考点32 空间点、直线、平面之间的位置关系

合集下载

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

专题32空间点、直线、平面之间的位置关系5题型分类1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.(一)共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点(1)E ,F ,G ,H 四点共面;(1)证明E ,F ,G ,H 四点共面;(2)证明GE ,FH ,1BB 相交于一点.1-3.(2024高三·全国·专题练习)如图所示,在正方体(1)求证:1CE D F DA ,,三线交于点(2)在(1)的结论中,G 是D (二)(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)求异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上同样一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解题型2:空间位置关系的判断都相交,则直线A .2GH EF=C .直线EF ,GH 是异面直线2-3.【多选】(2024·湖北荆门A .若l αβ= ,A α∈B .若A ,B ,C 是平面C .若A α∈且B α∈,则直线D .若直线a α⊂,直线2-4.(2024·上海长宁·二模)如图,已知正方体则下列命题中假命题为(A .存在点P ,使得PQ ⊥B .存在点P ,使得//PQ AC .直线PQ 始终与直线CC(1)直线AF 与直线DE 相交;(2)直线CH 与直线DE 平行;(3)直线BG 与直线DE 是异面直线;(4)直线CH 与直线BG 成3-2.(2024高三·全国·课后作业)已知正四面体小为.3-3.(2024高三·河北·学业考试)如图直线1A E 与BF 所成角的大小为3-4.(2024高一下·北京·期末)如图,等腰梯形112BC CD DA AB ====,则直线3-5.(2024高三·全国·对口高考)线段AB 的两端分别在直二面角CD αβ--的两个面αβ、内,且与这两个面都成30︒角,则直线AB 与CD 所成的角等于.(三)空间几何体的切割(截面)问题(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.A .177B .134-2.(2024·河南·模拟预测)在正方体确的个数为()①//MN 平面11AAC C ;②MN①异面直线1D D与AF所成角可以为②当G为中点时,存在点③当E,F为中点时,平面④存在点G,使点C与点则上述结论正确的是(A.①③B.②④4-5.(2024·新疆·二模)已知在直三棱柱BC=,432AC=,如图所示,若过的面积为()(四)等角定理的应用空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、单选题-如图所示,则直线PC()1.(2024高三·北京·学业考试)四棱锥P ABCDA.与直线AD平行B.与直线AD相交C .与直线BD 平行D .与直线BD 是异面直线2.(2024·广东)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都相交B .l 与1l ,2l 都不相交C .l 至少与1l ,2l 中的一条相交D .l 至多与1l ,2l 中的一条相交3.(2024高一·全国·课后作业)若直线l 在平面α外,则l 与平面α的公共点个数为()A .0B .0或1C .1D .24.(2024·上海·模拟预测)如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A .点PB .点QC .点RD .点B5.(2024高二上·四川乐山·期末)若直线l 与平面α有两个公共点,则l 与α的位置关系是()A .l ⊂αB .//l αC .l 与α相交D .l α∈6.(2024高二上·上海静安·阶段练习)设A B C D 、、、是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是().A .相交B .平行C .异面D .无法确定7.(2024高三·全国·专题练习)如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对8.(2024高三·全国·专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.279.(2024高一·全国·课后作业)平面α上有三个不共线点到平面β距离相等,则平面α与平面β的位置关系是()A.相交B.平行C.垂直D.相交或平行10.(2024高一·全国·课前预习)下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行G N M H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或11.(2024高三·全国·专题练习)如图中,,,,GH MN是异面直线的图形有()所在棱的中点,则表示直线,A.①③B.②③C.②④D.②③④12.(2024高三上·内蒙古赤峰·阶段练习)已知直线l和平面α,若lα∥,Pα∈,则过点P且平行于l的直线().A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内13.(2024高三·全国·专题练习)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直14.(2024高三上·吉林长春·期末)如图,在底面为正方形的棱台1111ABCD A B C D -中,E 、F 、G 、H 分别为棱1CC ,1BB ,CF ,AF 的中点,对空间任意两点M 、N ,若线段MN 与线段AE 、1BD 都不相交,则称点M 与点N 可视,下列选项中与点D 可视的为()A .1B B .FC .HD .G15.(2024·全国)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π616.(上海市曹杨中学2023-2024学年高二上学期期中数学试题)如图,在正方体1111ABCD A B C D -中,点P 是线段11A C 上的动点,下列与BP 始终异面的是()A .1DDB .AC C .1AD D .1B C17.(2024·福建福州·三模)在底面半径为1的圆柱1OO 中,过旋转轴1OO 作圆柱的轴截面ABCD ,其中母线AB =2,E 是弧BC 的中点,F 是AB 的中点,则()A .AE =CF ,AC 与EF 是共面直线B .AE CF ≠,AC 与EF 是共面直线C .AE =CF ,AC 与EF 是异面直线D .AE CF ≠,AC 与EF 是异面直线18.(2024高二下·广西桂林·期中)已知直线m ⊂平面α,则“平面α∥平面β”是“m ∥β”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.(2024·新疆阿克苏·一模)已知M ,N ,P 是正方体1111ABCD A B C D -的棱AB ,1AA ,1CC 的中点,则平面MNP 截正方体1111ABCD A B C D -所得的截面是()A .三角形B .四边形C .五边形D .六边形20.(2023届上海春季高考练习)如图,P 是正方体1111ABCD A B C D -边11AC 上的动点,下列哪条边与边BP 始终异面()A .1DDB .AC C .1AD D .1B C21.(2024高二上·浙江杭州·期末)已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则()A .m 与n 异面B .m 与n 相交C .m 与n 平行D .m 与n 异面、相交、平行均有可能22.(2024高三·全国·专题练习)下列命题中正确的个数为()①若ABC ∆在平面α外,它的三条边所在的直线分别交α于P Q R 、、,则P Q R 、、三点共线.②若三条直线a b c 、、互相平行且分别交直线l 于、、A B C 三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A .0B .1C .2D .323.(2024高三·全国·专题练习)下列结论正确的是()A .两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.B .两两相交的三条直线最多可以确定三个平面.C .如果两个平面有三个公共点,则这两个平面重合.D .若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.24.(2024高三·全国·专题练习)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A .①B .①④C .②③D .③④25.(2024·上海浦东新·一模)已知直线l 与平面α相交,则下列命题中,正确的个数为()①平面α内的所有直线均与直线l 异面;②平面α内存在与直线l 垂直的直线;③平面α内不存在直线与直线l 平行;④平面α内所有直线均与直线l 相交.A .1B .2C .3D .426.(2024高一·全国·课后作业)直线l 是平面α外的一条直线,下列条件中可推出//l α的是A .l 与α内的一条直线不相交B .l 与α内的两条直线不相交C .l 与αD .l 与α内的任意一条直线不相交27.(2024高三下·上海·阶段练习)如图所示,正三棱柱111ABC A B C -的所有棱长均为1,点P 、M 、N 分别为棱1AA 、AB 、11A B 的中点,点Q 为线段MN 上的动点.当点Q 由点N 出发向点M 运动的过程中,以下结论中正确的是()A .直线1C Q 与直线CP 可能相交B .直线1C Q 与直线CP 始终异面C .直线1C Q 与直线CP 可能垂直D .直线1C Q 与直线BP 不可能垂直28.(2024高三下·上海浦东新·阶段练习)已知正方体1111ABCD A B C D -中,M ,N ,P 分别是棱11A D ,11D C ,AB 的中点,Q 是线段MN 上的动点,则下列直线中,始终与直线PQ 异面的是()A .1AB B .1BC C .1CAD .1DD 29.(2024高一上·全国·专题练习)M ∈l ,N ∈l ,N ∉α,M ∈α,则有A .l ∥αB .l ⊂αC .l 与α相交D .以上都有可能30.(2024高三上·重庆沙坪坝·期中)在棱长为3的正方体1111ABCD A B C D -中,点Р是侧面11ADD A 上的点,且点Р到棱1AA 与到棱AD 的距离均为1,用过点Р且与1BD 垂直的平面去截该正方体,则截面在正方体底面ABCD 的投影多边形的面积是()A .92B .5C .132D .831.(2024高三下·上海闵行·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,对于如下命题:①异面直线1DD 与1B F ②点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP 的最小值为322;③过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为1B BEF -的所有顶点都在球O 的表面上时,球O .则正确的命题个数为()A .1B .2C .3D .432.(2024高三·全国·对口高考)如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当[]1,5x ∈时,函数()y f x =的值域为()A .36,66⎡⎤⎣⎦B .6,26⎡⎣C .(6D .(0,36二、多选题33.(2024高一下·辽宁营口·阶段练习)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题是()A .①B .②C .③D .④34.(2024高一下·江苏苏州·阶段练习)下列命题中错误的是()A .空间三点可以确定一个平面B .三角形一定是平面图形C .若A ,B ,C ,D 既在平面α内,又在平面β内,则平面α和平面β重合D .四条边都相等的四边形是平面图形35.(2024·河北廊坊·模拟预测)我们知道,平面几何中有些正确的结论在空间中不一定成立.下面给出的平面几何中的四个真命题,在空间中仍然成立的有()A .平行于同一条直线的两条直线必平行B .垂直于同一条直线的两条直线必平行C .一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补D .一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补36.(2024高一下·陕西西安·期中)如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列四个结论正确的是()A .直线AM 与1CC 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线AM 与1DD 是异面直线37.(2024高一·全国·课后作业)下列结论中正确的是()A .若两个平面有一个公共点,则它们有无数个公共点B .若已知四个点不共面,则其中任意三点不共线C .若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D .任意两条直线不能确定一个平面38.(2024高三·全国·专题练习)如图,已知正方体1111ABCD A B C D -的棱长为2,设P ,Q 分别为11A B ,1DD 的中点,则过点P ,Q 的平面α截正方体所得截面的形状可能为()A .三角形B .四边形C .五边形D .六边形39.(2024高一下·湖北武汉·期末)当三个平面都平行时,三个平面可将空间分成4个部分,那么三个平面还可将空间分成()部分.A .5B .6C .7D .840.(2024高三下·山东日照·阶段练习)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是()A .线段11B D 上存在点E 、F 使得//AE BF B .//EF 平面ABCDC .AEF △的面积与BEF △的面积相等D .三棱锥A -BEF 的体积为定值三、填空题41.(2024高三·全国·专题练习)给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是.42.(2024高一下·全国·课后作业)已知直线MN ⊥平面α于N ,直线NP MN ⊥,则NP 与平面α的关系是.43.(2024高一·全国·课后作业)如图,把下列图形的点、线、面的关系,用集合的语言表述:(1);(2);(3).44.(2024高一下·黑龙江齐齐哈尔·期末)已知空间中两个角α,β,且角α与角β的两边分别平行,若70α=︒,则β=.45.(2024高二下·上海虹口·期末)在空间,如果两个不同平面有一个公共点,那么它们的位置关系为.46.(2024高三下·重庆渝中·阶段练习)空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是.47.(2024高二上·上海徐汇·阶段练习)如图,在长方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与直线D 1C 的位置关系是;(2)直线A 1B 与直线B 1C 的位置关系是;(3)直线D 1D 与直线D 1C 的位置关系是;(4)直线AB 与直线B 1C 的位置关系是.48.(2024高二上·上海徐汇·阶段练习)设A ∠和B ∠的两边分别平行,若45A ∠=︒,则B ∠的大小为.49.(2024高一·全国·课后作业)“直线l 与平面α没有公共点”是“l α∥”的条件.50.(2024高一下·全国·课后作业)在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有组互相平行的面,与其中一个侧面相交的面共有个.52.(2024高一·全国·单元测试)若直线a 与平面α内无数条直线平行,则a 与α的位置关系是.53.(2024高二上·上海奉贤·阶段练习)如图,将正方体沿交于一顶点的三条棱的中点截去一小块,八个顶“阿基米德多面体”,则异面直线AB 与CD 所成角的大小是四、解答题54.(2024高一·全国·课后作业)已知:l ⊂α,D α∈,∈A l ,B l ∈,C l ∈,D l ∉.求证:直线,,AD BD CD 共面于α.55.(2024高一·全国·课后作业)如图,ABCD 为空间四边形,点E ,F 分别是AB ,BC 的中点,点G ,H 分别在CD ,AD 上,且13DH AD =,13DG CD =.(1)求证:E ,F ,G ,H 四点共面;(2)求证:EH ,FG 必相交且交点在直线BD 上.56.(2024高一下·北京·期末)如图,在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且1:1:2CE EC =.(1)试画出过1,,D A E 三点的平面截正方体1111ABCD A B C D -所得截面α;(2)证明:平面1D AE 与平面ABCD 相交,并指出它们的交线.57.(2024高一·全国·课后作业)如图所示是一个三棱锥,欲过点P 作一个截面,使得截面与底面平行,该怎样在侧面上画出截线?58.(2024高一·全国·课后作业)59.(2024高一下·全国·课后作业)在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1B 1,B 1C 1的中点.求证:平面ACC 1A 1与平面BEF 相交.60.(2024高一上·安徽亳州·期末)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.61.(2024高三·全国·专题练习)如图,在空间四边形ABCD 中,,,,E F G H 分别在,,,AB AD BC CD 上,EG 与FH 交于点P ,求证:,,P A C 三点共线.62.(2024高二·全国·课后作业)如图所示,在正方体1111ABCD A B C D -中,,E F 分别是AB 和1AA 的中点,求证:四边形1FECD 为平面图形.63.(2024高一·全国·专题练习)如图所示,在空间四边形ABCD 中,E ,F 分别为AB ,AD 的中点,G ,H 分别在BC ,CD 上,且::1:2BG GC DH HC ==.求证:(1)E 、F 、G 、H 四点共面;(2)EG 与HF 的交点在直线AC 上.64.(2024高二·上海·专题练习)如图所示,在正方体1111ABCD A B C D -中.画出平面11ACC A 与平面1BC D 及平面1ACD 与平面1BDC 的交线.65.(2024高一·全国·专题练习)如图,直升机上一点P 在地面α上的正射影是点A (即PA ⊥α),从点P 看地平面上一物体B (不同于A ),直线PB 垂直于飞机玻璃窗所在的平面β.求证:平面β必与平面α相交.66.(2024高一·全国·专题练习)如图,已知平面,αβ,且l αβ= ,设在梯形ABCD 中,AD BC ∕∕,且,AB CD αβ⊂⊂.求证:,,AB CD l 共点.67.(2024高一下·河南信阳·期中)如图,在正方体1111ABCD A B C D -中,E ,F 分别是1,AB AA 上的点,且12,2A F FA BE AE ==.(1)证明:1,,,E C D F 四点共面;(2)设1D F CE O ⋂=,证明:A ,O ,D 三点共线.68.(2024高一下·陕西西安·期中)(1)已知直线a b ∥,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面;(2)如图,在空间四边形ABCD 中,H ,G 分别是AD ,CD 的中点,E ,F 分别是边AB ,BC 上的点,且13CF AE FB EB ==.求证:直线EH ,BD ,FG 相交于一点.。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、知识要点:1.平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2:过不在同一直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2.空间中直线与直线之间的位置关系:空间两条直线的位置关系有且只有三种:如图:AB与BC相交于B点,AB与A′B′平行,AB与B′C′异面。

公理4:平行于同一条直线的两条直线互相平行。

定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

3.空间中直线与平面之间的位置关系:(1)直线在平面内……有无数个公共点;(2)直线与平面相交……有且只有一个公共点;(3)直线与平面平行……没有公共点。

其中直线与平面相交或平行的情况统称为直线在平面外。

注意,我们不提倡如下画法.4.平面与平面之间的位置关系:(1)两个平面平行……没有公共点;(2)两个平面相交……有一条公共直线。

二、例题讲解:例1、根据图形,写出图形中点、直线和平面之间的关系.图1可以用几何符号表示为:___________________________________________.图2可以用几何符号表示为:___________________________________________.分析:本题关键是找出图中基本元素点、直线、平面,然后再仔细分析点与直线、点与平面、直线与平面的位置关系,最后用文字语言和符号语言写出.解:图1可以用几何符号表示为:即:平面与平面相交于直线AB,直线a在平面内,直线b在平面内,直线a平行于直线AB,直线b平行于直线AB.图2可以用几何符号表示为:,△ABC的三个顶点满足条件即:平面与平面相交于直线MN,△ABC的顶点A在直线MN上,点B在内但不在直线MN上,点C在平面内但不在直线MN上.例2、观察下面的三个图形,说出它们有何异同.分析:图1既可能是平面图形,也可能是一个空间图形的直观图;图2、图3均用了一条直线衬托,它们都是空间图形的直观图.解:图1可能是平面图形,也可能是空间图形的直观图;图2是MN凸在外面的一个空间图形的直观图;图3是MN凹在里面的一个空间图形的直观图.点评:(1)本题隐含了三个平面两两相交的直观图画法及平面的画法、立体几何图的画法.而这些画法的掌握程度将影响对空间结构的认识、对空间图形的分析和对立体几何的学习.(2)与本题类似的其它变形还有:用虚线画出图4正方体和图5三棱锥中被遮挡的棱,完成图形.例3、正方体ABCD-A1B1C1D1中,(1)DD1和A1B1的位置关系如何?D1B和AC的位置关系如何?A1C和D1B的位置关系如何?(2)和AD成异面直线的棱所在直线有几条?(3)和BD1成异面直线的棱所在直线有几条?(4)六个面的正方形对角线共12条,这些对角线所在直线中,异面直线共有多少对?解析:我们知道空间两条直线的位置关系有且只有三种,判断的依据是看两条直线是共面还是异面及是否有公共点。

高三数学 空间点线面之间的位置关系

高三数学 空间点线面之间的位置关系

课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分

第3讲 空间点、直线、平面之间的位置关系

第3讲  空间点、直线、平面之间的位置关系

第3讲空间点、直线、平面之间的位置关系一.基础知识1.平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系3.异面直线所成的角:(1)定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线a与b所成的角.(2)范围:(0,π2].4.平行公理:平行于同一条直线的两条直线平行.5.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.6.三个公理的作用:(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内;(2)公理2的作用:确定平面的依据,它提供了把空间问题转化为平面问题的条件;(3)公理3的作用:①判定两平面相交;②作两相交平面的交线;③证明多点共线.7.异面直线的有关问题:(1)判定方法:①反证法;②利用结论,即过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线,如右图: (2)所成角的求法:平移法,注意范围⎝ ⎛⎦⎥⎤0,π2.二.例题例1.下面三条直线一定共面的是( )A .a ,b ,c 两两平行B .a ,b ,c 两两相交C .a ∥b ,c 与a ,b 均相交D .a ,b ,c 两两垂直例2.如右图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CD D .直线BC例3.已知a ,b 是异面直线,直线c ∥直线a ,则c 与b ( )A .一定是异面直线B .一定是相交直线C .不可能是平行直线D .不可能是相交直线例4.如图,若正四棱柱ABCD —A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的正切值是________.例5. 如右图所示,在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.例6. 在下图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填上所有正确答案的序号)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.BD与AB1所成角的余弦值.三.练习1.已知平面外一点P和平面内不共线三点A,B,C,A′,B′,C′分别在P A,PB,PC上,若延长A′B′,B′C′,A′C′与平面分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上2.已知空间中有不共线的三条线段AB、BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.AB∥CD B.AB与CD异面C.AB与CD相交D.以上情况均有可能3.若直线l不平行于平面α,且l ⊄α,则()C.α内存在唯一的直线与l平行D.α内的直线与l都相交4.下列四个图是正方体或正四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的图的个数为()A.1B.2C.3D.45.如图,正方体ABCD—A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).①当0<CQ<12时,S为四边形;②当CQ=12时,S为等腰梯形;③当CQ=34时,S与C1D1的交点R满足C1R=13;④当34<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为62。

空间点,直线,平面之间的位置关系

空间点,直线,平面之间的位置关系

空间点、直线、平面之间的位置关系(知识点)一、四个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号语言:,,l B l A ∈∈且.,ααα⊂⇒∈∈l B A图形语言:公理2 过不在一条直线上的三点,有且只有一个平面.图形语言:ABC ∆确定一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号语言:,,l P P =⋂⇒∈∈βαβα且.l P ∈公理4 平行于同一条直线的两条直线互相平行.符号语言:.////,//c a c b b a ⇒二、三个角的定义三角为:异面直线所成的角,线面角,二面角.1 异面直线所成的角:已知两条异面直线b a ,,经过空间任一点O 作直线,//,//b b a a ''把b a ''与所成的锐角(或直角)叫做异面直线b a ,所成的角(或夹角).2 线面角:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.图形语言:3 二面角: 在二面角βα--l 的棱l 上任取一点O ,以点O 为垂直,在半平面 α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 图形语言:三、判定定理和性质定理1 线面平行的判定定理文字语言:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符合语言:.//,//,,αααa b a b a ⇒⎪⎩⎪⎨⎧⊂⊄2 面面平行的判定定理文字语言:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符合语言:.//////αβααββ⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⋂⊂⊂b a P b a b a3 线面平行的性质定理文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符合语言:.//,,,//b a b a a ⇒⎪⎩⎪⎨⎧=⋂⊂βαβα图形语言: 定理:平面外两条平行直线中的一条平行于这个平面,则另一条直线也平行于这个平面.符合语言:.//////αααb b a b a ⇒⎪⎭⎪⎬⎫⊄4 面面平行的性质定理文字语言:两个平行平面同时和第三个平面相交,那么它们的交线平行.符合语言:.////b a b a ⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα定理:夹在两个平行平面间的平行线段相等.5 线面垂直的判定定理文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符合语言:.,αα⊥⇒⎪⎪⎭⎪⎪⎬⎫=⋂⊂⊥⊥a O c b c b c a ba 定理:两平行直线中一条垂直于一个平面,则另一条直线也垂直这个平面. 符合语言:.//αα⊥⇒⎭⎬⎫⊥b a b a6 面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符合语言:.βααβ⊥⇒⎭⎬⎫⊂⊥aa7 线面垂直的性质定理文字语言:垂直于同一个平面的两条直线平行.符合语言:.//baba⇒⎭⎬⎫⊥⊥αα定理:垂直于同一条直线的两个平面平行.符合语言:βαβα//⇒⎭⎬⎫⊥⊥aa.定理:一条直线垂直于一个平面,则这条直线垂直这个平面内的任意一条直线.符合语言:.baba⊥⇒⎭⎬⎫⊂⊥αα8 面面垂直的性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符合语言:βαβαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⋂⊥alaal.定理:两个相交平面都垂直第三个平面,则两个相交平面的交线也垂直于第三个平面.符合语言:.γβαγβγα⊥⇒⎪⎭⎪⎬⎫=⋂⊥⊥ll。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

在图中,直线AB与DC在同一个平面ABCD
内,它们没有公共点,它们是平行直线;直线AB与
BC也在同一个平面ABCD内,它们只有一个公共
点B,它们是相交直线;直线AB与CC′不同在任何
一个平面内.
D′ A′
C′ B′
D
C
A
B
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(1.空重间点中)直线与直线的位置关系
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(直重线点与)平面的位置关系及其表示
位置关 表系 示方法 符号表示
直线a在平 面α内
a⊂α
图形表示
a
α
直线a与平 面α相交
a∩α=O
a
O α
直线a与平 面α平行
a//α
a
α
公共点 情况
有无数个公共点 有且只有一个公共点 没有公共点
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(3.空重间点中)平面与平面的位置关系
a a
a
A
α
α
α
直线在平面内
a⊂α
直线在平面外
a⊂α
直线a与平面α相交于点A,记作a∩α=A;
直线a与平面α平行,记作a//α.
课文精讲
➢ 空间中直线、平面之间的位置关系 1.(重点)
2.空间中直线与平面的位置关系 一般地,直线a在平面α内,应把直线a画在表
示平面α的平行四边形内;直线a在平面α外,应把 直线a或它的一部分画在表示平面α的平行四边 形外.
(1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点; (3)直线与平面平行——没有公共点.
当直线与平面相交或平行时,直线不在平面 内,也称为直线在平面外.

高二数学点,直线,平面之间的位置关系

高二数学点,直线,平面之间的位置关系

点,直线,平面之间的位置关系一、知识网络二、高考考点1、空间直线,空间直线与平面,空间两个平面的平行与垂直的判定或性质.其中,线面垂直是历年高考试题涉及的容.2、上述平行与垂直的理论在以多面体为载体的几何问题中的应用;求角;求距离等.其中,三垂线定理及其逆定理的应用尤为重要.3、解答题循着先证明后计算的原则,融推理于计算之中,主要考察学生综合运用知识的能力,其中,突出考察模型法等数学方法,注重考察转化与化归思想;立体问题平面化;几何问题代数化.三、知识要点〔一〕空间直线1、空间两条直线的位置关系〔1〕相交直线——有且仅有一个公共点;〔2〕平行直线——在同一个平面,没有公共点;〔3〕异面直线——不同在任何一个平面,没有公共点.2、平行直线〔1〕公理4〔平行直线的传递性〕:平行于同一条直线的两条直线互相平行. 符号表示:设a,b,c为直线,〔2〕空间等角定理如果一个角的两边和另一个角的两边分别平行且方向一样,则这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,则这两条直线所成的锐角〔或直角〕相等.3、异面直线〔1〕定义:不同在任何一个平面的两条直线叫做异面直线.〔2〕有关概念:〔ⅰ〕设直线a,b为异面直线,经过空间任意一点O作直线a',b',并使a'//a,b'//b,则把a'和b'所成的锐角〔或直角〕叫做异面直线a和b所成的角.特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.认知:设为异面直线a,b所成的角,则 .〔ⅱ〕和两条异面直线都垂直相交的直线〔存在且唯一〕,叫做两条异面直线的公垂线.〔ⅲ〕两条异面直线的公垂线在这两条异面直线间的线段〔公垂线段〕的长度,叫做两条异面直线的距离.〔二〕空间直线与平面直线与平面的位置关系:〔1〕直线在平面——直线与平面有无数个公共点;〔2〕直线和平面相交——直线与平面有且仅有一个公共点;〔3〕直线和平面平行——直线与平面没有公共点.其中,直线和平面相交或直线和平面平行统称为直线在平面外.1、直线与平面平行〔1〕定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.〔2〕判定判定定理:如果平面外的一条直线和这个平面的一条直线平行,则这条直线和这个平面平行.认知:应用此定理证题的三个环节:指出 .〔3〕性质性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行.2、直线与平面垂直〔1〕定义:如果直线l和平面的任何一条直线都垂直,则说直线l和平面互相垂直,记作l⊥ .〔2〕判定:判定定理1:如果一条直线和一个平面的两条相交直线都垂直,则这条直线垂直于这个平面.判定定理2:如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面. 符号表示:.〔3〕性质性质定理:如果两条直线垂直于同一个平面,则这两条直线平行. 符号表示:〔4〕概念〔ⅰ〕点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.〔ⅱ〕直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.〔三〕空间两个平面1、两个平面的位置关系〔1〕定义:如果两个平面没有公共点,则说这两个平面互相平行.〔2〕两个平面的位置关系〔ⅰ〕两个平面平行——没有公共点;〔ⅱ〕两个平面相交——有一条公共直线.2、两个平面平行〔1〕判定判定定理1:如果一个平面有两条相交直线都平行于另一个平面,则这两个平面平行.判定定理2:〔线面垂直性质定理〕:垂直于同一条直线的两个平面平行.〔2〕性质性质定理1:如果两个平行平面同时和第三个平面相交,则它们的交线平行.性质定理2〔定义的推论〕:如果两个平面平行,则其中一个平面的所有直线都平行于另一个平面.3、有关概念〔1〕和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的局部,叫做这两个平行平面的公垂线段.〔2〕两个平行平面的公垂线段都相等. 〔3〕公垂线段的长度叫做两个平行平面间的距离.4、认知:两平面平行的判定定理的特征:线面平行面面平行,或线线平行面面平行;两平面平行的性质定理的特征:面面平行线面平行,或面面平行线线平行.它们恰是平行畴中同一事物的相互依存和相互贯穿的正反两个方面.四、高考真题〔一〕选择题1,设为两个不同的平面,l,m为两条不同的直线,且,有如下的两个命题:①假设;②假设则〔〕A、①是真命题,②是假命题;B、①是假命题,②是真命题;C、①②都是真命题;D、①②都是假命题.分析:这里 . 对于①,假设,则l,m可能平行,也可能异面;对于②,假设则可能垂直,也可能不垂直. 故应选D.2、m,n是两条不重合的直线,是三个两两不重合的平面,给出以下四个命题:①②③④假设m,n是异面直线,其中真命题是〔〕A、①和②B、①和③C、③和④D、①和④分析:由面面平行判定定理知①为真命题;注意到垂直于同一个平面的两个平面不一定平行,②为假命题;③显然为假命题;④由于m,n为异面直线,故可在确立两条相交直线与平行,因而为真命题. 故应选D.3,设为平面,m,n,l为直线,则m⊥的一个充分条件是〔〕分析:对于选项A,由于这里的直线m不一定在,故不一定有m⊥;对于选项B,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;对于选项C,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m也垂直于另一个平面,此命题亦为假命题;排除法可知应选D.选项D与m⊥构成的命题是:假设直线m与两个平行平面中的一个平面垂直,则它和另一个平面也垂直,这显然为真命题.4、对于不重合的两个平面,给定以下条件:①存在平面,使得都垂直于;②存在平面,使得都平行于;③有不共线三点到的距离相等;④存在异面直线l,m,使得;其中可以判定平行的条件有〔〕A、1个B、2个C、3个D、4个分析:对于①,垂直于同一平面的两个平面可能相交;对于②,由面面平行的传递性可以判定;对于③,当相交时,仍可存在不共线三点到的距离等;对于④,在m上取定点P,经过点P在l与点P确定的平面作l'//l,则l'与m可确定平面 .由于于是可知,此题应选B.〔二〕填空题1、m,n是不同的直线,是不重合的平面,给出以下命题:①假设②假设③假设④m,n是两条异面直线,假设上面的命题中,真命题的序号是〔写出所有真命题的序号〕分析:①显然为假命题;对于②,的直线m,n不一定相交,故②亦为假命题;对于③,由题设知∴③为真命题;对于④,由前面选择题第4题知此为真命题.因此,答案为③、④.2、在正方体中,过对角线的一个平面交于E,交于F,则①四边形一定是平行四边形;②四边形有可能是正方形;③四边形在底面ABCD的投影一定是正方形;④平面有可能垂直于平面以上结论正确的为〔写出所有正确结论的编号〕分析:注意到正方体的特性,由面面平行性质定理和,故四边形为平行四边形,①正确;在这里,当时,平行四边形即为矩形,且不可能为正方形,②不正确;③正确;而当平面与底面ABCD〔或〕重合时有平面,故④正确.于是可知答案为①,③,④.〔三〕解答题1、如图1,ABCD是上下底面边长分别为2和6,高为的等腰梯形,将它沿对称轴折成直二面角,如图2.〔1〕证明:;〔2〕求二面角的大小.分析:循着解决平面图形折叠问题的根本思路:〔1〕认知平面图形中有关线段的长度与联系;〔2〕了解折叠前后有关线段的长度或联系的"变"与"不变";〔3〕利用"不变"的量与"不变"的关系解题.在这里,由图1知, .至此〔1〕易证;对于〔2〕,由〔1〕知,,故,于是可利用三垂线定理构造所求二面角的平面角.解:〔1〕证明:由题设知∴∠AOB是所成的直二面角的平面角,即,∴∴OC是AC在平面上的射影①又由题设得从而②∴根据三垂线定理由①②得, .〔2〕解:由〔1〕知,,∴设,在平面AOC过点E作EF⊥AC于F,连结〔三垂线定理〕由题设知,∴∴又∴即所求二面角的大小为.点评:利用原来平面图形折叠后“不变的量〞与线段间不变的垂直或平行关系,推出立体图形中,是证明〔1〕以及解答〔2〕的根底与关键.由此可见,这类问题中认知平面图形的重要.2、在四面体P-ABC中,PA=BC=6,PC=AB=10,AC=8,PB= .F是线段PB上一点,,点E在线段AB上,且EF⊥PB.〔1〕证明:PB⊥平面CEF;〔2〕求:二面角B-CE-F的大小.分析:〔1〕要证PB⊥平面CEF,只要证PB垂直于CE或CF.这一设想的实现与否,要看对有关三角形的特性的认知与把握.在这里,,故易得BC⊥平面PAC,BC⊥AC等.注意到,,便得PB⊥CF,于是问题获证.〔2〕由〔1〕知CE⊥PB,从而CE⊥平面PAB,CE⊥AB,CE⊥EF,故∠BEF为所求二面角的平面角.至此,解题的难点得以突破.解:〔1〕证明:∵PA2+AC2=36+64=100=PC2∴△PAC是以∠PAC为直角的直角三角形,同理可证:△PAB是以∠PAB为直角的直角三角形,△PCB是以∠PCB为直角的直角三角形。

《空间中点、直线、平面之间的位置关系》知识点总结

《空间中点、直线、平面之间的位置关系》知识点总结

《空间中点、直线、平面之间的位置关系》知识点总结1.内容归纳总结 (1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且. 公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面它给出了确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线). 符号语言:,,P P l P l αβαβ∈∈⇒=∈且。

公理4:(平行线的传递性)平行与同一直线的两条直线互相平行. 符号语言://,////a l b l a b ⇒且。

(2)空间中直线与直线之间的位置关系1。

概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。

已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。

(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。

(注意:会画两个角互补的图形)2。

位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点(4)空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线直线、平面平行的判定及其性质1.内容归纳总结 (1)四个定理,////b P a βα=⇒//,//a ba bαββ⊂=⇒//,,//a b a bβαγγ==⇒1.内容归纳总结 (一)基本概念1。

高中数学必修二课件:空间点、直线、平面之间的位置关系

高中数学必修二课件:空间点、直线、平面之间的位置关系

5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

2.空间中直线与平面的位置关系
直线CD与平面ABCD ——有无数个公共点; 直线AA1与平面ABCD ——有只且有一个公共点A; 直线D1C1与平面ABCD ——没有公共点.
D1 A1
D
A
C1
B1 C
B
直线在平面内 直线与平面相交 直线与平面平行
直线与平面的位置关系有且只有三种
直线在 平面外
(1)直线在平面内——有无数个公共点;
8.4.2 空间点、直线、平面之间的位置关系
数学
XXX
由上一小节“平面”的学习,我们认识了空 间中点、直线、平面之间的一些位置关系,如 点在平面内,直线在平面内,两个平面相交, 等等,空间中点、直线、平面之间还有其他位 置关系吗?
点线关系 线线关系 面面关系 点面关系 线面关系
在长方体ABCD-A1B1C1D1中:
观察:如图所示的长方体ABCD-A1B1C1D1中,直线与 直线之间有哪些不同的位置关系?
D1 A1
D
A
C1
B1 C
B
1.空间中直线与直线的位置关系
直线DC与AB在同一个平面ABCD内,它们 D1
没有公共点,它们是平行直线;
A1
直线DC与BC也是在同一个平面ABCD内, 它们只有一个公共点B,它们是相交直线;
CA
G DB
HE F
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,
哪些线段所在直线是异面直线?
CA
C G
A
E G
DB HE
F
H D
BF
例题6 如图是一个正方体的展开图,如果将它还原
为正方体,那么,AB、CD、EF、GH这四条线段中,

2011年高考试题分类考点32 空间点、直线、平面之间的位置关系

2011年高考试题分类考点32  空间点、直线、平面之间的位置关系

- 1 - 考点32 空间点、直线、平面之间的位置关系
一、选择题
1.(2011·浙江高考文科·T4)若直线l 不平行于平面α,且l α⊄,则( )
(A) α内的所有直线与l 异面
(B) α内不存在与l 平行的直线
(C) α内存在唯一的直线与l 平行
(D) α内的直线与l 都相交
【思路点拨】结合空间几何体或画出立体图形分析.
【精讲精析】选B.
由题意可得直线l 与平面α相交,如图:
二、填空题
2.(2011·福建卷文科·T15)如图,正方体ABCD-A 1B 1C
1D 1中,AB =2,点E 为AD 的中点,点F 在CD
上,若EF ∥平面AB
1C ,则线段EF 的长度等于_____________.
【思路点拨】1//EF AB C 平面//1
.2⎫⇒⇒=⎬⎭EF AC
EF AC E AD 为的中点
【精讲精析】 11//EF AB C EF ADC AB C AC ⊂ 面,面,面ADC 面=,由线面平行的性质定理,得:
//EF AC ,
又 E 为AD 的中点, F CD EF ADC ∴∆为的中点,即为的中位线,12
EF AC ∴=,又正方体的棱长为2, AC ∴=1122
EF AC ∴⨯==。

高中数学空间点、直线、平面之间的位置关系解析!

高中数学空间点、直线、平面之间的位置关系解析!

高中数学空间点、直线、平面之间的位置关系解析!一、空间点、直线、平面之间的位置关系1、平面的基本性质的应用① 公理1:公理1② 公理2:公理2③ 公理3:2、平行公理主要用来证明空间中的线线平行 .3、公理 2 三推论:① 一条直线和直线外一点唯一确定一个平面;② 两条平行直线唯一确定一个平面;③ 两条相交直线唯一确定一个平面 .4、点共线、线共点、点线共面问题① 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理 3 证明这些点都在这两个平面的交线上 .② 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上 .③ 证明点线共面问题的常用方法:方法一:先确定一个平面,再证明有关点、线在此平面内;方法二:先证明有关的点、线确定平面α ,再证明其余元素确定平面β,最后证明平面α,β 重合 .【例题1】如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD = ∠FAB = 90°,BC ∥且= ½ AD,BE ∥且= ½ FA,G , H 分别为 FA , FD 的中点 .(1) 证明:四边形 BCHG 是平行四边形;(2) C , D , F , E 四点是否共面?请说明理由 .例题1图【解析】(1) 证明:∵ G , H 分别为 FA , FD 的中点,∴ GH 是△FAD 的中位线,∴ GH ∥且= ½ AD ,又∵ BC ∥且= ½ AD,∴ GH ∥且 = BC,∴ 四边形 BCHG 是平行四边形 .(2) 证明:方法一:证明点 D 在 EF 和 CH 确定的平面内 .∵ BE ∥且= ½ FA,点 G 为 FA 的中点,∴ BE ∥且= FG,则四边形 BEFG 为平行四边形,∴ EF∥BG .由 (1) 可知BG∥CH,∴ EF∥CH,即 EF 与 CH 共面,又∵ D∈FH,∴ C , D , F , E 四点共面 .方法二:分别延长 FE 和 DC,交 AB 于点 M 和 M'',在证点 M 和 M’重合,从而 FE 和 DC 相交 .如上图所示,分别延长 FE 和 DC,交 AB 于点 M 和 M'',∵ BE ∥且= ½ FA,∴ 点 B 为 MA 的中点,∵ BC ∥且= ½ AD,∴ 点 B 为 M''A 的中点,∴ M 与 M'' 重合,即 FE 与 DC 相交于点 M (M'') ,∴ C , D , F , E 四点共面 .二、异面直线的判定(方法)1、定义法(不易操作);2、反证法先假设两条直线不是异面直线,即两直线平行或相交;再由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面 .假设法在异面直线的判定中会经常用到 .3、常用结论过平面外一点和平面内一点的直线,与平面内不过该点(A) 的直线是异面直线 .【例题2】如图所示,正方体 ABCD-A1B1C1D1 中,点 M , N 分别是 A1B1 , B1C1 的中点 .(1) AM 和 CN 是否是异面直线?请说明理由;(2) D1B 和 CC1 是否是异面直线?请说明理由 .例题2图【解析】(注:先给结论,再给理由,注意答题规范!)(1) AM 和 CN 不是异面直线 .理由:如图上图所示,分别连接 MN , A1C1 和 AC,∵ 点 M , N 分别是 A1B1 , B1C1 的中点,∴ MN∥A1C1 ,又∵ AA1∥且=CC1 ,∴ 四边形 AA1C1C 是平行四边形,∴ A1C1∥AC,∴ MN∥AC,∴ 点 A , M , N , C 在同一平面内,故 AM 和 CN 不是异面直线 .(2) D1B 和 CC1 是异面直线 .证明:∵ ABCD-A1B1C1D1 是正方体,∴ B , C , C1 , D1 四点不共面 .假设 D1B 和 CC1 不是异面直线,则存在平面α,使 D1Bㄷ平面α,CC1ㄷ平面α,∴ D1 , B , C , C1 ∈平面α,∴ 与ABCD-A1B1C1D1 是正方体矛盾,∴ 假设不成立,∴ D1B 和 CC1 是异面直线 .三、异面直线所成的角1、求异面直线所成角的方法关键是将其中一条直线平移到某个位置使其与令一条直线相交,或将两条直线同时平移到某个位置,使其相交 .2、求异面直线所成角的步骤① 通过作出平行线,得到相交直线;② 证明相交直线所成的角为异面直线所成的角;③ 通过解三角形求出该角的大小 .【例题3】如图所示,在空间四边形 ABCD 中,已知 AB = CD 且 AB 与 CD 所成的角为30°,点 E , F 分别是 BC 和 AD 的中点,求 EF 与 AB 所成角的大小 .例题3图【解析】要求 EF 与 AB 所成的角,可以经过某一点作两条直线的平行线,因为 E,F 都是中点,所以可以过点 E 或点 F 作 AB 的平行线找到异面直线所成的角 .取 AC 的中点,平移 AB 和 CD,使已知角和所求的角在同一个三角形中求解 .【解答过程】取 AC 的中点 G,分别连接 EG 和 FG ,则有EG∥AB,FG∥CD,∵ AB = CD ,∴ EG = FG ,∴ ∠GEF (或它的补角)为 EF 与 AB 所成的角,∠EGF (或它的补角)为 AB 与 CD 所成的角,又∵ AB 与 CD 所成的角为30°,∴ ∠EGF = 150° 或30°,由 EG = FG , 可知△GEF为等腰三角形,当∠EGF = 30° 时,∠GEF = 75°,当∠EGF = 150° 时,∠GEF = 15°,∴ EF 与 AB 所成的角为15° 或75° .。

高考数学复习考点知识与题型专题讲解48---空间点、直线、平面之间的位置关系

高考数学复习考点知识与题型专题讲解48---空间点、直线、平面之间的位置关系

高考数学复习考点知识与题型专题讲解空间点、直线、平面之间的位置关系考试要求1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.知识梳理 1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 2.空间中直线与直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎨⎧ 平行直线相交直线异面直线:不同在任何一个平面内,没有 公共点3.空间中直线与平面的位置关系直线与平面的位置关系有:直线在平面内、直线与平面相交、直线与平面平行三种情况.4.空间中平面与平面的位置关系平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(2)两两相交的三条直线最多可以确定三个平面.(√)(3)如果两个平面有三个公共点,那么这两个平面重合.(×)(4)没有公共点的两条直线是异面直线.(×)教材改编题1.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法不正确的是()A.AB与CD是异面直线B.GH与CD相交C.EF∥CDD.EF与AB异面答案D解析把展开图还原成正方体,如图所示.还原后点G与C重合,点B与F重合,由图可知ABC正确,EF与AB相交,故D错.2.如果直线a⊂平面α,直线b⊂平面β.且α∥β,则a与b()A.共面B.平行C.是异面直线D.可能平行,也可能是异面直线答案D解析α∥β,说明a与b无公共点,∴a与b可能平行也可能是异面直线.3.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∵EF 綉12AC ,EH 綉12BD , ∴AC =BD .(2)∵四边形EFGH 为正方形, ∴EF =EH 且EF ⊥EH , ∵EF 綉12AC ,EH 綉12BD ,∴AC =BD 且AC ⊥BD .题型一 平面基本性质的应用例1如图所示,已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q .求证:(1)D ,B ,F ,E 四点共面;(2)若A 1C 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 证明(1)∵EF 是△D 1B 1C 1的中位线, ∴EF ∥B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,B 1D 1∥BD , ∴EF ∥BD .∴EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1为α,平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β,则Q是α与β的公共点,同理,P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.教师备选如图所示,在正方体ABCD-A1B1C1D1中,点E,F分别是AB,AA1的中点,连接D1F,CE.求证:(1)E,C,D1,F四点共面;(2)CE ,D 1F ,DA 三线共点.证明(1)如图所示,连接CD 1,EF ,A 1B , ∵E ,F 分别是AB ,AA 1的中点, ∴EF ∥A 1B ,且EF =12A 1B . 又∵A 1D 1∥BC ,A 1D 1=BC , ∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥CD 1,∴EF ∥CD 1,∴EF 与CD 1能够确定一个平面ECD 1F , 即E ,C ,D 1,F 四点共面.(2)由(1)知EF ∥CD 1,且EF =12CD 1, ∴四边形CD 1FE 是梯形,∴CE 与D 1F 必相交,设交点为P , 则P ∈CE ,且P ∈D 1F ,∵CE ⊂平面ABCD ,D 1F ⊂平面A 1ADD 1, ∴P ∈平面ABCD ,且P ∈平面A 1ADD 1.又∵平面ABCD∩平面A1ADD1=AD,∴P∈AD,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.(3)证明共点的方法:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1(1)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的图是()答案D解析对于A,PS∥QR,故P,Q,R,S四点共面;同理,B,C图中四点也共面;D中四点不共面.(2)在三棱锥A-BCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF∩HG =P,则点P()A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上答案B解析如图所示,因为EF⊂平面ABC,HG⊂平面ACD,EF∩HG=P,所以P∈平面ABC,P∈平面ACD.又因为平面ABC∩平面ACD=AC,所以P∈AC.题型二空间位置关系的判断例2(1)下列推断中,错误的是()A.若M∈α,M∈β,α∩β=l,则M∈lB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合答案C解析对于A,因为M∈α,M∈β,α∩β=l,由公理3可知M∈l,A对;对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β=AB,B对;对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,C错;对于D,有三个不共线的点在平面α,β中,故α,β重合,D对.(2)已知在长方体ABCD-A1B1C1D1中,M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,则下列说法正确的是()A.直线MN与直线A1B是异面直线B.直线MN与直线DD1相交C.直线MN与直线AC1是异面直线D.直线MN与直线A1C平行答案C解析如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.教师备选1.设a,b,c是三条不同的直线,α,β是两个不同的平面,则下列结论正确的是() A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面答案D2.如图所示,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.(填序号)答案②④思维升华(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)对异面直线的判定常用到以下结论:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.跟踪训练2(1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD 的位置关系是()A.平行B.异面C.相交或平行D.平行或异面或相交均有可能答案D解析根据条件作出示意图,容易得到以下三种情况均有可能,如图可知AB与CD有相交、平行、异面三种情况.(2)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列结论正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案D解析如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.图1图2题型三空间几何体的切割(截面)问题例3(1)在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=13DD1,NB=13BB1,那么正方体中过M,N,C1的截面图形是()A.三角形B.四边形C.五边形D.六边形答案C解析先确定截面上的已知边与几何体上和其共面的边的交点,再确定截面与几何体的棱的交点.如图,设直线C1M,CD相交于点P,直线C1N,CB相交于点Q,连接PQ交直线AD于点E,交直线AB于点F,则五边形C1MEFN为所求截面图形.(2)已知正方体ABCD-A1B1C1D1的棱长为2.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为______.答案π2解析以D1为球心,5为半径的球面与侧面BCC1B1的交线是以C1为圆心,1为半径的圆与正方形BCC1B1相交的一段弧(圆周的四分之一),其长度为14×2π×1=π2.延伸探究将本例(2)中正方体改为直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,5为半径的球面与侧面BCC1B1的交线长为________.答案2π2解析如图,设B1C1的中点为E,球面与棱BB1,CC1的交点分别为P,Q,连接DB,D1B1,D1P,D1E,EP,EQ,由∠BAD=60°,AB=AD,知△ABD为等边三角形,∴D1B1=DB=2,∴△D1B1C1为等边三角形,则D1E=3且D1E⊥平面BCC1B1,∴E为球面截侧面BCC1B1所得截面圆的圆心,设截面圆的半径为r,则r=R2球-D1E2=5-3= 2.又由题意可得EP=EQ=2,∴球面与侧面BCC1B1的交线为以E为圆心的圆弧PQ.又D1P=5,∴B1P=D1P2-D1B21=1,同理C1Q=1,∴P,Q分别为BB1,CC1的中点,∴∠PEQ=π2,知PQ︵的长为π2×2=2π2,即交线长为2π2.教师备选如图,在正方体ABCD-A1B1C1D1中,E是BC的中点,平面α经过直线BD且与直线C1E平行,若正方体的棱长为2,则平面α截正方体所得的多边形的面积为________.答案9 2解析如图,过点B作BM∥C1E交B1C1于点M,过点M作BD的平行线,交C1D1于点N,连接DN,则平面BDNM即为符合条件的平面α,由图可知M,N分别为B1C1,C1D1的中点,故BD=22,MN=2,且BM=DN=5,∴等腰梯形MNDB的高为h =(5)2-⎝ ⎛⎭⎪⎫222=322,∴梯形MNDB 的面积为 12×(2+22)×322=92.思维升华 (1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线. (2)作交线的方法有如下两种:①利用公理3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.跟踪训练3(1)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A ,E ,C 1的平面截去该正方体的下半部分,则剩余几何体的正视图是()答案A解析在正方体ABCD -A 1B 1C 1D 1中,过点A,E,C1的平面截去该正方体的下半部分后,剩余部分的直观图如图.则该几何体的正视图为图中粗线部分,故选A.(2)(2022·兰州模拟)如图,正方体A1C的棱长为1,点M在棱A1D1上,A1M=2MD1,过M的平面α与平面A1BC1平行,且与正方体各面相交得到截面多边形,则该截面多边形的周长为________.答案3 2解析在平面A1D1DA中寻找与平面A1BC1平行的直线时,只需要ME∥BC1,如图所示,因为A1M=2MD1,故该截面与正方体的交点位于靠近D1,A,C的三等分点处,故可得截面为MIHGFE,设正方体的棱长为3a,则ME=22a,MI=2a,IH=22a,HG=2a,FG=22a,EF=2a,所以截面MIHGFE的周长为ME+EF+FG+GH+HI+IM=92a,又因为正方体A1C的棱长为1,即3a=1,故截面多边形的周长为3 2.课时精练1.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别对应平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0B.1C.2D.3答案B解析①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的等角定理知,空间中如果一个角的两边与另一个角的两边分别对应平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交、可平行、可异面,故④错误.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列判断正确的是() A.若m⊥α,n⊥β,α⊥β,则直线m与n可能相交或异面B.若α⊥β,m⊂α,n⊂β,则直线m与n一定平行C.若m⊥α,n∥β,α⊥β,则直线m与n一定垂直D.若m∥α,n∥β,α∥β,则直线m与n一定平行答案A解析m,n是两条不同的直线,α,β是两个不同的平面,对于A,若m⊥α,n⊥β,α⊥β,则直线m与n相交垂直或异面垂直,故A正确;对于B,若α⊥β,m⊂α,n⊂β,则直线m与n相交、平行或异面,故B错误;对于C,若m⊥α,n∥β,α⊥β,则直线m与n相交、平行或异面,故C错误;对于D,若m∥α,n∥β,α∥β,则直线m与n平行或异面,故D错误.3.(2022·营口模拟)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析空间中不过同一点的三条直线a,b,l,若a,b,l在同一平面,则a,b,l相交或a ,b ,l 有两个平行,另一直线与之相交,或三条直线两两平行. 所以a ,b ,l 在同一平面,则a ,b ,l 两两相交不一定成立; 而若a ,b ,l 两两相交,则a ,b ,l 在同一平面成立.故“a ,b ,l 两两相交”是“a ,b ,l 共面”的充分不必要条件.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是平面ADD 1A 1的中心,M ,N ,F 分别是B 1C 1,CC 1,AB 的中点,则下列说法正确的是()A .MN =12EF ,且MN 与EF 平行 B .MN ≠12EF ,且MN 与EF 平行 C .MN =12EF ,且MN 与EF 异面 D .MN ≠12EF ,且MN 与EF 异面 答案D解析设正方体ABCD -A 1B 1C 1D 1的棱长为2a ,则MN =MC 21+C 1N 2=⎝ ⎛⎭⎪⎫2a 22+⎝ ⎛⎭⎪⎫2a 22=2a , 作点E 在平面ABCD 内的射影点G ,连接EG ,GF ,所以EF =EG 2+GF 2=⎝ ⎛⎭⎪⎫2a 22+(2a )2 =3a ,所以MN ≠12EF ,故选项A ,C 错误; 连接DE ,因为E 为平面ADD 1A 1的中心, 所以DE =12A 1D ,又因为M ,N 分别为B 1C 1,CC 1的中点, 所以MN ∥B 1C ,又因为B 1C ∥A 1D ,所以MN ∥ED , 且DE ∩EF =E ,所以MN 与EF 异面,故选项B 错误.5.如图所示,平面α∩平面β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.6.(2022·厦门模拟)下列说法正确的是()A.两组对边分别相等的四边形确定一个平面B.和同一条直线异面的两直线一定共面C.与两异面直线分别相交的两直线一定不平行D.一条直线和两平行线中的一条相交,也必定和另一条相交答案C解析两组对边分别相等的四边形可能是空间四边形,故A错误;如图1,直线DD1与B1C1都是直线AB的异面直线,同样DD1与B1C1也是异面直线,故B错误;如图2,设直线AB与CD是异面直线,则直线AC与BD一定不平行,否则若AC∥BD,有AC 与BD 确定一个平面α,则AC ⊂α,BD ⊂α,所以A ∈α,B ∈α,C ∈α,D ∈α,所以AB ⊂α,CD ⊂α,这与假设矛盾,故C 正确;如图1,AB ∥CD ,而直线AA 1与AB 相交,但与直线CD 不相交,故D 错误.图1图27.已知a ,b 是两条不同的直线,α,β是两个不同的平面,在下列命题①⎭⎬⎫a ∥αa ∥β⇒α∥β;②⎭⎬⎫a ⊥αa ⊥β⇒α∥β;③ ⎭⎬⎫a ∥αb ∥α⇒a ∥b ;④⎭⎬⎫a ⊥αb ⊥α⇒a ∥b 中,正确的命题是________(只填序号). 答案②④解析①与同一条直线平行的两个平面不一定平行,在本题的条件下,两平面可能相交,所以①是假命题;②根据直线与平面的位置关系,由a ⊥α,a ⊥β可得出α∥β,所以②是真命题; ③根据直线与平面的位置关系,可得a 与b 可以是平行或相交或异面,所以③是假命题; ④垂直于同一个平面的两条直线平行,所以④是真命题.8.(2022·渭南模拟)在空间中,给出下面四个命题,其中假命题为________.(填序号) ①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面α内的任意一条直线垂直,则l⊥α;④两条异面直线在同一平面内的射影一定是两条相交直线.答案①②④解析对于①,当平面α外两点的连线与平面α垂直时,此时过两点有无数个平面与平面α垂直,所以①不正确;对于②,若平面β内有不共线三点到平面α的距离都相等,平面α与β可能平行,也可能相交,所以②不正确;对于③,直线l与平面内的任意直线垂直时,得到l⊥α,所以③正确;对于④,两条异面直线在同一平面内的射影可能是两条相交直线或两条平行直线或直线和直线外的一点,所以④不正确.9.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠F AB=90°,BC∥AD且BC=12AD,BE∥AF且BE=12AF,G,H分别为F A,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?(1)证明∵G,H分别是F A,FD的中点,∴GH綉12AD.又BC綉12AD,∴GH綉BC.∴四边形BCHG为平行四边形.(2)解∵BE綉12AF,G是F A的中点,∴BE綉FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綉CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.10.如图,四棱柱ABCD-A1B1C1D1的侧棱AA1⊥底面ABCD,四边形ABCD为菱形,E,F分别为AA1,CC1的中点,M为AB上一点.(1)若D1E与CM相交于点K,求证D1E,CM,DA三条直线相交于同一点;(2)若AB=2,AA1=4,∠BAD=π3,求点D1到平面FBD的距离.(1)证明∵D1E与CM相交于点K,∴K∈D1E,K∈CM,而D1E⊂平面ADD1A1,CM⊂平面ABCD,且平面ADD1A1∩平面ABCD=AD,∴K∈AD,∴D1E,CM,DA三条直线相交于同一点K.(2)解∵四边形ABCD为菱形,AB=2,∴BC=CD=2,而四棱柱的侧棱AA1⊥底面ABCD,∴CC1⊥底面ABCD,又∵F是CC1的中点,CC1=4,∴CF=2,∴BF=DF=22,又∵四边形ABCD 为菱形,∠BAD =π3, ∴BD =AB =2, ∴S △FBD =12×2×(22)2-1=7.设点D 1到平面FBD 的距离为h ,点B 到平面DD 1F 的距离为d , 则d =2sin π3=3, 又∵11D FBD B DD F V V --=,∴13×S △FBD ×h =13×1DD F S △×d , ∴13×7×h =13×12×4×2×3, 解得h =4217.即点D 1到平面FBD 的距离为4217.11.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM =EN ,且直线BM ,EN 是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B解析如图,取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=⎝⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.12.(2022·广州六校联考)如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,下列结论正确的是()A.AP与CM是异面直线B.AP,CM,DD1相交于一点C.MN∥BD1D.MC∥平面BB1D1D答案B解析如图,连接MP,AC,因为MP∥AC,MP≠AC,所以AP与CM是相交直线,又平面A1ADD1∩平面C1CDD1=DD1,所以AP,CM,DD1相交于一点,则A不正确,B正确;令AC∩BD=O,连接OD1,ON.因为M,N分别是C1D1,BC的中点,所以ON∥D1M∥CD,ON=D1M=12CD,则四边形MNOD1为平行四边形,所以MN∥OD1,因为MN⊄平面BB1D1D,OD1⊂平面BB1D1D,所以MN ∥平面BB 1D 1D ,C 不正确,D 不正确.13.棱长均为1m 的正三棱柱透明封闭容器盛有a m 3水,当侧面AA 1B 1B 水平放置时,液面高为h m(如图1);当转动容器至截面A 1BC 水平放置时,容器中的水恰好充满三棱锥A -A 1BC (如图2),则a =________,h =________.图1图2答案31232-22解析由题意得S △ABC =12×1×1×sin60° =12×1×1×32=34, AA 1=1.∴1A A BC V -=13S △ABC ·AA 1=13×34×1=312=a . 由1111ABED A B E D V -=1A A BC V -得S 四边形ABED ·AA 1 =13S △ABC ·AA 1, ∴S 四边形ABED =13S △ABC , ∴S △CDE =23S △ABC ,∴34DE2=23×34AB2,∴DEAB=23=63.∵DCAC=DEAB=63,∴DC=63,∴AD=1-63,在等边△ABC中,AB边上的高为32.∵h32=ADAC=1-631,∴h=32-22.14.(2022·盐城模拟)在棱长为4的正方体ABCD-A1B1C1D1中,P,Q分别为棱A1D1,CC1的中点,过P,Q,A作正方体的截面,则截面多边形的周长是________.答案25+95+2133解析如图所示,过Q作QM∥AP交BC于M,由A 1P =CQ =2,tan ∠AP A 1=2,则tan ∠CMQ =2,CM =CQ tan ∠CMQ=1, 延长MQ 交B 1C 1的延长线于E 点,连接PE ,交D 1C 1于N 点,则多边形AMQNP 即为截面,根据平行线性质有C 1E =CM =1,C 1N ND 1=C 1E PD 1=12,则C 1N =43,D 1N =83,因此NQ =22+⎝ ⎛⎭⎪⎫432=2133, NP =22+⎝ ⎛⎭⎪⎫832=103, 又AP =42+22=25,AM =42+32=5, MQ =12+22=5, 所以多边形AMQNP 的周长为AM +MQ +QN +NP +P A =5+5+2133+103+2 5=25+95+2133.15.(2022·山西康杰中学模拟)如图,直四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,AA1=3,E,F分别是AB,BC的中点,过点D1,E,F的平面记为α,则下列说法中错误的是()A.点B到平面α的距离与点A1到平面α的距离之比为1∶2B.平面α截直四棱柱ABCD-A1B1C1D1所得截面的面积为73 2C.平面α将直四棱柱分割成的上、下两部分的体积之比为47∶25D.平面α截直四棱柱ABCD-A1B1C1D1所得截面的形状为四边形答案D解析对于A,因为平面α过线段AB的中点E,所以点A到平面α的距离与点B到平面α的距离相等.由平面α过A1A的三等分点M可知,点A1到平面α的距离是点A到平面α的距离的2倍,因此,点A1到平面α的距离是点B到平面α的距离的2倍.故选项A正确;延长DA ,DC 交直线EF 的延长线于点P ,Q ,连接D 1P ,D 1Q ,交棱A 1A ,C 1C 于点M ,N .连接ME ,NF ,可得五边形D 1MEFN ,故选项D 错误;由平行线分线段成比例可得AP =BF =1,故DP =DD 1=3,则△DD 1P 为等腰三角形.由相似三角形可知,AM =AP =1,A 1M =2,则D 1M =D 1N =22,ME =EF =FN = 2.连接MN ,则MN =22,因此五边形D 1MEFN 可分为等边三角形D 1MN 和等腰梯形MEFN .等腰梯形MEFN 的高h =(2)2-⎝ ⎛⎭⎪⎫22-222=62, 则等腰梯形MEFN 的面积为22+22×62=332.又1D MN S △=12×22×6=23,所以五边形D 1MEFN 的面积为332+23=732,故选项B 正确;记平面将直四棱柱分割成上、下两部分的体积分别为V 1,V 2,则V 2=1D DPQ M PAE N CFQ V V V ----- =13×12×3×3×3-13×12×1×1×1-13×12×1×1×1=256,所以V 1=1111ABCD A B C D V --V 2=12-256=476, V 1∶V 2=47∶25,故选项C 正确.16.如图1,在边长为4的正三角形ABC 中,D ,F 分别为AB ,AC 的中点,E 为AD 的中点.将△BCD 与△AEF 分别沿CD ,EF 同侧折起,使得二面角A -EF -D 与二面角B -CD -E 的大小都等于90°,得到如图2所示的多面体.图1图2(1)在多面体中,求证:A ,B ,D ,E 四点共面;(2)求多面体的体积.(1)证明因为二面角A -EF -D 的大小等于90°,所以平面AEF ⊥平面DEFC ,又AE ⊥EF ,AE ⊂平面AEF ,平面AEF ∩平面DEFC =EF ,所以AE ⊥平面DEFC , 同理,可得BD ⊥平面DEFC ,所以AE∥BD,故A,B,D,E四点共面.(2)解因为AE⊥平面DEFC,BD⊥平面DEFC,EF∥CD,AE∥BD,DE⊥CD,所以AE是四棱锥A-CDEF的高,点A到平面BCD的距离等于点E到平面BCD的距离,又AE=DE=1,CD=23,EF=3,BD=2,所以V=V A-CDEF+V A-BCD=13S梯形CDEF ·AE+13S△BCD·DE=736.。

高考专题空间点、直线、平面之间的位置关系

高考专题空间点、直线、平面之间的位置关系

高考专题空间点、直线、平面之间的位置关系最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.知 识 梳 理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系3.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎥⎤0,π2. 诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( )(2)两两相交的三条直线最多可以确定三个平面.( )(3)如果两个平面有三个公共点,则这两个平面重合.( )(4)若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.( )解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.(4)由于a 不平行于平面α,且a ⊄α,则a 与平面α相交,故平面α内有与a 相交的直线,故错误.答案 (1)× (2)√ (3)× (4)×2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AD 的中点,则异面直线B 1C 与EF 所成的角的大小为( )A.30°B.45°C.60°D.90°解析 连接B 1D 1,D 1C ,则B 1D 1∥EF ,故∠D 1B 1C 为所求的角.又B 1D 1=B 1C =D 1C ,∴∠D 1B 1C =60°.答案 C3.在下列命题中,不是公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理,是由公理推证出来的.答案 A4.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.答案 A5.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________. 答案b与α相交或b∥α或b⊂α6.如图所示,平面α,β,γ两两相交,a,b,c为三条交线,且a∥b,则a与c的位置关系是________;b与c的位置关系是________.答案a∥c b∥c考点一平面的基本性质及应用【例1】如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P ∈CE ,CE ⊂平面ABCD ,得P ∈平面ABCD .同理P ∈平面ADD 1A 1.又平面ABCD ∩平面ADD 1A 1=DA ,∴P ∈直线DA .∴CE ,D 1F ,DA 三线共点. 规律方法 (1)证明线共面或点共面的常用方法①直接法,证明直线平行或相交,从而证明线共面.②纳入平面法,先确定一个平面,再证明有关点、线在此平面内.③辅助平面法,先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.(2)证明点共线问题的常用方法①基本性质法,一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上.②纳入直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上.【训练1】 如图所示,四边形ABEF 和ABCD 都是梯形,BC綉12AD ,BE 綉12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明 由已知FG =GA ,FH =HD ,可得GH 綉12AD .又BC 綉12AD ,∴GH 綉BC ,∴四边形BCHG 为平行四边形.(2)解 ∵BE 綉12AF ,G 为F A 的中点,∴BE 綉FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG 綉CH ,∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.考点二 判断空间两直线的位置关系【例2】 (1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).解析(1)法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.法二如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.(2)在图①中,直线GH∥MN;在图②中,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN 异面;在图③中,连接QM,GM∥HN,因此GH与MN共面;在图④中,G,M,N共面,但H∉平面GMN,G∉MN,因此GH与MN异面.所以在图②④中GH与MN异面.答案(1)D(2)②④规律方法(1)异面直线的判定方法①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.②定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.【训练2】(1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)a,b,c表示不同的直线,M表示平面,给出四个命题:①若a∥M,b∥M,则a∥b或a,b相交或a,b异面;②若b⊂M,a∥b,则a∥M;③若a⊥c,b ⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确的为()A.①④B.②③C.③④D.①②解析(1)如图,连接C1D,在△C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,BD⊂平面ABCD,∴CC1⊥BD,∴MN⊥CC1,故A正确;∵AC⊥BD,MN∥BD,∴MN⊥AC,故B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,故选项D错误.(2)对于①,当a∥M,b∥M时,则a与b平行、相交或异面,①为真命题.②中,b⊂M,a∥b,则a∥M或a⊂M,②为假命题.命题③中,a与b相交、平行或异面,③为假命题.由线面垂直的性质,命题④为真命题,所以①,④为真命题.答案(1)D(2)A考点三异面直线所成的角【例3】(1)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.(2)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.13解析(1)取A1C1的中点E,连接B1E,ED,AE,在Rt△AB1E中,∠AB1E为异面直线AB1与BD所成的角.设AB=1,则A1A=2,AB1=3,B1E=32,故∠AB1E=60°.(2)根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角.设平面CB1D1∩平面ABCD=m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1,∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.答案(1)60°(2)A规律方法(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角.②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.【训练3】 如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,在△A 1BC 1中,由余弦定理得cos ∠A 1BC 1=5+5-22×5×5=45. 答案 D[思想方法]1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.[易错防范]1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.基础巩固题组(建议用时:40分钟)一、选择题1.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件解析直线l1,l2是异面直线,一定有l1与l2不相交,因此p是q的充分条件;若l1与l2不相交,那么l1与l2可能平行,也可能是异面直线,所以p不是q的必要条件.故选A.答案 A2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案 D3.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A.①B.①④C.②③D.③④解析显然命题①正确.由于三棱柱的三条平行棱不共面,②错.命题③中,两个平面重合或相交,③错.三条直线两两相交,可确定1个或3个平面,则命题④正确.答案 B4.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是( )A.若直线a ,b 异面,b ,c 异面,则a ,c 异面B.若直线a ,b 相交,b ,c 相交,则a ,c 相交C.若a ∥b ,则a ,b 与c 所成的角相等D.若a ⊥b ,b ⊥c ,则a ∥c解析 若直线a ,b 异面,b ,c 异面,则a ,c 相交、平行或异面;若a ,b 相交,b ,c 相交,则a ,c 相交、平行或异面;若a ⊥b ,b ⊥c ,则a ,c 相交、平行或异面;由异面直线所成的角的定义知C 正确.故选C.答案 C5.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为( )A.45B.35C.23D.57解析 连接DF ,则AE ∥DF ,∴∠D 1FD 为异面直线AE 与D 1F 所成的角.设正方体棱长为a ,则D 1D =a ,DF =52a ,D 1F =52a ,∴cos ∠D 1FD =⎝ ⎛⎭⎪⎫52a 2+⎝ ⎛⎭⎪⎫52a 2-a 22·52a ·52a=35. 答案 B二、填空题6.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,则: (1)直线BN 与MB 1是________直线(填“相交”或“平行”或“异面”);(2)直线MN 与AC 所成的角的大小为________.解析 (1)M ,B ,B 1三点共面,且在平面MBB 1中,但N ∉平面MBB 1,B ∉MB 1,因此直线BN 与MB 1是异面直线;(2)连接D 1C ,因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.答案 (1)异面 (2)60°7.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,则直线EF 与正方体的六个面所在的平面相交的平面个数为________.解析 取CD 的中点H ,连接EH ,FH .在正四面体CDEF 中,由于CD ⊥EH ,CD ⊥HF ,且EH ∩FH =H ,所以CD ⊥平面EFH ,所以AB ⊥平面EFH ,则平面EFH 与正方体的左右两侧面平行,则EF 也与之平行,与其余四个平面相交. 答案 48.(2014·全国Ⅱ卷改编)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为________.解析 如图所示,取BC 中点D ,连接MN ,ND ,AD .∵M ,N 分别是A 1B 1,A 1C 1的中点,∴MN 綉12B 1C 1.又BD 綉12B 1C 1,∴MN 綉BD ,则四边形BDNM 为平行四边形,因此ND ∥BM ,∴∠AND 为异面直线BM 与AN 所成的角(或其补角).设BC =2,则BM =ND =6,AN =5,AD =5,在△ADN 中,由余弦定理得cos ∠AND =ND 2+AN 2-AD 22ND ·AN =3010. 故异面直线BM 与AN 所成角的余弦值为3010.答案 3010三、解答题9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.问:(1)AM 和CN 是否是异面直线?说明理由;(2)D 1B 和CC 1是否是异面直线?说明理由.解 (1)AM ,CN 不是异面直线.理由:连接MN ,A 1C 1,AC .因为M ,N 分别是A 1B 1,B 1C 1的中点,所以MN ∥A 1C 1.又因为A 1A 綉C 1C ,所以四边形A 1ACC 1为平行四边形,所以A 1C 1∥AC ,所以MN ∥AC ,所以A ,M ,N ,C 在同一平面内,故AM 和CN 不是异面直线.(2)直线D 1B 和CC 1是异面直线.理由:因为ABCD -A 1B 1C 1D 1是正方体,所以B ,C ,C 1,D 1不共面.假设D 1B 与CC 1不是异面直线,则存在平面α,使D 1B ⊂平面α,CC 1⊂平面α,所以D 1,B ,C ,C 1∈α,这与B ,C ,C 1,D 1不共面矛盾.所以假设不成立,即D 1B 和CC 1是异面直线.10.如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解 (1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=43 3.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE是异面直线BC与AD所成的角(或其补角). 在△ADE中,DE=2,AE=2,AD=2,cos∠ADE=22+22-22×2×2=34.故异面直线BC与AD所成角的余弦值为3 4.能力提升题组(建议用时:25分钟)11.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2D.3解析①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确.②从条件看出两平面有三个公共点A,B,C,但是若A,B,C共线,则结论不正确;③不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.答案 B12.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析如图,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA.若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若取C1D为l4,则l1与l4相交;若取BA为l4,则l1与l4异面;取C1D1为l4,则l1与l4相交且垂直.因此l 1与l 4的位置关系不能确定.答案 D13.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.解析 取DE 的中点H ,连接HF ,GH .由题设,HF 綉12AD .∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =2,GF =GH =6,∴cos ∠HFG =2+6-62×2×6=36. 答案 3614.如图,三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC=2,点M ,N 分别是AD ,BC 的中点,求异面直线AN ,CM所成的角的余弦值.解 如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M 为AD 的中点,∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理求得AN =DN =CM =22,∴MK = 2. 在Rt △CKN 中,CK =(2)2+12= 3.在△CKM 中,由余弦定理,得cos ∠KMC =(2)2+(22)2-(3)22×2×22=78.15.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值.解 (1)由已知可求得正方形ABCD 的面积S =4,所以四棱锥O -ABCD 的体积V =13×4×2=83.(2)如图,连接AC ,设线段AC 的中点为E ,连接ME ,DE ,又M 为OA 中点,∴ME ∥OC ,则∠EMD (或其补角)为异面直线OC 与MD 所成的角,由已知可得DE =2,EM =3,MD =5,∵(2)2+(3)2=(5)2,∴△DEM 为直角三角形,∴tan ∠EMD =DE EM =23=63. ∴异面直线OC 与MD 所成角的正切值为63.。

考点三十三 空间点、直线、平面之间的位置关系学生

考点三十三 空间点、直线、平面之间的位置关系学生

考点三十三 空间点、直线、平面之间的位置关系知识梳理1.平面的概念数学中的平面是一个不加定义的原始概念,常见的桌面、黑板面、海平面都给我们平面的形象.几何里所说的平面就是从这样的一些物体抽象出来的,平面是无限延展的,没有厚度,也没有大小、轻重之分.2.空间中的四个公理及其推论公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.推论1:经过一条直线和直线外一点,有且只有与一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行.3.等角定理空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.4.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.②范围:⎝⎛⎦⎤0,π2. 5.空间直线与平面、平面与平面的位置关系典例剖析题型一平面的基本性质及应用例1在下列命题中,不是..公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线变式训练下列结论正确的是()①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过两条平行直线,可以确定一个平面④经过空间任意三点可以确定一个平面A.1个B.2个C.3个D.4个题型二空间直线的位置关系例2正方体AC1中,E、F分别是线段BC、CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直变式训练如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.解题要点 1.空间两条直线的位置关系有三种:平行,相交和异面,要正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.2.对于较复杂几何体的线面关系判定问题,应注意借助图形,考察各点、线在空间中的相对位置.3.正四面体的特性:对棱都异面且互相垂直,记住这个特性有助于快速解题.题型三异面直线判定问题例3如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为()A.1 B.2 C.3 D.4变式训练若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交解题要点判定异面直线有以下异面直线判定定理:平面内一点与平面外一点的连线,与此平面内不经过该点的直线是异面直线.另外判定两条直线异面,还可依据:①定义:不同在任何一个平面内的两条直线叫做异面直线;②既不平行也不相交的两条直线是异面直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。

考点32 空间点、直线、平面之间的位置关系
一、选择题
1.(2011·浙江高考文科·T4)若直线l 不平行于平面α,且l α⊄,则
(A) α内的所有直线与l 异面 (B) α内不存在与l 平行的直线
(C) α
二、填空题
2.(2011·福建卷文科·T15)如图,正方体ABCD-A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于_____________.
【思路点拨】1//EF ABC 平面1//1.2
EF AB C EF AC E AD ⎫⇒⇒=⎬⎭平面为的中点
11//EF ABC EF ADC ABC AC
⊂ 面,面,面ADC 面=,由线面平行的性质定理,得://EF AC ,又 E 为AD 的中点,
F CD EF ADC ∴∆为的中点,即为的中位线,12
EF AC ∴=,又正方体的棱长为2, AC ∴=11
22
EF AC ∴⨯==。

相关文档
最新文档