2021中考数学专题复习第13讲 二次函数的综合运用
2021年中考数学 专题汇编:二次函数的实际应用(含答案)
2021中考数学专题汇编:二次函数的实际应用一、选择题(本大题共10道小题)1. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个2. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为()A.1月和11月B.1月、11月和12月C.1月D.1月至11月3. 北中环桥是省城太原的一座跨汾河大桥,它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数表达式为()A.y=x2B.y=-x2C.y=x2D.y=-x24. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18m2C.24m2D.m25. 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位: s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是()A.①④B.①②C.②③④D.②③6. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m7. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A .当小球抛出高度达到7.5 m 时,小球距O 点水平距离为3 mB .小球距O 点水平距离超过4 m 时呈下降趋势C .小球落地点距O 点水平距离为7 mD .斜坡的坡度为1∶28. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 29. 如图,将一个小球从斜坡上的点O 处抛出,小球的抛出路线可以用二次函数y=4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5 m 时,小球距点O 的水平距离为3 mB .小球距点O 的水平距离超过4 m 后呈下降趋势C .小球落地点距点O 的水平距离为7 mD .小球距点O 的水平距离为2.5 m 和5.5 m 时的高度相同10. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -1二、填空题(本大题共8道小题)11. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a 元,则可卖出(350-10a )件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.12. 如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.13. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,则可卖出(30-x )件.若要使销售利润最大,则每件的售价应为________元.14. 某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.15. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.16. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.17. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.18. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题(本大题共4道小题)19. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润1000 1600 1600w(元)注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.20. 把一个足球垂直于水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米),适用公式h=20t-5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t的值;(3)若存在实数t1和t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围.21. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?22. (2019•辽阳)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?2021中考数学专题汇编:二次函数的实际应用-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 设利润为y元,涨价x元,则有y=(100+x-90)(500-10x)=-10(x-20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.2. 【答案】B[解析] 由题意知,利润y和月份n之间的函数关系式为y=-n2+12n-11,∴y=-(n-6)2+25,当n=1时,y=0;当n=11时,y=0;当n=12时,y<0.故停产的月份是1月、11月和12月.故选B.3. 【答案】B[解析]设二次函数的表达式为y=ax2,由题可知,点A的坐标为(-45,-78),代入表达式可得:-78=a×(-45)2,解得a=-,∴二次函数的表达式为y=-x2,故选B.4. 【答案】C[解析]如图,过点C作CE⊥AB于E,设CD=x,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,∠BCE=∠BCD-∠DCE=30°,BC=12-x.在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6-x,∴AD=CE=BE=6x,AB=AE+BE=x+6-x=x+6,∴梯形ABCD的面积=(CD+AB)·CE=x+x+6·6x=-x2+3x+18=-(x-4)2+24,=24,即CD长为4 m时,使梯形储料场ABCD的面积最大,∴当x=4时,S最大最大面积为24m2,故选C.5. 【答案】D[解析]①由图象知小球在空中达到的最大高度是40 m,故①错误;②小球抛出3秒后,速度越来越快,故②正确;③小球抛出3秒时达到最高点即速度为0,故③正确;④设函数解析式为:h=a(t-3)2+40,把O(0,0)代入得0=a(0-3)2+40,解得a=-,∴函数解析式为h=-(t-3)2+40.把h=30代入解析式得,30=-(t-3)2+40,解得t=4.5或t=1.5,∴小球的高度h=30 m时,t=1.5 s或4.5 s,故④错误,故选D.6. 【答案】C[解析] 以2 m长线段所在直线为x轴,以其垂直平分线为y轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.7. 【答案】A[解析]根据函数图象可知,当小球抛出的高度为7.5 m时,二次函数y=4x-x2的函数值为7.5,即4x-x2=7.5,解得x1=3,x2=5,故当抛出的高度为7.5 m时,小球距离O点的水平距离为3 m或5 m,A结论错误;由y=4x-x2,得y=-(x-4)2+8,则抛物线的对称轴为直线x=4,当x>4时,y随x值的增大而减小,B结论正确;联立方程y=4x-x2与y=x,解得或则抛物线与直线的交点坐标为(0,0)或7,,C 结论正确;由点7,知坡度为∶7=1∶2也可以根据y=x 中系数的意义判断坡度为1∶2,D 结论正确.故选A .8. 【答案】B[解析] 设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.9. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.10. 【答案】A [解析] A ,B 两点的坐标分别为(4,0),(0,1),把(4,0),(0,1)分别代入y =-14x 2+bx +c ,求出b ,c 的值即可.二、填空题(本大题共8道小题)11. 【答案】28 [解析] 设商店所获利润为y 元.根据题意,得 y =(a -21)(350-10a)=-10a 2+560a -7350=-10(a -28)2+490, 即当a =28时,可获得最大利润.又21×(1+40%)=21×1.4=29.4,而28<29.4,所以a =28符合要求. 故商店应把每件商品的价格定为28元,此时可获得最大利润.12. 【答案】150[解析]设AB=x m ,矩形土地ABCD 的面积为y m 2,由题意,得y=x ·=-(x -150)2+33750,∵-<0,∴该函数图象开口向下,当x=150时,该函数有最大值.即AB=150 m 时,矩形土地ABCD 的面积最大.13. 【答案】25[解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25.∵20≤x≤30,∴当x =25时,二次函数有最大值25.14. 【答案】22[解析]设每件的定价为x 元,每天的销售利润为y 元.根据题意,得y=(x -15)[8+2(25-x )]=-2x 2+88x -870. ∴y=-2x 2+88x -870=-2(x -22)2+98. ∵a=-2<0, ∴抛物线开口向下,∴当x=22时,y 最大值=98.故答案为22.15. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.16. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.17. 【答案】y =-19(x +6)2+418. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB=36 m,∴AH=BH=18 m.由题可知:OH=7 m,CH=9 m,∴OC=9+7=16(m).设该抛物线的解析式为y=ax2+k.∵抛物线的顶点为C(0,16),∴抛物线的解析式为y=ax2+16.把(18,7)代入解析式,得7=18×18a+16,∴7=324a+16,∴a=-1 36,∴y=-136x2+16.当y=0时,0=-136x2+16,∴-136x2=-16,解得x=±24,∴E(24,0),D(-24,0),∴OE=OD=24 m,∴DE=OD+OE=24+24=48(m).三、解答题(本大题共4道小题)19. 【答案】解:(1)①设y与x的函数关系式为y=kx+b,依题意,有解得∴y与x的函数关系式是y=-2x+200..②设进价为t元/件,由题意,1000=100×(50-t),解得t=40,∴进价为40元/件; 周销售利润w=(x-40)y=(x-40)(-2x+200)=-2(x-70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x+200)(x-40-m)=-2x2+(2m+280)x-8000-200m=-2x-2+m2-60m+1800.∵m>0,∴对称轴x=>70,∵-2<0,∴抛物线开口向下,∵x≤65,∴w随x的增大而增大,∴当x=65时,w有最大值(-2×65+200)(65-40-m),∴(-2×65+200)(65-40-m)=1400,∴m=5.20. 【答案】解:(1)当t=3时,h=20t-5t2=20×3-5×9=15(米),∴此时足球距离地面的高度为15米.(2分)(2)∵h=10,∴20t-5t2=10,即t2-4t+2=0,解得t1=2+2,t2=2-2,∴经过2+2或2- 2 秒时,足球距离地面的高度为10米.(4分)(3)∵m≥0,由题意得t1和t2是方程20t-5t2=m的两个不相等的实数根,∴b2-4ac=(-20)2-20m>0,∴m<20,∴m的取值范围是0≤m<20.(8分)21. 【答案】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,(2分)解得x>22,(3分)又∵x是5的倍数,∴每辆车的日租金至少应为25元.(5分)(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1100,(6分)∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1100=3900;(8分)当x>100时,y2=(50-x-1005)x-1100=-15x2+70x-1100=-15(x-175)2+5025.(9分)∴当x=175时,y2的最大值是5025,∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是5025元.(10分) 22. 【答案】(1)设一次函数关系式为(0)y kx b k =+≠,由图象可得,当30x =时,140y =;50x =时,100y =,∴1403010050k b k b =+⎧⎨=+⎩,解得2200k b =-⎧⎨=⎩, ∴y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+,∵20a =-<,∴抛物线开口向下,∵对称轴65x =,∴当65x <时,W 随着x 的增大而增大,∵3060x ≤≤,∴60x =时,W 有最大值,22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。
【2021中考数学】二次函数的综合及其应用含答案
二次函数的综合及其应用1. 有一块矩形地块ABCD ,AB =20米,BC =30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/平方米、60元/平方米、40元/平方米,设三种花卉的种植总成本为y 元. (1)当x =5时,求种植总成本y ;(2)求种植总成本y 与x 的函数表达式,并写出自变量x 的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.2. 某单位的帮扶对象种植的农产品在某月(按30天计)的第x 天(x 为正整数)的销售价格p(元/千克)关于x 的函数关系式为p =⎩⎪⎨⎪⎧25x +4(0<x≤20),-15x +12(20<x≤30),销售量y(千克)与x 之间的关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围.(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)3. 在平面直角坐标系中,直线y =-12x +5 与x ,y 轴分别交于A ,B 两点,抛物线y =ax 2+bx(a≠0)过点A.(1)求线段AB 的长;(2)若抛物线y =ax 2+bx 经过线段AB 上另一点C ,且BC =5,求这条抛物线表达式; (3)如果抛物线y =ax 2+bx 的顶点D 在△AOB 内部,求a 的取值范围4. 如图,在直角坐标系中,四边形OABC 是平行四边形,经过A(-2,0),B ,C 三点的抛物线y =ax 2+bx +83(a <0)与x 轴的另一个交点为D ,其顶点为M ,对称轴与x 轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R 是抛物线上的点,使得△A DR 的面积是▱OABC 的面积的34,求点R 的坐标;(3)已知P 是抛物线对称轴上的点,满足在直线MD 上存在唯一的点Q ,使得∠PQE=45°,求点P 的坐标.5. 如图,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC ,抛物线对称轴为直线x =12,D 为第一象限内抛物线上一动点,过点D 作DE⊥OA 于点E ,与AC 交于点F ,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求D 点的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与△BOC 相似?若存在,求出m 的值;若不存在,请说明理由.参考答案1.解:(1)当x =5时,EF =20-2x =10,EH =30-2x =20,y =2×12×(EH +AD)×x×20+2×12×(GH +CD)×x×60+EF·EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22 000. (2)EF =20-2x ,EH =30-2x ,参考(1),由题意,得y =(30+30-2x)×x×20+(20+20-2x)×x×60+(30-2x)(20-2x)×40=-400x +24 000(0<x <10).(3)S 甲=2×12(EH +AD)×x=(30-2x +30)x =-2x 2+60x ,同理S 乙=-2x 2+40x.∵甲、乙两种花卉的种植面积之差不超过120米2, ∴-2x 2+60x -(-2x 2+40x)≤120, 解得x≤6,故0<x≤6,而y =-400x +24 000随x 的增大而减小,故当x =6时,y 的最小值为21 600, 故三种花卉的最低种植总成本为21 600元.2.解:(1)当0<x≤20时,设y 与x 的函数关系式为y =ax +b ,⎩⎪⎨⎪⎧b =80.20a +b =40,解得⎩⎪⎨⎪⎧a =-2,b =80,即当0<x≤20时,y 与x 的函数关系式为y =-2x +80;当20<x≤30时,设y 与x 的函数关系式为y =mx +n ,⎩⎪⎨⎪⎧20m +n =40,30m +n =80,解得⎩⎪⎨⎪⎧m =4,n =-40, 即当20<x≤30时,y 与x 的函数关系式为y =4x -40.由上可得,y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-2x +80(0<x≤20),4x -40(20<x≤30). (2)设当月第x 天的销售额为w 元,当0<x≤20时, w =(25x +4)×(-2x +80)=-45(x -15)2+500,∴当x =15时,w 取得最大值,此时w =500;当20<x≤30时,w =(-15x +12)×(4x-40)=-45(x -35)2+500,∴当x =30时,w 取得最大值,此时w=480,由上可得,当x =15时,w 取得最大值,此时w =500.答:当月第15天,该农产品的销售额最大,最大销售额是500元. 3.解:(1)直线y =-12x +5与x 轴、y 轴交于A ,B 两点,则A(10,0),B(0,5),∴AB=102+52=5 5.(2)设点C 坐标为(t ,-12t +5),则BC 2=t 2+(-12t)2=5,解得t =2,∴C(2,4).将A ,C 坐标代入y =ax 2+bx 得⎩⎪⎨⎪⎧0=100a +10b ,4=4a +2b ,解得⎩⎪⎨⎪⎧a =-14,b =52,∴这条抛物线的表达式为y =-14x 2+52x.(3)∵抛物线y =ax 2+bx 过点A ,∴100a+10b =0,解得b =-10a ,∴抛物线顶点D 为(5,-25a). 抛物线顶点D 在△AOB 内部,∴0<-25a <52,解得-110<a <0.4.解:(1)OA =2=BC ,故函数的对称轴为x =1,则x =-b2a =1.①将点A 的坐标代入抛物线表达式得0=4a -2b +83,②联立①②并解得⎩⎪⎨⎪⎧a =-13,b =23,故抛物线的表达式为y =-13x 2+23x +83.③(2)由抛物线的表达式,得点M(1,3),点D(4,0).∵△ADR 的面积是▱OABC 的面积的34,∴12AD·|y R |=34OA·OB,即12×6×|y R |=34×2×83, 解得y R =±43,④联立④③并解得⎩⎪⎨⎪⎧x =1±13,y =-43或⎩⎪⎨⎪⎧x =1±5,y =43. 故点R 的坐标为(1+13,-43)或(1-13,-43)或(1+5,43)或(1-5,43).(3)(Ⅰ)如图,作△PEQ 的外接圆R ,∵∠PQE=45°,∴∠PRE=90°, 则△PRE 为等腰直角三角形. 当直线MD 上存在唯一的点Q , 则RQ⊥MD.点M ,D 的坐标分别为(1,3),(4,0),则ME =3,ED =4-1=3, 则MD =32,过点R 作RH⊥ME 于点H ,设点P(1,2m),则PH =HE =HR =m , 则圆R 的半径为2m ,则点R(1+m ,m), S △MED =S △MRD +S △MRE +S △DRE ,∴12EM·ED=12MD·RQ+12ED·y R +12ME·RH, 即12×3×3=12×32×2m +12×3m+12×3m,解得m =34,故点P(1,32).(Ⅱ)当点Q 与点D 重合时,由点M ,E ,D 的坐标知,ME =ED ,即∠MDE=45°;①当点P 在x 轴上方时,当点P 与点M 重合时,此时∠PQE=45°,此时点P(1,3), ②当点P 在x 轴下方时,同理可得点P(1,-3), 综上所述,点P 的坐标为(1,32)或(1,3)或(1,-3).5.解:(1)设OB =t ,则OA =2t ,则点A ,B 的坐标分别为(2t ,0),(-t ,0),则x =12(2t -t)=12,解得t =1,故点A ,B 的坐标分别为(2,0),(-1,0),则抛物线的表达式为y =a(x -2)(x +1)=ax 2+bx +2, 解得a =-1,b =1,故抛物线的表达式为y =-x 2+x +2.(2)对于y =-x 2+x +2,令x =0,则y =2,故点C(0,2), 由点A ,C 的坐标,得直线AC 的表达式为y =-x +2, 设点D 的横坐标为m ,则点D(m ,-m 2+m +2), 则点F(m ,-m +2),则DF =-m 2+m +2-(-m +2)=-m 2+2m =-(m -1)2+1. ∵-1<0,∴DF 有最大值,此时m =1,点D(1,2). (3)存在,理由:点D(m ,-m 2+m +2)(m >0),则OE =m , DE =-m 2+m +2,以点O ,D ,E 为顶点的三角形与△BOC 相似, 则DE OE =OB OC 或DE OE =OC OB ,即DE OE =2或DE OE =12,即-m 2+m +2m =2或-m 2+m +2m =12,解得m =1或-2(舍去)或1+334或1-334(舍去),故m =1或1+334.。
备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综合应用,综合题专训及答案
若
≤-2,比较 与 的大小;
(4) 当抛物线F与线段AB有公共点时,直接写出m的取值范围。
9、 (2017濉溪.中考模拟) 2016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练 .某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米 ,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB 为纵轴建立直角坐标系.
下面是他的探究过程,请将探究过程补充完整: 将不等式按条件进行转化:
当x=0时,原不等式不成立; 当x>0时,原不等式可以转化为x2+4x﹣1> ; 当x<0时,原不等式可以转化为x2+4x﹣1< ; (1) 构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综
合应用,综合题专训及答案
备 考 2021中 考 数 学 复 习 专 题 : 函 数 _二 次 函 数 _二 次 函 数 与 不 等 式 ( 组 ) 的 综 合 应 用 , 综 合 题 专 训
1、 (2018长春.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D 的左侧),经过E、D两点的函数y=﹣ x2+mx+1(x≥0)的图象记为G1 , 函数y=﹣ x2﹣mx﹣1(x<0)的图象记为G2 , 其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.
交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。
2021届中考数学专题复习训练——二次函数 专题13.1二次函数综合之角度相等、45°角、二倍角
二次函数角度问题 (角相等,45°角,二倍角)【经典例题1——角度相等】通过平行线,等腰等角,相似求解抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;【解析】(1)①将P(1,−3),B(4,0)代入y=ax 2+c ,得⎩⎨⎧-=+=+3016c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==51651c a ,∴抛物线的解析式为y=51x 2−516;②如图1,当点D 在OP 左侧时,由∠DPO=∠POB ,得DP ∥OB , ∴D 与P 关于y 轴对称,且P(1,−3), ∴D(−1,−3);当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H ,则OH=1,PH=3. ∵∠DPO=∠POB , ∴PG=OG.设OG=x ,则PG=x ,HG=x −1.在Rt △PGH 中,由x 2=(x −1)2+32,得x =5. ∴点G(5,0).∴直线PG 的解析式为y=43x −415,∴MF=1,BF=2, ∴M (2,1)…(5分) ∵MN 是BC 的垂直平分线, ∴CN=BN ,设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0).设直线DE 的解析式为y=kx +b ,依题意,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k .∴直线DE 的解析式为y=2x -3. 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线, ∴CN=BN ,CM=BM . 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0). ∴BN=4-23=25.∵CF ∥x 轴,∴∠CFM=∠BNM . ∵∠CMF=∠BMN ,∴△CMF ≌△BMN .∴CF=BN .∴F (25,2).设直线DE 的解析式为y=kx +b ,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k∴直线DE 的解析式为y=2x -3.(3)由(1)得抛物线解析式为y=21x 2-25x +2,【解析】(1)∵y=−x2+(a+1)x−a解得x 1=a ,x 2=1由图象知:a <0 ∴A(a ,0),B(1,0) ∵S △ABC =6 ∴21(1−a )(−a )=6 解得:a =−3,(a =4舍去); (2)如图①,∵A(−3,0),C(0,3), ∴OA=OC ,∴线段AC 的垂直平分线过原点, ∴线段AC 的垂直平分线解析式为:y=−x , ∵由A(−3,0),B(1,0), ∴线段AB 的垂直平分线为x =−1 将x=−1代入y=−x , 解得:y=1∴△ABC 外接圆圆心的坐标(−1,1)(3)如图②,作PM ⊥x 轴交x 轴于M ,则S △BAP =21AB ⋅PM=21×4d ∵S △PQB =S △PAB∴A 、Q 到PB 的距离相等, ∴AQ ∥PB设直线PB 解析式为:y=x +b ∵直线经过点B(1,0)所以:直线PB 的解析式为y=x −1 联立y=−x 2−2x +3;y=x −1. 解得:x =−4;y=−5. ∴点P 坐标为(−4,−5) 又∵∠PAQ=∠AQB ,∴∠BPA=∠PBQ ,∴AP=QB , 在△PBQ 与△BPA 中,AP=QB ,∠BPA=∠PBQ ,PB=BP , ∴△PBQ ≌△ABP(SAS), ∴PQ=AB=4设Q(m ,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=−4,m=−8(当m=−8时,∠PAQ ≠∠AQB ,故应舍去) ∴Q 坐标为(−4,−1).练习1-1如下图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x 轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由练习1-2.如图,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)、点B(6,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)点D(4,m)在抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;练习1-3.(2019泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数解析式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M 到y轴的距离;若不存在,请说明理由.练习1-4.抛物线322++-=x x y 与x 轴交于点A ,B (A 在B 的左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)抛物线的对称轴上存在点P ,使∠APB=∠ABC ,利用图1求点P 的坐标; (3)点Q 在y 轴右侧的抛物线上,利用图2比较∠OCQ 与∠OCA 的大小,并说明理由.练习1-5如图(1),直线y=−34x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y=32x 2+bx +c 经过点A ,交y 轴于点B(0,−2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m. (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图(2),将△BDP 绕点B 逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC ,且点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标。
2021年北京市中考数学专题练习:二次函数的综合应用
二次函数的综合应用类型一对称性、增减性问题1.在平面直角坐标系xOy中,抛物线y=x2-6x+5与y轴交于点A,直线l:y=kx+b(k≠0)经过点A.(1)求抛物线的对称轴及b的值;(2)点M(x1,y1)为抛物线在x轴下方的图象上一点,过点M作平行于x轴的直线交抛物线于点N(x2,y2),其中x1≠x2,直线l与线段MN交于点P(x3,y3).若x1+x2+x3=9,求k的取值范围.2.抛物线C1:y=ax2+bx-3,以x=1为对称轴,图象经过A(-1,0).(1)求抛物线C1的解析式;(2)将抛物线C1在y轴左侧的图象沿y轴翻折,并将翻折至y轴右侧的部分图象称作图形G,若直线y=5与抛物线C1交于点P(x1,5)和Q(x2,5),与图形G交于点M(x3,5),且x1<x3<x2.①求x2-x3的值;②当抛物线C1沿x轴向右平移n个单位(n>0),请结合图象,确定3≤x2-x3≤5时,求n 的取值范围.3.已知抛物线y=ax2-2ax+3(a≠0)(1)求抛物线的对称轴;(2)若抛物线与x 轴交于P ,Q 两点,且PQ =4, ①求抛物线的表达式;②将该抛物线在0≤x ≤4之间的部分记为图象G ,将图象G 在直线y =t (上方的部分沿y =t 翻折,其余部分保持不变,得到个新函数的图象,记这个函数的最大值为M ,最小值为m ,若M -m ≤6,求t 的取值范围.4. (2018朝阳区二模)已知二次函数y =ax 2-2ax -2(a ≠0). (1)求该二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为112,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2)设t ≤x 1≤t +1,当x 2≥3时,均有y 1≥y 2,请结合图象,直接写出t 的取值范围.类型二公共点问题5. (2020人大附中模拟)在平面直角坐标系xOy中,抛物线y=x2-2x+a-3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.6. (2020朝阳区二模)在平面直角坐标系xOy中,抛物线y=ax2+a2x+c与y轴交于点(0,2).(1)求c的值;(2)当a=2时,求抛物线顶点的坐标;(3)已知点A(-2,0),B(1,0),若抛物线y=ax2+a2x+c与线段AB有两个公共点,结合函数图象,求a的取值范围.和点B(点A在点B的左侧).(1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象;(2)当已知点P(m,2),Q(-m,2m-1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.8. (2020石景山区期末)在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a≠0)与y轴交于点A,将点A向右平移2个单位长度,得到点B.直线y=35x-3与x轴,y轴分别交于点C,D.(1)求抛物线的对称轴;(2)若点A与点D关于x轴对称,①求点B的坐标:②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(-2,-a-2),N(0,a),若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.10.(2020清华附中模拟)在平面直角坐标系xOy中,抛物线y=ax2-2a2x(a≠0)的对称轴与x轴交于点P.(1)求点P的坐标(用含a的代数式表示);(2)记函数y=-x+2(-1≤x≤2)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.第10题图类型三整点问题11. (2020房山区一模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx-1交y轴于点P.(1)过点P作与x轴平行的直线,交抛物线于点Q,PQ=4,求ba的值;(2)横纵坐标都是整数的点叫做整点. 在(1)的条件下,记抛物线与x轴所围成的封闭区域(不含边界)为W. 若区域W内恰有4个整点,结合函数图象,求a的取值范围.12. (2019丰台区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c过原点和点A(-2,0).(1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点,已知点B(0,32),记抛物线与直线AB围成的封闭区域(不含边界)为W.①当a=1时,求出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,直接写出a的取值范围.参考答案 1. 解:(1)抛物线的对称轴为直线x =--62=3,与y 轴的交点为A (0,5), ∵直线l 经过点A (0,5), ∴b =5;(2)∵抛物线的对称轴为直线x =3,∴x 1+x 2=2×3=6, ∵x 1+x 2+x 3=9, ∴x 3=3.∴点P 为线段MN 的中点,∴当点P 过抛物线的顶点(3,-4)时, 解得k =-3, 当点P 过(3,0)时, 解得k =-53.∴当x 1+x 2+x 3=9时,k 的取值范围为-3<k <-53. 2. 解:(1)由题意,得⎩⎪⎨⎪⎧-b 2a =1a -b -3=0,解得⎩⎨⎧a =1b =-2,∴抛物线C 1的解析式为y =x 2-2x -3; (2)①当y =5时,x 2-2x -3=5, 解得x 1=-2,x 2=4.∵P (x 1,5)和M (x 3,5)关于y 轴对称, ∴x 3=2, ∴x 2-x 3=2;②根据平移的性质可知:x 1=-2+n ,x 2=4+n . ∵P (x 1,5)和M (x 3,5)关于y 轴对称, ∴x 3=2-n , ∴x 2-x 3=2+2n . ∵3≤x 2-x 3≤5,∴⎩⎨⎧2+2n ≥32+2n ≤5, ∴12≤n ≤32.第2题解图3. 解:(1)抛物线的对称轴为直线x =--2a2a =1;(2)①∵抛物线对称轴为x =1,且与x 轴交点P 、Q 之间的距离为4. ∴与x 轴的交点分别为(-1,0),(3,0)将(-1,0)代入抛物线解析式, 解得a =-1,故抛物线的表达式为y =-x 2+2x +3;②图象在0≤x ≤4之间的部分翻折前后如解图所示,第3题解图设抛物线顶点坐标为T , ∴T (1,4).设y =t 与抛物线的对称轴交于点S .则ST =4-t ,则点T ′纵坐标为t -(4-t )=2t -4, 当点T ′在点H 上方时,(与点H 可重合) 即2t -4≥-5,即t ≥-12, 此时M =t ,m =-5, t +5≤6,解得t ≤1,即-12≤t ≤1; 当点T ′在点H 下方时, t <-12,此时,M =t ,m =2t -4, 则t -2t +4≤6,解得t ≥-2, 即-2≤t <-12;∴t 的取值范围为-2≤t ≤1.4. 解:(1)该二次函数图象的对称轴为直线x =--2a2a =1; (2)∵该二次函数的图象开口向上,对称轴为直线x =1,-1≤x ≤5, ∴当x =5时,y 取得最大值,即M (5,112), ∴112=a ×52-2a ×5-2,解得a =12,∴该二次函数的表达式为y =ax 2-2ax -2=a (x -1)2-a -2=12(x -1)2-52,即点N 的坐标为(1,-52); (3)-1≤t ≤2.【解法提示】当a >0时,该函数的图象开口向上,对称轴为直线x =1,无法保证t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2;当a <0时,该函数的图象开口向下,对称轴为直线x =1,∵t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2,点A (x 1,y 1)B (x 2,y 2)在该函数图象上, ∴⎩⎨⎧t +1≤3t ≥1-(3-1), ∴-1≤t ≤2.5. 解:(1)当a =0时,抛物线的解析式为y =x 2-2x -3 ∴A (0,-3),∵将点A 向右平移4个单位长度,得到点B. ∴B (4,-3);(2)当函数经过点A时,a=0,有三个交点.∵图形M与线段AB恰有两个公共点,∴直线y=a要在AB线段的上方,∴a>-3,∴-3<a<0,当a=1时,y=x2-2x+a-3沿着直线y=1翻折,此时,图形M与线段AB恰有两个公共点.综上所述,-3<a<0或a=1.6.解:(1)∵抛物线y=ax2+a2x+c与y轴交于点(0,2),∴c=2;(2)当a=2时,抛物线为y=2x2+4x+2=2(x+1)2.∴顶点坐标为(-1,0);(3)当a>0时,①由(2)可得当a=2时,如解图①,抛物线与线段AB只有一个公共点;②当抛物线过点A(-2,0)时,解得a=1+2(负值已舍),如解图②,此时抛物线与线段AB有两个公共点.图①图②第6题解图结合函数图象可得2<a≤1+ 2.∵抛物线不过点B,∴当a<0时,抛物线与线段AB只有一个或没有公共点.综上所述,a的取值范围是2<a≤1+ 2.7.解:(1)∵抛物线的对称轴为直线x=-b2a=-m2·(-1)=1∴m=2,∴抛物线为y=-x2+2x+3,将y=0代入,得0=-x2+2x+3,解得x1=-1,x2=3,∴点A坐标为(-1,0),点B坐标为(3,0),图象如解图①:第7题解图①(2)∵抛物线对称轴为x=m2,且过(0,3),∴抛物线恒过点(m,3).∴点P(m,2)始终在抛物线下方.当抛物线y=-x2+mx+3过点Q(-m,2m-1)时,即m2+m-2=0,解得m=-2或m=1,此时点Q坐标为(2,-5)或(-1,1)当m>-2时,-m<2,2m-1>-5,抛物线与线段PQ无公共点,∴当m≤-2时,抛物线与线段PQ恰有一个公共点,同理m≥1时,抛物线与线段PQ恰有一个公共点.综上所述,m的取值范围是m≤-2或m≥1.8.解:(1)∵y=ax2-4ax+c=a(x-2)2-4a+c,∴抛物线的对称轴是直线x=2;(2)①∵直线y=35x-3与x轴,y轴分别交于点C、D,∴点C的坐标为(5,0),点D的坐标为(0,-3).∵抛物线与y轴的交点A与点D关于x轴对称,∴点A的坐标为(0,3).c=3∵将点A向右平移2个单位长度,得到点B,∴点B的坐标为(2,3).②抛物线顶点为P(2,3-4a).(ⅰ)当a>0时,如解图①.令x=5,得y=25a-20a+3=5a+3>0,即点C(5,0)总在抛物线上的点E(5,5a+3)的下方.∵y P<y B,∴点B(2,3)总在抛物线顶点P的上方,结合函数图象,可知当a>0时,抛物线与线段BC恰有一个公共点.图①图②第8题解图(ⅱ)当a<0时,如解图②.当抛物线过点C(5,0)时,25a -20a +3=0,解得a =-35.结合函数图象,可得a ≤-35时,抛物线与线段BC 恰有一个公共点. 综上所述,a 的取值范围是a ≤-35或a >0.9. 解:(1)∵抛物线y =ax 2-3ax +a +1与y 轴交于点A , 令x =0,得y =a +1. ∴A (0,a +1).(2)由抛物线y =ax 2-3ax +a +1可知其对称轴为直线x =--3a 2a =32. ∴抛物线的对称轴为直线x =32. (3)对于任意的实数a ,都有a +1>a . 可知点A 总在点N 的上方. 令抛物线上的点C (-2,y C ). ∴y C =11a +1.①如解图①,当a >0时,y C >-a -2, ∴点C 在点M 的上方.结合函数图象,可知抛物线与线段MN 没有公共点.第9题解图①②当a <0时,(ⅰ)如解图②,当抛物线经过点M 时,y C =-a -2. 即-a -2=11a +1, ∴a =-14.结合函数图象,可知抛物线与线段MN 恰有一个公共点M .第9题解图②(ⅱ)当-14<a<0时,可知抛物线与线段MN没有公共点.(ⅲ)如解图③,当a<-14时,y C<-a-2.∴点C在点M的下方.结合函数图象,可知抛物线与线段MN恰有一个公共点.综上所述,a的取值范围是a≤-1 4.第9题解图③10.解:(1)∵抛物线y=ax2-2a2x的对称轴是直线x=--2a22a=a,∴点P的坐标是(a,0);(2)当a>0时,①如解图①,取特殊值a=1,作出函数图象,与图形M有2个交点,不符合题意,②如解图②,a>1,对称轴右移,N(2a,0)在(2,0)的右边,抛物线开口变小,过原点,对称轴左侧部分与图形M有1个交点,符合题意,③如解图③,0<a<1,对称轴左移,N(2a,0)在(2,0)的左边,开口变大,过原点,对称轴右侧部分与图形M有1个交点,符合题意.图①图②图③第10题解图当a<0时,①如解图④,取特殊值a=-1,无交点,不符合题意,②如解图⑤,-1<a<0,对称轴右移,开口变大,过原点,与图形M无交点,不符合题意,图④图⑤第10题解图③如解图⑥到解图⑧,a<-1,对称轴左移,开口变小,过原点,会与图形M产生交点,如解图⑦,抛物线过点(-1,3),易求得a=-3 2,如解图⑧,a<-32,抛物线在对称轴右侧的部分与图形M有1个交点,符合题意.∴综上所述,a≤-32或0<a<1或a>1.图⑥图⑦图⑧第10题解图11.解:(1)∵抛物线y=ax2+bx-1交y轴于点P,∴点P(0,-1),∵PQ=4,PQ∥x轴,∴点Q(4,-1),(-4,-1),当点Q为(4,-1),∴-1=16a+4b-1,∴ba=-4,当点Q(-4,-1),∴-1=16a-4b-1,∴ba=4;(2)当a>0时,如解图①,第11题解图①当抛物线过点(2,-2)时,a=1 4,当抛物线过点(1,-2)时,a=1 3,∴14<a≤13;当a<0时,如解图②,第11题解图②当抛物线过点(2,2)时,a=-3 4,当抛物线过点(2,3)时,a=-1,∴-1≤a<-3 4,综上所述,14<a≤13或-1≤a<-34.12.解:(1)∵抛物线y=ax2+bx+c过原点(0,0)和点A(-2,0),∴抛物线的对称轴为x=-1;(2)∵抛物线y=ax2+bx+c过原点(0,0)和点A(-2,0),∴c=0,b=2a,∴抛物线解析式可化为y=ax2+2ax.①a=1时,抛物线的解析式为y=x2+2x.如解图①,结合函数图象,区域W内的整点个数为2;第12题解图①②13≤a<23或1<a≤2或-4≤a<-3.【解法提示】①当a>0时,如解图②,当抛物线顶点的纵坐标大于等于-2且小于-1时,区域W内有3个整点,∵抛物线顶点的纵坐标=-a,∴-2≤-a<-1.即1<a≤2;如解图③,当抛物线过点(1,1),但不过点(1,2)时,区域W内有3个整点,分别把点(1,1),(1,2)代入抛物线的解析式y=ax2+2ax,可得a=13或a=23,即13≤a<23;②当a<0时,如解图④,当抛物线顶点的纵坐标大于3且小于等于4时,区域W内有3个整点,∴3<-a≤4.即-4≤a<-3;综上所述,a的取值范围为13≤a<23或1<a≤2或-4≤a<-3.图②图③图④第12题解图。
2021届中考数学专题复习训练——二次函数 专题13.1二次函数综合之角度相等、45°角、二倍角
二次函数角度问题 (角相等,45°角,二倍角)【经典例题1——角度相等】通过平行线,等腰等角,相似求解抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;【解析】(1)①将P(1,−3),B(4,0)代入y=ax 2+c ,得⎩⎨⎧-=+=+3016c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==51651c a ,∴抛物线的解析式为y=51x 2−516;②如图1,当点D 在OP 左侧时,由∠DPO=∠POB ,得DP ∥OB , ∴D 与P 关于y 轴对称,且P(1,−3), ∴D(−1,−3);当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H ,则OH=1,PH=3. ∵∠DPO=∠POB , ∴PG=OG.设OG=x ,则PG=x ,HG=x −1.在Rt △PGH 中,由x 2=(x −1)2+32,得x =5. ∴点G(5,0).∴直线PG 的解析式为y=43x −415,∴MF=1,BF=2, ∴M (2,1)…(5分) ∵MN 是BC 的垂直平分线, ∴CN=BN ,设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0).设直线DE 的解析式为y=kx +b ,依题意,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k .∴直线DE 的解析式为y=2x -3. 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线, ∴CN=BN ,CM=BM . 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0). ∴BN=4-23=25.∵CF ∥x 轴,∴∠CFM=∠BNM . ∵∠CMF=∠BMN ,∴△CMF ≌△BMN .∴CF=BN .∴F (25,2).设直线DE 的解析式为y=kx +b ,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k∴直线DE 的解析式为y=2x -3.(3)由(1)得抛物线解析式为y=21x 2-25x +2,【解析】(1)∵y=−x2+(a+1)x−a解得x 1=a ,x 2=1由图象知:a <0 ∴A(a ,0),B(1,0) ∵S △ABC =6 ∴21(1−a )(−a )=6 解得:a =−3,(a =4舍去); (2)如图①,∵A(−3,0),C(0,3), ∴OA=OC ,∴线段AC 的垂直平分线过原点, ∴线段AC 的垂直平分线解析式为:y=−x , ∵由A(−3,0),B(1,0), ∴线段AB 的垂直平分线为x =−1 将x=−1代入y=−x , 解得:y=1∴△ABC 外接圆圆心的坐标(−1,1)(3)如图②,作PM ⊥x 轴交x 轴于M ,则S △BAP =21AB ⋅PM=21×4d ∵S △PQB =S △PAB∴A 、Q 到PB 的距离相等, ∴AQ ∥PB设直线PB 解析式为:y=x +b ∵直线经过点B(1,0)所以:直线PB 的解析式为y=x −1 联立y=−x 2−2x +3;y=x −1. 解得:x =−4;y=−5. ∴点P 坐标为(−4,−5) 又∵∠PAQ=∠AQB ,∴∠BPA=∠PBQ ,∴AP=QB , 在△PBQ 与△BPA 中,AP=QB ,∠BPA=∠PBQ ,PB=BP , ∴△PBQ ≌△ABP(SAS), ∴PQ=AB=4设Q(m ,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=−4,m=−8(当m=−8时,∠PAQ ≠∠AQB ,故应舍去) ∴Q 坐标为(−4,−1).练习1-1如下图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x 轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由练习1-2.如图,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)、点B(6,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)点D(4,m)在抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;练习1-3.(2019泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数解析式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M 到y轴的距离;若不存在,请说明理由.练习1-4.抛物线322++-=x x y 与x 轴交于点A ,B (A 在B 的左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)抛物线的对称轴上存在点P ,使∠APB=∠ABC ,利用图1求点P 的坐标; (3)点Q 在y 轴右侧的抛物线上,利用图2比较∠OCQ 与∠OCA 的大小,并说明理由.练习1-5如图(1),直线y=−34x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y=32x 2+bx +c 经过点A ,交y 轴于点B(0,−2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m. (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图(2),将△BDP 绕点B 逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC ,且点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标。
中考数学总复习课时训练(专题(13)二次函数的图象与性质(一)附详细解析参考答案
课时训练(十三)二次函数的图象与性质(一)[限时:分钟]夯实基础1.抛物线y=3(x-2)2+5的顶点坐标是()A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)2.下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是()A.y=(x-2)2+1B.y=(x+2)2+1C.y=(x-2)2-3D.y=(x+2)2-33.[2018·河西区结课考]已知函数y=(x-1)2,下列结论正确的是()A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x<1时,y随x的增大而减小D.当x<-1时,y随x的增大而增大4.[2021·绍兴]关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值65.[2021·上海]将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变6.[2021·泰安]将抛物线y=-x2-2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过点()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)7.[2021·陕西]下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…-2 0 1 3 …y… 6 -4 -6 -4 …下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当x>1时,y的值随x值的增大而增大8.对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.9.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.10.[2018·河西区一模]请写出一个二次函数的解析式,满足其图象过点(1,0),且与x轴有两个不同的交点:.11.[2021·广东]把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.12.(1)已知二次函数y=ax2+bx+1的图象经过点(1,3)和(3,-5),求a,b的值.(2)已知二次函数y=-x2+bx+c的图象与x轴的两个交点的横坐标分别为1和2.求这个二次函数的表达式.13.[2021·宁波]如图K13-1,二次函数y=(x-1)(x-a )(a 为常数)的图象的对称轴为直线x=2. (1)求a 的值;(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.图K13-1能力提升14.[2019·河西区二模]已知抛物线y=x 2+2mx-3m (m 是常数),且无论m 取何值,该抛物线都经过某定点H ,则点H 的坐标为 ( ) A .-32,1B .-32,-1C .32,94D .-32,9415.[2021·福建]二次函数y=ax 2-2ax+c (a>0)的图象过A (-3,y 1),B (-1,y 2),C (2,y 3),D (4,y 4)四个点,下列说法一定正确的是( ) A .若y 1y 2>0,则y 3y 4>0 B .若y 1y 4>0,则y 2y 3>0 C .若y 2y 4<0,则y 1y 3<0D .若y 3y 4<0,则y 1y 2<016.如图K13-2,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B (m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 .图K13-217.[2021·北京]在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y=ax 2+bx (a>0)上. (1)若m=3,n=15,求该抛物线的对称轴.(2)已知点(-1,y 1),(2,y 2),(4,y 3)在该抛物线上.若mn<0,比较y 1,y 2,y 3的大小,并说明理由.【参考答案】1.C2.C3.C4.D5.D [解析] 将二次函数图象向下平移,不改变开口方向,故A 正确; 将二次函数图象向下平移,不改变对称轴,故B 正确; 将二次函数图象向下平移,不改变函数的增减性,故C 正确;抛物线y=ax 2+bx+c (a ≠0)与y 轴的交点坐标为(0,c ),将二次函数的图象向下平移两个单位,与y 轴的交点坐标为(0,c-2),改变,故D 错误.6.B [解析] y=-x 2-2x+3=-(x 2+2x )+3=-[(x+1)2-1]+3=-(x+1)2+4, ∵将抛物线y=-x 2-2x+3向右平移1个单位,再向下平移2个单位, ∴得到的抛物线的解析式为y=-x 2+2.将选项中的四个坐标代入可知,只有B 选项中的坐标符合题意.7.C [解析] 设二次函数的解析式为y=ax 2+bx+c ,由题知{6=a ×(-2)2+b ×(-2)+c ,-4=c ,-6=a +b +c ,解得{a =1,b =-3,c =-4,∴二次函数的解析式为y=x 2-3x-4=(x-4)(x+1)=x-322-254,∴函数图象开口向上,∴A 错误;∵图象与x 轴的交点为(4,0)和(-1,0),∴B 错误;∵当x=32时,函数有最小值为-254,∴C 正确;∵函数图象的对称轴为直线x=32,根据图象可知当x>32时,y 的值随x 值的增大而增大,∴D 错误. 8.直线x=2 9.(1,4)10.y=x 2-3x+2(答案不唯一) [解析] ∵抛物线过点(1,0),∴设抛物线的解析式为y=a (x-1)(x-m ). ∵抛物线与x 轴有两个不同的交点,∴m ≠1,取a=1,m=2,则抛物线的解析式为y=(x-1)(x-2)=x 2-3x+2. 11.y=2x 2+4x12.解:(1)将(1,3)和(3,-5)分别代入y=ax 2+bx+1, 得:{a +b +1=3,9a +3b +1=-5,解得:{a =-2,b =4.∴a 的值为-2,b 的值为4.(2)由题意得,二次函数的图象经过点(1,0)和(2,0), 将(1,0)和(2,0)分别代入y=-x 2+bx+c , 得{-1+b +c =0,-4+2b +c =0,解得{b =3,c =-2, ∴这个二次函数的表达式为y=-x 2+3x-2.13.解:(1)由二次函数y=(x-1)(x-a )(a 为常数)知,该抛物线与x 轴的交点坐标是(1,0)和(a ,0). ∵对称轴为直线x=2,∴1+a 2=2.解得a=3.(2)由(1)知a=3,则该抛物线解析式是:y=x 2-4x+3,由抛物线向下平移3个单位后经过原点,得平移后图象所对应的二次函数的表达式是y=x 2-4x. 14.C [解析] 由y=x 2+2mx-3m=x 2+m (2x-3)可知当x=32时,无论m 取何值y 都等于94,∴点H 的坐标为32,94.15.C [解析] ∵y=ax 2-2ax+c=a (x-1)2-a+c ,∴抛物线的对称轴为直线x=1,∴四点中距离对称轴远近关系从远到近排列为:A ,D ,B ,C ,当y 2y 4<0时,一定是y 2<0,y 4>0,根据对称性判断y 3<0,y 1>0,∴y 1y 3<0,因此本题选C .16.(-2,0) [解析] 由C (0,c ),D (m ,c ),得函数图象的对称轴是直线x=m2,设A 点坐标为(x ,0),由A ,B 关于对称轴x=m2对称可得x+m+22=m 2,解得x=-2,即A 点坐标为(-2,0).17.解:(1)∵m=3,n=15, ∴点(1,3),(3,15)在抛物线上,将(1,3),(3,15)的坐标代入y=ax 2+bx 得: {3=a +b ,15=9a +3b ,解得{a =1,b =2,∴y=x 2+2x=(x+1)2-1, ∴抛物线对称轴为直线x=-1.(2)由题意得:抛物线y=ax 2+bx (a>0)始终过定点(0,0),则由mn<0可得:①当m>0,n<0时,由抛物线y=ax 2+bx (a>0)始终过定点(0,0)可得此时的抛物线开口向下,即a<0,与a>0矛盾; ②当m<0,n>0时,∵抛物线y=ax 2+bx (a>0)始终过定点(0,0), ∴此时抛物线的对称轴的范围为12<-b2a <32, ∵点(-1,y 1),(2,y 2),(4,y 3)在该抛物线上,∴它们离抛物线对称轴的距离的范围分别为32<-b2a-(-1)<52,12<2--b2a<32,52<4--b2a<72,∵a>0,开口向上,∴由抛物线的性质可知离对称轴越近y 越小, ∴y 2<y 1<y 3.。
2023年中考数学总复习专题13二次函数与胡不归型最值问题(学生版)
专题13二次函数与胡不归型最值问题胡不归问题:模型分析:“PA+k·PB”型的最值问题,当k=1时通常为轴对称之最短路径问题,而当k>0时,若以常规的轴对称的方式解决,则无法进行,因此必须转换思路.如图,直线BM,BN交于点B,P为BM上的动点,点A在射线BM,BN同侧,已知sin∠MBN=k.过点A作AC⊥BN于点C,交BM于点P,此时PA+k·PB取最小值,最小值即为AC的长.证明 如图,在BM 上任取一点Q ,连结AQ ,作QD ⊥BN 于点D .由sin ∠MBN =k ,可得QD = k ·QB .所以QA +k ·QB =QA +QD ≥AC ,即得证.【例1】(2022•济南)抛物线y =ax 2+x ﹣6与x 轴交于A (t ,0),B (8,0)两点,与y 轴交于点C ,直线y =kx ﹣6经过点B .点P 在抛物线上,设点P 的横坐标为m .(1)求抛物线的表达式和t ,k 的值;(2)如图1,连接AC ,AP ,PC ,若△APC 是以CP 为斜边的直角三角形,求点P 的坐标;(3)如图2,若点P 在直线BC 上方的抛物线上,过点P 作PQ ⊥BC ,垂足为Q ,求CQ +PQ 的最大值.【例2】(2022•宜宾)如图,抛物线y =ax 2+bx +c 与x 轴交于A (3,0)、B (﹣1,0)两点,与y 轴交于点C (0,3),其顶点为点D ,连结AC .(1)求这条抛物线所对应的二次函数的表达式及顶点D 的坐标;(2)在抛物线的对称轴上取一点E ,点F 为抛物线上一动点,使得以点A 、C 、E 、F 为顶点、AC 为边的四边形为平行四边形,求点F 的坐标; P B AM N N M AB C PD Q(3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求PF+ PM的最小值.【例3】(2022•东西湖区模拟)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A 在B左边),与y轴交于点C.连接AC,BC.且△ABC的面积为8.(1)求m的值;(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使∠ATC=60°.求(t﹣1)2的值.(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标.【例4】(2022•成都模拟)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象与y轴,x轴分别相交于A(0,2),B(2,0),C(4,0)三点,点D是二次函数图象的顶点.(1)求二次函数的表达式;(2)点P为抛物线上异于点B的一点,连接AC,若S△ACP=S△ACB,求点P的坐标;(3)M是第四象限内一动点,且∠AMB=45°,连接MD,MC,求2MD+MC的最小值.1.(2022•河北区二模)已知抛物线y=﹣x2+bx+c(b,c为常数)的图象与x轴交于A(1,0),B两点(点A在点B左侧).与y轴相交于点C,顶点为D.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)若点P是y轴上一点,连接BP,当PB=PC,OP=2时,求b的值;(Ⅲ)若抛物线与x轴另一个交点B的坐标为(4,0),对称轴交x轴于点E,点Q是线段DE上一点,点N为线段AB上一点,且AN=2BN,连接NQ,求DQ+NQ的最小值.2.(2021•南海区二模)如图1,抛物线y=x2+bx+c与x轴交于A、B两点,点A、B分别位于原点左、右两侧,且AO=2BO=4,过A点的直线y=kx+c交y轴于点C.(1)求k、b、c的值;(2)在抛物线的对称轴上是否存在一点P,使△ACP为直角三角形?若存在,直接写出所有满足条件的点的坐标;若不存在,请说明理由;(3)如图2,点M为线段AC上一点,连接OM,求AM+OM的最小值.3.(2021•宝安区模拟)(1)已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3),请求该抛物线解析式;(2)点M为抛物线上第二象限内一动点,BM交y轴于点N,当BM将四边形ABCM的面积分为1:2两部分时,求点M的坐标;(3)点P为对称轴上D点下方一动点,点Q为直线y=x第一象限上的动点,且DP=OQ,求BP+ BQ的最小值并求此时点P的坐标.4.(2021•南沙区一模)已知,抛物线y=mx2+x﹣4m与x轴交于点A(﹣4,0)和点B,与y轴交于点C.点D(n,0)为x轴上一动点,且有﹣4<n<0,过点D作直线l⊥x轴,且与直线AC交于点M,与抛物线交于点N,过点N作NP⊥AC于点P.点E在第三象限内,且有OE=OD.(1)求m的值和直线AC的解析式.(2)若点D在运动过程中,AD+CD取得最小值时,求此时n的值.(3)若△ADM的周长与△MNP的周长的比为5:6时,求AE+CE的最小值.5.(2021•射阳县三模)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P,与直线BC相交于点M,连接AC,PB.(1)求该抛物线的解析式;(2)设对称轴与x轴交于点N,在对称轴上是否存在点G,使以O、N、G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由;(3)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,请说明理由;(4)点E是y轴上的动点,连接ME,求ME+CE的最小值.6.(2021•深圳模拟)如图1,抛物线y=﹣x2+bx+c交x轴于A、B两点,其中点A坐标为(﹣3,0),与y 轴交于点C(0,3),点D为抛物线y=﹣x2+bx+c的顶点.(1)求抛物线的函数表达式;(2)若点E在x轴上,且∠ECA=∠CAD,求点E的坐标;(3)如图2,点P为线段AC上方的抛物线上任一点,过点P作PH⊥x轴于点H,与AC交于点M.①求△APC的面积最大时点P的坐标;②在①的条件下,若点N为y轴上一动点,求HN+CN的最小值.7.(2021•深圳模拟)已知:如图,点A(1,0),B(3,0),D(2,﹣1),C是y轴上的点,且OC=3.(1)过点A作AM⊥BC,垂足为M,连接AD、BD,求证:四边形ADBM为正方形;(2)若过A、B、C三点的抛物线对称轴上有一动点P,当PC﹣PB的值最大时,求出点P的坐标;(3)设Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.8.(2021•资阳)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于直线AC上方的一点,BP与AC相交于点E,当PE:BE=1:2时,求点P的坐标;(3)如图2,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M是平移后所得抛物线上位于D'左侧的一点,MN∥y轴交直线OD'于点N,连结CN.当D'N+CN的值最小时,求MN的长.9.(2022•杜尔伯特县一模)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若点E在x轴上,且∠ECB=∠CBD,求点E的坐标.(3)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.10.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y 轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:①求PD+PC的最小值;②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.11.(2022•中山市三模)如图,抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴为直线x=1,点A(﹣1,0),过B的直线交y轴于点D,交抛物线于E,且.(1)求抛物线的解析式;(2)在抛物线第四象限的图象上找一点P,使得△BDP的面积最大,求出点P的坐标;(3)点M是线段BE上的一点,求的最小值,并求出此时点M的坐标.12.(2021•南山区校级三模)如图,已知抛物线y=ax2+bx+c(a≠0)与y轴相交于点C(0,﹣2),与x 轴分别交于点B(3,0)和点A,且tan∠CAO=1.(1)求抛物线解析式.(2)抛物线上是否存在一点Q,使得∠BAQ=∠ABC,若存在,请求出点Q坐标,若不存在,请说明理由;(3)抛物线的对称轴交x轴于点D,在y轴上是否存在一个点P,使PC+PD值最小,若存在,请求出最小值,若不存在,请说明理由.13.(2021•津南区一模)已知抛物线y=x2﹣2x+c交x轴于A,B两点,且点B的坐标为(3,0),其对称轴交x轴于点C.(Ⅰ)求该抛物线的顶点D的坐标;(Ⅱ)设P是线段CD上的一个动点(点P不与点C,D重合).①过点P作y轴的垂线l交抛物线(对称轴右侧)于点Q,连接QB,QD,求△QBD面积的最大值;②连接PB,求PD+PB的最小值.14.(2021•防城区模拟)如图,已知抛物线y=ax2﹣2ax﹣8a(a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)若点P(x,y)在该二次函数的图象上,且S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上的一个动点(异于点B和D),连接AF.是否存在点F,使得2AF+DF的值最小?若存在,分别求出2AF+DF的最小值和点F的坐标,若不存在,请说明理由.15.(2021秋•沈北新区校级月考)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2x+c与x轴交于点A(1,0),点B(﹣3,0),与y轴交于点C,连接BC,点P在第二象限的抛物线上,连接PC、PO,线段PO交线段BC于点E.(1)求抛物线的表达式;(2)若△PCE的面积为S1,△OCE的面积为S2,当=时,求点P的坐标;(3)已知点C关于抛物线对称轴的对称点为点N,连接BN,点H在x轴上,当∠HCB=∠NBC时,①求满足条件的所有点H的坐标;②当点H在线段AB上时,平面内点M,且HM=1,直接写出AM+CM的最小值.16.(2021•香洲区校级三模)如图,抛物线y=﹣x2﹣6x+7交x轴于A,B两点(点A在点B左侧),交y轴于点C,直线y=x+7经过点A、C,点M是线段AC上的一动点(不与点A,C重合).(1)求A,B两点的坐标;(2)当点P,C关于抛物线的对称轴对称时,求PM+AM的最小值及此时点M的坐标;(3)连接BC,当△AOM与△ABC相似时,求出点M的坐标.17.(2021•涪城区校级模拟)已知:如图所示,抛物线y=﹣x2﹣x+c与x轴交于A、B两点,与y轴的正半轴交于点C,点A在点B的左侧,且满足tan∠CAB•tan∠CBA=1.(1)求A、B两点的坐标;(2)若点P是抛物线y=﹣x2﹣x+c上一点,且△P AC的内切圆的圆心正好落在x轴上,求点P的坐标;(3)若M为线段AO上任意一点,求MC+AM的最小值.18.(2021•青山区模拟)已知抛物线y=ax2﹣4ax﹣12a与x轴相交于A,B两点,与y轴交于C点,且OC =OA.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)如图1,点E(m,n)为抛物线上的一点,且0<m<6,连接AE,交对称轴于点P.点F为线段BC上一动点,连接EF,当P A=2PE时,求EF+BF的最小值.(3)如图2,过点M作MQ⊥CM,交x轴于点Q,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.19.(2021•罗湖区校级模拟)已知抛物线y=ax2+bx(a,b为常数,a≠0)与x轴的正半轴交于点A,其顶点C的坐标为(2,4).(Ⅰ)求抛物线的解析式;(Ⅱ)点P是抛物线上位于直线AC上方的一个动点,求△P AC面积的最大值;(Ⅲ)点Q是抛物线对称轴上的一个动点,连接QA,求QC+QA的最小值.20.(2020•东胜区二模)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B (0,),C(1,0),其对称轴与x轴交于点E,顶点坐标为D.(1)求二次函数的表达式;(2)点P为抛物线的对称轴上的一个动点,且在第二象限内,若平面内存在点Q,使得以B,C,P,Q 为顶点的四边形为菱形,求点Q的坐标;(3)若M为y轴上的一个动点,连接ME,求MB+ME的最小值.。
中考数学总复习考点知识专题练习13 二次函数 (解析版)
中考数学总复习考点知识专题练习专题13 二次函数一、单选题(共10小题,每小题3分,共计30分)1.(2021·山东菏泽市·中考真题)一次函数y ax b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】B【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y 轴的关系即可得出a 、b 的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】解:A 、∵二次函数图象开口向上,对称轴在y 轴右侧,∴a>0,b <0,∴一次函数图象应该过第一、三、四象限,A 错误;B 、∵二次函数图象开口向上,对称轴在y 轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B 正确;C 、∵二次函数图象开口向下,对称轴在y 轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C 错误;D 、∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,D 错误.故选:B .2.(2021·四川达州市·中考真题)如图,直线1y kx =与抛物线22y ax bx c =++交于A 、B 两点,则2()y ax b k x c =+-+的图象可能是( )A .B .C .D .【答案】B 【分析】根据题目所给的图像,首先判断1y kx =中k >0,其次判断22y ax bx c =++中a <0,b <0,c <0,再根据k 、b 、的符号判断2()y ax b k x c =+-+中b-k <0,又a <0,c <0可判断出图像. 【详解】解:由题图像得1y kx =中k >0,22y ax bx c =++中a <0,b <0,c <0, ∴b-k <0,∴函数2()y ax b k x c =+-+对称轴x=2b ka--<0,交x 轴于负半轴, ∴当12y y =时,即2kx ax bx c =++, 移项得方程2()0ax b k x c +-+=,∵直线1y kx =与抛物线22y ax bx c =++有两个交点,∴方程2()0ax b k x c +-+=有两个不等的解,即2()y ax b k x c =+-+与x 轴有两个交点, 根据函数2()y ax b k x c =+-+对称轴交x 轴负半轴且函数图像与x 轴有两个交点, ∴可判断B 正确. 故选:B3.(2021·陕西中考真题)在平面直角坐标系中,将抛物线y =x 2﹣(m ﹣1)x +m (m >1)沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m 的取值范围判断新抛物线的顶点所在的象限即可. 【详解】 解:2221(1)(1)()24m m y x m x m x m --=--+=-+-,∴该抛物线顶点坐标是1(2m -,2(1))4m m --, ∴将其沿y 轴向下平移3个单位后得到的抛物线的顶点坐标是1(2m -,2(1)3)4m m ---, 1m >,10m ∴->,∴102m ->, 2222(1)4(21)12(3)4(3)3104444m m m m m m m ---+-------===--<,∴点1(2m -,2(1)3)4m m ---在第四象限; 故选:D .4.(2021·新疆中考真题)二次函数2y ax bx c =++的图像如图所示,则一次函数y ax b =+和反比例函数y cx=在同一平面直角坐标系中的图像可能是()A .B .C .D .【答案】D 【分析】根据二次函数图象开口向上得到a >0,再根据对称轴确定出b ,根据与y 轴的交点确定出c >0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】解:∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线2bx a=->0,∴b <0,∵与y 轴的正半轴相交,∴c >0,∴y=ax+b 的图象经过第一、三象限,且与y 轴的负半轴相交,反比例函数y cx=图象在第一、三象限, ∴只有D 选项的图像符合题意; 故选:D .5.(2021·湖北黄石市·中考真题)若二次函数22y a x bx c =--的图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、)12,Dy 、()22,E y 、()34,F y ,则1y 、2y 、3y 的大小关系是()A .123y y y <<B .132y y y <<C .231y y y <<D .213y y y << 【答案】D 【分析】根据题意,把A 、B 、C 三点代入解析式,求出213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,再求出抛物线的对称轴,利用二次根式的对称性,即可得到答案. 【详解】解:根据题意,把点()1,A n -、()5,1B n -、()6,1C n +代入22y a x bx c =--,则22225513661a b c na b c n a b c n ⎧+-=⎪--=-⎨⎪--=+⎩, 消去c ,则得到2224613571a b a b ⎧-=-⎨-=⎩, 解得:213425942a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的对称轴为:25959422622642b x a-=-==,∵2x =与对称轴的距离最近;4x =与对称轴的距离最远;抛物线开口向上, ∴213y y y <<; 故选:D .6.(2021·天津中考真题)已知抛物线2y ax bx c =++(,,a b c 是常数,0,1a c ≠>)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >;②关于x 的方程2ax bx c a ++=有两个不等的实数根;③12a <-.其中,正确结论的个数是() A .0B .1C .2D .3 【答案】C 【分析】根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式240b ac ->,即可判断②;根据1c >以及c=-2a ,即可判断③. 【详解】∵抛物线2y ax bx c =++经过点()2,0,对称轴是直线12x =, ∴抛物线经过点(1,0)-,b=-a当x= -1时,0=a-b+c ,∴c=-2a;当x=2时,0=4a+2b+c , ∴a+b=0,∴ab<0,∵c >1, ∴abc <0,由此①是错误的,∵222224=4(2)890b ac a a a a a a ---=+=>,而0a ≠∴关于x 的方程2ax bx c a ++=有两个不等的实数根,②正确;∵1c >,c=-2a>1, ∴12a <-,③正确故选:C.7.(2021·山西中考真题)竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为() A .23.5m B .22.5m C .21.5m D .20.5m 【答案】C【分析】将0h =1.5,0v =20代入2005h t v t h =-++,利用二次函数的性质求出最大值,即可得出答案. 【详解】解:依题意得:0h =1.5,0v =20,把0h =1.5,0v =20代入2005h t v t h =-++得2520 1.5=-++h t t当()20t 225=-=⨯-时,54202 1.5=21.5=-⨯+⨯+h故小球达到的离地面的最大高度为:21.5m 故选:C8.(2021·辽宁葫芦岛市·中考真题)如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244+<a b ac ,④30a c +<.正确的个数是()A .1B .2C .3D .4 【答案】B 【分析】由开口方向,对称轴方程,与y 轴的交点坐标判断,,a b c 的符号,从而可判断①②,利用与y 轴的交点位置得到c >1,结合a <0,可判断③,利用当1,,x y a b c =-=-+结合图像与对称轴可判断④. 【详解】解:由函数图像的开口向下得a <0, 由对称轴为12bx a=-=>0,所以b >0, 由函数与y 轴交于正半轴,所以c >0,abc ∴<0,故①错误;12bx a=-=, 2,b a ∴-=20,a b ∴+=故②正确; 由交点位置可得:c >1,a <0, c ∴>1a +,4ac ∴<244,a a +222,4,b a b a =-∴=4ac ∴<24,a b +故③错误; 由图像知:当1,,x y a b c =-=-+ 此时点()1,a b c --+在第三象限,a b c ∴-+<0,2,b a =-3a c ∴+<0,故④正确;综上:正确的有:②④, 故选B .9.(2021·浙江杭州市·中考真题)设函数y =a (x ﹣h )2+k (a ,h ,k 是实数,a ≠0),当x =1时,y =1;当x =8时,y =8,( ) A .若h =4,则a <0B .若h =5,则a >0 C .若h =6,则a <0D .若h =7,则a >0 【答案】C 【分析】当x =1时,y =1;当x =8时,y =8;代入函数式整理得a (9﹣2h )=1,将h 的值分别代入即可得出结果. 【详解】解:当x =1时,y =1;当x =8时,y =8;代入函数式得:221(1)8(8)a h k a h k ⎧=-+⎨=-+⎩, ∴a (8﹣h )2﹣a (1﹣h )2=7, 整理得:a (9﹣2h )=1, 若h =4,则a =1,故A 错误; 若h =5,则a =﹣1,故B 错误;若h =6,则a =﹣13,故C 正确;若h =7,则a =﹣15,故D 错误;故选:C .10.(2021·湖北襄阳市·中考真题)二次函数2y ax bx c =++的图象如图所示,下列结论:①0ac <;②30a c +=;③240ac b -<;④当1x >-时,y 随x 的增大而减小,其中正确的有()A .4个B .3个C .2个D .1个 【答案】B 【分析】根据抛物线的开口向上,得到a >0,由于抛物线与y 轴交于负半轴,得到c <0,于是得到ac <0,故①正确;根据抛物线的对称轴为直线x =−12ba=,于是得到2a +b =0,当x=-1时,得到30a c +=故②正确;把x =2代入函数解析式得到4a +2b +c <0,故③错误;抛物线与x 轴有两个交点,也就是它所对应的方程有两个不相等的实数根,即可得出③正确根据二次函数的性质当x >1时,y 随着x 的增大而增大,故④错误. 【详解】解:①∵抛物线开口向上与y 轴交于负半轴, ∴a >0,c <0 ∴ac <0 故①正确;②∵抛物线的对称轴是x=1, ∴12ba-= ∴b=-2a∵当x=-1时,y=0 ∴0=a-b+c故②正确;③∵抛物线与x轴有两个交点,即一元二次方程2=++有两个不相等的实数解0ax bx c∴240->b ac∴2-<40ac b故③正确;④当-1<x<1时,y随x的增大而减小,当x>1时y随x的增大而增大.故④错误所以正确的答案有①、②、③共3个故选:B二、填空题(共5小题,每小题4分,共计20分)11.(2021·贵州黔东南苗族侗族自治州·中考真题)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x 的取值范围是_____.【答案】﹣3<x<1【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.解:∵抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点为(﹣3,0),对称轴为x =﹣1, ∴抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1.故答案为:﹣3<x <1.12.(2021·江苏淮安市·中考真题)二次函数223y x x =--+的图像的顶点坐标是_________.【答案】(-1,4)【分析】把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标.【详解】解:∵223y x x =--+=-(x+1)2+4,∴顶点坐标为(-1,4).故答案为(-1,4).13.(2021·辽宁朝阳市·中考真题)抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________. 【答案】54k且1k ≠ 【分析】直接利用根的判别式进行计算,再结合10k -≠,即可得到答案.【详解】解:∵抛物线2(1)1y k x x =--+与x 轴有交点,∴2(1)4(1)10k ∆=--⨯-⨯≥,∴54k ≤, 又∵10k -≠,∴k 的取值范围是54k且1k ≠; 故答案为:54k 且1k ≠. 14.(2021·江苏连云港市·中考真题)加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为________min .【答案】3.75 【分析】根据二次函数的对称轴公式2b x a =-直接计算即可. 【详解】解:∵20.2 1.52y x x =-+-的对称轴为()1.5 3.75220.2b x a =-=-=⨯-(min ), 故:最佳加工时间为3.75min ,故答案为:3.75.15.(2021·山东青岛市·中考真题)抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.【答案】2【分析】求出∆的值,根据∆的值判断即可.【详解】解:∵∆=4(k -1)2+8k=4k 2+4>0,∴抛物线与x 轴有2个交点.故答案为:2.三、解答题(共5小题,每小题10分,共计50分)16.(2021·甘肃兰州市·中考真题)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天≤≤且x为整数)的销售量为y件.(1x30()1直接写出y与x的函数关系式;()2设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?=+;()2第20天的利润最大,最大利润是3200元.【答案】()1?y2x40【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【详解】()1由题意可知y2x40=+;()2根据题意可得:()()=---+,w145x8052x4022x80x2400=-++,2=--+,2(x20)3200a20=-<,∴函数有最大值,∴当x 20=时,w 有最大值为3200元,∴第20天的利润最大,最大利润是3200元.17.(2021·山东临沂市·中考真题)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.【答案】(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∵22232y ax ax a =--+,∴22(1)32y a x a a =---+,∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∵抛物线顶点在x 轴上,∴2230a a --=,解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-,综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =,∴()23,Q y 关于1x =的对称点为2(1,)y -,当a >0时,若12y y <,则-1<m <3;当a <0时,若12y y <,则m <-1或m >3.18.(2021·甘肃金昌市·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx =+-交x 轴于A ,B 两点,交y 轴于点C ,且28OA OC OB ==,点P 是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若//PC AB ,求点P 的坐标;(3)连接AC ,求PAC ∆面积的最大值及此时点P 的坐标.【答案】(1)2722y x x =+-;(2)(72-,2-);(3)PAC ∆面积的最大值是8;点P 的坐标为(2-,5-).【分析】(1)由二次函数的性质,求出点C 的坐标,然后得到点A 、点B 的坐标,再求出解析式即可;(2)由//PC AB ,则点P 的纵坐标为2-,代入解析式,即可求出点P 的坐标;(3)先求出直线AC 的解析式,过点P 作PD ∥y 轴,交AC 于点D ,则12PAC S PD OA ∆=•,设点P 为(x ,2722x x +-),则点D 为(x ,122x --),求出PD 的长度,利用二次函数的性质,即可得到面积的最大值,再求出点P 的坐标即可.【详解】解:(1)在抛物线22y ax bx =+-中,令0x =,则2y =-,∴点C 的坐标为(0,2-),∴OC=2,∵28OA OC OB ==,∴4OA =,12OB =, ∴点A 为(4-,0),点B 为(12,0), 则把点A 、B 代入解析式,得16420112042a b a b --=⎧⎪⎨+-=⎪⎩,解得:172a b =⎧⎪⎨=⎪⎩, ∴2722y x x =+-; (2)由题意,∵//PC AB ,点C 为(0,2-),∴点P 的纵坐标为2-,令2y =-,则27222x x +-=-, 解得:172x ,20x =, ∴点P 的坐标为(72-,2-); (3)设直线AC 的解析式为y mx n =+,则把点A 、C 代入,得402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩, ∴直线AC 的解析式为122y x =--; 过点P 作PD ∥y 轴,交AC 于点D ,如图:设点P 为(x ,2722x x +-),则点D 为(x ,122x --), ∴22172(2)422PD x x x x x =---+-=--, ∵OA=4,∴2211(4)42822APC S PD OA x x x x ∆=•=⨯--⨯=--, ∴22(2)8APC S x ∆=-++,∴当2x =-时,APC S ∆取最大值8;∴22772(2)(2)2522x x +-=-+⨯--=-, ∴点P 的坐标为(2-,5-).19.(2021·安徽中考真题)在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可; (2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1y x 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值.【详解】(1)点B 在直线y x m =+上,理由如下:将A (1,2)代入y x m =+得21m =+,解得m=1,∴直线解析式为1y x ,将B (2,3)代入1y x ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩, 解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,∵顶点在直线1y x 上, ∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 20.(2021·江苏宿迁市·中考真题)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21 / 21 【答案】(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩, 解得:2180k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.。
2021年江西省中考数学复习第13讲 二次函数的图象及性质(精选练习)
第13讲 二次函数的图象及性质一、选择题1.(2020·大连)抛物线y =ax 2+bx +c(a <0)与x 轴的一个交点坐标为(-1,0),对称轴是直线x =1,其部分图象如图所示,则此抛物线与x 轴的另一个交点坐标是( B )A .(72 ,0)B .(3,0)C .(52,0) D .(2,0) 2.(2020·温州)已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线y =-3x 2-12x +m 上的点,则( B )A .y 3<y 2<y 1B .y 3<y 1<y 2C .y 2<y 3<y 1D .y 1<y 3<y 23.(2020·菏泽)一次函数y =a c x +b 与二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( B )4.(2020·南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax 2的图象与正方形有公共点,则实数a 的取值范围是( A )A .19 ≤a ≤3B .19≤a ≤1 C .13 ≤a ≤3 D .13≤a ≤1 5.(2020·呼和浩特)关于二次函数y =14x 2-6x +a +27,下列说法错误的是( C ) A .若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a =-5B .当x =12时,y 有最小值a -9C .x =2对应的函数值比最小值大7D .当a <0时,图象与x 轴有两个不同的交点(第4题图) (第6题图)6.(2020·广东)如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①ab c >0;②b 2-4a c >0;③8a +c <0;④5a +b +2c >0,正确的有( B )A .4个B .3个C .2个D .1个二、填空题7.若函数y =(1-m)x m 2-2+2是关于x 的二次函数,且抛物线的开口向上,则m 的值为__-2__. 8.(2020·牡丹江)将抛物线y =ax 2+bx -1向上平移3个单位长度后,经过点(-2,5),则8a -4b -11的值是__-5__.9.(2020·南京)下列关于二次函数y =-(x -m)2+m 2+1(m 为常数)的结论:①该函数的图象与函数y =-x 2的图象形状相同;②该函数的图象一定经过点(0,1);③当x >0时,y 随x 的增大而减小;④该函数的图象的顶点在函数y =x 2+1的图象上.其中所有正确结论的序号是__①②④__.10.(2020·长春)如图,在平面直角坐标系中,点A 的坐标为(0,2),点B 的坐标为(4,2).若抛物线y =-32 (x -h)2+k(h ,k 为常数)与线段AB 交于C ,D 两点,且CD =12AB ,则k 的值为__72__. 三、解答题11.(2020·江西丰城模拟)抛物线C 1:y 1=(x 2-1)-2t(x -1)(t ≠1)与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)若t =-2,求线段AB 的长;(2)猜想:随着t 的变化,抛物线C 1是否会经过一定点?若会,请求出该定点的坐标;若不会,请说明理由;(3)若t >1,将抛物线C 1经过适当平移后,得到抛物线C 2:y 2=(x -t)2+t -1,A ,B 的对应点分别为D(m ,n),E(m +2,n);①求抛物线C 2的解析式;②将抛物线C 2位于直线DE 下方的部分沿直线DE 向上翻折,连同C 2在DE 上方的部分组成一个新图形,记为图形G ,若直线y =-12x +b (b <3)与图形G 有且只有两个公共点,求b 的取值范围.解:(1)令y 1=0,解得:x =1或2t -1,t =-2,则x =1或-5,∴AB =1-(2t -1)=2-2t =6;(2)当x =1时,y 1=0,∴过定点(1,0);(3)①t >1时,点A ,B 的坐标分别为:(1,0),(2t -1,0),AB =DE ,即2t -1-1=m +2-m =2,解得:t =2,∴点B(3,0),抛物线C 2的解析式为:y 2=(x -2)2+1;②将点D ,E 的坐标代入抛物线表达式得:n =(m -2)2+1=(m +2-2)2+1,解得:m=1,∴点D ,E 的坐标为:(1,2),(3,2);图象G 如图所示,当直线过点D 时,2=-12×1+b ,解得:b =52 ,同理直线过点E 时,b =72 ,而b <3.∴52<b <3.12.(2020·江西上饶模拟)如图,抛物线y =ax 2-2ax +c 的图象经过点C(0,-2),顶点D 的坐标为(1,-83),与x 轴交于A ,B 两点.(1)求抛物线的解析式;(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AE AB 的值. 解:(1)由题意可列方程组:⎩⎪⎨⎪⎧c =-2,a -2a +c =-83, 解得:⎩⎪⎨⎪⎧a =23,c =-2.∴抛物线解析式为:y =23 x 2-43x -2; (2)连结BE ,由(1)知,抛物线解析式为:y =23 x 2-43x -2,可求得A(-1,0),B(3,0),∴AB =4,∵∠AOC =90°,∴AC = 5 ,设直线AC 的解析式为:y =k x +b ,则⎩⎪⎨⎪⎧-k +b =0,b =-2, 解得:⎩⎪⎨⎪⎧k =-2,b =-2. ∴直线AC 的解析式为:y =-2x -2; 当△AOC ∽△AEB 时,S △AOC S △AEB=(AC AB )2=(54 )2=516 ,∵S △AOC =1,∴S △AEB =165 ,∴12 AB ×|y E |=165 ,AB =4,则y E =-85 ,则点E(-15 ,-85 );由△AOC ∽△AEB 得:AO AC =AE AB =15,∴AE AB =55 .13.(2020·江西模拟)如图,抛物线y =-38 x 2+34x +3与x 轴交于点A ,B(点A 在点B 的左边),交y 轴于点C ,点P 为抛物线对称轴上一点.则△APC 的周长最小值是__13 +5__.14.(2020·江西一模)已知二次函数y =ax 2+bx +c(a >0)的图象与y 轴相交于点A.y 与x 的部分对应值如下表(m x 0 m 2y -3 -4 -3(1)直接写出m 的值和点(2)求出二次函数的关系式;(3)过点A 作直线l ∥x 轴,将抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线y =x +n 与新图象只有一个公共点P 是(s ,t)且t ≤5时,求n 的取值范围.解:(1)根据抛物线的轴对称性可知:m =1,由表格知,图象过(0,-3)∵图象与y 轴相交于A 点,∴A(0,-3);(2)∵抛物线的顶点坐标为(1,-4),∴设抛物线的关系式为:y =a (x -1)2-4,抛物线y 轴相交于A(0,-3),∴a -4=-3,解得,a =1,∴二次函数的关系式为:y =(x -1)2-4,即y =x 2-2x -3;(3)新图象如图所示,①当y =x +n 与y =x 2-2x -3交于点(0,-3)时,n =-3,当y =x +n 与y =x 2-2x -3交于(s ,t),t =5时,s 2-2s -3=5,解得,s =-2(交点在y 轴右边,舍去),或s =4,∴y =x +n 与新图象交于(4,5),则5=4+n ,∴n =1,∴当直线y =x +n 与新图象只有一个公共点P 是(s ,t)且t ≤5时,-3<n ≤1;②当y =x +n 与y =x 2-2x -3只有一个交点时,则x 2-2x -3=x +n ,即x 2-3x -3-n=0,∴Δ=9-4(-3-n)=0,∴n =-214,∴当直线y =x +n 与新图象只有一个公共点时,n <-214 综上,n 的取值范围为:-3<n ≤1或n <-214.。
中考数学总复习 第三单元 函数及其图象 第13课时 二次函数的综合与应用(考点突破)课件
2021/12/9
第二页,共十六页。
考点 聚焦 (kǎo diǎn)
考点二 二次函数的实际(shíjì)应用
1.在商品经营活动中,经常会遇到求最大利润、 最大销量等问题. 解此类题的关键是根据题意确 定出二次函数的解析式,然后确定其最大值,实 际问题中自变量x的取值要使实际问题有意义,因 此(yīncǐ)在求二次函数的最值时,一定要注意自变量 x的取值范围.
No 当每件的销售(xiāoshòu)价x为多少时,销售(xiāoshòu)该纪念品每天获得的利润y最大。单个商
品的利润×商品总件数=商品总获利。考点四:构建二次函数模型解决实际问题
Image
12/9/2021
第十六页,共十六页。
2021/12/9
第三页,共十六页。
考点 聚焦 (kǎo diǎn)
考点二 二次函数(hánshù)的实际应用
2.利用二次函数解决抛物线形的隧道、大桥和拱门等实际 问题时,要恰当地把这些实际问题中的数据落实到平面 直角坐标系中的抛物线上,从而确定抛物线的解析(jiě xī) 式,通过抛物线的解析(jiě xī)式可解决一些测量等问题.
4、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目 (tímù)分解开来,讨论过程中要思考全面.
2021/12/9
第五页,共十六页。
强化训练
考点(kǎo diǎn)一:二次函数的最值
D
2021/12/9
第六页,共十六页。
归纳(guīnà)拓展
中考数学专题复习 第十三讲二次函数的应用(共69张PPT)
t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4
…
下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?
江西专版中考数学第13讲二次函数的图象及性质精讲本课件
4.(2021·泰安)将抛物线 y=-x2-2x+3 的图象向右平移 1 个
单位,再向下平移 2 个单位得到的抛物线必定经过( B )
A.(-2,2)
B.(-1,1)
C.(0,6)
D.(1,-3)
5.(2021·眉山)在平面直角坐标系中,抛物线 y=x2-4x+5 与
y 轴交于点 C,则该抛物线关于点 C 成中心对称的抛物线的表 达式为( A ) A.y=-x2-4x+5 B.y=x2+4x+5 C.y=-x2+4x-5 D.y=-x2-4x-5
精讲释疑
题 型 一 二次函数的图象和性质
例 1.(2021·江西赣州模拟)如图,已知抛物线 l1:y=(x-1)2+ k(k>0)经过 y 轴上的点 A,顶点为 B.抛物线 l2:y=(x-h)2+2 -h(h≥2)的顶点为 D,直线 y=-x+b 经过 A,B,D 三点, 两抛物线交于点 C. (1)求 b 的值和点 B 的坐标; (2)设点 C 的横坐标为 m,探究 m 与 h 之间的数量关系; (3)当△ABC 是直角三角形时,求 h 的值.
例 5.(2021·江西抚州模拟)如图,二次函数 y=(x+2)2+m 的图
象与 y 轴交于点 C,与 x 轴的一个交点为 A(-1,0),点 B 在 抛物线上,且与点 C 关于抛物线的对称轴对称.已知一次函 数 y=kx+b 的图象经过 A,B 两点,根据图象,则满足不等 式(x+2)2+m≤kx+b 的 x 的取值范围是_-__4_≤__x_≤__-__1_____.
解:(1)∵y=(x-1)2+k(k>0)经过 y 轴上的点 A,顶点为 B,∴ A(0,1+k),B(1,k),∵y=(x-h)2+2-h(h≥2)的顶点为 D, ∴D(h,2-h),∵直线 y=-x+b 经过 A,D,∴b-=h1++bk=,2-h, ∴kb==12,, ∴b 的值为 2,点 B 的坐标为(1,1); (2)由(1)知,抛物线 l1:y=(x-1)2+1,∵点 C 的横坐标为 m,两 抛物线交于点 C.∴(m-1)2+1=(m-h)2-h+2,整理得 2mh- 2m=h2-h,∵h≥2,∴m=2hh2--h2 =h2 ;
广东中考数学第13讲 二次函数的综合运用
导航
考点演练 1.若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,-1),则 关于x的方程ax2+bx+c=0的根的情况是( C ) A.有两个大于1的不相等实数根 B.有两个小于1的不相等实数根 C.有一个大于1另一个小于1的实数根 D.没有实数根
导航
2.如图,抛物线y=ax2+bx+c(a≠0)与直线y=kx+h(k≠0)交于 A,B两点,下列是关于x的不等式或方程,结论正确的是( D ) A.ax2+(b-k)x+c>h的解集 是2<x<4 B.ax2+(b-k)x+c>h的解集是x>4 C.ax2+(b-k)x+c>h的解集是x<2 D.ax2+(b-k)x+c=h的解是x1=2,x2=4
导航
2.(1)已知二次函数y=ax2+bx+c的图象如图1,对称轴为直线 x=1,则不等式ax2+bx+c>0的解集是 -1<x<3 . (2)二次函数y=-x2+bx+c的部分图象如图2所示,由图象可 知,不等式-x2+bx+c<0的解集为 x<-1或x>5 .
导航
3.二次函数的实际应用 根据题目所给两个变量的数量关系、根据图表所给两个变量 的关系、根据图形所给周长、面积、相似比等关系列出二次 函数关系式,求出最大(小)值. 3.用总长为80 m的篱笆围成一个面积为S m2的矩形场地,设矩 形场地的一边长为x m,则当x= 20 m时,矩形场地的面积S 最大.
导航
3.二次函数y=x2+bx的图象如图,对称轴为直线x=1.若关于x 的一元二次方程x2+bx-t=0(b、t为实数)在-1<x<4的范 围内有解,则t的取值范围是 -1≤t<8 .
2
又因为x1=1.3, 所以x2=-2-x1=-2-1.3=-3.3.故答案为:-3.3.
导航
2021年中考数学专题二次函数综合运用
二次函数的综合运用1、(2013·重庆B卷25题)如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=23S?若存在,求点E的坐标;若不存在,请说明理由.1、分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=-1,交x轴于A、B两点,其中A点的坐标为(-3,0),根据二次函数的对称性,即可求得B点(1,0);(2)①a=1时,先由对称轴为直线x=-1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x-3,得到C点坐标,然后设P点坐标为(x,x2+2x-3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标(4,21)或(-4,5);②先运用待定系数法求出直线AC的解析式为y=-x-3,再设Q点坐标为(x,-x-3),则D点坐标为(x,x2+2x-3),然后用含x的代数式表示QD=23924x⎛⎫-++⎪⎝⎭.2、(2011•丹东)己知:二次函数26y ax bx=++(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.(1)请直接写出点A、点B的坐标.(2)请求出该二次函数表达式及对称轴和顶点坐标.(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.2、分析:(1)A(-2,0),B(6,0);(2)()2211262822y x x x=-++=--+,顶点坐标(2,8);(3)作点C关于抛物线对称轴的对称点C′,连接AC′y=x+2,交抛物线对称轴于P点(2,4);(4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面积,利用三角形面积公式表示△ACQ的面积,根据S△CDQ=S△ABC-S△BDQ-S△ACQ=()()()22 332463626 88m m m---+=--+.3、(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.3、(1)设抛物线l的解析式为y=ax2+bx+c,将A、D、M三点的坐标代入,y=-x2+2mx+m;(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.根据轴对称及平行线的性质得出DM=OM=x,则A′M=2m-x,OA′=m,在Rt△OA′M中运用勾股定理求出x,得出A′点坐标43,55m m ⎛⎫-⎪⎝⎭,运用待定系数法得到直线OA′的解析式34y x=-,确定E点坐标(4m,-3m),根据抛物线l与线段CE相交,(4m,-8m2+m)列出关于m的不等式组,求出解集即可1182m≤≤;(3)根据二次函数的性质,结合(2)中求出的实数m的取值范围,即可求解p13,24⎛⎫⎪⎝⎭.4、(2013•舟山)如图,在平面直角坐标系xOy中,抛物线()221144y x m m m=--+的顶点为A,与y 轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE ∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?4、(1)点B的坐标为(0,2);(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,2144y m m=-++,将2xm=代入2144y m m=-++,即可求出二次函数的表达式2114162y x x=-++;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.m的值为8或-8.5、(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x 轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.5、(1)y=-x+1;(2)21212y x x=-++;(3)关键是证明△CEQ与△CDO均为等腰直角三角形;(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值2136、(2013•增城市二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=-x+3恰好经过B,C两点(1)写出点C的坐标;(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.6、(1)由直线y=-x+3可求出C点坐标C(0,3);(2)由B,C两点坐标便可求出抛物线方程y=x2-4x+3,从而求出抛物线的对称轴x=2和A(1,0)(3)作出辅助线OE,由三角形的两个角相等,证明△AEC∽△AFP,根据两边成比例,便可求出PF=2,从而求出P点坐标点P的坐标为(2,2)或(2,-2).7、(2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.7、(1)y=x2-4x+3;(2)利用待定系数法求出直线AC的解析式y=x-1,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D(2,1);(3)根据直线AC的解析式y=x+m,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线y=x134-,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解面积278,F坐标53,24⎛⎫-⎪⎝⎭.8、(2013•安顺)如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.8、分析:(1)由于A(-1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可.y=-x2+2x+3(2)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.()3555;2,322⎛+⎝⎭(3)根据抛物线上点的坐标特点,利用勾股定理求出相关边长,再利用勾股定理的逆定理判断出直角梯形中的直角,便可解答(2,3).9、(12分)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.解:(1)∵二次函数c bx x y ++=221的图像经过点A (2,0)C(0,-1) ∴⎩⎨⎧-==++122c c b解得: b =-21c =-1-------------------2分 ∴二次函数的解析式为121212--=x x y --------3分(2)设点D 的坐标为(m ,0) (0<m <2)∴ OD =m ∴AD =2-m 由△AD E ∽△AOC 得,OCDEAO AD = --------------4分 ∴122DEm =- ∴DE =22m ------------------------------------5分∴△CDE 的面积=21×22m-×m=242m m +-=41)1(412+--m 当m =1时,△CDE 的面积最大∴点D 的坐标为(1,0)--------------------------8分备用图题图26(3)存在 由(1)知:二次函数的解析式为121212--=x x y 设y=0则1212102--=x x 解得:x 1=2 x 2=-1 ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:y =kx +b∴ ⎩⎨⎧-==+-10b b k 解得:k =-1 b =-1∴直线BC 的解析式为: y =-x -1在Rt △AOC 中,∠AOC=900OA=2 OC=1 由勾股定理得:AC=5 ∵点B(-1,0) 点C (0,-1) ∴OB=OC ∠BCO=450①当以点C 为顶点且PC=AC=5时, 设P(k , -k -1)过点P 作PH ⊥y 轴于H ∴∠HCP=∠BCO=450CH=PH=∣k ∣ 在Rt △PCH 中k 2+k 2=()25 解得k 1=210, k 2=-210 ∴P 1(210,-1210-) P 2(-210,1210-)---10分 ②以A 为顶点,即AC=AP=5 设P(k , -k -1)过点P 作PG ⊥x 轴于GAG=∣2-k ∣ GP=∣-k -1∣ 在Rt △APG 中 AG 2+PG 2=AP 2 (2-k )2+(-k -1)2=5 解得:k 1=1,k 2=0(舍)∴P 3(1, -2) ----------------------------------11分 ③以P 为顶点,PC=AP 设P(k , -k -1) 过点P 作PQ ⊥y 轴于点Q PL ⊥x 轴于点L ∴L(k ,0)∴△QPC 为等腰直角三角形 PQ=CQ=k 由勾股定理知 CP=PA=2k∴AL=∣k -2∣, PL=|-k -1|在Rt △PLA 中(2k)2=(k -2)2+(k +1)2 解得:k =25∴P 4(25,-27) ------------------------12分 10、(本题满分12分)已知抛物线2y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C ,其顶点为D .(1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的31?若存在,求点Q 的坐标;若不存在,请说明理由.(1)求出:4-=b ,3=c ,抛物线的对称轴为:x=2(2) 抛物线的解析式为342+-=x x y ,易得C 点坐标为(0,3),D 点坐标为(2,-1) 设抛物线的对称轴DE 交x 轴于点F ,易得F 点坐标为(2,0),连接OD ,DB ,BE ∵∆OBC 是等腰直角三角形,∆DFB 也是等腰直角三角形,E 点坐标为(2,2), ∴∠BOE= ∠OBD= 45 ∴OE ∥BD∴四边形ODBE 是梯形 ………………5分 在ODF Rt ∆和EBF Rt ∆中, OD=5122222=+=+DFOF ,BE=5122222=+=+FB EF∴OD= BE∴四边形ODBE 是等腰梯形 ………………7分(3) 存在, ………………8分由题意得:29332121=⨯⨯=⋅=DE OB S ODBE 四边形 ………………9分 设点Q 坐标为(x ,y ), 由题意得:y y OB S OBQ 2321=⋅=三角形=23293131=⨯=ODBE S 四边形∴1±=y当y=1时,即1342=+-x x ,∴ 221+=x , 222-=x ,∴Q 点坐标为(2+2,1)或(2-2,1) ………………11分 当y=-1时,即1342-=+-x x , ∴x=2, ∴Q 点坐标为(2,-1)综上所述,抛物线上存在三点Q 1(2+2,1),Q 2 (2-2,1) ,Q 3(2,-1) 使得OBQ S 三角形=ODBE S 四边形31. ………………12分11、(11分)如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.EFQ 1 Q 3Q 2MCDP解:(1)抛物线2(1)0)y a x a =-+≠经过点(20)A -,,09a a ∴=+= ························· 1分 ∴二次函数的解析式为:2y x =++·············· 3分 (2)D为抛物线的顶点(1D ∴过D 作DN OB ⊥于N,则DN =3660AN AD DAO =∴==∴∠=,° ·············· 4分OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 66(s)OP t ∴=∴= ············· 5分 ②当DP OM ⊥时,四边形DAOP 是直角梯形过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =)55(s)OP DH t ∴===·························· 6分 ③当PD OA =时,四边形DAOP 是等腰梯形 26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. 7分 (3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形 则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,过P 作PE OQ ⊥于E,则PE =···················· 8分116(62)222BCPQ S t t ∴=⨯⨯⨯-⨯=2322t ⎫-+⎪⎝⎭··························· 9分 当32t =时,BCPQ S·················· 10分∴此时3339332444OQ OP OE QE PE ==∴=-==,=,2PQ ∴===·············· 11分 12.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标. 解:(1)该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-. ··············· (3分)(2)存在. ······························ (4分) 如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-,当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠=°,∴①当21AM AO PM OC ==时,APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ················· (6分) ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. ······················ (7分)类似地可求出当4m >时,(52)P -,. ·················· (8分) 当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. ········ (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-. 过D 作y 轴的平行线交AC 于E . 由题意可求得直线AC 的解析式为122y x =-. ············· (10分) E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,.2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭. ············ (11分)22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△.∴当2t =时,DAC △面积最大. (21)D ∴,.13.如图,二次函数的图象经过点D(0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C 的横坐标为4,且过点(0,397)∴y=a(x-4)2+k k a +=16397 ………………①又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6 ∴A(1,0),B(7,0) ∴0=9a+k ………………② 由①②解得a=93,k=3-∴二次函数的解析式为:y=93(x-4)2-3⑵∵点A 、B 关于直线x=4对称 ∴PA=PB∴PA+PD=PB+PD ≥DB∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P 设直线x=4与x 轴交于点M∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO ∴△BPM ∽△BDO∴BO BM DO PM = ∴3373397=⨯=PM ∴点P 的坐标为(4,33)⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=33,∴∠ACM=60o,∵AC=BC ,∴∠ACB=120o①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N如果AB=BQ ,由△ABC ∽△ABQ 有 BQ=6,∠ABQ=120o,则∠QBN=60o∴QN=33,BN=3,ON=10, 此时点Q(10,33),如果AB=AQ ,由对称性知Q(-2,33) ②当点Q 在x 轴下方时,△QAB 就是△ACB , 此时点Q 的坐标是(4,3-),经检验,点(10,33)与(-2,33)都在抛物线上 综上所述,存在这样的点Q ,使△QAB ∽△ABC点Q 的坐标为(10,33)或(-2,33)或(4,3-).14、(12分) 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.解:(1)设该抛物线的解析式为c bx ax y ++=2,由抛物线与y 轴交于点C (0,-3),可知3-=c .即抛物线的解析式为32-+=bx ax y . ………………………1分把A (-1,0)、B (3,0)代入, 得30,9330.a b a b --=⎧⎨+-=⎩解得2,1-==b a .∴ 抛物线的解析式为y = x 2-2x -3. ……………………………………………3分 ∴ 顶点D 的坐标为()4,1-. ……………………………………………………4分 说明:只要学生求对2,1-==b a ,不写“抛物线的解析式为y = x 2-2x -3”不扣分. (2)以B 、C 、D 为顶点的三角形是直角三角形. ……………………………5分理由如下:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F.在Rt △BOC 中,OB=3,OC=3,∴ 182=BC . …………………………6分 在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1,∴ 22=CD . …………………………7分 在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2,∴ 202=BD . …………………………8分 ∴ 222BD CD BC =+, 故△BCD 为直角三角形. …………………………9分 (3)连接AC ,可知Rt △COA ∽ Rt △BCD ,得符合条件的点为O (0,0). ………10分过A 作AP 1⊥AC 交y 轴正半轴于P 1,可知Rt △CAP 1 ∽ Rt △COA ∽ Rt △BCD ,求得符合条件的点为)31,0(1P . …………………………………………11分 过C 作CP 2⊥AC 交x 轴正半轴于P 2,可知Rt △P 2CA ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为P 2(9,0). …………………………………………12分 ∴符合条件的点有三个:O (0,0),)31,0(1P ,P 2(9,0).15、如图,抛物线21y ax bx =++与x 轴交于两点A (-1,0),B (1,0),与y 轴交于点C . (1)求抛物线的解析式;(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;(3)在x 轴下方的抛物线上是否存在一点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,则求出点M 的坐标;若不存在,请说明理由.解:(1)解:(1)把A (1,0)- B (1,0)代入21y ax bx =++得:1010a b a b -+=⎧⎨++=⎩ 解得:1a b =-⎧⎨=⎩ 21y x ∴=-+………………………………………………………………………3分(2)令0x =,得1y = ∴()0,1C ……………………………………………4分∵OA=OB=OC=1 ∴∠BAC=∠ACO=∠BCO=∠ABC =45 ∵BD ∥CA , ∴∠AB D=∠BA C 45=︒过点D 作DE ⊥x 轴于E ,则∆BDE 为等腰直角三角形 令OE k = ()0k >,则1DE k =+ ∴(),1D k k --- ∵点D 在抛物线21y x ∴=-+上 ∴ ()211k k --=--+解得12k =,21k =-(不合题意,舍去) ()2,3D -- ∴DE=3(说明:先求出直线BD 的解析式,再用两个解析式联立求解得到点D 的坐标也可)∴四边形ACBD 的面积S =12AB •OC +12AB •DE 112123422=⨯⨯+⨯⨯=………………………………7分 (说明:也可直接求直角梯形ACBD 的面积为4)(3)存在这样的点M ……………………………………………………………………8分∵∠ABC=∠ABD=45 ∴∠DBC=90∵MN ⊥x 轴于点N , ∴∠ANM=∠DBC =90 在Rt △BOC 中,OB=OC=1 有2 在Rt △DBE 中,BE=DE=3 有BD=32设M 点的横坐标为m ,则M ()2,1m m -+ ①点M 在y 轴左侧时,则1m <- (ⅰ) 当∆A MN ∽∆CDB 时,有AN MNBC BD=∵21,1AN m MN m =--=-即 2232=解得:1m =-(舍去) 22m =- 则()2,3M --(ⅱ) 当∆AMN ∽∆DCB 时,有AN MNBD BC=2322=解得11m =-(舍去) 223m =(舍去)…………10分② 点M 在y 轴右侧时,则1m > (ⅰ) 当∆AMN ∽∆DCB 时,有AN MNBD BC= ∵21,1AN m MN m =+=-∴ 2322=解得11m =-(舍去) 243m =∴47,39M ⎛⎫-⎪⎝⎭(ⅱ) 当∆A MN ∽∆CDB 时,有AN MNBC BD= 即 2232=解得:11m =-(舍去) 24m = ∴()4,15M -∴M 点的坐标为()()472,3,,,4,1539⎛⎫---- ⎪⎝⎭…………………………12分16、在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。