模电课件:第三章三极管资料

合集下载

模拟电子技术经典教程三极管ppt课件

模拟电子技术经典教程三极管ppt课件
普通vCES=0.2V。
i
VcC+E =ViCBE
B
b +
vC
vBE - eE-
VCC
VBB
共射极放大电路
如何判别三极管的电极、管型和资料
当三极管在电路中处于放大形状时
发射结处于正向偏置,且对于硅管 |VBE|=0.7V,锗管|VBE|=0.2V;
集电结处于反向偏置,且|VCB|> 1V;
NPN管集电极电位比发射极电位高, PNP管集电极电位比发射极电位低。
vbehieibhrevce
ic hfeibhoevce
hie(vBE /iB) VCE
输出端交流短路时的输入电阻,即 rbe。
H 参
hre(vBE /vCE ) IB

输入端交流开路时的反向电压传输C/iB) VCE

输出端交流短路时的电流放大系数,即 。
hoe(iC/vCE ) IB
三极管的不同封装方式
金属封装 塑料封装
大功率管
中功率管
三极管的构造
半导体三极管的构造表示集图电如极以,下用图C所或示c 。它有两 表发示射〔极种E,m类发i用t型t射eEr:〕N或区P;eN型和PN集P型电。区表示〔Collector〕。
基区 基发极射,结用(BJe或) b表示集〔电Ba结se〕(Jc) 两三种极类管型符的号三极管
管子为NPN管
C-基极,B-发射极
§2.2.3 三极管的主要参数
三极管的参数是 用来表征管子性 能优劣顺应范围 的,是选管的根 据,共有以下三 大类参数。
电流放大系数 极间反向电流 极限参数
电流放大系数
共 射 电 流 放 大 系 数
i B
b +

模拟电路-三极管

模拟电路-三极管

转移特性
转移特性描述的是基极电流与集电极 电流之间的关系。在一定基极电流下, 集电极电流随着基极电流的增大而增 大,表现出一定的线性关系。
放大系数:描述三极管放大能力的一 个参数,表示集电极电流变化量与基 极电流变化量之比。
频率特性
频率响应
描述三极管在不同频率信号下的响应能力。三极管的频率响 应受其内部结构影响,存在一个截止频率和最大可用频率。
继电器的吸合和断开,实现电气设备的自动控制。
振荡器
总结词
三极管作为振荡器中的核心元件,能够产生 高频振荡信号,常用于无线通信、电子测量 等领域。
详细描述
三极管作为振荡器中的核心元件,其工作原 理是利用三极管的放大和正反馈作用,形成 一个自激振荡回路,从而产生高频振荡信号 。在无线通信中,三极管可以产生高频载波 信号,用于调制和解调无线电波。在电子测 量领域,三极管可以产生高频脉冲信号,用
于测量电子元件的响应特性和频率特性。
04
三极管的特性
输入与输出特性
输入特性
描述三极管输入端电压与电流的关系。随着输入电压的增加,基极电流逐渐增大 ,表现出非线性特性。
输出特性
描述三极管输出端电压与电流的关系。根据三极管类型(NPN或PNP),输出特性 曲线分为三个区域,分别是截止区、放大区和饱和区。
详细描述
随着温度的升高,三极管的放大倍数可能会减小,导致其性能不稳定。为了解决这一问题,可以采取散热措施, 如安装散热片或风扇,以降低三极管的温度。此外,选用具有高热稳定性的三极管型号也是解决方案之一。
噪声问题
总结词
噪声问题是指三极管在工作过程中产生 的噪声干扰,可能影响信号的传输质量 。
VS
详细描述
根据电路需求选择合适的三极管型号,如 直流参数、交流参数、功率参数等。

《模拟电子技术》第3章 晶体三极管及放大电路基础

《模拟电子技术》第3章 晶体三极管及放大电路基础
• 放大器的静态:当输入的交流信号为零时,这时 三极管的基极、集电极和发射极中都只有直流电 流。
• 放大器的动态:当输入的交流信号不为零时,基 极、集电极和发射极中的电流既含有直流电流成 分又含有交流电流成分。
3.3 共射基本放大电路
3.3.1 电路结构和元器件的作用
3.3.2 共发射极放大电路的工作原理
3.1.5 三极管的工作状态
1.三极管的三种组态
2.共发射极放大电路的输入输出特性
三极管的工作状态说明
3.三极管截止和饱和时的等效电路
• 三极管的工作状态判断。
①当UBE<UTH时,IB=0,三极管截止,C、E间相当于开关断开, Ic=0;
②当iB>IBS时,三极管饱和,C、E间相当于开关闭合,iC=ICS;
第三章 晶体三极管及放大 电路基础
学习目标:
(1)了解三极管的电流放大作用。 (2)掌握万用管的三种组态特点。掌握共射电路的
基本结构。 (4)了解放大电路性能指标。掌握用万用表调试三
极管各参数的方法。 (5) 制作放大电路,把微弱的信号进行放大,如做
IE=IC+IB,在放大状态下,IC=βIB。
本章回顾
(3)三极管的特性曲线和参数是用来描述三极管 性能,是选择三极管时的依据。选择三极管时 要考虑的主要参数是工作频率、耐压、放大倍 数。型号相同的三极管可以互换,型号不同, 但对于该电路来说关键参数相似也可以替换。
(4)放大器是三极管电路中最常见和最基本的电 路。放大器的基本任务就是放大信号。放大器 用一些性能指标来表征放大器性能:电压(电 流、功率)放大倍数、输入电阻、输出电阻是 最主要的三个。单级共射小信号放大器是最基 本的放大电路。
3.4 三种基本组态放大电路的比较

模拟电子技术1.3晶体三极管.ppt

模拟电子技术1.3晶体三极管.ppt
大部分电子收集到集电区。若继续增大uCE ,ic也不可能 明显增大,即iB基本不变。
∴输入特性曲线不再明显右移
而基本重合。 对于小功率管,可用的任何 一条UCE>1曲线来近似UCE>1 的所有曲线。
共射接法输入特性曲线
2、输出特性曲线
iC f (uCE ) iB常数
①UCE增大 集电结电场增强,收集基区非平衡少子的能力增强, 电流iC随UCE增大而增大。
③U(BR)CEO:基极开路时集、射间的击穿电压。
几个击穿电压在大小上有如下关系:
U(BR)CBO>U(BR)CEO>U(BR) EBO
例1:在一个单管放大电路中,电源电压为30V,已知三只管子的 参数如下表,请选用一只管子,并简述理由。
晶体管参数
T1
T2
T3
ICBO/μA
0.01
0.1
0.05
UCEO/V
IC
IB
输入交流信号时,共射交流电流放大系数β
在近似分析中,
iC
iB
共基直流电流放大系数
I CN
IE
共基交流电流放大系数α
ic
iE
在近似分析中,
例:现测得放大电路中两只管子的两个电极的电流如下图所 示,分别求出另一电极的电流,标出其实际方向,并在圆圈 中画出管子,且分别求出电流放大系数β。
VBB 1V , Rb 500 ,T工作在何种状态?
IB 0.6mA, IC 30mA,UCE 18V U B
从外部看: I E I B IC IE发射极电流最大
C IC B
IB E IE
NPN型三极管
C
B
IC
IB E IE
PNP型三极管

【2024版】模拟电子技术课件第三章

【2024版】模拟电子技术课件第三章

60A
此区域中 : 2
40A
IB=0 , IC=ICEO ,
1
20A
VBE<死区电
IB=0
压,称为截止 3 6 9 12 VCE(V)
区。
输出特性三个区域的特点: (1) 放大区: BE结正偏,BC结反偏, IC=IB , 且 IC = IB
(2) 饱和区: BE结正偏,BC结正偏 , 即VCEVBE , IB>IC,VCE0.3V
1、晶体管必须偏置在放大区。发射结正 偏,集电结反偏。
2、正确设置静态工作点,使整个波形处 于放大区。
3、输入回路将变化的电压转化成变化的 基极电流。
4、输出回路将变化的集电极电流转化成 变化的集电极电压,经电容滤波只输 出交流信号。
放大 电路 分析
放大电路的分析方法
静态分析
估算法 图解法
小信号模型分析法
vi=0时
入时
RL IE=IB+IC
基本放大电路的工作原理
静态工作点
RB
RC
C1
IB
(IB,VBE)
VBE
+VCC
IC C2
T VCERL
( IC,VCE )
(IB,VBE) 和( IC,VCE )分别对应于输入输 出特性曲线上的一个点称为静态工作点。
IB
IC
IB
Q
IC
VBE VBE
Q IB
VCE VCE
共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号
是叠加在直流上的交流信号。基极
电流的变化量为IB,相应的集电 极电流变化为IC,则交流电流放 大倍数为:

三极管ppt课件完整版

三极管ppt课件完整版

常见故障现象及诊断方法
诊断方法
测量三极管的耐压值是否降低,观察电路是否有过载现象,若确认 损坏则更换三极管。
故障现象3
三极管漏电流过大。
诊断方法
测量三极管的漏电流是否超过规定值,若过大则检查电路是否存在漏 电现象,并更换三极管。
常见故障现象及诊断方法
故障现象4
三极管热稳定性差。
诊断方法
检查三极管的散热条件是否良好,测量其热稳定性参数是否在规定范围内,若异常则改善散热条件或 更换适合的三极管型号。
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
共基放大电路的特点是输入回路与输出回路共用一个电极,即基极。输入信号加在三极管的发射极和基极之间, 输出信号从集电极取出。由于共基放大电路的输入阻抗低,输出阻抗高,因此具有电压放大倍数大、频带宽等优 点。
共集放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源 。
真加剧。而截止频率则限制了三极管能够放大的信号频率范围。
03
三极管基本放大电路分析
共射放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
利用三极管的电流放大作用,将输入信号放大并输出。输入信号加在三极管的基 极和发射极之间,输出信号从集电极取出,经过耦合电容与负载相连。
共基放大电路组成及工作原理
偏置电路类型及其作用
固定偏置电路
01
提供稳定的基极电流,使三极管工作在放大区。
分压式偏置电路
02
通过电阻分压为基极提供合适的偏置电压,使三极管具有稳定
的静态工作点。
集电极-基极偏置电路
03
利用集电极电阻的压降为基极提供偏置电压,适用于某些特殊

模电——三极管课件PPT

模电——三极管课件PPT

(一)晶体三极管的概念、分类、结构、符号及类型判断
• 提问: • ⑴图中位于左右两边的N区可以互相调换位子嘛?
– 答:通过之前对内部结构的分析得出,由于各区掺杂浓度不同以及各区的特 点,两个N区是不能互换的。
• ⑵晶体管只能有三个引脚嘛? – 答:一般的只有三个引脚,但一些金属封装的大功率管就只有两个引脚,分 别为b,e极,c极为金属外壳。
放大状态的外部条件为发射结正偏,
集电结反偏。由此我们得出
Vbb<<Vcc
(四)三极管的输入和输出特性
• 一、共发射极输入特性曲线

集射极之间的电压VCE一
定时,发射结电压VBE与基极
电流IB之间的关系曲线。
三极管的输入特性
(四)三极管的输入和输出特性
• 由图可见:
• 1.当V CE ≥2 V时,特性曲线基本重
(三)晶体三级管的工作电压和基本连接方式
何为发射结G正B为称偏基偏,极置集电电电源源结,又反偏?Rb为基极电阻
V为三极管R阻c。为集电极G电C为集源电极电
三极管电源的接法
(三)晶体三级管的工作电压和基本连接方式
三极管在电路中的三种基本连接方式:
• 共射极连接法
共基极连接法
共集电极连接法
(三)晶体三级管的工作电压和基本连接方式
小变化不失真的放大输入。
(二)晶体三级管的电流放大作用
• 三极管放大原理 • 三极管厉害的地方在于:它可以通过小电流控制大电流。 • 即三极管放大的原理就在于:通过小的交流输入,控制大的静态直流。 • 切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 • 放大的条件 • 内部:发射区杂质浓度远大与基区杂质浓度,且基区很薄,集电结面积大(即各区特点) • 外部:发射结正偏,集电结反偏 • 何为发射结正偏,集电结反偏?

大学模电课件-模电d3j

大学模电课件-模电d3j
1.3 双极型三极管(BJT)
又称半导体三极管、晶体管,或简称为三极管。 (Bipolar Junction Transistor)
三极管的外形如下图所示。
图 1.3.1 三极管的外形
三极管有两种类型:NPN 和 PNP 型。主要以 NPN 型为例进行讨论。
1.3.1 三极管的结构
常用的三极管的结构有硅平面管和锗合金管两种类
iC / mA 4饱 3和

2
1
ICEO
O2
50 µA
40 µA 放大区
30 µA
20 µA
10 µA
截止区IB = 0
4
6 8 uCE /V
饱和区 输出特性曲线中,
UCE≤UBE的区域,即曲线
的上升段组成的区域称
为饱和区。饱和区的特
点是:发射结和集电结 均为正偏。
工作在此区的三极管相当于一个 闭合的开关,没有电流放大作用。
IB f (UBE ) UCE常数
IC
Rc
mA
输出特性:
IC f (UCE ) IB 常数
VBB
Rb
IB A
输入
b
+
cUCE 输出 e V 回U路CE
VCC
回路
VUBE
图 1.3.6 三极管共射特性曲线测试电路
一、输入特性
IB f (UBE ) UCE 常数
(1) UCE = 0 时的输入特 性曲线
饱3 和 区2
放 大 区
80µA 60 µA 40 µA 20 µA
1. 截止区 IB ≤ 0 的 区域。
IB= 0 时,IC = ICEO。 硅管约等于 1 A,锗管
1
IB = 0

模电课件:第三章三极管

模电课件:第三章三极管

动态:输入信号不为零时,放大电路的工作
状态,也称交流工作状态。
电路处于静态时,三极管个电极的电压、电
流在特性曲线上确定为一点,称为静态工作点,
常称为Q点。一般用IB、 IC、和VCE (或IBQ、ICQ、 和VCEQ )表示。
# 放大电路为什么要建立正确的静态?
3.2 共 射极放 大电路
5. 直流通路和交流通路 (思考题)
Rc CCbb22
TTT Cb2
VVCCCC
Rb
VBB
(d) ((bf))
3.3 图解分析法
3.3.1 静态工作情况分析
用近似估算法求静态工作点 用图解分析法确定静态工作点
3.3.2 动态工作情况分析
交流通路及交流负载线 输入交流信号时的图解分析 BJT的三个工作区 输出功率和功率三角形
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示。 共集电极接法,集电极作为公共电极,用CC表示;
4. 共射放大
若 vI = 20mV 使 iB = 20 uA 设 = 0.98
则 iC iB
1 iB
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
vCE = 0V vCE 1V
得到

IE= (1+ ) IB
IC
IB

模电第三章12(三极管)

模电第三章12(三极管)

UBE
R UCE L
第二章 半导体三极管
3.2 放大电路的静态和动态
动态:输入信号不为零时,放大电路的工作
状态,也称交流工作状态。
电容短路,直流量为零,UCC成为交流地
动态等效电路
共射极放大电路 ic + vce 交流通路
直流通路和交流通路 第二章 半导体三极管 通常,放大电路中交流信号的作用和直 直流分析:(IBQ,ICQ,UCEQ) 流电源的作用共存,这使得电路的分析复 杂化。为简化分析,引入直流通路和交流 通路。 直流通路:① us=0,保留Rs;②电容开路; ③电感相当于短路(线圈电阻近似为0)。
第二章 3.4 半导体三极管 放大电路的图解分析法
3.4.1 直流图解分析法
输入回路 分 析
三极管使用输入特性曲线表示 基极回路的直流通方程式表示
+UCC
ib f (uBE ) |uCE UCEQ
—— 特性曲线
Rb C1
RC
C2 R
L
uBE Ucc iB Rb
—— 直流负载线
3.4
分压式偏置可稳定静态工作点
2. 第二章 半导体三极管 静态工作点稳定的放大器 +VCC
分 压 式 偏 置 电 路
Rb1 C1
I1 R IB
B
C
IC
C E
C2
R b2 UB VCC R b1 R b2
为了使B电位UB稳定,设 计电路时,可使I1比IB大许 多倍: 硅管: I1=(5~10)IB
UI
IC +△I C
1
I B +△I B UBE+△UBE
3 T 2 UCE +△UCE

《模拟电路三极管》课件

《模拟电路三极管》课件
《模拟电路三极管》ppt课件
contents
目录
• 三极管概述 • 三极管工作原理 • 三极管的应用 • 三极管的选择与使用 • 三极管的发展趋势与展望
01 三极管概述
三极管定义
总结词
三极管是一种电子器件,由三个电极构成,具有放大和开关 功能。
详细描述
三极管是电子设备中的基本元件之一,由基极、集电极和发 射极三个电极组成。它利用基极电流的控制来实现对集电极 电流的放大,同时也可以作为开关来控制电路的通断。
集电极。这三个区域共同构成了三极管的基本结构。
02 三极管工作原理
载流子的运动
载流子
在固体半导体中自由移动的带 电粒子,参与导电。
空穴
在P型半导体中,空穴是主要的 载流子;在N型半导体中,电子 是主要的载流子。
扩散运动
载流子在浓度梯度的作用下由 多向少运动,是被动的过程。
漂移运动
在外加电场的作用下,载流子 沿电场方向运动,是主动的过
三极管结构
总结词
三极管的结构包括基极、集电极和发射极三个电极,以及半导体材料构成的基区、集电 区和发射区。
详细描述
三极管的结构包括基极、集电极和发射极三个电极,以及由半导体材料构成的基区、集 电区和发射区。基区是半导体材料的一部分,连接基极和发射极;集电区也是半导体材 料的一部分,连接集电极和基极;发射区同样也是半导体材料的一部分,连接发射极和
程。
电流放大作用
基极电流对集电极电流的控制
01
三极管内部存在两个PN结,基极电流的微小变化会导致集电极
电流的显著变化。
电对集电极电流影响的参数,与三极管的材料
、结构、工作状态等因素有关。
作用机制
03

模电第三章03半导体三极管

模电第三章03半导体三极管

三极管的输出特性
(2-18)
在一定的IB 下 ,IC与UCE的关系曲线 IC(mA ) 4 3 2 1 3 6
= IC / IB =(3-2)mA/(60-40) A=50
Q’ = I / I =3 mA/ 60A=50 C B 40A Q
= IC / IB =2 mA/ 40A=50
0 0.2 0.4 0.6 U BE / V
I B f ( U BE ) UCE 常数
三极管的输入特性
(2-16)
IB(A)
80
工作压降: 硅管 UBE0.6~0.7V,锗 UBE0.2~0.3V。
60
死区电压, 40 硅管0.5V, 20 锗管0.2V。
UCE1V
0.4
0.8
UBE(V)
IC : IC + IC IC = IB
一般认为: = = ,近似为一常数,
(2-31)
例:UCE=6V时:IB=40A, IC=1.5mA; IB=60 A, IC=2.3mA。
___
IC 1.5 37.5 IB 0.04
I C 2.3 1.5 40 I B 0.06 0.04
C2
(2-40)
共射放大电路的 进一步强调 RC C1 T RB EB +EC
集电极电阻,将 变化的电流转变 为变化的电压。
C2
(2-41)
单电源供电 +EC RC C1 T
可以省去
C2
RB EB
(2-42)
单电源供电 +VCC RB C1 T
RC
C2
(2-43)
静态和动态
静态—— vi 0时,放大电路的工作状态, 也称直流工作状态。 动态—— vi 0 时,放大电路的工作状态, 也称交流工作状态。 放大电路建立正确的静态,是保证动态工作的 前提。分析放大电路必须要正确地区分静态和动态, 正确地区分直流通道和交流通道。

模拟电子技术模电之三极管和基本放大电路课件

模拟电子技术模电之三极管和基本放大电路课件
电路组成
共集电极放大电路由三极管、 电阻、电容和电源等组成。
工作原理
通过改变三极管的基极电压,控 制发射极电流,实现信号的放大 。
放大倍数
输出信号电压与输入信号电压的比 值,反映了放大电路的放大能力。
04
放大电路的动态特性
电压放大倍数与频率响应
电压放大倍数
放大电路的输出电压与输入电压之比,反映了放大电路的放大能力。电压放大倍数通常用dB(分贝) 表示,其值越大,说明电路的放大能力越强。
振荡器等类型。
06
课程总结与展望
课程总结
1 2 3
重要概念
掌握三极管的基本工作原理、放大电路的种类 与性能指标、反馈电路的原理及应用等核心概 念。
重点电路分析
学会对基本放大电路、功率放大电路、反馈电 路等进行定性和定量分析,掌握电路设计的基 本方法和步骤。
实践操作能力
通过实验和课程设计,具备对模拟电子电路进 行调试、性能测试与优化,以及设计简单实际 应用电路的能力。
课程目标
掌握三极管的基本 原理和特性
学习如何分析和设 计放大电路
理解基本放大电路 的组成和工作原理
课程内容
三极管的基本结构和 类型
三极管的电流放大原 理和特性曲线
基本放大电路的组成 和工作原理
放大电路的分析方法 和设计步骤
放大电路的性能指标 和测试方法
02
三极管基本知识
三极管的结构与类型
结构
展望未来发展与新技术应用
新技术发展
了解新型电子器件如MOS管、CMOS等的发展趋势,以 及新型放大电路如直接耦合放大电路、差分放大电路等在 高性能电子设备中的应用。
学科交叉融合
关注模拟电子技术与数字电子技术、微机原理与应用、信 号与系统等课程的交叉融合,形成综合应用能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示。 共集电极接法,集电极作为公共电极,用CC表示;
4. 共射放大
若 vI = 20mV 使 iB = 20 uA 设 = 0.98
则 iC iB
1 iB
-
VEE
VCC
图 03.1.05 共基极放大电路
若 vI = 20mV 使 iE = 1 mA, 当 = 0.98 时,
则 iC = iE = 0.98 数
AV

vO vI

0.98V 20mV
49
4. 三极管的三种组态
得到

IE= (1+ ) IB
IC
IB
IC
IE
是另一个电流放大系数,同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。
一般 >> 1。对比 则接近“1”。
3. 放大作用
IE +iE e
c IC +iC
+
vI -
VEB +vEB
b IB +iB
+
vO RL 1k
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
vCE = 0V vCE 1V
3.1 半导体三极管(BJT)
3.1.1 BJT的结构简介 3.1.2 BJT的电流分配与放大原理 3.1.3 BJT的特性曲线 3.1.4 BJT的主要参数
3.1 半导体三极管(BJT)
3.1 半导体三极管(BJT)
表发示射(极两E,m种半发i用t类导t射eEr型体)区或:三;Ne P极N管型的和结P集N构P电示型区表意。集示图电(如极C图o,l0l3e用c.1tCo.0r或1)所c。示。它有
=(IC-ICBO)/IE≈IC/IE
(4) 共基极交流电流放大系数α
α =IC/IE VCB=const
当ICBO和ICEO很小时, ≈、 ≈,可以不
加区分。
3.1.4 BJT的主要参数
2. 极间反向电流
(1) 集电极基极间反向饱和电流ICBO
发射极开路时,集电结的反向饱和电流。
2. 电流分配关系

传输到集电极的电流
发射极注入电流
根据传输过程可知 IE=IB+ IC
则有 IC
IE
为电流放大系数,
它只与管子的结构尺寸和 掺杂浓度有关,与外加电
压无关。一般 = 0.90.99
载流子的传输过程
2. 电流分配关系
又设 1
根据 IE=IB+ IC
(2) 集电极发射极间的反向饱和电流ICEO
ICEO=(1+ )ICBIOCBO c
即输出特性u曲A b
线IB=0那条曲线- 所 +
e
ICEO -
c b
uA
+
对应的Y坐标的数
Ve CC
值。 ICEO也称为集 Ie=0
ICEO
VCC
电极发射极间穿透
电流。
3.1.4 BJT的主要参数
3. 极限参数 (1) 集电极最大允许电流ICM
IC +iC
+
IB +iB b
c
RL vO
+
+ VBE+vBE e
vI
-
-
1k VCC
VBB
IE +iE
0.98mA vO = -iC• RL = -0.98 V,
图 03.共1.0射6 极共放射大极电放路大电路
电压放大倍数
AV

vO vI

0.98V 20mV
基区 基发极射,结用(BJe或) b表示集(电Ba结se()Jc)
三极管符号
两种类型的三极管
结构特点:
• 发射区的掺杂浓度最高; • 集电区掺杂浓度低于发射区,且面积大; • 基区很薄,一般在几个微米至几十个微米,且
掺杂浓度最低。
管芯结构剖面图
3.1.2 BJT的电流分配与放大原理
三极管的放大作用是在一定的外部条件控制下,通 过载流子传输体现出来的。
(2) 集电极最大允许功率损耗PCM PCM= ICVCE
3.1.4 BJT的主要参数
3. 极限参数

49
3.1.2 BJT的电流分配与放大原理
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。
实现这一传输过程的两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。
3.1.3 BJT的特性曲线
1. 电流放大系数 (1)共发射极直流电流放大系数 =(IC-ICEO)/IB≈IC / IB vCE=const
3.1.4 BJT的主要参数
1. 电流放大系数
(2) 共发射极交流电流放大系数 =IC/IBvCE=const
3.1.4 BJT的主要参数
1. 电流放大系数
(3) 共基极直流电流放大系数
饱制截和的止区区区:域:i,Ci明C该接显区近受域零v内C的E,控
一此区线般时放区域的v,大域C,下E发区,<相方射:曲0当。.结7i线i此CVB平正=基(时硅0行偏本的,管于,平曲)。v集行CE等轴距的。 电vB结此E小正时于偏,死或发区反射电偏结压电正,压偏很,集电 小集。结电反结偏反。偏。
3.1.4 BJT的主要参数
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
3.1.3 BJT的特性曲线
1. 输入特性曲线
(3) 输入特性曲线的三个部分
①死区 ②非线性区 ③线性区
输出特性曲线
3.1.3 BJT的特性曲线
2. 输出特性曲线 iC=f(vCE) iB=const
输出特性曲线的三个区域:
外部条件:发射结正偏,集电结反偏。
1. 内部载流子的传输过程
发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子
(以NPN为例)
载流子的传输过程
3.1.2 BJT的电流分配与放大原理
以上看出,三极管内有两种载流子 (自由电子和空穴)参与导电,故称为双极 型三极管。或BJT (Bipolar Junction Transistor)。
相关文档
最新文档