第五章 线性系统的频率分析法
线性系统的频率分析法
对于非线性系统中的周期信号,可以通过傅里叶级数展开进行分析,以 了解系统在不同频率下的行为。
03
非线性控制策略
基于非线性系统的频率响应,可以设计非线性控制器,以实现系统的稳
定性和性能要求。
基于频率分析法的控制策略设计
控制系统设计
基于频率分析法的控制策略设计,首先需要确定控制目标,然后根据系统模型和性能要求 ,设计合适的控制器。
以对数尺度绘制频率响应函数的幅度和相位与频 率的关系曲线,便于观察系统在不同频率范围内 的性能变化。
Nyquist图
以极坐标形式绘制频率响应函数的极点和零点分 布,用于判断系统的稳定性以及动态响应特性。
3
Nichols图
以极坐标形式绘制系统的开环和闭环频率响应函 数,用于分析系统的开环和闭环性能。
系统稳定性分析
03 频率响应函数
CHAPTER
频率响应函数的定义与性质
定义
稳定性
频率响应函数是线性系统对正弦输入 信号的稳态输出与输入的比值,表示 系统在不同频率下的性能特性。
通过判断频率响应函数的极点和零点 分布,可以确定系统的稳定性以及动 态响应特性。
性质
频率响应函数具有复数形式,包括幅度 和相位两部分,分别表示系统对不同频 率信号的放大或缩小以及相位移动。
线性系统的研究方法
01
02
03
频域分析法
通过将系统函数进行傅里 叶变换,将时域问题转化 为频域问题,从而在频域 内分析系统的频率特性。
时域分析法
通过对方程进行数值积分 或解析求解,直接在时域 内分析系统的动态响应特 性。
状态空间分析法
通过建立系统的状态方程 和输出方程,在状态空间 内分析系统的动态行为和 稳定性。
四、线性系统的频域分析法
其中: A()Ac (j) 幅频特性
A
() (j) 相频特性
RC网络频率特性的物理意义:
1 A()
0.707
频带宽度
b
01 2 3 4 5
TTTT T
() 0
相角迟后
90
01 2 3 4 5
TTTT T
对稳定的线性系统,其频率特性如下:
设: (s)C R ((s s))b a 0 0 ssm n b a 1 1 s sm n 1 1 .... a .b .m n 1 1 s s a b n m
微分环节: s 惯性环节: 1/(Ts1) 一阶微分环节: Ts1
振荡环节: 1 /s (2/ n 2 2s/ n 1 )0 , 1
二阶微分环节: s2/n22 s/n 1 ,01
例如:G(s)s(0.5s K 1()ss( 21 )2s5) 由上述的5个环节组成。
A()1/ ()900
db 60 40 20 0 900
[20]
0.1
1
j
0
幅相曲线
对数频率特性曲线
L()2l0g A()
20lg () 900
10
3)微分环节: s 由 G(s)s
A() ()900
db 60 40 20 0 90 0 00
uc
ur
ur Asi nt c u c
设初值为0, 对上式拉氏变换,设A=1,得:
Uc(s)RC 1s1Ur(s) s1/1T/Ts2 2
RC网络
TRC
s1x/Tsy2sz2 (xy)s2( s (z1 /T y)/T s(2) s x 2 )2z/T
线性系统的频域分析法
转折频率:
n 1 T
+20dB/dec
2 2
L( ) 20 lg 1 T
20 0 -20
1 T
• 低频段:T 1时,
G ( j ) j T 1 1 2T 2 e j arctanT
0
幅相曲线:
Im
∞
ω=0
1 Re
A( ) 1 T 幅频特性:
2
2
( ) arctanT 相频特性:
伯德图:
1)对数幅频图
A( ) 1 2T 2
L(ω)/dB
L( ) 20 lg
20dB/dec
ω
( )
90 0 0.1 1 10
2)对数相频图
( ) G( j ) 90
ω
微分环节的对数坐标图
(4)惯性环节
1 传递函数: G ( s ) Ts 1
频率特性: G ( j )
1 1 j T j T 1 1 2 T 2 1 e j arctanT 1 2T 2 1 幅频特性: A( ) 1 2T 2
1 G( s ) Ts 1
解: 将s=jω代入,求得频率特性为:
1 G( j ) G( s ) s j jT 1 1 T j 2 2 2 2 1 T 1 T
1 1 2T 2
11
e j arctanT
2 2T 22 1 1 T ( ) G( j ) arctan T 相频特性: T 虚频特性: Q( ) Im[ G ( j )] 1 2T 2
R(s) C(s)
G(s)
结论: 稳定的系统,在正弦信号作用下其稳态 输出也是同频率的正弦信号,但振幅和相 位不同。
第五章 频率特性分析法
由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
自动控制理论_哈尔滨工业大学_5 第5章线性系统的频率分析_(5.1.1) 5.1频率特性的概念
如果线性定常系统的输入r(t)和输出c(t)存在傅里叶变换, 频率特性也是输入信号的傅氏变换和输出信号的傅氏变换之比。
G(
j
)
C( R(
j) j)
其中 R( j) r(t)e jtdt C( j) c(t)e jtdt
经过傅氏反变换
c(t)
U1m
1
1 j
sin(t
1
1
j
)
上式表明: 对于正弦输入,其输入的稳态响应仍然是一个同 频率正弦信号。但幅值降低,相角滞后。
输入输出为正弦函数时,可以表示成复数形式,设输入为 Xej0,输出为Yejφ,则输出输入之复数比为:
Ye j Xe j0
Y X
e j
A()e j ()
后于输入的角
度为:
φ=
B A
360o
②该角度与ω有
关系 ,为φ(ω)
③该角度与初始
角度无关 。
二、频率特性的定义
例:如图所示电气网络的传递函数为
U2 (s) 1 Cs 1 1
U1(s) R 1 Cs RCs 1 s 1
若输入为正弦信号: u1 U1m sin t
其拉氏变换为:
1
2
G( j)R( j)e jtd
系统的单位脉冲响应为:
g (t )
1
2
G( j)e jt d
本节小结
1. 控制系统频率特性的基本概念。 2. 频率特性与传递函数的关系。
频率特性有明确的物理意义,可以方便地用实验方法测定, 并用于系统的分析和建模。
频率特性主要适用于线性定常系统。
自动控制原理-胡寿松-第五章-线性系统的频域分析法
第四象限
第三象限
Mr
注意: (特殊点与趋势) 1. A(0) 1, (0) 0; A() 0, () 180 2. 与虚轴的交点 (转折点,是阻尼比的减函数) 2 (0 ) 3.有谐振时, 2 r , M r 为 的减函数 。当 2 0.707 时,谐振峰值 M r 1 。 2
7.延迟环节和延迟系统
1.典型环节
2.最小相位环节的频率特性
(考试、考研重点,nyquist图与bode图必须会画,概率图)
考试的标准画法
L(dB)
20
10
20 lg k
0
10
1
10
100
1000
o
( )
10
0
1
10
100
1000
10
比例环节的nyquist图与bode图
本节目录 1.典型环节 2.最小相位环节的频率特性(Nyquist图与bode图) 3.非最小相位环节的频率特性(Nyquist图与bode图) 4.系统的开环幅相曲线(Nyquist图) 5.系统的开环对数频率特性曲线(bode图)
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。 6.传递函数的频域实验确定
考试的标准画法
o
注意考察几个特殊点: A(0), (0);
积分环节的nyquist图与bode 图
A(), ()
与横轴的交点。 注意横竖坐标交点处的的横坐标值(如果交点处没标横坐标值,则斜线不到头)
比较交点不标记的情况
0
0
纯微分环节的Bode图
半对数坐标系中的直线方程(重要,bode图解计算时经常用到)
频率分析法
log
更详细的刻度如下图所示
1
2
3 4 5 6 7 8 910
20
一倍频程 一倍频程 一倍频程
一倍频程
30 40 50 60 80 100 一倍频程
十倍频程 十倍频程
十倍频程
一倍频程 十倍频程
lg
0
1
2
ω 1 2 3 4 5 6 7 8 9 10 lgω 0.000 0.301 0.477 0.602 0.699 0.778 0.845 0.903 0.954 1.000
纵坐标分度:幅频特性曲线的纵坐标是以
贝尔(Bl)和分贝(dB)。直接将
或
或 log表A示(。)其2单0位lo分g别A为() 值标注在纵坐标上。log A()
20log A()
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横坐标(频率轴)。
当幅制特性值用分贝值表示时,通常将它称为增益。幅值和增益的关系为:
增益 20 log(幅值) 20 lg A()
幅值 1
A( )
增益 0
1.26 1.56 2.00 2.51 3.16 5.62 10.0
2
4
6
8
10
15
20
幅值A() 1.00 1.26 1.56 2.00 2.51 3.16 5.62 10.0 100 1000 10000
对数幅值
0 2 4 6 8 10 15 20 40 60
80
20lgA()
幅值A() 1.00 0.79 0.63 0.50 0.39 0.32 0.18 0.10 0.01 0.001 0.0001
对数幅值 20lgA()
自动控制原理第5章_线性控制系统的频率特性分析法
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】
)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)
●
0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。
线性系统的频域分析法
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
自动控制原理 第五章(第一次课)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
自动控制原理第5章
jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。
第五章线性系统的频率分析法
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
第五章频率特性分析法
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
第5章线性系统的频域分析方法
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传递函数可以分解为典型环节的串联: 传递函数可以分解为典型环节的串联:
比例环节: 比例环节: K 1 惯性环节: 惯性环节: Ts + 1 1 积分环节: 积分环节: s 微分环节: 微分环节: s
一阶微分: 一阶微分: τ s + 1 二阶微分: 二阶微分: τ 2 s 2 + 2 ζτ s + 1
ω=∞
0
ω =0
1
G(j ∞ ) = 0 ∠ - 90
3)画出幅相曲线: 画出幅相曲线:
2、对数频率特性曲线(又叫伯德图Bode) 对数频率特性曲线(又叫伯德图Bode) Bode 包含: 包含:对数幅频特性和对数相频特性两条曲线
1)对数频率特性曲线的横坐标: 对数频率特性曲线的横坐标: 标记ω 标记ω,按lgω对数分度,单位是弧度/秒(rad/s); lgω对数分度,单位是弧度/ 对数分度 rad/s); /s 2)对数幅频特性曲线的纵坐标: 对数幅频特性曲线的纵坐标: 以L(ω)=20lgA(ω)线性分度,单位是分贝(dB); L(ω)=20lgA(ω 线性分度,单位是分贝(dB); 3)对数相频特性曲线的纵坐标: 对数相频特性曲线的纵坐标: 按φ(ω)线性分度,单位是度(o)。 线性分度,单位是度(
(ω )
180
L(ω)dB
对数幅频特性
90
0
ω
十倍频程dec 十倍频程 十倍频程dec 十倍频程
90
180
对数分度:当变量每增大或减小10倍 对数分度:当变量每增大或减小10倍 10 (10倍频程),坐标距离变化一个单 10倍频程),坐标距离变化一个单 倍频程), 位长度
对数相频特性
对数频率特性曲线的特点: 对数频率特性曲线的特点: 1)横轴按ω的对数lgω标尺分度,但标出的是ω本身 横轴按ω的对数lgω标尺分度,但标出的是ω lg 的数值,即刻度不均匀; 的数值,即刻度不均匀; 2)横轴压缩了高频段,扩展了低频段; 横轴压缩了高频段,扩展了低频段; 3)在ω轴上,十倍频程的长度相等; 轴上,十倍频程的长度相等; 4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ; 可以将幅值的乘除化为加减L(ω)=20lgA(ω L( 5)满足直线方程:斜率k 满足直线方程:斜率k
第五章 线性系统的频域分析法
本章主要内容: 本章主要内容: 5.I 频率特性 5.2 控制系统开环频率特性 5.3 频率域稳定判据 5.4 稳定裕度
5.1 频率特性
一、频率特性的定义: 频率特性的定义: 指线性系统或环节在正弦信号作用下, 指线性系统或环节在正弦信号作用下,系统输入 量的频率由0 量的频率由0变化到 ∞ 时,稳态输出量与输入量的振 幅之比和相位差的变化规律, G(jω 表示。 幅之比和相位差的变化规律,用G(jω) 表示。
2
五、典型环节的分解
最小相位环节和非最小相位环节的区别: 最小相位环节和非最小相位环节的区别: 最小相位环节:K>0,开环零极点在s左半平面; 最小相位环节:K>0,开环零极点在s左半平面; 开环零极点在 非最小相位环节:K<0开环零极点在s右半平面; 非最小相位环节:K<0开环零极点在s右半平面; 开环零极点在
1
j
ω=∞
ω
0
= 90 o
ω=0
0
箭头表示ω 箭头表示ω增大时辐相曲线的变化方向
实部: 实部:U (ω ) = A(ω ) cos (ω ) 虚部: 虚部:V (ω ) = A(ω ) sin (ω )
是常数, 由于 ∠G( jω ) = 90 是常数,而 | G ( jω ) | 随ω增大 而增大。因此, 而增大。因此,微分环节是一条与虚轴正段相重 合的直线。 相频范围: 合的直线。 相频范围:90 o ~ 90 o
1、比例环节 传递函数: 传递函数: G ( s ) = K 幅频: A(ω ) = K 幅频: 相频: 相频: (ω ) = tg
1
频率特性: 频率特性: G ( jω ) = K
j
0 = 0o K
0
K
比例环节是复平面实轴上的一个点, 比例环节是复平面实轴上的一个点,它到原点 的距离为K 相频范围: 的距离为K。相频范围:0 o~ 0 o
(ω ) = tg
-1
ImG ( jω ) ReG ( jω )
三、频率特性的求取 根据定义求取: 根据定义求取:
C(j ω ) G(j ω ) = R(j ω )
根据传递函数求取: 根据传递函数求取:
G(j ω ) = G(s)
s = jω
例如: 例如:求右图的频率特性 微分方程: 微分方程:RC duo + u = u o i
2、积分环节
1 传递函数: 传递函数: G ( s ) = s
1 频率特性: 频率特性:G ( jω ) = jω
ω
0
幅频: 幅频: (ω ) = A
1
相频: 相频: (ω ) = 0 tg
ω
ω=∞
= 90 o
0
j
1
箭头表示ω 箭头表示ω增大时辐相曲线的变化方向
实部: 实部:U (ω ) = A(ω ) cos (ω ) 虚部: 虚部:V (ω ) = A(ω ) sin (ω )
L(ω 2 ) L(ω 1 ) k= lgω 2 lgω 1
1 例如: 例如:G ( s ) = Ts + 1
的(对数频率特性曲线)伯德图 对数频率特性曲线)
1 1 G( jω ) = = ∠ tg 1ωT 频率特性: 1)频率特性: jωT + 1 ω 2T 2 + 1 对数频率特性: 2)对数频率特性:
x r ( t ) = xrm sin(ωt )
x c ( t ) = xcm sin(ωt + (ω ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。 稳态输出量与输入量的频率相同,仅振幅和相位不同。
频率特性
C ( jω ) G ( jω ) = = G ( jω ) ∠ G ( jω ) R ( jω )
1 例如: 例如: G ( s ) = Ts + 1
的(幅相曲线)奈氏图: 幅相曲线)奈氏图:
1 1 1 频率特性: 1)频率特性: G( jω ) = = ∠ tg ωT 2 2 jωT + 1 ω T +1
2)取三个特殊点: 取三个特殊点:
j
G(j0) = 1 ∠ 0
1 G j = T 1 ∠ 45 2
o
5、一阶微分环节 传递函数: 传递函数:G ( s ) = Ts + 1 频率特性: G ( jω ) = jωT + 1 频率特性: 幅频: 幅频: A(ω ) = 相频: 相频: (ω ) = tg
ω 2T 2 + 1
1
ωT
1
= tg 1ωT
当ω从零变化到无穷时,相频从0°变化+90°, 从零变化到无穷时,相频从0 变化+90° +90 其幅相频率特性是通过( 其幅相频率特性是通过(1, 0)点,且平行于 相频范围: 90 正虚轴的一条直线 相频范围:0 o~90 o
ω=0
由于∠G( jω ) = 90 是常数,而 | G ( jω ) | 随ω增大 是常数, 而减小。因此, 而减小。因此,积分环节是一条与虚轴负段相重 合的直线。 相频范围: 合的直线。 相频范围:-90 o ~ -90 o 90
o
3、微分环节 频率特性: 传递函数: 传递函数:G ( s ) = s 频率特性:G ( jω ) = jω 幅频: 幅频:A(ω ) = ω 相频: 相频: (ω ) = tg
频率对数分度,幅值/ 频率对数分度,幅值/相角线性分度
3)对数幅相曲线(又称:尼科尔斯曲线、Nichols 3)对数幅相曲线(又称:尼科尔斯曲线、Nichols) 对数幅相曲线
以频率为参变量表示对数幅值和相角关系: (ω)图 以频率为参变量表示对数幅值和相角关系:L(ω) —(ω)图
请重点掌握前面两种! 请重点掌握前面两种!
微分方程、传递函数、频率特性之间的关系: 微分方程、传递函数、频率特性之间的关系:
d s dt
传递函数
微分方程 系统
d jω dt
频率特性
s jω
四、 频率特性的几何表示法
常用频率特性的三种表示法: 常用频率特性的三种表示法: 1)幅相频率特性曲线 又称:幅相曲线、 幅相频率特性曲线( 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯 特图(Nyquist) 极坐标图) 特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode)) (Bode)) 2)对数频率特性曲线(又称: 对数频率特性曲线
6 、振荡环节
G 传递函数: 传递函数: (s) =
ωn2
s2 + 2ζωns + ωn2
0 B o d e D ia g r a m
L(ω ) = 201g
1 T ω +1
2 2
-1 0 -2 0 -3 0 -4 0 0
(ω ) = tg Tω
1
3)画出伯德图: 画出伯德图:
-4 5
-9 0 -1 10
10 F re q u e n c y
0
10 (r a d /s e c )
1
10
R
传递函数: 传递函数: G(s) = U o (s) = = U i (s) RCs + 1 Ts + 1
代入传递函数得频率特性: 令s=jω代入传递函数得频率特性: G( jω ) = 代入传递函数得频率特性
1 jTω + 1
频率特性是传递函数的特例, 频率特性是传递函数的特例,是定义在复平 是传递函数的特例 面虚轴上的传递函数, 面虚轴上的传递函数,因此频率特性与系统的微分 方程、传递函数一样反映了系统的固有特性。 方程、传递函数一样反映了系统的固有特性。