 触,所以此处无摩擦应力; 3.由于反向液压的作用,使板料的变形处于压应力值较高 的应力状态,提高了变形能力; 4.成形过程中,凹模圆角半径由大变小,降低材料通过凹 模圆角时的弯曲变形阻力,提高了成形性能。 5.零件表面不易划伤;
5)简单圆凹模成形复杂件 如对内表面要求很高的灯罩,以往采用旋压法加工只能 是抛物面、锥面等轴对称件,采用充液拉伸法可加工异型 面。此外,适合加工航空领域用零部件、汽车零部件等 充液拉伸新工艺 1)带径向液压的充液拉伸法 板周多了径向压力,降低传力区负荷,从而增加了变形 程度,同时双面润滑液有利于提高变形程度。 2)外周带液压的充液反拉伸 该法拉伸超深筒形件极为有效。 3)充液变薄拉伸 分为反向、正向及双向变薄拉伸。 4)充液内孔翻边 此方法可以直接得到很高的竖边。
液压胀形 用液体取代凸模在凹模内成形,用于大中型零 件的胀形。胀形时的液体压力可按下式计算: 对于管状零件: 2t0 p= σ D 式中:
p − 液压力;t0 − 壁厚;D − 管件内径;σ − 变形抗力。 对于球形件: 2t0 σ p= R 式中:R − 球的半径。
几种典型的液压胀形工艺 1.T形管液压胀形 通常用于管接头的制作,当胀出高度较大时,应在 管轴向加推力,以提高变形程度。 2.波纹管液压胀形 用可移动半环模,原始节距可按零件母线的展开长 度初步估算。 3.薄壁封头类零件液压胀形 4.球形容器整体无模胀形 传统方法是先成形、后焊接,新方法是先焊接、后 胀形。

先进液压成形技术与轻量化汽车零部件的研发

先进液压成形技术与轻量化汽车零部件的研发

先进液压成形技术与轻量化汽车零部件的研发徐勇,工学博士,硕士生导师,副研究员,主要从事高性能薄壁零件先进液压成形技术和装备的研发应用及计算机辅助精确成形仿真技术的研究,拥有专利17项。

近年来碳排放超标,全球不断变暖以及能源过度开采及消耗等问题成为人们日益关注的焦点,因此以节省能源、减少尾气排放为目的的汽车轻量化成为了汽车制造业的重要研究课题,所以要加速实现传统结构类零部件的轻量化设计与改造。

轻量化的主要途径包括:材料轻量化、结构轻量化以及轻量化成形技术等。

而液压成形技术作为制造复杂形状薄壁板、管零件的先进制造技术,有利于零部件的轻量化、无余量化、高精度及整体化发展。

随着人们对产品性能以及减重要求的不断提升,希望能够将更多富有特色的材料纳入到液压成形技术的可行范围中,生产出品质更加优良并且结构更加复杂的新型汽车轻量化零部件,因此不断丰富液压成形理论、开发液压成形的新材料新工艺、并且提升大型智能液压成形装备制造水平,是液压成形技术未来发展的主要趋势。

液压成形工艺原理及优势液压成形是依托液体高压作用与模具型腔相配合,最终使金属坯料成形出整体化复杂变截面构件的先进制造技术。

按使用坯料的不同,可以分为三种类型:板材液压成形、壳体液压成形和管材液压成形。

其中管材液压成形是以金属管材为毛坯,借助专用液压设备向密封的管坯内注入液体介质,使管内液体产生高压(工作压力通常100~400MPa,最高达1000MPa),与此同时在管坯两端通过轴向冲头向内施加推力进行补料,在两种外力的作用下,管坯材料塑性变形,并最终与模具型腔内壁贴合,使金属管坯变形成为具有三维形状的空体构件,如图1所示,目前该技术在汽车零部件制造当中的应用也最为广泛。

但无论是管材液压成形或管材液压胀形、内高压成形等均是指同一种成形技术。

图1 管材液压成形工艺原理图液压成形技术能够提高生产效率,并可以显著地减轻零部件重量并增强其结构稳定性。

与传统机械加工、冲压焊接方式相比,液压成形具有以下几个显著的优点:减轻重量、提高零件的强度、刚度,尤其是疲劳强度、提高尺寸精度以及减少零件、工序和模具数量,降低生产成本等。

材料成形设备液压机概述

材料成形设备液压机概述

材料成形设备液压机概述液压机是一种常见的材料成形设备,广泛应用于各个领域的生产制造过程中。

本文将对液压机的概念、工作原理、结构和应用进行详细介绍。

一、概念液压机是一种利用液体传动能量的机械设备,通过液压传动实现对材料的成形和加工。

液压机以其高效、高精度、可靠性强等特点,在金属加工、塑料成型、冷挤压、压制等领域得到了广泛应用。

二、工作原理液压机的工作原理是利用液体传递压力,通过液压系统将压力传递到工作活塞上,从而实现对材料的成形。

液压机主要由液压系统、工作台、工作活塞、油缸、液压缸、液压油箱等组成。

当液压机开始工作时,液压系统中的液压泵开始工作,将液体压力传递到工作活塞上,使工作活塞受力,从而施加压力到工作台上的材料上。

材料在受力作用下逐渐变形,达到所需的成形效果。

三、结构液压机的结构主要包括以下几个部分:1.液压系统:液压系统由液压泵、油箱、液压缸等组成,用于提供液体压力以及控制液体的流动和压力。

2.工作台:工作台是液压机上用于支撑和固定工作物料的部分,通常由坚固的平面和可调整高度的装置组成。

3.工作活塞:工作活塞是液压机中的关键部件,由活塞和密封元件组成,能够受到液压系统的力作用,从而施加力到工作台上的材料。

4.油缸:油缸是液压机中的容器,其中装有液体,并与液压泵、液压缸等部件相连,用于传递液体压力和驱动工作活塞。

5.控制系统:液压机的控制系统一般由液压系统控制阀门、传感器、控制器等组成,用于对液压机的工作进行控制和调节。

四、应用液压机在各个领域的生产制造过程中有着广泛的应用,常见的应用领域包括:1.金属加工:液压机在金属锻造、冲压、拉伸、剪切等加工过程中起到关键作用,能够对金属材料进行成型和加工。

2.塑料成型:液压机在塑料注塑、挤出成型、吹塑等塑料成型过程中具有高精度、高强度的成形能力,广泛应用于塑料制品的生产。

3.冷挤压:液压机在冷挤压过程中能够对金属材料进行冷加工,既能够提高材料的强度,又能够减少材料的加热损失。

液压成形

液压成形

液压成形摘要:液压成形是一种先进的塑性成形技术,是利用液体介质代替凸模或凹模,靠液体介质的压力使材料成形的一种加工工艺。

液压成形技术不但能成形复杂零件还能够提高零件质量减少成形工序降低加工成本特别适合于小批量零件的加工生产。

关键字:管件液压成形. 液压胀形. 板材液压成形.1概述现代工业产品由大批量向多品种和中小批量方向发展。

对于批量小、尺寸多变的复杂形状板材零件,采用传统冲压方法成形时,模具设计、制造与调试需要消耗大量的人力、物力与时间,很难适应现代化发展的需要。

这就迫切需要研究一种新的柔性生产方法,达到既降低成本又缩短制造周期的目的。

液压成形技术正是在这种背景下提出来的液压成形是一种先进的塑性成形技术,是利用液体介质代替凸模或凹模,靠液体介质的压力使材料成形的一种加工工艺。

它能够改善工件内部应力状态,提高板料的成形极限,成形形状复杂的零件,且成形件质量好、精度高、回弹小,具有传统拉深无法比拟的优越性。

液压成形技术不但能成形复杂零件还能够提高零件质量减少成形工序降低加工成本特别适合于小批量零件的加工生产。

液压成形技术早在20世纪40 年代就被用于汽车制造业。

如果按照加工过程的特点,可以分为管件液压成形技术、板料液压成形技术等2 管材液压成形2.1管材液压成形的历史及原理管材液压成形起源于19世纪末, 当时主要用于管件的弯曲。

由于相关技术的限制, 在以后相当长一段时间内, 管材液压成形只局限于实验室研究阶段, 在工业上并未得到广泛应用。

但随着计算机控制技术的发展和高液压技术的出现,管材液压成形开始得到大力发展。

上世纪90年代, 伴随着汽车工业的发展以及对汽车轻量化、高质量和环保的要求, 管材液压成形受到人们重视, 并得到广泛应用。

管件液压成形是以金属管材为毛坯,借助专用设备向密封的管坯内注入液体介质,使其产生高压,同时还在管坯的两端施加轴向推力,进行补料,在两种外力的作用下,管坯材料塑性变形,并最终与模具型腔内壁贴合,得到形状与精度均符合技术要求的中空零件液压成形原理如图1 所示图1 管件液压成形原理示意图当零件轴线不是直线模腔分模面处截面小于管坯截面时,需进行弯管冲压等预工艺,以便管坯能顺利置入模腔中,如有必要,在液压成形之前还需进行退火处理2.2管材液压成形优点:与传统的冲压焊接工艺相比,管件液压成形工艺具有以下优点:(1 ) 减轻零件质量,节约材料; (2 ) 提高零件的强度和刚度,特别是疲劳强度; ( 3) 减少零件数量节约模具成本;(4) 零件整体成形,可减少后续机械加工和组装焊接量,简化生产流程,提高生产效率; (5) 提高加工精度,减少装配误差积累,可提高产品质量; (6)降低生产成本; (7) 结构形状设计更趋灵活优化。

讲一讲将板材“玩弄”于模具之中的液压成形技术

讲一讲将板材“玩弄”于模具之中的液压成形技术

讲一讲将板材“玩弄”于模具之中的液压成形技术中国航空制造厂的橡皮囊液压成形设备能加工出航空领域中最为常见的各种形式的蒙皮,再经过相应的加工工艺后就可以满足飞机的不同部位的特殊要求,下图左一是焊接后的成型S形进气道蒙皮焊接件,右一为马鞍形蒙皮。

液压成形技术同冲压,焊接等传统的成形技术相比,是一门新型的金属成形技术。

为了解决航空航天,汽车等领域的一些复杂的工艺问题和技术要求,从20世纪50年代起,德、美、日等国科学家在相关领域内先后提出了内高压成形技术和板料液压成形技术。

1985年我国科学家王仲仁教授发明了球形容器无模液压成形技术,提出了壳体液压成形技术。

近几年,依托于计算机控制技术和高压液压系统的发展,液压成形技术迅速发展。

目前,很多复杂结构的零件都可以通过该技术批量地加工生产。

液压成形技术的发展历史液压成形开始于十九世纪末期,当时主要用于管件的成形,由于相关技术的限制在相当长一段时间内,管材液压成形只局限与实验室研究阶段,在工业上没有得到广泛应用。

板材液压成形由管件液压成形引申而来,最初出现的是橡皮膜液压成形。

美国、德国和日本相继于五、六十年代开发出了橡皮囊液压成形技术。

日本学者保日春男首先对此进行了改进,开发出了对向液压拉深技术。

随后欧、没等国家也相继开展这方面的工艺研究及设备的开发工作。

1967年,德国SMG公司提出液压机械拉深技术。

板材液压成形技术在九十年代后得到人们的重视和大力研究。

九十年代后,制造业迅猛发展,零件的形状日趋复杂,加之有大量采用铝、镁等质量较轻、但塑性较差的新材料,使得人们将注意力转向了板材液压成形技术。

到了九十年代后期,德国有关学者提出了一种板材成形新工艺--板材成对液压成形。

相对于国外来说,国内对于液压成形的研究较晚。

上世纪九十年代后,国内众多高校开始对液压成形进行研究,例如哈尔滨工业大学、燕山大学、华南理工大学、上海交通大学等分别对液压成形进行了理论分析和实验研究,总结了很多液压成形的数据和经验,但是对板材成对液压成形的研究相对较少,处于最初的探索阶段。

液压技术的发展现状及趋势

液压技术的发展现状及趋势

液压技术的发展现状及趋势
液压技术作为一种传动方式和控制方式,在工程机械、航空航天、汽车工业、冶金工业、煤炭工业等领域具有广泛的应用。

目前,液压技术的发展现状及趋势主要表现在以下几个方面:
1. 小型化和集成化:随着科技的不断进步和现代工艺的发展,液压元件和系统的体积越来越小,功能越来越强大。

液压技术逐渐向集成化方向发展,形成了集成的液压系统,提高了系统的整体性能和效率。

2. 高效性:液压技术在能源转换效率上不断提高,采用新型材料和先进制造工艺,减少能量损耗和泄漏,提高系统的效率。

3. 智能化:液压技术与电子、计算机等先进技术的融合,实现了液压系统的智能化控制。

通过传感器、执行器和控制器的配合,实现对液压系统参数的精确控制和实时监测,提高系统的可靠性和灵活性。

4. 环保和节能:液压技术在节能和环保方面也有了新的发展。

采用新型的液压系统设计和控制策略,减少系统的能耗和噪音,降低对环境的污染。

5. 网络化和大数据应用:液压技术的网络化和大数据应用也是未来发展的趋势之一。

通过互联网和物联网技术,实现液压系统的远程监控和故障诊断,提高系统的可靠性和维修效率。

总的来说,液压技术在小型化、高效性、智能化、环保和节能、
网络化等方面都有了显著的进步和发展,未来还将继续朝着更加先进、可靠和高效的方向发展。

液压成型技术

液压成型技术

板材液压成型
板材液压成型是利用液体作为传力介质来传递载荷, 使板材成型到单侧模具上的一种板材成型方法。 根据液体介质取代凹模或凸模可将之进一步分为: 1.充液拉深(用液体介质代替凹模)。 2.液体凸模拉深(以液体介质作为凸模)。
充液拉深

热态充液拉深,将材料的温热性能与充液拉深的技术 优势结合起来,可使铝合金及镁合金等成型性能差的 轻体材料成型能力得到提高,促进其在航空航天领域 的应用。
液压成型技术的现状
管材液压成型 现代液压成型压力一般达到400MPa,有时可达到 1000MPa。超高压精度达到0.2-0.5MPa,位移精度 达到0.5MPa。,现在已广泛应用到汽车、航空、自 行车、管路等当中,其中汽车应用最为广泛。 包括: 1.底盘类零件:副车架、纵梁、后轴、保险杠 2.车体结构:座椅框、仪表盘支梁、顶梁等 3.发动机和驱动系统:排气管凸轮轴 4.转向和悬挂系统:控制臂、摆臂等
管材成型工艺
它的成型工艺大致可分为三个阶段:第一个
阶段,填充阶段,将管材放在下模内,然后 闭合上模,使管材内充满液体(并排除气 体),将管的两端用水平冲头压封;第二个 阶段,成型阶段对管内液体加压胀型的同时 两端的冲头按照设定加载曲线向内推进补料, 在内压和轴向补料的联合作用下使管材基本 贴近模具;第三个阶段,整型阶段,提高压 力使过度区圆角完全贴靠模具而成型为所需 的工件,这个阶段基本没有补料,从截面看 可以把管材变为矩型、梯型、椭圆型或其他 异型截面。
液压成型技术的发展趋势
随着液压成型技术的成熟和人们都减轻质量,降低成本的需求的提高,该技术 近十年来在各个领域得到广泛应用。 板材液压成型: 1.进一步提高成型极限和零件质量的成型新技术。 2.低塑性材料的拉深成型。 3.大型复杂型面零件成型 4.与普通拉深工艺复合,提高效率 壳体液压成型: 1. 选用轻质传力介质 2. 应用高能束焊接技术和自动化工艺焊接封闭壳体 3. 铝合金等轻质材料球壳液压成型 管材液压成型: 1.超高压成型 2.新成形工艺不断发展 3. 超高强度钢成型 4. 热态内压成型

曲面板材零件液压成形技术解读

曲面板材零件液压成形技术解读

曲面板材零件液压成形技术来源:作者:发布时间:2008-12-20针对传统板材冲压成形中存在的成形极限低、模具型腔复杂,以及零件表面品质差等缺点,发展了板材液压成形技术。

其基本原理是采用液体作为传力介质以代替刚性的凸模或凹模来传递载荷,使坯料在液体压力作用下贴靠凹模或凸模,从而实现金属板材零件的成形。

自从该技术推出以来,在航空航天及汽车领域不断获得应用,特别适于结构形状复杂的零件及冷成形性能差的材料成形,如铝合金、高强钢、高温合金以及拼焊板等。

板材液压成形技术现也日渐成为国内外业界的研究热点,并产生了可控径向加压充液拉深技术及液体凸模拉深成形新技术。

板材液压成形原理及分类板材液压成形是利用液体作为传力介质来传递载荷,使板材成形到单侧模具上的一种板材成形方法,根据液体介质取代凹模或凸模可将之进一步分类为充液拉深成形和液体凸模拉深成形。

前者(图1)是用液体介质代替凹模传递载荷,液压则作为辅助成形的手段,可减小普通拉深成形中凸、凹模之间坯料的悬空区,使该部分坯料紧贴凸模,零件形状尺寸最终靠凸模来保证。

图1 充液拉深成形原理充液拉深成形中的液压作用形成了坯料与凸模之间的摩擦保持效果,提高了凸模圆角区板料的承载能力,抑制坯料减薄和开裂,可有效提高成形极限、减少成形道次。

同时,液体从坯料与凹模上表面间溢出可形成流体润滑,促进外围板材进入凹模,缓解了零件表面的划伤。

这一成形技术因其独特优势在国际上受到普遍重视,发展出主动背压(预胀)拉深法,其过程是预先胀形,然后拉深,通过预先胀形达到变形硬化的效果。

液体凸模拉深成形(图2)则是以液体介质代替凸模传递载荷,液压作为主驱动力使坯料变形,坯料法兰区逐渐流入凹模,最终在高压作用下使坯料贴靠凹模型腔,零件形状尺寸靠凹模来保证。

这一成形法通过合理控制压边力可使坯料产生拉-胀成形,应变硬化可提高曲面薄壳零件的刚性、压曲抗力和抗冲击能力。

因此,它非常适于铝合金和高强钢等轻合金板料形状复杂(特别是局部带有小圆角)、深度较浅的零件成形。

液压成形技术

液压成形技术
程。如果内压过高,会导致减薄过度甚至开裂。如果轴向进给 过大,会引起屈曲或起皱。
屈曲:当管材成形区长度过长,在成形初期还没有在管材 内建立起足够大的内压时,施加了过大的轴向力造成的。
皱纹:当轴向力过大时,工件在成形初期产生皱纹 。 皱纹可以分为二类,一类是后期加压整形无法展平,这类 皱纹称为死皱,它是一种缺陷。 另一类皱纹通过后期加压可 以展平,称为“有益皱纹”。这类皱纹不仅不是缺陷而且还可 作为一种预成形的手段,在成形初期将管材推出皱纹以补充材 料。但前提条件是后续整形压力能将皱纹展开。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
冲压工艺与模具设计助学课件
第8章 特殊成形技术
13
4.内高压成形设备 一条完整的内高压成形生产线主要由切管机、弯管机、预
成型压力机、内高压成形压力机等设备组成。其中最重要的设 备是内高压成形压力机, 它由合模压力机、高压源、水平缸、液 压泵站、水压系统和计算机控制系统等6部分组成, 其组成和工 作原理如图8-13和图8-14所示。
内高压成形工艺作为一种整体成形薄壁结构件的塑性加工方 法,最近几十年在汽车制造业、航空航天业及卫生洁具业中得到 了广泛的应用。
a)轿车副车架(有18个不同的截面形状和尺寸)
b) 排气歧管
图8-10典型汽车内高压成形零件
冲压工艺与模具设计助学课件
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
根据受力和变形特点, 零件分为成形区和送料区2个区间。成 形区是管材发生塑性变形直径和形状发生变化的部分,送料区是 在模具内限制管材外径不变, 主要作用是向成形区补充材料。
冲压工艺与模具设计助学课件
第8章 特殊成形技术
10

液压成型技术综述

液压成型技术综述

液压成型技术的发展趋势
随着液压成型技术的成熟和人们都减轻质量,降低成本的需求的提高,该技术 近十年来在各个领域得到广泛应用。 板材液压成型: 1.进一步提高成型极限和零件质量的成型新技术。 2.低塑性材料的拉深成型。 3.大型复杂型面零件成型 4.与普通拉深工艺复合,提高效率 壳体液压成型: 1. 选用轻质传力介质 2. 应用高能束焊接技术和自动化工艺焊接封闭壳体 3. 铝合金等轻质材料球壳液压成型 管材液压成型: 1.超高压成型 2.新成形工艺不断发展 3. 超高强度钢成型 4. 热态内压成型
以变径管为例
(a)
(b)
图3 变径管内高压成型技术工艺过程 (a)填充阶段;(b)成型阶段;(c)整型阶段。 (c)
管材液压成型特点
从工艺技术角度,管材液压成型与冲压焊接工艺相对 比的主要优点有: 1.减轻质量,节约材料。 ( 框、梁类 减轻20%-40%, 空心轴 可以减轻40%-50%) 2.减少零件和模具重量,降低模具费用。 3.可减少后续机械加工和组装焊接量,提高生产效率。 4.提高强度和刚度,尤其是疲劳强度。 5.材料利用率高。 (达到90%-95%) 6.降低生产成本。
管材成型工艺
它的成型工艺大致可分为三个阶段:第一个
阶段,填充阶段,将管材放在下模内,然后 闭合上模,使管材内充满液体(并排除气 体),将管的两端用水平冲头压封;第二个 阶段,成型阶段对管内液体加压胀型的同时 两端的冲头按照设定加载曲线向内推进补料, 在内压和轴向补料的联合作用下使管材基本 贴近模具;第三个阶段,整型阶段,提高压 力使过度区圆角完全贴靠模具而成型为所需 的工件,这个阶段基本没有补料,从截面看 可以把管材变为矩型、梯型、椭圆型或其他 异型截面。
板材液压成型技术特点

液压技术应用

液压技术应用

液压技术应用----液压成形技术因应运输工具轻量化、高性能、省能源之发展趋势,自1990年代起管件液压成形(Tube Hydroforming) 或称管件内高压成形(Internal High Pressure Fo rming) 技术受到工业界及学术界极大瞩目而蓬勃发展,目前已成为国际间汽车产业主流制造技术之一,包括:德国双B、VW、AUDI、OPEL,美国GM、FORD、CHRYSLER,日本TOYOTA、HONDA、NISSAN、SUBARU、MAZDA、MITS UBISHI,韩国KIA、Hyundai等均已投入生产或试量产,主要应用为底盘件、车身结构件与排气系统零组件,在其它产业应用亦不断扩大中,前景十分广阔。

管件液压成形技术具有:减轻重量/节省能源、产品一体型化、刚性佳、提高产品性能/精度及创新性,且在生产过程中可减少半成品零件数量,减少焊接、机械加工与产品组装道次等后加工处理,有效降低生产成本、缩短加工周期等优点。

1. 技术原理管件液压成形技术,适用于异厚异形之中空结构管件,顾名思义是先将管材置于具形状的模具中,藉由管件内部加入高压流体(目前主要以水为主),搭配轴向施加压力补偿管料,把管料压入到模具腔体内成形。

其成形所需之液压力一般约2 000Bar,特殊状况下甚至高达4000Bar。

适用材料和应用范围:具备优良的可延伸性为液压成形法的关键,原则上适用于冷间成形加工的材料均适用于管件液压成形技术,目前主要以:碳钢、特殊钢、不锈钢、铝合金、铜合金等为主。

2. 技术特点应用管件内高压技术可达到减少结构件零件数目、焊接道次并缩短组配时间,达成减轻重量及降低成本之目标,其优点因产品之不同而有所不同,相较于传统生产技术的优势包括:1.减轻重量:与车削、搪孔相比,管件液压成形之空心轴类可减轻40%~50%,有些甚至可达75%;若与冲压焊接件相比,汽车上用管件液压成形的空心结构件可减少20%~30%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液力胀接和液压冲孔
液力胀接是以液体介 质在轴管内加载产生 局部变形,利用液压 伺服精确控制内压, 实现轴管和多个套环 一次性整体装配的工 艺方法,适用于制造 空心凸轮 轴等轴类零件。 应用:

液力胀接和液压冲孔

液压冲孔就是在管内 液体压力的支撑作用 下,利用冲头将管壁 材料分离的一种冲孔 方法。
定义:液压成形是指利用液体作为传力介质或模具使工件成形的一种塑
Байду номын сангаас
种类 管材液压成形 板料液压成形 壳体液压成形
介质 多为乳化液 液压油 纯水
最大成形压力 不超过400MPa 不超过100MPa 不超过50MPa
2.液压成形技术发展趋势
内高压成形技术:1.超高压成形2.新成形工艺3.超高强度钢成形4.热态内压成形 板料液压成形技术:1.提高成形极限和零件质量的成形新技术 2.低塑性材料的拉深成形 3.大型复杂型面零件成形 4.与普通拉深工艺复合,提高效率。
现代液压成形技术
目录




一· 概论 二· 内高压成形技术 三· 液力胀接和液压冲孔 四· 板材充液拉深成形技术 五· 封闭壳体无模液压成形技术 六· 热态液压成形技术简介
1.液压成形技术种类和特点
一· 概论

加工技术,也称为液力成形。 分类:按使用的液体介质不同,分为:水压成形和油压成形。 按使用的坯料不同,分为:1)管材液压成形(内高压成形)2)板料液压 成形.3)壳体液压成形 特点:(1)仅需要凹模或凸模,省去模具加工费用和时间,壳体液压成形不需要 凸 凹模 (2)液体具有实时可控性
封闭壳体无模液压成形技术

应用实例:
热态液压成形技术简介
管材——适用于镁合 金、高强铝合金等 室温难变形管材的成 形方法。 优点:1、提高管 材内压成形极限,增 加零件复杂程度。2、 降低成形压力 板材——既是把板材及 模具加热到一定温度、 再进行充液拉深成形 的一种新技术

总结

现代液压成形技术虽然起步较晚,但经 过半个多世纪的发展,已在制造业的很 多行业中得到广泛应用。随着航天、汽 车、航空和机械行业对结构整体化和轻 量化的需求越来越高,近十年来,液压 成形技术尤其是内高压成形技术在我国 得到了迅速发展,逐渐成为工业生产中 制造复杂异型截面轻体构件的一种先进 成形技术。
板材充液拉深成形技术

介质传递载荷,使板材在传力介 质的压力作用下 贴靠凸模以实现金属零件的成形。 成形工艺过程如图所示; 板材充液拉深特点: 1.成形极限高 2.尺寸精度高、表面质量好 3、道次少 4、成本低 适用范围:适用于筒形、锥形、抛 物线形盒形领域的等变形程度超 过普通拉深成形极限的板材零件 eg:航天领域整流罩、头套以及汽 车领域的发动机等覆盖件。
变径管内高压成形技术

实例:接头零件 异形双锥管件
弯曲轴线异型截面管件内高压成形技 术



工艺过程:弯曲、预成 形、内高压成形 缺陷形式:开裂、死皱、 飞边 典型实例:轿车副车架 主管件内高压成形
薄壁多通管内高压成形技术


传统工艺:1两个直 管插焊2、利用板料 冲压成两个半管后再 焊接成整管。 基本工艺过程:
基本原理:采用液体作为传力
封闭壳体无模液压成形技术


基本过程:先由平板或经过 辊弯的单曲率壳板组焊成封 闭多面壳体,然后再封闭多 面壳体内充满液体介质(通 常为水),并通过一个加压 系统向封闭多面壳体内施加 内压,在内压作用下,壳体 产生塑性变形而逐渐趋向于 球壳。 对于单曲率壳体,该工艺的 主要工序为:下料—弯卷— 组装焊接—液压成形
薄壁多通管内高压成形技术
缺陷形式:支管顶部 破裂、主管起皱、Y 型支管过渡区内凹 多通管件的应用: 1.排气歧管:内壁光滑、 壁厚薄、质量轻

内高压成形设备和模具


内高压成形机由合模压 力机、高压源、水平缸、 液压泵站、水压系统和 计算机控制系统六部分 组成。 工作过程:闭合模具— 施加合模力—对管材内 填充加压介质—管端密 封—按加载曲线施加内 压和轴向进给—增压整 形—卸压—去合模力— 退回冲头—开模
变径管内高压成形技术
变径管定义:是指管件中间
一处或几处的管径或周长大 于两端管径或周长。
工艺过程:(a)填充阶段(b)
成形阶段(c)整形阶段 应用范围:汽车进排气系统、 飞机管路系统、火箭动力系 统、自行车和空调中使用的 异性管件和复杂截面管件。 主要工艺参数:初始屈服压 力、开裂压力、整形压力、 轴向进给力、合模力和补料 量。 缺陷形式:屈曲、开裂、起皱 (分为死皱和有益皱纹) 摩擦与润滑
相关文档
最新文档