自动控制理论第五章频率特性分析法

合集下载

自动控制原理第5章频域分析法

自动控制原理第5章频域分析法
确定方法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
mn 122
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7
(c ) 0 (c ) 0 (c ) 0
系统是稳定的 系统是临界稳定的 系统是不稳定的
5.7用开环频率特性分析系统的动态性能
3. 增益裕量G.M. (幅值裕量) 相角为-180o这一频率值ωg所对应的幅值倒数的分贝数。
1 G.M . 20lg 20lg Gk ( jg ) 20lg A(g ) Gk ( jg )
5.7用开环频率特性分析系统的动态性能
1.低频段 表征了系统的稳态性能即控制精度。从稳态而 言,总希望K大些,系统类型高些,这样稳态误差 就小些。 2.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能 力越强。
5.7用开环频率特性分析系统的动态性能
三、频域性能与时域性能的关系 对于二阶系统 1. γ(ωc)与σ%的关系(平稳性)
自动控制原理
第五章 控制系统的频率特性分析法
5.7 用开环频率特性分析系统的动态性能
5.7用开环频率特性分析系统的动态性能
一、开环频域性能指标
1.截止频率ωc 对数幅频特性等于0分贝时的ω值,即截止频率ωc表 征响应的快速性能, ωc越大,系统的快速性能越好。
L(c ) 20lg A(c ) 0 A(c ) 1
2.相位裕量γ(ωc)
相频特性曲线在ω= ωc时的相角值φ(ωc)与-180°之差。
(c ) (c ) 180
5.7用开环频率特性分析系统的动态性能
相位裕量的物理意义是,为了保持系统稳定, 系统开环频率特性在ω= ωc时所允许增加的最大相 位滞后量。 如果将矢量顺时针旋过γ角度,系统就处于临 界稳定状态。 对于最小相位系统,相位裕量与系统的稳定性 有如下关系:
②中频段的斜率为-40dB/dec,系统相当于阻尼系数 ζ=0的二阶系统,所以h不宜过宽; h越宽,平稳性越差。 ③中频段的斜率为-60dB/dec,系统不稳定。 重要结论:控制系统要具有良好的性能,中频段的 斜率必须为-20dB/dec,而且要有一定的宽度(通常 为5~10); 应提高截止频率来提高系统的快速性。

自动控制原理--第五章-频率特性法

自动控制原理--第五章-频率特性法
2.频率特性反映系统本身性能,取决于系统结构、参数,与外 界因素无关。
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出

自动控制原理第5章频率特性

自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。

在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。

本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。

1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。

在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。

频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。

2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。

频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。

对数坐标图上,增益通常以分贝(dB)为单位表示。

3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。

相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。

在相频特性图上,频率通常是以对数坐标表示的。

4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。

它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。

5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。

在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。

对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。

6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。

工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。

常见的设计方法包括校正器设计、分频补偿、频率域设计等。

总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。

频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3

比例环节可以完全、真实地复现任何频率的输入 信号,幅值上有放大或衰减作用;υ (ω)=0º ,表示输 出与输入同相位,既不超前也不滞后。
5.3 典型环节的频率特性
二、积分环节 1.代数表达式 传递函数
G (s) 1 s 1
频率特性 相频特性
幅频特性
A( )

1 1 1 j 90 G( j ) j e j () 90
对数频率特性曲线是一条斜线, 斜率为-20dB/dec, 称为高频渐 近线,与低频渐近线的交点为ωn=1/T,ωn称为交接频率或转 折频率,是绘制惯性环节的对数频率特性时的一个重要参数。
5.3 典型环节的频率特性
3.伯德图 对数幅频图
L( ) 20lg A( ) 20lg 1 1 2T 2 20lg 1 2T 2
G ( j ) 1 j 2 2 2 (1 2 2 ) j 2 (1 2 2 ) 2 (2 ) 2 e
2 T j arctan 1 2 2
5.3 典型环节的频率特性
2.极坐标图 理想微分环节的极坐标图在0 <<的范围内,与正虚轴重合。 可见,理想微分环节是高通滤 波器,输入频率越高,对信号的 放大作用越强;并且有相位超前 作用,输出超前输入的相位恒为 90º ,说明输出对输入有提前性、 预见性作用。 (纯微分)
在控制工程中,采用分段直线表示对数幅频特征 曲线,作法为: a.当Tω<<1(ω<<1/T)时,系统处于低频段 L( ) 20lg1 0 b.当Tω>>1(ω>>1/T)时,系统处于高频段
L( ) 20lg T
此直线方程过(1/T,0)点, 且斜率为-20dB/dec。

自动控制原理第5章_线性控制系统的频率特性分析法

自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处

自动控制理论第五章频率分析法1.详解

自动控制理论第五章频率分析法1.详解

5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。

G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
一 由传递函数求系统的频率响应
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89

自动控制原理 第五章(第一次课)

自动控制原理 第五章(第一次课)

autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。

(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。

非最小相位环节的频率特性。

(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。

单环系统开环对数频率持性的求取与绘制。

最小相位系统开环对数幅频特性与相频特性间的对应关系。

(4)奈奎斯特稳定判据幅角定理。

S平面与F平面的映射关系。

根据开环频率特性判别闭环系统稳定性的奈氏判据。

奈氏判据在多环系统中的应用和推广。

系统的相对稳定性。

相角与增益稳定裕量。

(5)二阶和高阶系统的频率域性能指标与时域性指标。

系统频率域性能指标。

二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。

(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。

用等M圆线从开环频率特性求取闭环频率特性。

用尼氏图线从开环对数频率特性求取闭环频率特性。

2、重点(l)系统稳态频率响应和暂态时域响应的关系。

(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。

(3)奈奎斯特稳定判据和稳定裕量。

5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。

频域分析是控制理论的一个重要分析方法。

5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。

自动控制原理第5章

自动控制原理第5章

8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。

自动控制原理第五章频率特性)

自动控制原理第五章频率特性)

a
c
G( j) a() jb() G( j) e jG( j) c() jd ()
⑧代入
cs (t)
AG(
j) e j jt
2 j
AG( j) e j jt
2j
cs (t) A | G( j) | sin[t G( j)]
时域分析法和根轨迹法的特点
① 时域分析法:时域分析法较为直接,不足之处: 对于高阶或较为复杂的系统难以求解和定量分析; 当系统中某些元器件或环节的数学模型难以求出时,整个系统
的分析将无法进行; 系统的参数变化时,系统性能的变化难以直接判断,而需新求
解系统的时问响应; 系统的性能不满足技术要求时,无法方便地确定应如何伺调整
1
1 A
Uo (s)
Ts
1[Ui (s) Tuo0
]
Ts
[ 1
s
2
2
Tuo0
]
拉氏反变换得
uo
uo0
1
AT T 2
2
t
eT
A sin(t tg1T ) 1 T 2 2
式中第一项,由于T>0,将随时间增大而趋于零,为输出的 瞬态分量;第二项正弦信号为输出的稳态分量。
2020/7/21
9
uOs
但对于高频噪声问题,难以建立数学模型等问题仍然无能 为力。Βιβλιοθήκη 2020/7/212
频域法不必求解微分方程,能预示系统性能,同时,又能 指出如何调整系统参数来得到系统预期的性能指标。
时域分析法和根轨迹分析法主要是以单位阶跃输入信号来 研究系统的,而频域分析法主要是以正弦输入信号来研究系统 的。
频域分析:给稳定的系统输入一个正弦信号,系统的稳态 输出也是一个正弦信号,其频率与输入信号同频率,其幅值和 相位随输入信号频率的变化而变化。

自动控制原理第五章

自动控制原理第五章

第五章 频域分析法目的:①直观,对高频干扰的抑制能力。

对快(高频)、慢(低频)信号的跟踪能力。

②便于系统的分析与设计。

③易于用实验法定传函。

§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。

其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-4

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-4

渐近线
5.4 系统开环频率特性绘制
相频特性表达式为
ω
φ(ω)/° -40
-80 -120 -160 -200 -240
arctan 0.25 arctan
5.4 系统开环频率特性绘制
对渐近线进行误差修正 在振荡环节转折处,ζ=0.4/(2*0.5)=0.4, 修正值+6dB; 在惯性环节转折处,修正值-3dB。
40
L(ω)/dB
精确曲线
20dB 1
+6dB
20
0 -20 -40
-40dB/dec ω1=2 ω2=4
振荡
-3dB
10
惯性
ω /s-1
-60dB/dec
1 2 3
5.4 系统开环频率特性绘制
一、极坐标图 方法一: 根据不同的ω值,计算出相应的P(ω)和Q(ω)或A(ω) 和φ (ω) ,并在直角坐标平面上描出相应的点,然 后用光滑线段连接各点。 方法二:利用典型环节的频率特性,步骤为 (1)分别计算出各典型环节的幅频特性和相频特性; (2)各典型环节的幅频特性相乘得到系统的幅频特性, 各典型环节的相频特性相加得到系统的相频特性。 (3)给出不同的ω值,计算出相应的A(ω)和φ (ω),描点 连线。
5.4 系统开环频率特性绘制
起点 G(0) 15 j 零虚频特性为0,解得 1 / 2 将此代入实频特性,求 得与实轴交点为-3.33。
终点
G() 0 j 0
根据幅相频率特性曲线的起 点、与实轴交点及终点,幅 相频率特性曲线如图所示。
5.4 系统开环频率特性绘制
10 例 设系统的频率特性为 Gk ( j ) j ( j 0.2 1)( j 0.05 1)

自动控制原理第五章--频率法

自动控制原理第五章--频率法
G(s) s G(s) 1 Ts
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac

自动控制原理第五章

自动控制原理第五章

均 匀 的
(lg ω)
0.1 0.2 0.3 … 1 2 3 … 10 20 30 … 100 200 …
ω
倍频程是均匀 均匀的 一倍频程是不均匀的, 十倍频程是均匀的! 倍频程是不均匀的 不均匀
§5.3 典型环节的频率特性
系统的传递函数可以看成是由若干个典型环节组成的. 系统的传递函数可以看成是由若干个典型环节组成的. 一,比例环节的频率特性 Y (s) = K 传递函数为 Φ ( s ) = R (s)
Im
ω =∞
(ω )
A(ω )
Re
ω =0
Φ( jω)
奈奎斯特 (N.Nyquist)在1932 年基于极坐标图 阐述了反馈系统 稳定性 奈奎斯特曲线, 简称奈氏图
2. 幅,相频率特性 它是将 A(ω) 和 (ω) 分别表示在以 为横坐标,以 A(ω) 分别表示在以ω 坐标, 坐标的平面上. 或 (ω) 为纵坐标的平面上.
A(ω)
ω单位为弧度/秒 单位为弧度 秒 单位为弧度
ω
(ω)
A(ω) 无量纲
ω
(ω) 单位为度 单位为度
3. 对数幅,相频率特性 对数幅,相频率特性——Bode图 图 纵坐标
幅频: L(ω ) = 20 lg A(ω ) 单位:分贝(dB) 单位:度 相频: (ω )
横坐标 以 lg ω 来分度,标注 ω ,单位:弧度 秒(rad/s) 分度, 单位:弧度/秒
本章需要掌握的主要内容:
典型环节 环节的频率特性 (1)典型环节的频率特性 系统开环频率特性的绘制 (2)系统开环频率特性的绘制 (3)利用频率特性分析系统的稳定性 利用频率特性分析系统的稳定性 (4)系统的稳态性能与动态性能分析 系统的稳态性能与动态性能分析 实验法求取元件或系统的 求取元件或系统的数学模型 (5)实验法求取元件或系统的数学模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a G (s) A AG( j) ( s j ) | s j s 2 2 2j
自动控制理论
第五章 频率特性分析法
AG( j) a 2j
G ( j) | G ( j) | e jG ( j)
a
AG( j) 2j
G ( j) | G ( j) | e jG ( j) | G ( j) | e jG ( j)
x c ( t ) x cm sin(t ())
稳态输出量与输入量的频率相同,仅振幅和相位不同。
自动控制理论
第五章 频率特性分析法
F()=稳态输出量与输入量的变化
F() A()e j( ) U() jV ()
幅频特性 相频特性 实频特性 虚频特性
A() | F() | U 2 () V 2 () 1 V () () F() tg U () U() A() cos ()
V() A() sin ()
自动控制理论
第五章 频率特性分析法
Why 频率特性? 联系系统的参数和结构
X r (t ) A sin wt加2个极点 s jw, s jw
X c (s)= G(s) X r (s)
x c ( t ) A | G ( j) | sin(t G ( j))
频率特性与传递函数的关系: F()= G(jω)=G(s)|s=jω
b 0 ( j) m b1 ( j) m 1 ... b m 1 ( j) b m G ( j) a 0 ( j) n a1 ( j) n 1 ... a n 1 ( j) a n
通过实验直接求取数学模型 无需理论建模。 适用于非线性系统的分析 无需对非线性系统拉氏变换(非常微分方 程,无法进行拉氏变换)。
自动控制理论
第五章 频率特性分析法
5.1.2 频率特性的求取 1 已知系统的系统方程,输入正弦函数求其稳态 解,取输出稳态分量和输入正弦的复数比; 2 根椐传递函数来求取; 3 通过实验测得。 一般用这两种方法
自动控制理论
第五章 频率特性分析法
5.1.2.1 传递函数求取法
x r ( t ) A sin t p(s) p(s) G (s) q(s) (s s1 )(s s 2 )...(s s n ) A p(s) A X ( s ) G ( s ) 2 c 2 2 部分分式展开为 s q(s) s 2 a a b1 b2 bn ... s j s j s s1 s s 2 s sn
x c ( t ) ae jt ae jt e j( t G ( j)) e j( t G ( j)) A | G ( j) | 2j A | G ( j) | sin(t G ( j))
自动控制理论
第五章 频率特性分析法
x r ( t ) A sin t
T RC
G ( j)
U 2 ( j) 1 A ()e j( ) U1 ( j) 1 jT
A()
1 1 (T)
2
() tg 1 (T)
幅值A()随着频率升高而衰减 对于低频信号 (T 1) 对于高频信号 (T 1)
A() 1

x c ( t ) ae jt ae jt b1e s1t b 2 e s 2 t ... b1e s n t
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部 x c ( t ) ae jt ae jt A AG( j) a G (s) 2 (s j) |s j 2 s 2j
5.1.1 频率特性的定义 5.1.2 频率特性的求取

5.1.3 频率特性的物理意义
自动控制理论
第五章 频率特性分析法
5.1.1 频率特性的定义 在正弦信号作用下,系统输入量的频率由0变 化到 时,稳态输出量与输入量的振幅和相位差 的变化规律。
x r ( t ) x rm sin(t )
自动控制理论
第五章 频率特性分析法
G ( j) X c ( j) G ( j) X r ( j) | G ( j) ||
X c ( j) X r ( j)
X c ( j) | X r ( j)
G ( j) A()e j( ) U () jV ()
5.1.3 频率特性的物理意义 频率特性与传递函数的关系: G(jω)=G(s)|s=jω 频率特性表征了系统或元件对不同频率正弦 输入的响应特性。
(ω)大于零时称为 相角超前,小于零 时称为相角滞后。
自动控制理论
G (s) U 2 (s) 1 U1 (s) 1 Ts
第五章 频率特性分析法
自动控制理论
第五章 频率特性分析法
第五章 频率特性分析法
本章主要内容: 5.I 频率特性的基本概念 5.2 频率特性图 5.3 系统开环频率特性 5.4 Nyquist稳定性判据 5.5 稳定裕度 5.6 系统闭环频率特性 5.7 性能指标分析
自动控制理论
第五章 频率特性分析法
Part 5.1 频率特性的基本概念
幅频特性 相频特性 实频特性 虚频特性
A() | G ( j) | U 2 () V 2 () 1 V () () G ( j) tg U () U() A() cos ()
V() A() sin ()
自动控制理论
第五章 频率特性分析法
() 0 () 90
相关文档
最新文档