概率教案九年级人教版

合集下载

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。

本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。

通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。

在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。

但概率概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。

三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。

四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。

2.难点:概率公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。

2.合作学习法:分组讨论,培养学生团队合作精神。

3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。

六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。

2.教学工具:多媒体课件,黑板,粉笔。

3.学生活动:提前分组,准备进行合作学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。

2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。

同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。

九年级数学上册《概率》教案、教学设计

九年级数学上册《概率》教案、教学设计
(四)课堂练习
1.教师布置具有代表性的练习题,涵盖概率的基本概念、计算方法等方面,让学生独立完成。
2.教师巡回指导,解答学生疑问,关注学生的解题过程,发现问题并及时纠正。
3.学生完成练习后,教师选取部分题目进行讲解,强调易错点和解题技巧。
4.鼓励学生互相讨论、交流解题心得,提高他们的合作能力和解决问题的能力。
3.将理论知识与实际生活中的问题相结合,进行合理的风险评估和决策。
教学设想:
1.创设情境,激发兴趣:通过现实生活中具有趣味性的随机事件,如彩票中奖、游戏概率等,引发学生对概率学习的兴趣,激发他们的学习热情。
2.分层次教学,循序渐进:针对学生的个体差异,设计不同难度的问题和练习,使学生在掌握基础知识的基础上,逐步提高解决问题的能力。
4.掌握利用概率知识进行决策和风险评估的基本方法,培养学生的数据分析能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作学习的能力,激发学生的学习兴趣。
2.引导学生运用观察、分析、归纳等方法,从实际问题中发现规律,培养学生的逻辑思维能力。
3.通过解决实际问题的过程,让学生体会数学建模的思想,提高学生解决实际问题的能力。
1.请学生完成课后练习题,包括基础题和拓展题,基础题主要针对概率的基本概念和计算方法进行巩固,拓展题则侧重于将概率知识应用于解决实际问题。
2.针对课堂中所学的概率性质和计算方法,请学生选取一个生活中的实例,运用所学知识进行分析,计算相关事件的概率,并撰写一篇简短的案例分析报告。
3.教师提供一些具有挑战性的问题,鼓励学生以小组合作的形式进行研究性学习,共同探讨解决方案。例如,探讨掷两个骰子时,两个骰子点数之和的概率分布情况。
a.课堂提问时,关注学生的思维过程,鼓励他们表达自己的观点。

人教版初三数学上册《概率与统计》教案

人教版初三数学上册《概率与统计》教案

人教版初三数学上册《概率与统计》教案一、教学目标通过研究本单元的内容,使学生掌握以下能力:1. 理解概率与统计的基本概念和应用;2. 掌握概率计算的基本方法;3. 学会利用统计方法分析和解决问题;4. 培养数学思维和分析问题的能力。

二、教学重难点1. 教学重点- 概率的定义及计算方法;- 统计的基本概念与应用。

2. 教学难点- 利用概率和统计解决实际问题的能力。

三、教学内容与步骤第一节:概率的引入教学内容1. 什么是概率?2. 概率的计算方法:等可能事件的概率计算。

3. 实际问题的概率计算。

教学步骤1. 导入:通过一个简单的生活例子引入概率的概念。

2. 讲解:介绍概率的定义和基本计算方法。

3. 案例分析:用等可能事件的概率计算方法解决实际问题。

4. 练与讲评:提供一些练题供学生独立完成,并进行讲评。

第二节:统计的引入教学内容1. 什么是统计?2. 统计的基本概念及应用。

3. 数据的收集和整理方法。

教学步骤1. 导入:通过一个小调查引入统计的概念。

2. 讲解:介绍统计的基本概念和应用,并讲解数据的收集和整理方法。

3. 实际应用:通过实际案例让学生了解统计在生活中的应用。

4. 练与讲评:提供一些练题供学生独立完成,并进行讲评。

第三节:概率与统计综合应用教学内容1. 利用概率与统计解决实际问题。

2. 数据的图表表示与分析。

教学步骤1. 导入:通过一些实际问题引导学生思考如何利用概率和统计解决问题。

2. 讲解:介绍概率与统计综合应用的方法和步骤。

3. 实际应用:通过实际案例让学生运用所学方法解决问题。

4. 练与讲评:提供一些练题供学生独立完成,并进行讲评。

四、教学资源准备1. 人教版初三数学上册教材《概率与统计》;2. 教学投影仪、计算器等教学设备;3. 课堂练题、案例分析题等教学资源。

五、教学评价与反馈1. 教学过程中及时给予学生反馈,指导其理解和掌握情况。

2. 通过课堂练和作业的评价,检查学生对概率与统计的掌握程度。

人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1

人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。

本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。

因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。

三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。

2.学会使用概率公式计算简单事件的概率。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.概率的概念和事件的相互独立性。

2.概率公式的运用和计算。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。

2.通过实例分析,让学生理解概率的概念和事件的相互独立性。

3.运用小组讨论的方式,培养学生的团队合作能力。

六. 教学准备1.教学PPT或黑板。

2.与概率相关的实例和习题。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。

提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。

通过PPT或黑板,展示概率的定义和符号表示。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。

提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。

提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。

7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。

8.板书(5分钟)总结本节课的主要内容和重点知识点。

概率教案九年级人教版

概率教案九年级人教版

概率教案九年级人教版 Revised by Liu Jing on January 12, 2021第二十五章概率课题:随机事件教学目标:<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.课题: 概率的意义教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据要求填好25-2.并根据所整理的数据,在图上标注出对进行累计,按照书上P140应的点,完成统计图.表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近. 这也与我们刚开始的猜想是一致的.我们就用这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多着名数学家也做过掷硬币的试验.让学生阅读历史上数表25-3).学家做掷币试验的数据统计表(看书P141表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识有没有发现频率还有其他作用学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.课题: 列举法求概率教学目标:知识与技能目标学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。

人教版九年级数学上册25.1.2《概率》教学设计

人教版九年级数学上册25.1.2《概率》教学设计

人教版九年级数学上册25.1.2《概率》教学设计一. 教材分析人教版九年级数学上册25.1.2《概率》是概率统计部分的一个重要内容。

本节内容通过具体的实例,让学生理解概率的概念,掌握概率的计算方法,并能够运用概率解决实际问题。

教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。

但是,对于概率这一抽象的概念,学生可能存在一定的理解难度。

因此,在教学过程中,需要注重引导学生从具体实例中理解概率的概念,逐步过渡到概率的计算方法。

三. 教学目标1.理解概率的概念,掌握概率的计算方法。

2.能够运用概率解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.概率的概念和计算方法。

2.如何运用概率解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中理解概率的概念。

2.利用多媒体教学,通过动画和图片等形式,让学生更直观地理解概率的概念。

3.采用分组讨论和合作交流的方式,让学生在讨论中思考,在交流中学习。

4.注重练习,让学生在实践中掌握概率的计算方法。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考:抛硬币出现正面的概率是多少?让学生感受概率的存在,激发学生的学习兴趣。

2.呈现(10分钟)介绍概率的概念,讲解概率的计算方法。

以具体的例子为例,让学生理解概率的计算过程。

3.操练(10分钟)让学生分组讨论,每组选择一个实例,计算其概率。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生运用所学的概率计算方法,解决实际问题。

可以安排一些练习题,让学生独立完成,教师批改并给予反馈。

5.拓展(10分钟)引导学生思考:如何提高事件的概率?以抛硬币实验为例,让学生探讨如何使抛硬币出现正面的概率增大。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概  率教案

25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大小. 抽取的可能性大小相等,所以我们可以用15出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().mp A=n事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=13.出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)= 23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.;(1)指向红色有3种等可能的结果,P(指向红色)=37(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5;7(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=110.7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。

本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。

通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。

但是,对于概率这一抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。

三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。

四. 教学重难点1.重点:概率的定义,概率的计算方法。

2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。

2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。

3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。

六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。

2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。

如:抛一枚硬币,正面朝上的概率是1/2。

同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。

人教版九年级数学教案-概率

人教版九年级数学教案-概率

25.1.2 概率教學目標1.知道通過大量重複試驗時的頻率可以作為事件發生概率的估計值。

2.在具體情境中瞭解概率的意義。

重難點重點:在具體情境中瞭解概率意義.難點:對頻率與概率關係的初步理解.教學過程一、創設情境,引出問題教師提出問題:週末市體育場有一場精彩的籃球比賽,老師手中只有一張球票,小強與小明都是班裏的籃球迷,兩人都想去.我很為難,真不知該把球給誰.請大家幫我想個辦法來決定把球票給誰.學生:抓鬮、抽籤、猜拳、投硬幣,……教師對同學的較好想法予以肯定.(學生肯定有許多較好的想法,在眾多方法中推舉出大家較認可的方法.如抓鬮、投硬幣)追問,為什麼要用抓鬮、投硬幣的方法呢?由學生討論:這樣做公平.能保證小強與小明得到球票的可能性一樣大在學生討論發言後,教師評價歸納.用拋擲硬幣的方法分配球票是個隨機事件,儘管事先不能確定“正面朝上”還上“反面朝上”,但同學們很容易感覺到或猜到這兩個隨機事件發生的可能性是一樣的,各占一半,所以小強、小明得到球票的可能性一樣大.質疑:那麼,這種直覺是否真的是正確的呢?引導學生以投擲壹元硬幣為例,不妨動手做投擲硬幣的試驗來驗證一下.說明:現實中不確定現象是大量存在的,新課標指出:“學生數學學習內容應當是現實的、有意義、富有挑戰的”,設置實際生活問題情境貼近學生的生活實際,很容易激發學生的學習熱情,教師應對此予以肯定,並鼓勵學生積極思考,為課堂教學營造民主和諧的氣氛,也為下一步引導學生開展探索交流活動打下基礎.二、動手實踐,合作探究1.教師佈置試驗任務.(1)明確規則.把全班分成10組,每組中有一名學生投擲硬幣,另一名同學作記錄,其餘同學觀察試驗必須在同樣條件下進行.(2)明確任務,每組擲幣50次,以實事求是的態度,認真統計“正面朝上”的頻數及“正面朝上”的頻率,整理試驗的數據,並記錄下來..2.教師巡視學生分組試驗情況.注意:(1).觀察學生在探究活動中,是否積極參與試驗活動、是否願意交流等,關注學生是否積極思考、勇於克服困難.(2).要求真實記錄試驗情況.對於合作學習中有可能產生的紀律問題予以調控.3.各組彙報實驗結果.由於試驗次數較少,所以有可能有些組試驗獲得的“正面朝上”的頻率與先前的猜想有出入.提出問題:是不是我們的猜想出了問題?引導學生分析討論產生差異的原因.在學生充分討論的基礎上,啟發學生分析討論產生差異的原因.使學生認識到每次隨機試驗的頻率具有不確定性,同時相信隨機事件發生的頻率也有規律性,引導他們小組合作,進一步探究.解決的辦法是增加試驗的次數,鑒於課堂時間有限,引導學生進行全班交流合作.4.全班交流.把各組測得數據一一彙報,教師將各組數據記錄在黑板上.全班同學對數據進行累計,按照書上要求填好25-2.並根據所整理的數據,在25.1-1圖上標注出對應的點,完成統計圖.表25-2想一想1(投影出示). 觀察統計表與統計圖,你發現“正面向上”的頻率有什麼規律? 注意學生的語言表述情況,意思正確予以肯定與鼓勵.“正面朝上”的頻率在0.5上下波動.想一想2(投影出示)隨著拋擲次數增加,“正面向上”的頻率變化趨勢有何規律?在學生討論的基礎上,教師幫助歸納.使學生認識到每次試驗中隨機事件發生的頻率具有不確定性,同時發現隨機事件發生的頻率也有規律性.在試驗次數較少時,“正面朝上”的頻n圖25.1-1率起伏較大,而隨著試驗次數的逐漸增加,一般地,頻率會趨於穩定,“正面朝上”的頻率越來越接近0.5. 這也與我們剛開始的猜想是一致的.我們就用0.5這個常數表示“正面向上”發生的可能性的大小.說明:注意幫助解決學生在填寫統計表與統計圖遇到的困難.通過以上實踐探究活動,讓學生真實地感受到、清楚地觀察到試驗所體現的規律,即大量重複試驗事件發生的頻率接近事件發生的可能性的大小(概率).鼓勵學生在學習中要積極合作交流,思考探究.學會傾聽別人意見,勇於表達自己的見解.為了給學生提供大量的、快捷的試驗數據,利用電腦模擬擲硬幣試驗的課件,豐富學生的體驗、提高課堂教學效率,使他們能直觀地、便捷地觀察到試驗結果的規律性--大量重複試驗中,事件發生的頻率逐漸穩定到某個常數附近.其實,歷史上有許多著名數學家也做過擲硬幣的試驗.讓學生閱讀歷史上數學家做擲幣試驗的數據統計表(看書表25-3).表25-3通過以上學生親自動手實踐,電腦輔助演示,歷史材料展示, 讓學生真實地感受到、清楚地觀察到試驗所體現的規律,大量重複試驗中,事件發生的頻率逐漸穩定到某個常數附近,即大量重複試驗事件發生的頻率接近事件發生的可能性的大小(概率).同時,又感受到無論試驗次數多麼大,也無法保證事件發生的頻率充分地接近事件發生的概率.在探究學習過程中,應注意評價學生在活動中參與程度、自信心、是否願意交流等,鼓勵學生在學習中不怕困難積極思考,敢於表達自己的觀點與感受,養成實事求是的科學態度.5.下麵我們能否研究一下“反面向上”的頻率情況?學生自然可依照“正面朝上”的研究方法,很容易總結得出:“反面向上”的頻率也相應穩定到0.5.教師歸納:(1)由以上試驗,我們驗證了開始的猜想,即拋擲一枚質地均勻的硬幣時,“正面向上”與“反面向上”的可能性相等(各占一半).也就是說,用拋擲硬幣的方法可以使小明與小強得到球票的可能性一樣.(2)在實際生活還有許多這樣的例子,如在足球比賽中,裁判用擲硬幣的辦法來決定雙方的比賽場地等等.說明:這個環節,讓學生親身經歷了猜想試驗——收集數據——分析結果的探索過程,在真實數據的分析中形成數學思考,在討論交流中達成知識的主動建構,為下一環節概率意義的教學作了很好的鋪墊.三、評價概括,揭示新知問題1.通過以上大量試驗,你對頻率有什麼新的認識?有沒有發現頻率還有其他作用?學生探究交流.發現隨機事件的可能性的大小可以用隨機事件發生的頻率逐漸穩定到的值(或常數)估計或去描述.通過猜想試驗及探究討論,學生不難有以上認識.對學生可能存在語言上、描述中的不准確等注意予以糾正,但要求不必過高.歸納:以上我們用隨機事件發生的頻率逐漸穩定到的常數刻畫了隨機事件的可能性的大小.那麼我們給這樣的常數一個名稱,引入概率定義.給出概率定義(板書):一般地,在大量重複試驗中,如果事件A 發生的頻率nm會穩定在某個常數p 附近,那麼這個常數p 就叫做事件A 的概率(probability ), 記作P (A )= p.注意指出:1.概率是隨機事件發生的可能性的大小的數量反映.2.概率是事件在大量重複試驗中頻率逐漸穩定到的值,即可以用大量重複試驗中事件發生的頻率去估計得到事件發生的概率,但二者不能簡單地等同.想一想(學生交流討論)問題2.頻率與概率有什麼區別與聯繫?從定義可以得到二者的聯繫, 可用大量重複試驗中事件發生頻率來估計事件發生的概率.另一方面,大量重複試驗中事件發生的頻率穩定在某個常數(事件發生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數而有所不同,是概率的近似值,二者不能簡單地等同.說明:猜想試驗、分析討論、合作探究的學習方式十分有益於學生對概率意義的理解,使之明確頻率與概率的聯繫,也使本節課教學重難點得以突破.為下節課進一步研究概率和今後的學習打下了基礎. 當然,學生隨機觀念的養成是循序漸進的、長期的.這節課教學應把握教學難度,注意關注學生接受情況.四.練習鞏固,發展提高. 學生練習1.書上練習.1. 鞏固用頻率估計概率的方法. 2.書上練習.2 鞏固對概率意義的理解.教師應當關注學生對知識掌握情況,幫助學生解決遇到的問題. 五.歸納總結,交流收穫:1.學生互相交流這節課的體會與收穫,教師可將學生的總結與板書串一起,使學生對知識掌握條理化、系統化.2.在學生交流總結時,還應注意總結評價這節課所經歷的探索過程,體會到的數學價值與合作交流學習的意義.【作業設計】(1)完成習題25.1 2、4(2)課外活動分小組活動,用試驗方法獲得圖釘從一定高度落下後釘尖著地的概率.。

九年级数学上人教版《 概率的概念》教案

九年级数学上人教版《 概率的概念》教案

《概率的概念》教案一、教学目标1.知识与技能:理解概率的概念,掌握概率的基本计算方法。

2.过程与方法:通过实例分析,理解概率的概念和计算方法,培养分析和解决问题的能力。

3.情感态度与价值观:培养理性思考和科学决策的能力,激发对数学的兴趣和热爱。

二、教学内容分析1.教学重点:概率的概念和计算方法。

2.教学难点:理解概率的概念,掌握概率的计算方法。

三、教学方法与手段1.教学方法:讲解法、演示法、练习法。

2.教学手段:多媒体课件、实物模型、小黑板等。

四、教学过程设计1.导入新课:通过实例导入,如抛硬币、掷骰子等,引出概率的概念和意义。

2.新课讲授:讲解概率的概念和计算方法,通过实例分析帮助学生理解。

同时,通过演示法和练习法,让学生掌握概率的基本计算方法。

3.巩固练习:通过例题和练习题,让学生运用所学知识解决实际问题,加深对概率的理解和应用。

4.归纳小结:回顾本节课的重点和难点,总结概率的基本概念和计算方法。

5.布置作业:布置相关练习题,让学生在家中复习本节课所学内容,加深对概率的理解和应用。

6.拓展延伸:鼓励学生通过互联网或查阅相关书籍资料的方式,了解概率在生活和其他领域的应用,拓宽知识面。

五、教学评价与反馈1.设计评价策略:通过课堂小测验、作业和小组讨论等方式,检测学生对概率的理解和应用能力。

同时,通过观察学生的表现和交流情况,及时发现学生在学习中存在的问题和困难,并给予相应的指导和帮助。

2.为学生提供反馈意见和建议:在评价过程中,及时向学生提供反馈意见和建议,帮助学生了解自己的学习状况和不足之处,并指导其改进和提高学习效果。

同时,鼓励学生互相评价和学习,增强其自主学习和合作学习的能力。

3.反思教学过程:在教学结束后,对教学过程进行反思和总结,分析教学中的优点和不足之处,以便在今后的教学中加以改进和提高。

同时,收集学生的意见和建议,以便更好地满足学生的学习需求和提高教学质量。

初中数学概率上课教案

初中数学概率上课教案

初中数学概率上课教案教学目标:1. 让学生了解概率的定义和意义,理解概率是反映事件发生可能性大小的量。

2. 学生能通过实例理解必然事件、不可能事件和随机事件的概念。

3. 学生能够运用概率的求法解决一些简单的实际问题。

教学重点:1. 概率的定义和意义。

2. 必然事件、不可能事件和随机事件的概念。

3. 概率的求法。

教学难点:1. 概率的求法。

教学准备:1. 课件或黑板。

2. 教学实例。

教学过程:一、导入(5分钟)1. 引入概率的概念,让学生思考:在日常生活中,我们经常会遇到一些不确定的事件,比如抛硬币、抽奖等,那么如何来量化这些事件的不确定性呢?2. 学生讨论,教师引导,得出概率是反映事件发生可能性大小的量。

二、新课讲解(15分钟)1. 讲解必然事件、不可能事件和随机事件的概念。

必然事件:在一定条件下,一定发生的事件。

不可能事件:在一定条件下,一定不发生的事件。

随机事件:在一定条件下,可能发生也可能不发生的事件。

2. 举例说明,让学生理解必然事件、不可能事件和随机事件的概念。

3. 讲解概率的求法。

如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A) = m/n。

三、课堂练习(15分钟)1. 让学生运用概率的求法,解决一些简单的实际问题。

例1:抛一枚硬币,求正面向上的概率。

例2:从一副扑克牌中随机抽取一张,求抽到红桃的概率。

四、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结概率的定义、意义、必然事件、不可能事件和随机事件的概念以及概率的求法。

五、课后作业(课后自主完成)1. 运用概率的求法,解决一些实际的概率问题。

教学反思:本节课通过讲解必然事件、不可能事件和随机事件的概念,让学生了解概率的定义和意义,掌握概率的求法,能够运用概率解决一些简单的实际问题。

在教学过程中,要注意引导学生通过实例来理解和掌握概念,提高学生的动手能力和解决问题的能力。

同时,要关注学生的学习情况,及时解答学生的疑问,提高教学效果。

九年级数学下册《概率》教案、教学设计

九年级数学下册《概率》教案、教学设计
-目的:培养学生的逻辑思维能力和解决问题的能力,提高学生的综合素质。
3.实际应用题:结合生活实际,设计1-2道与概率相关的实际应用题,要求学生运用所学知识解决问题。
-目的:培养学生学以致用的意识,激发学生的学习兴趣,提高学生的实际应用能力。
4.小组合作任务:以小组为单位,完成一份关于概率知识在实际生活中应用的小报告,字数不限。
3.培养学生运用概率知识进行问题分析和解决的能力,特别是在实际生活中的应用。
-重难点:将理论知识与实际情境相结合,进行问题分析和解决。
(二)教学设想
1.采用情境教学法,创设与学生生活密切相关的情境,让学生在情境中发现问题、解决问题。
-设想:通过设计彩票、游戏等实际情境,引导学生运用概率知识进行分析,提高学生的实际应用能力。
九年级数学下册《概率》教案、教学设计
一、教学目标
(一)知识与技能
1.理解概率的定义,掌握概率的计算方法,能够运用概率解决实际问题。
-通过实例引导学生理解概率的含义,如抛硬币、掷骰子等,使学生了解概率是描述事件发生可能性大小的一种数值。
-介绍概率的两种计算方法:理论概率和统计概率,并举例说明,让学生掌握如何运用这两种方法计算概率。
五、作业布置
为了巩固本节课所学的概率知识,培养学生的应用能力和创新意识,特布置以下作业:
1.基础练习题:完成课本第十章第1节后的练习题,包括填空题、选择题和解答题,共10题。
-目的:巩固概率的基本概念、性质和计算方法,提高学生的基本技能。
2.拓展提高题:选取2-3道具有挑战性的题目,要求学生在理解题意的基础上,运用概率知识进行解答。
4.利用信息技术辅助教学,提高教学效果。
-设想:运用多媒体、网络资源等手段,展示概率实验过程,让学生更直观地理解概率;利用在线平台进行课后辅导和交流,巩固所学知识。

人教版数学九年级上册25.1.2概率(教案)

人教版数学九年级上册25.1.2概率(教案)
5.培养学生具备严谨的科学态度和探索精神,形成对概率的深刻理解和数学素养。
三、教学难点与重点
1.教学重点
-理解概率的基本概念,包括必然事件、不可能事件和随机事件的定义。
-学会使用分数、小数和百分数表示事件发生的可能性。
-掌握概率的直接计算、树状图和列表法等计算方法。
-掌握概率的基本性质,如加法公式、乘法公式以及互补事件的概率关系。
5.实际问题中的应用,例如骰子游戏、抽签问题等。
二、核心素养目标
1.培养学生运用数学语言描述现实世界中的随机现象,提高抽象概括能力;
2.培养学生通过观察、分析、归纳等方法探索概率的计算规律,增强数据分析观念;
3.培养学生运用概率知识解决实际问题,提升数学应用意识和问题解决能力;
4.培养学生在小组合作中交流、探讨概率问题,发展逻辑推理和团队合作能力;
学生小组讨论环节,气氛非常活跃。大家围绕概率在实际生活中的应用展开了激烈的讨论。在这个过程中,我作为引导者,尽量提出启发性的问题,引导学生思考。从成果分享来看,学生们对概率的理解更加深入了。但同时,我也发现部分学生在表达自己的观点时,语言表达能力还有待提高。这一点我需要在后续的教学中,多给予他们锻炼的机会。
五、教学反思
在今天的教学中,我发现学生们对概率的概念和计算方法产生了浓厚的兴趣。通过引入日常生活中的例子,他们能够较快地理解概率的含义。在讲授理论知识时,我注意到了几个关键点:首先,用简单的语言解释概率,让学生明白它实际上就是事件发生的可能性;其次,通过具体案例,展示了概率计算的具体步骤,这样有助于学生更好地掌握计算方法。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛硬币、掷骰子这样的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。

九年级概率教案

九年级概率教案

九年级概率教案概率教案一、教学目标1. 理解概率的基本概念和应用场景。

2. 掌握计算简单事件的概率的方法。

3. 能够应用概率的知识解决实际问题。

二、教学内容1. 概率的基本概念a. 事件与样本空间的关系b. 试验与随机事件的关系c. 必然事件、不可能事件和可能事件2. 概率的计算方法a. 频率法b. 理论法c. 相对频率法3. 概率的应用a. 事件的组合与分解b. 互斥事件与对立事件c. 复合事件的概率计算三、教学过程1. 导入可以通过一个生活中的例子引入概率的概念,如扔硬币的实验,引发学生对随机事件的思考。

2. 概率的基本概念a. 事件与样本空间的关系:事件是样本空间的一个子集,通过图示和实例让学生理解事件与样本空间的关系。

b. 试验与随机事件的关系:试验是实验的过程,随机事件是试验的结果,通过举例让学生理解试验与随机事件的关系。

c. 必然事件、不可能事件和可能事件:通过实例让学生区分这三种事件,并让学生理解它们在样本空间中的位置。

3. 概率的计算方法a. 频率法:通过实验的频率来估计事件发生的概率,通过实例让学生掌握频率法的计算步骤。

b. 理论法:根据事件的基本属性和样本空间的元素个数来计算事件发生的概率,通过实例让学生掌握理论法的计算步骤。

c. 相对频率法:通过频率法的实验结果来估计理论法的概率,通过实例让学生理解相对频率法的原理。

4. 概率的应用a. 事件的组合与分解:通过实例让学生理解事件的组合与分解,并能够应用到实际问题中。

b. 互斥事件与对立事件:通过实例让学生理解互斥事件与对立事件的概念,并能够应用到实际问题中。

c. 复合事件的概率计算:通过实例让学生掌握复合事件的概率计算方法,并能够应用到实际问题中。

5. 小结与拓展对本节课所学内容进行小结,并引导学生思考概率在生活中的应用场景,拓展学生对概率的理解。

四、教学资源1. 教材:九年级数学教材2. 实验道具:硬币、骰子等3. 实例:生活中的随机事件,如扔硬币、掷骰子等五、教学评估1. 课堂练习:通过课堂练习检查学生对概率基本概念和计算方法的掌握情况。

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1 随机事件与概率25.1.1 随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1 掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2 摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1 有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是( )A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它( )A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D 解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2 一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

新人教版九年级数学概率教案最新范文

新人教版九年级数学概率教案最新范文

新人教版九年级数学概率教案最新范文概率是很重要的,教师很有义务教导好学生。

今天小编在这里整理了一些新人教版九年级数学概率教案最新范文,我们一起来看看吧!新人教版九年级数学概率教案范文1【教学目的】通过等可能事件概率的讲解,使学生得到一种较简单的、较现实的计算事件概率的方法。

1.了解基本事件;等可能事件的概念;2.理解等可能事件的概率的定义,能运用此定义计算等可能事件的概率【教学重点】熟练、准确地应用排列、组合知识,是顺利求出等可能事件概率的重要方法。

1.等可能事件的概率的意义:如果在一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是,如果事件A包含m个结果,那么事件A的概率P(A)= 。

2.等可能事件A的概率公式的简单应用。

【教学难点】等可能事件概率的计算方法。

试验中出现的结果个数n必须是有限的,每个结果出现的可能性必须是相等的。

【教学过程】一、复习提问1.下面事件:①在标准大气压下,水加热到800C时会沸腾。

②掷一枚硬币,出现反面。

③实数的绝对值不小于零;是不可能事件的有A.②B. ① C. ①②D. ③2.下面事件中:①连续掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在10C结冰。

是随机事件的有A. ②B. ③ C. ① D.②③3.下列命题是否正确,请说明理由①“当x∈R 时,sinx+cosx≤1”是必然事件; ②“当x∈R时,sinx+cosx≤1”是不可能然事件; ③“当x∈R时,sinx+cosx<2”是随机事件; ④“当x∈R时,sinx+cosx<2”是必然事件; 3.某人进行打靶练习,共射击10次,其中有2次击中10环,有3次击中9环,有4次击中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,问中靶的概率大约是多少? 4.上抛一个刻着1、2、3、4、5、6字样的正六面体方块出现字样为“3”的事件的概率是多少?出现字样为“0”的事件的概率为多少?上抛一个刻着六个面都是“P”字样的正方体方块出现字样为“P”的事件的概率为多少?二、新课引入随机事件的概率,一般可以通过大量重复试验求得其近似值。

初三概率教案

初三概率教案

初三概率教案教案标题:初三概率教案教案目标:1. 了解概率的基本概念和术语。

2. 掌握计算事件的概率的方法。

3. 运用概率解决实际问题。

教学重点:1. 概率的基本概念和计算方法。

2. 概率在实际生活中的应用。

教学难点:1. 理解复杂事件的概率计算方法。

2. 运用概率解决实际问题的能力。

教学准备:1. 教师准备:课件、教学素材、练习题。

2. 学生准备:教材、练习册、计算器。

教学过程:一、导入(5分钟)1. 引入概率的概念,通过举例说明概率在日常生活中的应用。

2. 提问学生对概率的理解和认识。

二、概率的基本概念(15分钟)1. 讲解概率的基本概念和术语,如样本空间、事件、随机试验等。

2. 通过示例和图表演示如何计算简单事件的概率。

三、计算概率的方法(20分钟)1. 讲解计算概率的方法,包括频率法和几何法。

2. 指导学生通过实际问题计算概率,如抛硬币、掷骰子等。

四、复杂事件的概率计算(20分钟)1. 引入复杂事件的概念,如多个事件的交集、并集等。

2. 讲解复杂事件的概率计算方法,包括加法原理和乘法原理。

3. 指导学生通过练习题计算复杂事件的概率。

五、概率在实际问题中的应用(15分钟)1. 通过实际问题,如抽奖、赌博等,引导学生运用概率解决问题。

2. 指导学生分析问题、确定事件和样本空间,并计算概率。

六、小结与作业布置(5分钟)1. 小结概率的基本概念和计算方法。

2. 布置相关练习题作为课后作业。

教学反思:在本节课中,通过引入概率的概念和实际问题,帮助学生理解概率的基本概念和计算方法。

通过练习题的训练,提高学生运用概率解决实际问题的能力。

在教学过程中,要注意引导学生思考和讨论,激发学生的学习兴趣和主动性。

同时,根据学生的实际情况,适当调整教学内容和方法,确保教学效果。

人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案
二、核心素养目标
人教版九年级数学上册25.1.2《概率》核心素养目标:
1.培养学生逻辑推理能力,通过随机事件的分类,理解事件的逻辑关系,提高分析问题的能力。
2.培养学生数据分析观念,学会从实验或情境中收集数据,利用频率估计概率,培养数据敏感性。
3.培养学生数学抽象思维,理解概率的定义,掌握概率的计算方法,提高数学表达和交流能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是用来描述随机事件发生可能性的数学度量。它是帮助我们理解和预测不确定事件的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。比如抛硬币,出现正面和反面的概率都是1/2。这个案例展示了概率在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率的计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的抛硬币实验。这个实验将演示概率的基本原理。
1.教学重点
-理解并掌握随机事件的概念及其分类,这是学习概率的基础,需要重点讲解必然事件、不可能事件和可能事件的特点及区别。
-掌握概率的定义及表示方法,包括概率的分数、小数和百分比值,这是本节课的核心内容,需要学生能够准确理解和应用。
-学习利用频率估计概率的方法,通过实验或模拟活动,让学生体会概率的实际意义,并能够进行简单的概率计算。
实践活动环节,分组讨论和实验操作都进行得挺顺利。同学们能够积极参与,相互交流,这有助于他们更好地理解和应用概率知识。但在成果展示时,我发现有些小组的表达还不够清晰,可能是因为他们对问题的理解还不够深入或者是在组织语言上存在一些困难。

人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案

人教版九年级数学上25.1.2《概率》名师教案25.1.2 概率(彭小永)一、教学目标(一)学习目标1. 了解概率的意义,渗透随机观念2. 理解概率的一些性质3. 能计算一些简单事件的概率(二)学习重点计算一些简单实际问题的概率(三)学习难点概率的意义及判断试验条件的意识.二、教学设计(一)课前设计1.预习任务(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的概率,记为 P(A) .(2)一般地,如果一次试验有n个可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .(3)若用P(A)表示事件A发生的概率,则P(A)的范围是 .特别地,当A为必然事件时,P(A)= 1 .当A为不可能事件时,P(A)= 0 .(4)事件发生的概率越大,它的概率就越接近 1 ;反之,事件发生的概率越小,它的概率就越接近 0 .2.预习自测(1)抛掷一枚质地均匀的硬币,正确的说法是()A.正面一定朝上 B.正面朝上比反面朝上的概率大C.反面一定朝上 D.正面朝上与反面朝上的概率都是0.5【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】【答案】3 4(二)课堂设计1.知识回顾(1)必然事件、不可能事件和随机事件的定义是什么?(2)确定事件包含哪些?(3)你能分别举一个必然事件、不可能事件和随机事件的例子吗?请试一试.2.问题探究探究一概率的定义●活动①问题重现,温故知新问题1 五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序,为了抽签,我们在盒中放5个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1、2、3、4、5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.(1)抽到的数字是1;(2)抽到的数字小于6 ;(3)抽到的数字是0.师问:以上三个事件分别是什么事件?你能用具体数值来刻画其发生的可能性大小吗?分别是多少呢?小军抽到1到5中每一个数字的可能性是不是一样的?学生举手抢答.【设计意图】让学生回忆必然事件、不可能事件和随机事件的定义,感受其可能性,为“概率”这一定义的引出铺路.●活动②整合旧知,探究概率的定义问题2 小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.师问:掷一次骰子,在骰子向上的一面上,可能出现哪些点数?骰子上每一个数字出现的可能性是不是同样多的?分别是多少?由学生举手抢答.归纳总结出概率的定义,如下:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).【设计意图】在学生完成了问题1的基础上,利用问题2进一步让学生明白:每个数字出现的可能性大小相等,即每个数字出现的机会是等可能性的. 与分别是问题1和问题2中各个数字出现的可能性大小,从而得出概率的定义.探究二实例解析,理解概率的定义和性质●活动①运用定义,初试身手示例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:(1)∵向上一面出现的点数共有六种情况,点数2只是其中的一种,∴出现点数2的概率:P(点数为2)=1 6(2)∵向上一面出现的点数共有六种情况,其中奇数有3个,∴点数为奇数的概率:P(点数为奇数)=36=12(3)∵向上一面出现的点数共有六种情况,大于2小于5的数字有2个,∴点数大于2小于5的概率:P(大于2小于5)=26=13【思路点拨】充分运用定义,求出相关事件的概率.【答案】(1)16(2)12(3)13【设计意图】用多个实例,总结出概率的一些性质●活动②归纳小结,得出概率性质师问:由问题1和问题2,以及示例,你能得到概率的哪些性质?由学生举手抢答. 归纳总结出概率的如下性质:概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.探究三利用概率的定义与性质,解决实际问题●活动①概率的基本运算师问:概率的公式是什么?它有哪些性质?例1 一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵5 个球中,红色的有2个∴P(摸出红球)【思路点拨】红球个数占总球数的比例即为摸到红球的概率.【答案】C练习:某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.【知识点】概率【数学思想】模型思想【解题过程】解:∵1 分钟共60秒,黄灯占5秒∴P(看到黄灯)【思路点拨】用黄灯的时间5秒,除以三种信号灯一轮变换的总时间60秒,即得抬头看到黄灯的概率.【答案】A【设计意图】进一步强化概率的计算方法.●活动②利用概率公式求概率与球的个数例2 在一个不透明的袋子中装有仅有颜色不同的10个球,其中红球4个,黑球6个. (1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A,请完成下列表格:事件A 必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率为,求m的值.【知识点】概率公式的灵活运用【数学思想】分类讨论思想,方程思想【解题过程】解:(1)若第一次将4个红球取完,则第二次摸出黑球为必然事件;若第一次取2个或3个红球,则第二次取出的球不一定是黑球,即第二次取出黑球为随机事件. 所以第一个空填数字“4”,第二个空填“2或3”.(2)由题意知,袋子内球的总数仍为10个,黑球的数量为(m+6)个,由概率的定义可得:,解得m=2.【思路点拨】准确把握必然事件与随机事件的定义是解决第(1)问的关键;第(2)问运用概率公式逆向求m的值,只要合理运用概率公式便可迎刃而解.【答案】(1)第一个空填数字“4”,第二个空填“2或3”. (2)m=2.练习:甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知2=,平均成绩=8.5环.甲射击成绩的方差S甲(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩及成绩的方差,并据此比较甲乙的射击“水平”.(方差的公式是:)【知识点】统计与概率【数学思想】数形结合思想【解题过程】解:(1)∵乙的射击总次数为12次,不少于9环的有7次,∴估计乙射击成绩不少于9环的概率为.(2)由题意得:(环),∴,∴甲的射击成绩更稳定.【思路点拨】读懂统计图中的数据,用好平均数、方差和概率的公式,便可顺利解决此题. 当平均成绩一样的时候,方差越小越稳定.【答案】(1)乙射击成绩不少于9环的概率红色为;(2)甲的射击成绩更稳定. 【设计意图】用综合性试题提高学生的解题能力. ●活动③ 与图形相关的概率计算例3 如图是一个可以自由转动的转盘,转盘分为7个大小相同的扇形,颜色分别为红、绿、黄三种颜色. 指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色. 【知识点】概率【数学思想】数形结合思想 【解题过程】解:按颜色把7个扇形分别记为:红1、红2、红3、绿1、绿2、黄1、黄2,所有可能结果的总数为7,并且它们出现的可能性相等.(1)指针指向红色(记为事件A )的结果有3种,即红1、红2、红3, 因此,P (A )=(2)指针指向红色或黄色(记为事件B )的结果有5种,即红1、红2、红3、 黄1、黄2,所以, P (B )=(3)指针不指向红色(记为事件C )的结果有4种,即绿1、绿2、黄1、黄2,因此,P (C )=【思路点拨】由于指针停到每块扇形的机会相同,所以只需要数出符合条件的色块数量,用它除以总的色块数,即得相应事件的概率.【答案】(1)P (红色)=;(2)P (红色或黄色)=;(3)P (不是红色)=红红红绿绿黄黄练习:下图为计算机“扫雷”游戏的画面. 在一个99个方格的雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏一颗地雷.小王在游戏开始时随机点击一个方格,点击后出现下图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域. 数字3表示在A区域有3颗地雷.请问,下一步应该点击A区域还是B区域更安全?【知识点】概率【数学思想】数形结合思想【解题过程】解:∵A区域有8个方格,这八个方格中有3颗地雷B区域有72个方格,这72个方格中有7个地雷∴点击A区域遇到地雷的概率为,点击B区域遇到地雷的概率为,而,也就是说,点击B区域更安全.【思路点拨】分别计算两个事件的概率,再比较概率的大小即可.【答案】由于点击B区域遇到地雷的概率更小,所以选择点击B区域更好.【设计意图】进一步强化与图形相关的试题中求概率的方法.3. 课堂总结知识梳理(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A). (3)概率的性质:性质1:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果. 因为,所以,.性质2:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.性质3:P(必然事件)=1,P(不可能事件)=0.重难点归纳(1)概率的定义:对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).(2)概率的计算方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的 m种结果,那么事件A发生的概率为P(A).(3)P(必然事件)=1,P(不可能事件)=0.(三)课后作业基础型自主突破1.必然事件的概率是()A. B. C. D.【知识点】必然事件的概率【数学思想】模型思想【解题过程】必然事件指的是在一定条件下必然要发生的事件,所以它的概率为1.【思路点拨】正确理解必然事件的定义,牢记特殊事件的概率【答案】D2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为0.5C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率【数学思想】分类讨论思想【解题过程】解:A 不可能事件发生的概率为0,正确;B 随机事件发生的概率不一定为0.5,如掷骰子时,各个数字朝上的概率为C 概率很小的事件指的是发生的可能性很小,但不是不发生,如买彩票中特等奖就是一个小概率事件,但仍可能发生;D 由于实验的次数较少,实验得到的结果不一定刚好与理论概率吻合,所以不一定是50次. 【思路点拨】由于受各种条件的限制,实验得到的结果往往与理论值有一定的偏差,对于具体问题要具体分析.【答案】A3.四张质地、大小相同的卡片上分别画上如图所示的图形.在看不到图形的情况下,从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A. B. C. D.【知识点】概率,轴对称图形【数学思想】分类讨论,数形结合【解题过程】解:在这四个图形中,只有等腰梯形和圆是轴对称图形,所以抽到轴对称图形的概率为【思路点拨】认清轴对称图形,数出它的个数,此题便可迎刃而解.【答案】A4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标为1、2、3、4、5,从中随机摸出一个小球,其标号大于2的概率为()A. B. C. D.【知识点】概率【解题过程】在这5个数中,大于2的数字有3、4、5共三个数字,所以它的概率为. 【思路点拨】找出符合条件的数,将它与总数相除即可.【答案】C5.将“定理”的英语单词“theorem”中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e的概率为 .【知识点】概率【解题过程】7个字母中有2个“e”,所以取到字母“e”的概率为【思路点拨】牢记概率的计算公式便可轻松得解.【答案】6. 桶里原有质地均匀,形状大小完全一样的6个红球和4个白球,小明不慎弄丢了其中的2个红球,现从桶里随机摸出一个球,摸到白球的概率是 .【知识点】概率【数学思想】模型思想【解题过程】由于桶里的球有4红4白,所以摸到白的概率为.【思路点拨】用概率的计算公式即可【答案】能力型师生共研7. 如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A .B .C .D .【知识点】概率【思想方法】数形结合C【解题过程】将六个点两两相连,可得15条线段,其中只有AC、BD、CE、DF、EA、FB这6条的长度为,所以概率为 .【思路点拨】找出符合条件的线段数量,并数出总的线段条数,再将前者与总条数相除即可. 【答案】B8. 在盒子中放有三张分别写有、、2的卡片,从中随机抽出两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A .B .C .D .【知识点】概率的计算,分式的定义【数学思想】分类讨论思想【解题过程】当或作分母时,四组数据都符合分式的定义;当分母为2时,这两组数据不符合分式的定义. 所以能组成分式的概率为.【思路点拨】分式指的是分母中含有未知数的式子. 找出所有组合中符合分式定义的式子个数,相除即可.【答案】B探究型多维突破9. 在一个不透明的围棋盒子中有颗黑棋和颗白棋,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进10颗黑棋,这时随机取出黑色棋子的概率为,请求出和的值. 【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,将代入,解得,所以,.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.10.口袋中有5张完全相同的卡片,分别写有1 cm、2 cm、3 cm、4 cm、5cm,口袋外有2张卡片,分别写有 4 cm和5 cm.现随机从袋内取出一张卡片,与口袋外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,回答下列问题:(1)求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【知识点】概率,三角形三边的关系,直角三角形和等腰三角形的性质【数学思想】分类讨论思想【解题过程】解:(1)由于口袋外的两个长度分别为4 cm和5 cm,要组成三角形,则第三边的长度应满足,所以,当摸出的长度为2 cm、3 cm、4 cm、5cm时,都符合题意,其概率为;(2)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有3cm能与它们组成直角三角形,所以,组成直角三角形的概率为;(3)由于口袋外的两个长度分别为4 cm和5 cm,袋内的5条线段中,只有4cm与5cm能分别与它们组成等腰三角形,所以,组成等腰三角形的概率为;【思路点拨】三角形的两边之和大于第三边,两边之差小于第三边;直角三角形满足勾股定理;等腰三角形要注意验证两腰之和大于底边.【答案】(1);(2);(3) .自助餐1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上 B.必有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上【知识点】概率【解题过程】由于正、反两面出现的概率相同,所以答案A是正确的. 理论概率指的是一种可能性,它不一定刚好等于实验频率,其他几个答案的描述不对.【思路点拨】准确理解概率的含义,在实验中,理论概率不一定刚好等于实验频率.【答案】A2.从长度分别为3、5、7、9的四条线段中任取三条作边,能够组成三角形的概率为()A. B. C. D.【知识点】概率的计算,三角形三边的关系【数学思想】分类讨论思想【解题过程】从3、5、7、9中任取三条作边,共有4种情况,分别是①3、5、7;②3、5、9;③3、7、9;④5、7、9. 其中只有第二组不能构成三角形. 所以构成三角形的概率为. 【思路点拨】三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】D3.在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3个,白球 n个,若从袋中任取一球,摸出白球的概率为,则n= .【知识点】概率【数学思想】方程思想【解题过程】解:由概率的计算公式知:,解得n=9.【思路点拨】用方程的思想列式求解;或者推算出摸到红球的概率为,逆向思考,算出球的总数,减去红球的个数即得白球的个数.【答案】n=9.4.从-3、-2、-1、0、1、2这六个数中,任意抽取一个数,作为正比例函数和二次函数中m的值,恰好使得正比例函数的图象经过第二、四象限,且二次函数的图象开口向上的概率为 .【知识点】概率,正比例函数和二次函数的性质【数学思想】分类讨论思想【解题过程】解:∵正比例函数∴,只有-3不合题意∵二次函数∴,解得,只有0、1、2符合题意综上所述,在已知的六个数中,只有 0、1、2这三个数符合题意,所以,概率为.【思路点拨】当k<0时,正比例函数的图象必过二、四象限. 当时,二次函数的图象开口向上.【答案】.5.袋中有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,从中摸出一球是绿球的概率是.(1)袋里黄球的个数;(2)任意摸出一球为红球的概率.【知识点】概率【数学思想】模型思想,方程思想【解题过程】解:(1)设有m个黄球,则,解得m=6,所以有6个黄球;(2)P(红球)【思路点拨】牢牢抓住概率的定义即可,.【答案】(1)有6个黄球;(2)P(红球)6.在一个不透明的围棋盒子中有颗白棋,颗黑棋,它们除颜色外都一致,从盒子中随机取出一颗棋子,它是黑棋的概率为.(1)写出与之间的函数关系式;(2)现在往盒子中再放进5颗白棋和1颗黑棋,这时随机取出白色棋子的概率为,请求出和的值.【知识点】概率【数学思想】方程思想【解题过程】解:(1)由题意得:,解得(2)由题意得:,解得,所以.【思路点拨】用方程的思想解决问题是一种很常用的方法.【答案】(1);(2),.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章概率课题: 25.1 随机事件教学目标:<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.课题: 25.1.2 概率的意义教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P要求填好25-2.并根据所整理的数据,在25.1-1图上140标注出对应的点,完成统计图.表25-2想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,n图25.1-1频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数表25-3).学家做掷币试验的数据统计表(看书P141表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高. 学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法. 2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题. 五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.课题: 25.2 列举法求概率教学目标:知识与技能目标学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。

相关文档
最新文档