点线面位置关系习题

合集下载

2023版高考数学一轮总复习8-2空间点线面的位置关系习题

2023版高考数学一轮总复习8-2空间点线面的位置关系习题

8.2 空间点、线、面的位置关系基础篇固本夯基考点一点、线、面的位置关系1.(2022届湘豫名校联盟11月联考,7)已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若α∥β,m⊥α,则m⊥β;②若m∥n,m⊥α,则n⊥α;③若α⊥β,m⊥α,则m∥β;④若m⊥n,m⊥α,则n∥α.其中真命题有( )A.1个B.2个C.3个D.4个答案 B2.(2022届山东青岛期中,7)已知a,b,c,d是四条直线,如果a⊥c,a⊥d,b⊥c,b⊥d.则结论“a∥b”与“c∥d”中成立的情况是( )A.一定同时成立B.至多一个成立C.至少一个成立D.可能同时不成立答案 C3.(2022届南宁摸底,8)如图是长方体的展开图,AD=2AB,四边形ABFE为正方形,P、Q分别为AD、HI的中点,给出下列判断:①AM∥CG,②AF∥DK,③BP∥JQ,④BP⊥QJ.其中正确的个数为( )A.0B.1C.2D.3答案 C4.(20215·3原创题)中国文化源远流长,折纸文化传承已久,如图1所示,六个等边三角形沿虚线折起得到的几何体如图2所示,则异面直线的对数为( )A.6对B.9对C.12对D.15对答案 C5.(2021安徽江南十校一模,7)设a、b为两条直线,则a∥b的充要条件是( )A.a、b与同一个平面所成角相等B.a、b垂直于同一条直线C.a、b平行于同一个平面D.a、b垂直于同一个平面答案 D6.(2020四川九市二诊,5)已知m,n是两条不重合的直线,α是一个平面,则下列命题正确的是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m⊥n,m⊥α,则n∥αD.若m⊥α,n∥α,则m⊥n答案 D7.(2021河南洛阳二模,12)在正四棱柱(侧面为矩形,底面为正方形的棱柱)ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是( )A.EF⊥BB1B.EF⊥BDC.EF与CD为异面直线D.EF与A1C1为异面直线答案 D8.(2021东北三省四市联考,16)已知长方体ABCD-A1B1C1D1中,AB=2BC=4,E是C1D1的中点,且异面直线AD1与CE所成的角是60°.则在此长方体的表面上从A1到C的路径中,最短路径的长度为.答案4√29.(2020新高考Ⅰ,16,5分)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为.答案√2π2考点二异面直线所成的角1.(2022届新疆克拉玛依检测三,4)我们打印用的A4纸的长与宽的比约为√2,之所以是这个比值,是因为把纸张对折,得到的纸的长与宽之比仍约为√2,纸张的形状不变.已知圆柱的母线长小于底面圆的直径长(如图所示),它的轴截面ABCD为一张A4纸大小,若点E为上底面圆上弧AB的中点,则异面直线DE与AB所成的角约为( )A.π6B.π4C.π3D.2π3答案 C2.(2022届河南洛阳期中,9)在直三棱柱ABC-A1B1C1中,∠ACB=90°,D1、E1分别是A1B1、A1C1的中点,CA=CB=CC1,则AE1与BD1所成角的余弦值为( )A.√1515B.√3015C.√1510D.√3010答案 D3.(2018课标Ⅱ,9,5分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A.√22B.√32C.√52D.√72答案 C4.(2021东北三省四市联考,8)长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4√3.过BC的平面分别交线段AA1,DD1于M、N两点,四边形BCNM为正方形,则异面直线D1M与BD所成角的余弦值为( )A.√1414B.√2114C.√144D.4√3535答案 D5.(2021山西晋中二模,6)如图,圆锥的轴截面ABC为正三角形,其面积为4√3,D为AA⏜的中点,E为母线BC的中点,则异面直线AC,DE所成角的余弦值为( )A.√24B.√22C.√63D.√33答案 B综合篇知能转换考法一点、线、面位置关系的判定及应用1.(2021河南九师联盟1月联考,11)如图,在正方体ABCD-A1B1C1D1中,P为底面ABCD的中心,E 为线段A1D1上的动点(不包括两个端点),Q为线段AE的中点.现有以下结论:①PE与QC是异面直线;②过A、P、E三点的正方体的截面与正方体表面的交线围成的图形是等腰梯形;③平面APE⊥平面BDD1B1;④PE∥平面CDD1C1.其中正确结论的序号是( )A.①④B.②③C.②④D.①③答案 B2.(2019课标Ⅲ,8,5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案 B3.(2020吉林4月联考,11)我国古代的数学著作《九章算术·商功》中,将底面是直角三角形的直三棱柱称为“堑堵”.在如图所示的“堑堵”ABC-A1B1C1中,AB=AC=AA1=2,M、N分别是BB1和A1C1的中点,则平面AMN截“堑堵”ABC-A1B1C1所得截面图形的面积为( )A.2√213B.4√213C.2√73D.4√73答案 A4.(2022届黑龙江大庆实验中学月考,11)给出下列命题:①若△ABC的三条边所在直线分别交平面α于P,Q,R三点,则P,Q,R三点共线;②若直线a,b是异面直线,直线b,c是异面直线,则直线a,c是异面直线;③若三条直线a,b,c两两平行且分别交直线l于A,B,C三点,则这四条直线共面;④对于三条直线a,b,c,若a⊥c,b⊥c,则a∥b.其中所有真命题的序号是( )A.①②B.①③C.③④D.②④答案 B5.(2022届成都期中,12)已知正方体ABCD-A1B1C1D1的棱长为1,P是空间中任意一点,有下列结论:;①若P为棱CC1中点,则异面直线AP与CD所成角的正切值为√52;②若P在线段A1B上运动,则AP+PD1的最小值为√6+√22③若P在以CD为直径的球面上运动,当三棱锥P-ABC体积最大时,三棱锥P-ABC外接球的表面积为2π;④若过点P的平面α与正方体每条棱所成角相等,则α截此正方体所得截面面积的最大值为3√3.4其中正确结论的个数为( )A.4B.3C.2D.1答案 B6.(2022届山西长治第二中学月考,15)已知两条不同的直线m,n,两个不重合的平面α,β,给出下列5个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④m⊥α,m∥β⇒α⊥β;⑤α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是.答案①④⑤7.(2021内蒙古赤峰2月月考,16)如图,在棱长为2的正方体中,点M、N在棱AB、BC上,且AM=BN=1,P在棱AA1上,α为过M、N、P三点的平面,则下列说法正确的是.①存在无数个点P,使面α与正方体的截面为五边形;②当A1P=1时,面α与正方体的截面面积为3√3;③只有一个点P,使面α与正方体的截面为四边形;④当面α交棱CC1于点H时,PM、HN、BB1三条直线交于一点.答案①②④考法二异面直线所成角的求解方法1.(2022届黑龙江模拟,8)如图,某圆锥SO的轴截面SAC是等边三角形,点B是底面圆周上的一点,且∠BOC=60°,点M是SA的中点,则异面直线AB与CM所成角的余弦值是( )A.13B.√74C.34D.√32答案 C2.(2020湖北重点高中联考,8)在直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,且斜边BC=2,D是BC的中点,若AA1=√2,则异面直线A1C与AD所成角的大小为( )A.30°B.45°C.60°D.90°答案 C3.(2021全国乙,10,5分)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.π2B.π3C.π4D.π6答案 D4.(2021全国重点中学领航高考冲刺卷(九),9)已知SA,SB,SC是圆锥SO的三条母线,如图为圆锥SO的正视图,点S,A,B,C在圆锥SO的正视图中分别对应点S',A',B',C',其中C'为A'B'的中点,若D为母线SB的中点,则异面直线SC与OD所成角的余弦值为( )A.√34B.√23C.34D.23答案 C5.(20215·3原创题)沿正三角形ABC的中线AD翻折,使点B与点C间的距离等于中线AD的长,若三棱锥A-BCD的体积为2,则异面直线AC与BD所成角的余弦值为.答案14。

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为。

(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.【答案】(1)见解析(2)4 (3)【解析】(1)根据长方体的性质推断出平面平面平面.进而根据线面平行的判定定理推断出∥平面.设,进而根据几何体的体积关系求得棱柱的体积,进而利用体积公式求得.(3)在平面中作交于,过作交于点,根据线面垂直的性质推断出,进而根据,推断出,利用线面垂直的性质证明出.通过∽.利用比例关系求得,最后利用平方关系求得.试题解析:(1)∵是长方体,∴平面平面.∵平面,平面,∴平面.(2)解:设,∵几何体的体积为,∴,即,即,解得.∴的长为4.(3)在平面中作交于,过作交于点,则.因为,而,又,且.∽.为直角梯形,且高.【考点】直线与平面平行的判定;点、线、面间的距离计算.2.在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条【答案】.【解析】如图可知:与直线异面的面对角线总共有,.,,,,,∴总共有条【考点】空间中直线与直线的位置关系.3.教室内有一把直尺,无论怎样放置,地面上总有这样的直线与该直尺所在直线 ().A.平行B.异面C.垂直D.相交但不垂直【答案】C【解析】由题意,直尺所在直线若与地面垂直,则在地面总有这样的直线,使得它与直尺所在直线垂直;若直尺所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直;综上,教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线垂直,故选B.【考点】空间中直线与平面之间的位置关系.4.以下四个命题中,正确的有几个()①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面aA0个 B1个 C2个 D3个【答案】A【解析】本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.【考点】点线面位置关系5.已知不同直线、和不同平面、,给出下列命题:①②③异面④其中错误的命题有()个A.1B.2C.3D.4【答案】C【解析】①,正确;②,当时不成立,故②错误;③异面,,故③错误;④,有可能,故④错误【考点】直线与平面(平行)垂直的判定和性质定理,平面与平面(平行)垂直的判定和性质定理6.在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.【答案】(1)见解析(2)见解析【解析】(1)通过借助中间量——直线,易得,,可得直线,从而证得平面;(2)通过证明平面,即可征得平面平面.试题解析:(1)连结.在长方体中,对角线,又∵、为棱、的中点,∴,∴.又∵平面,平面,∴平面.(2)在长方体中,平面,而平面,∴.又在正方形中,,∴平面.又∵平面,∴平面平面.【考点】1.直线与平面平行的证明;2.面面垂直的证明.7.正方体-中,与平面ABCD所成角的余弦值为( )A.B.C.D.【答案】D【解析】因为平面所以与平面所成角为求线面角关键找垂线,找出垂线就能在直角三角形中研究线面角大小.另外需熟悉正方体中面对角线与体对角线量的关系.【考点】直线与平面所成角.8.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④若l与平面α平行,则l与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A.1B.2C.3D.4【答案】B【解析】①若直线a不在α内,则a∥α或a与α相交,故此命题错误;②若直线l上有无数个点不在平面α内,则l∥α或a与α相交,故此命题错误;③若直线l与平面α平行,则l与α内的任意一条直线平行或异面,故此命题错误;④若l与平面α平行,则l与α内任何一条直线都没有公共点,正确;⑤平行于同一平面的两直线可以相交,正确.故选B【考点】本题考查了空间中的线面关系点评:熟练运用线面平行的概念、判定及性质是解决此类问题的关键,属基础题9.如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且∥,则下列结论中不正确的是()A.∥B.四边形是矩形C.是棱台D.是棱柱【答案】C【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,平面EFGH∩平面BCC1B1=FG,所以EH∥平面BCB1C1,又EH⊂平面EFGH,平面EFGH∩平面BCB1C1=FG,所以EH∥FG,故EH∥FG∥B1C1,所以选项A、D正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B也正确,故选C.【考点】长方体的几何特征,直线与平面平行、垂直的判定与性质。

立体几何点线面位置关系习题精选

立体几何点线面位置关系习题精选

同步练习第I 卷(选择题)1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A 、若m ∥,n α∥α,则m ∥nB 、若,αγβγ⊥⊥,则α∥βC 、若n ∥,n α∥β,则α∥βD 、若,m n αα⊥⊥,则m ∥n 2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面, 则下列命题中正确的是 ( ) A .//,//m n αα,则//m n B .,m m αβ⊥⊥,则//αβ C .//,//m n m α,则//n α D .,αγβγ⊥⊥,则//αβ3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( ) A .若α∥β,m ∥α,则m ∥β B .若α⊥β,m ⊥β,则m ⊥α C .若m ⊥α,m ⊥β,则α∥β D .若m ∥α,m ⊥n ,则n ⊥α4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( )A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l α⊥,l m //,则m α⊥ B .若l m ⊥,m α⊂,则l α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m // 6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( ) A .若α⊥a 且b a ⊥,则α//bB .若αγ⊥且βγ⊥,则βα//C .若α//a 且β//a ,则βα//D .若αγ//且βγ//,则βα//7.关于空间两条直线a 、b 和平面α,下列命题正确的是( ) A .若//a b ,b α⊂,则//a α B .若//a α,b α⊂,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( )①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α⊄,m β⊥,则//m α ③若m β⊥,m α⊂,则αβ⊥ ④若αβ⊥,m α⊂,n β⊂,则m n ⊥ A .0个B .1个C .2个D .3个10.已知两个不同的平面αβ、和两个不重合的直线m 、n ,有下列四个命题: ①若//,m n m n αα⊥⊥,则; ②若,,//m m αβαβ⊥⊥则; ③若,//,,m m n n αβαβ⊥⊂⊥则; ④若//,//m n m n ααβ⋂=,则. 其中正确命题的个数是( )A.0B.1C.2D.311.已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是 A. ,////m n m n αα⊂⇒ B. ,m n m n αα⊂⊥⇒⊥ C. ,,////m n m n αβαβ⊂⊂⇒ D. ,n n βααβ⊂⊥⇒⊥12.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥(C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ13.对于空间的一条直线m 和两个平面,αβ,下列命题中的真命题是 A.若,,mm αβ则αβ B. .若,,m m αβ则αβ⊥C.若,,m m αβ⊥⊥则αβ D. 若,,m m αβ⊥⊥则αβ⊥14.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是( ) A .若l ∥m ,m α⊂,则l ∥α; B .若,,,l m l n m n α⊥⊥⊂,则l α⊥; C .若l ∥α,l ∥β,m αβ=,则l ∥m ; D .若,,l m l m αβ⊂⊂⊥,则αβ⊥.15.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,a b b α⊂,则//a α C.若//,,,a b αβαγβγ==则//a b D.若,,//,//a b a b ββαα⊂⊂,则//βα第II 卷(非选择题)二、解答题(本题共7道小题,第1题0分,第2题0分,第3题0分,第4题0分,第5题0分,第6题0分,第7题0分,共0分)在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,若E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:平面PDC ⊥平面PAD ;BA17.(本题10分)如图,ABCD 是正方形,O 是该正方形的中心,P 是平面ABCD 外一点,PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA ∥平面BDE ; (2)BD ⊥平面PAC .18.(本小题8分)如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且2PA PD AD ==,设E 、F 分别为PC 、BD 的中点. (1) 求证:EF //平面PAD ; (2) 求证:面PAB ⊥平面PDC ;(3) 求二面角B PD C --的正切值.PO ECDBACBAD1B1A1C19.如图,底面是正三角形的直三棱柱111ABC A B C -中,D 是BC 的中点,12AA AB ==. (Ⅰ)求证:1//AC 平面1AB D ; (Ⅱ)求点A 1 到平面1AB D 的距离.20.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠= E 、F 分别是PB 、CD 的中点,且4PB PC PD ===. (1)求证:PA ABCD ⊥平面; (2)求证://EF 平面PAD ; (3)求二面角A PB C --的余弦值.21.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (Ⅰ)求证://EF 平面PAD ; (Ⅱ)求证:EF CD ⊥;(Ⅲ)设PD=AD=a, 求三棱锥B-EFC 的体积.BA22.(本小题满分10分)P-中,底面ABCD是矩形,如图,在四棱锥ABCDAP=,E,F分别是PB,PC的中点.PA⊥平面ABCD,AB(Ⅰ)证明:EF∥平面PAD;AE⊥.(Ⅱ)求证:PC评卷人得分三、解答题(本题共3道小题,每小题10分,共30分)评卷人得分四、填空题(本题共4道小题,每小题0分,共0分)23.已知直线m,n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题序号是______24.设,m n是两条不同的直线,,αβ是两个不同的平面,下列正确命题的序号是__________。

点线面位置关系典型例题

点线面位置关系典型例题

点线面位置关系典型例题一,直线与平面平行的判定与性质典型例题一例1 简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b = ,则b 和α的位置关系如何?(2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何?分析:(1)由图(1)可知:α⊂b 或A b =α ;(2)由图(2)可知:α//b 或α⊂b .说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC ,交BD 于点O ,∵四边形ABCD 是平行四边形∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ∆的中位线,∴OQ PC //.∵PC 在平面BDQ 外,∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.典型例题三例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.分析:可考虑P 点的不同位置分两种情况讨论.解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a ='' ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面. 已知:直线b a //,//a 平面α,α⊄b .求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β.设c =βα ,∵α//a ,∴c a //.又∵b a //,∴c b //.∵α⊄b ,α⊂c ,∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求:(1)异面直线AB SC 、的公垂线段EF 及EF 的长;(2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线ABSC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.由已知,得SAB ∆≌CAB ∆.∴CF SF =,E 是SC 的中点,∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角.连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得 22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a a a a EF EG GF EF EG GEF . ∴45=∠GEF .故异面直线EF 和SA 所成的角为 45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.已知:直线α//a ,α∈B ,b B ∈,a b //.求证:α⊂b .分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβ .∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾.∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据.(2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b . 这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ;(2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行;(4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行.故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交. 已知:直线b a //,P a =α平面 .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用. 解:∵b a //,∴a 和b 可确定平面β.∵P a =α ,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b = ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾).所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论. 证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β.在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α.∵α⊂b ,a 与b 为异面直线,∴α⊄a .又∵'//a a ,α⊂'a , ∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面,由上面的推导过程可知γ也是经过相交直线b 和'a 的. 由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行. 已知:l =βα ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b .∵α//a ,γ⊂a ,b =αγ ,∴b a //.同理过a 作平面δ交β于c .∵β//a ,δ⊂a ,c =βδ ,∴c a //.∴c b //.∵β⊄b ,β⊂c ,∴β//b .又∵α⊂b ,l =βα ,∴l b //.又∵b a //,∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a ,∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行.∴直线1l 和2l 重合.又∵α⊂1l ,β⊂2l ,∴直线1l 、2l 都重合于直线l ,∴l a //.说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M ,在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AE PE AB PM =. 又∵CD AB QN ////,∴BD BQ DC QN =,即BD BQ AB QN =.∵正方形ABEF 与ABCD 有公共边AB ,∴DB AE =.∵DQ AP =,∴BQ PE =.∴QN PM =.又∵AB PM //,AB QN //,∴QN PM //.∴四边形PQNM 为平行四边形.∴MN PQ //.又∵⊂MN 面BCE ,∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QB DQ QS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB ,∴DB AE =,∵DQ AP =,∴QB PE =.∴QS AQ QBDQ PE AP ==. ∴ES PQ //,又∵⊂ES 面BEC ,∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点.已知:a =βα ,b =γβ ,c =αγ .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ ,∴β⊂b a 、.∴a 与b 平行或相交.①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a .又∵c =αγ ,α⊂a ,∴c a //.∴c b a ////.②若a 与b 相交,如图,设O b a = ,∴a O ∈,b O ∈.又∵βα =a ,γβ =b .∴α∈O ,γ∈O又∵c =γα ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DF E E A DF αααAE 和DF 是异面直线. 证法二:(反证法)若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β.(1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾.(2)若E 、F 不重合,∵EF B ∈,EF C ∈,β⊂EF ,∴β⊂BC .∵β∈A ,β∈D ,∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾.综上,假设不成立.故AE 和DF 是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?”对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.证明:如图,连结AE 、EG 、EF 、GF .在ABC ∆中,E 、F 分别是AB 、BC 的中点.∴EF AC //.于是AC //平面EFG .同理可证,BD //平面EFG .说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE ,则1∶3=PE AE∶,连结DE , ∵Q 为BCD ∆的重心,∴1∶3=QE DE∶, ∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄,∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图.求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=.∵G 为11D C 的中点,∴CD G D //1且CD G D 211=,∴G D EF 1//且G D EF 1=,∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄,∴11//B BDD EG 平面.典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确.∴应选D .说明:本题主要考查直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ).A .一定平行B .一定相交C .一定异面D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系;如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ).A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了.B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交.C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾.D 正确,在a 上任取一点A ,过A 点做直线b c //,则c 与a 确定一个平面与b 平行,这个平面是惟一的.∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念.典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行. 解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b .∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面;还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了.∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面 α=.∴EG a //,即EG BD //, ∴FC AF AF BD EG CD BC FG EF AC AF CD FG BC EF +==++===.则9204545=+⨯=+⋅=FC AF BD AF EG .∴应填:920.说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.二,面面平行的性质与判定典型例题一例1:已知正方体1111-D C B A ABCD .求证:平面//11D AB 平面BD C 1.证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//,又 ⊂B C 1平面BD C 1,故 //1A D 平面BD C 1.同理 //11B D 平面BD C 1.又 1111D B D A D = ,∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγ ,b =γβ .∵βα//∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交.已知:如图,βα//,A l =α .求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B . ∴γ与α、β都相交.设a =αγ ,b =γβ .∵βα//∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A .∵l 与b 相交.所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G .∵F CD AG =∴ AG ,CD 确定平面γ,且AC =αγ ,DG =βγ .∵βα//,所以 DG AC //,∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =,∴ △ACF ≌△DFG .∴ FG AF =.又 BE AE =,∴ BG EF //,β⊂BG .故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形.证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β.同理1BB 和1CC 确定平面γ.又11//BB AA ,且γ⊂1BB∴γ//1AA同理γ//AD又A AD AA = 1∴γβ//又11D A =βα ,11C B =γα∴1111//C B D A .同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ).A .α⊂l ,α⊂m ,且β//l ,β//mB .α⊂l ,β⊂m ,且m l //C .α⊥l ,β⊥m ,且m l //D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b .∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ,∴MN PQ //.又∵p a //,Q a PQ = ,N b MN = ,∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ;(2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN .∵M 是AB 的中点,∴BD PM //.又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //.∵α⊂AC ,∴α//PN .∵βα//,P PM PN = ,∴平面β//PMN .∵MN ⊂平面PMN ,∴β//MN .(2)分别连结MC 、MD .∵b BD AC ==,a BM AM 21==,又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM ,∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =,∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥.在CMN Rt ∆中,22222421c a b CN CM MN -+=-=.说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解.(3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究.解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内;∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行.已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可. 证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉.点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N .在平面M 、N 内过A 分别作直线a a //'、b b //',故'a 、'b 是两条相交直线,可确定一个平面β. ∵α⊄'a ,α⊂a ,a a //',∴α//'a .同理α//'b .又β⊂'a ,β⊂'b ,A b a ='' ,∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知: m =ρβ ,n =ργ ,∴c m //,c n //,又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H ,∵DE 是ABC ∆的中位线,∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //,∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //.又SG ⊄平面DEF ,FH ⊂平面DEF ,∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出. 证法2:∵EF 为SBC ∆的中位线,∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB ,∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF = ,∴平面SAB //平面DEF ,又∵⊂SG 平面SAB ,∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =α ,平面BE QAF =β ,又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin .由BE FA //,得212412∶∶∶∶===QA QB AF BE, ∴AF BE 21=由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=. 又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF . ∴EBD BD BE S DBE ∠⋅⋅=∆sin 21FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167847267=⨯=.∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB。

点、线、面的位置关系

点、线、面的位置关系

点、线、面的位置关系题组一一、选择题1.(宁夏银川一中2011届高三第五次月考试题全解全析理) 设n m l ,,为三条不同的直线,α为一个平面,下列命题中正确的个数是( )①若α⊥l ,则l 与α相交 ②若,,,,n l m l n m ⊥⊥⊂⊂αα则α⊥l ③若l ||m ,m ||n ,α⊥l ,则α⊥n ④若l ||m ,α⊥m ,α⊥n ,则l ||n A .1 B .2 C .3 D .4 【答案】C【分析】根据空间线面位置关系的有关定理逐个进行判断。

【解析】由于直线与平面垂直是相交的特殊情况,故命题①正确;由于不能确定直线,m n 的相交,不符合线面垂直的判定定理,命题②不正确;根据平行线的传递性。

l ∥n ,故l α⊥时,一定有n α⊥。

【考点】空间点、线、面的位置关系。

【点评】这类试题一般称之为空间点线面位置关系的组合判断题,主要考查对空间点、线、面位置关系的概念、定理,考查特例反驳和结论证明,特别是把空间平行关系和垂直关系的相关定理中抽掉一些条件的命题,其目的是考查考生对这些定理掌握的熟练程度。

2.(北京四中2011届高三上学期开学测试理科试题)已知等差数列的前项和为,若,且A 、B 、C 三点共线(该直线不过 原点),则=( )A .100 B. 101 C. 200 D. 201 答案 A.3.(北京五中2011届高三上学期期中考试试题理)若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ))(A 50<<k )(B 05<<-k )(C 130<<k )(D 50<<k答案 A.4.(福建省惠安荷山中学2011届高三第三次月考理科试卷)直线0()x y a a o ++=>与圆224x y +=交于,A B 两点,且OAB S = a =( )A .BCD 答案 C.5.(福建省厦门双十中学2011届高三12月月考题理)设斜率为1的直线l 与椭圆124:22=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( )A .4条B .5条C .6条D .7条 答案 C.6.(甘肃省天水一中2011届高三上学期第三次月考试题理)已知函数)(x f y =的反函数为)1(log 1x y a -+=(1,0≠>a a 且),则函数)(x f y =的图象必过定点( )A .(1,0)B .(0,1) C.(-1,0) D.(0,-1) 答案 A.7.(重庆市南开中学高2011级高三1月月考理)直线1:1l y x =+与直线2:1l y =-的夹角为 ( )A .6π B .4π C .3π D .23π 答案 A.8.(浙江省温州市啸秋中学2010学年第一学期高三会考模拟试卷)一条直线的倾斜角的正弦值为23,则此直线的斜率为 A .3 B .±3 C .33 D .±33 答案 B.9.(浙江省温州市啸秋中学2010学年第一学期高三会考模拟试卷)“21=m ”是“直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 垂直”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要 答案 A. 二、填空题10.(北京五中2011届高三上学期期中考试试题理)已知点P ()2,2在曲线3y ax bx =+上,如果该曲线在点P 处切线的斜率为9,那么ab = ,此时函数()3f x ax bx =+,3[,3]2x ∈-的值域为 答案 -3 [-2,18]11.(宁夏银川一中2011届高三第五次月考试题全解全析理) 如图,在正三角形ABC 中,,,D E F 分别为各边的中点,,G H 分别为,DE AF 的中点,将ABC ∆沿,,DE EF DF 折成正四面体P DEF -,则四面体中异面直线PG 与DH 所成的角的余弦值为 . 【答案】23。

点线面的位置关系练习题计算与判断

点线面的位置关系练习题计算与判断

点线面的位置关系练习题计算与判断在几何学中,点、线、面是基本的几何概念,它们之间的位置关系是我们学习几何学的基础。

本文将通过一系列的练习题,来帮助我们更好地理解和计算点线面之间的位置关系,并进行判断。

练习题一:点与线的位置关系计算1. 以点A(2, 3)和线段AB为例,线段AB的两个端点分别是A(2, 3)和B(4, 5)。

现在需要计算点A与线段AB的位置关系。

解答:首先,我们可以计算线段AB的斜率k,公式为k = (y2 - y1) / (x2 - x1) = (5 - 3) / (4 - 2) = 1。

然后,计算点A到线段AB的垂直距离h,公式为h = |k * x - y + kx1 - y1| / √(k^2 + 1) = |1 * 2 - 3 + 1 * 2 - 3| / √(1^2 + 1^2) = 0。

当垂直距离h等于0时,表示点A在线段AB上。

2. 现在考虑点A(2, 3)与直线y = 2x的位置关系。

解答:首先,直线y = 2x的斜率为2。

然后,计算点A到直线的垂直距离h,h = |k * x - y + kx1 - y1| / √(k^2 + 1) = |2 * 2 - 3 + 2 * 0 - 3| / √(2^2 + 1^2) = 1。

当垂直距离h不等于0时,表示点A不在直线y = 2x上。

练习题二:点与面的位置关系判断3. 现有一个平面P:2x + 3y + 5z = 10和点A(2, 1, 0),判断点A是否在平面P上。

解答:将点A(2, 1, 0)的坐标代入平面P的方程,判断是否满足2 * 2 +3 * 1 + 5 * 0 =4 + 3 + 0 = 7 ≠ 10。

当点A的坐标代入平面P的方程不满足等式时,表示点A不在平面P上。

4. 考虑平面Q:x + 2y + 3z = 6和点A(1, 2, 0),判断点A是否在平面Q上。

解答:将点A(1, 2, 0)的坐标代入平面Q的方程,判断是否满足1 +2 * 2 +3 * 0 = 1 +4 + 0 =5 ≠ 6。

高二文科数学点线面之间的位置关系练习题.

高二文科数学点线面之间的位置关系练习题.

A 1C 1D 1点线面之间的位置关系一、选择题(本大题共10小题,每小题5分,共50分)1. 若直线a 不平行于平面α,则下列结论成立的是()A. α内所有的直线都与a 异面;B. α内不存在与a 平行的直线;C. α内所有的直线都与a 相交;D.直线a 与平面α有公共点. 2. 已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是() A.3 B.2 C.1 D.03. 空间四边形ABCD 中,若A B A D A C C B C D B D =====,则A C 与B D 所成角为 A 、030 B、045 C、060 D、0904. 给出下列命题:(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行;(2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直;(3)异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直;(4)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面其中错误命题的个数为()(A )0 (B ) 1 (C )2 (D )35.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有()条 A 3 B 4 C 6 D 8 6. 点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC,则点O 是ΔABC 的()(A )内心(B )外心(C )重心(D )垂心7. 如图长方体中,AB=AD=23,CC 1=2,则二面角C1—BD —C 的大小为()(A )300 (B )450 (C )600 (D )900 8. 直线a,b,c 及平面α, β, γ, 下列命题正确的是() A 、若a ⊂α,b ⊂α,c ⊥a, c⊥b 则c ⊥α B、若b ⊂α, a//b 则a//α C 、若a//α, α∩β=b 则a//b D、若a ⊥α, b⊥α 则a//b9. 平面α与平面β平行的条件可以是()A. α内有无穷多条直线与β平行;B.直线a//α,a//βC. 直线a α⊂, 直线b β⊂, 且a//β,b//αD.α内的任何直线都与β平行 10、 a, b是异面直线,下面四个命题:①过a 至少有一个平面平行于b ;②过a 至少有一个平面垂直于b ;③至多有一条直线与a ,b 都垂直;④至少有一个平面与a ,b 都平行。

点线面位置关系例题与练习(含答案)

点线面位置关系例题与练习(含答案)

点、线、面的位置关系● 知识梳理 (一).平面公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。

公理2:不共线...的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面.公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系1.空间直线的位置关系:相交,平行,异面平行线的传递公理:平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

异面直线定义:不同在任何一个平面内的两条直线——异面直线;异面直线所成的角:(1)范围:(]0,90θ∈︒︒;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交(三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点.②判定定理:////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭③性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭I 2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。

范围:[]0,90θ∈︒︒3.面面平行:①定义://αβαβ=∅⇒I ;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ⊂=⇒I判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥⇒.③面面平行的性质:(1)////a a αββα⎫⇒⎬⊂⎭;(2)////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭I I (四)垂直关系(包括线面垂直,面面垂直)1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

空间点线面位置关系练习题

空间点线面位置关系练习题

空间点线面位置关系练习题1、已知/、777是不同的两条直线,a、〃是不重合的两个平而,则下列正确的是()A若/丄a, a丄〃,贝〃//肌若///a, a丄0,贝〃// 0C 若/ 丄777, a// B, m u 0,则/ 丄aD 若/ 丄a, a// B, m u 0,则/ 丄力2、设a表示平而,日,6表示直线,给立下列四个命题:(1) a // a, a lb d b丄a:(2)a //b, a丄an 6 丄a;(3)a丄a, a丄b 弓b 11 a •、(4)a丄a, b丄 anm // b .其中正确命题的个数有()A 1个B 2个C 3个D 4个3、若m . n为两条不重合的直线,a、〃为两个不重合的平面,则下列正确的个数是()(1)若777、77都平行于平面a,则/77、H一定不是相交直线:(2)若777、n都垂直于平而a,则/77、H一定是平行直线:(3)已知a、0互相垂直,m、n互相垂直,若777丄a ,则77丄0;(4)777、77在平而a内的射影互相垂直,则777、/7互相垂直.A 1B 2C 3D 44、给出下列四个命题:(1)垂直于同一直线的两条直线互相平行(2)垂直于同一平而的两个平面互相平行(3)若直线1 2 /, /与同一平面所成的角相等,则1:/,/互相平行(4)若直线1 2 /, /是异而直线,则与2 /, /都相交的两条直线是异面直线其中假.命题的个数是()A 1B 2C 3D 45、已知两个不同的平而。

尸和两条不重合的直线777, 77,在下列四个命题中错.误.的是()A 若/77 〃a , a C\ B= n ,则777 〃/7B 若m丄a, Z77 丄0,则a 〃尸C 若m // n ,力丄a,则/7 丄aD 若m丄a, 777 〃/7 , 77 u 0,则a丄06、已知777、/7是两条不同的直线,a、 0是两个不同的平面,有下列命题:(1)若777 u a, /7〃a,则m //n;(2)若/77〃a, m // 0,则a// 〃:(3)若m丄a, /77 丄/7 ,贝加a : (4)若777 丄a, /77 丄0,则a//0;其中真命题的个数是()A 1个B 2个C 3个D 4个7、已知a, 0、丫是三个互不重合的平而,/是一条宜线,给出下列命题中正确命题是()A.若a丄0,/丄伏贝〃//aB.若/丄a,/// B,则a丄0C.若/上有两个点到“的距离相等,贝9///aD.若a丄0, a丄丫,则/丄08、设/77,/7是两条不同的直线,a, 0是两个不同的平面,下列命题正确的是()A.若/77 丄77, m丄a, /7 / /〃,则a/ / 0B.若777 / / a, 77 / /0, a/ /0,则m / /nC.若H7丄a,/7//0, a//0,则力丄"D.若777 / gm I / a,/7 / /0,则a/ /09、已知相异直线a, b和不重合平而a, 0,则a〃b的一个充分条件是()A. a〃a, b〃aB. a〃a, b〃0, a〃0C.a』a,b』0, a〃0D. a 丄0,a 丄a,b〃〃10、已知777, 77是两条不同直线,a, 0,厂是三个不同平而,下列命题中正确的是()A.若/77|| a, /7| a,则力|| /7B.若。

谦姐套路秘笈之点线面位置关系与四大公理

谦姐套路秘笈之点线面位置关系与四大公理

谦姐套路秘笈之点线面位置关系与四大公理套路一、点线面位置关系(利用长方体/正方体模型)1.已知m,n是空间中两条异面直线,则过m与n平行的平面( )A.不存在 B.至少有两个C.有无数个 D.有且只有一个2.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列结论正确的是( )A.l 至少与 l1,l2中的一条相交B.l 与 l1,l2都不相交C.l 与 l1,l2都相交D.l 至多与 l1,l2中的一条相交3.已知点A∈直线l,又A∈α,则( )A.l∥α B.l∩α=AC.l⊂α D.l∩α=A或l⊂α套路二、四大公理之确定平面(公理二及推论)1.下列命题一定正确的是( )A.三点确定一个平面B.依次首尾相接的四条线段必共面C.直线与直线外一点确定一个平面D.两条直线确定一个平面2.下列说法正确的是( )(1)任意三点确定一个平面;(2)圆上的三点确定一个平面;(3)任意四点确定一个平面;(4)两条平行线确定一个平面A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)3.已知P,Q,R,S分别是所在正方体或四面体的棱的中点,这四个点不共面的一个图是( )A.B.C.D.4.棱长为2正方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AD,AB,BB1的中点,则过E,F,G三点的平面截正方体所得的截面的面积是( )A.6B.3C.6D.35.(综合)已知:正方体ABCD﹣A1B1C1D1,如图,(1)若E、F为AA1、CC1的中点,画出过D1、E、F的截面;(2)若M、N、P为A1B1、BB1、B1C1上的点(均不与B1重合),求证:△MNP是锐角三角形.套路三、四大公理之多点共线(公理三)1.如图,在长方体ABCD﹣A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD 于点M,则下列结论错误的是( )A.C1,M,O三点共线 B.C1,M,O,C四点共面C.C1,O,A1,M四点共面 D.D1,D,O,M四点共面2.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )A.点A B.点BC.点C但不过点M D.点C和点M3.如图,在空间四边形ABCD中,E,H分别为BC,AB的中点,F在CD上,G在AD上,且有DF:FC=DG:GA=2:3,求证:EF、GH、BD交于一点.套路四、异面直线所成的角(平移)1.在正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1,A1C1中点,则BM与AN所成角的余弦值为( )A.B.C.D.2.如图是正方体的平面展开图,则在这个正方体的四条面对角线中是异面直线且垂直有( )A.1对 B.2对 C.3对 D.4对 3.长方体ABCD﹣A1B1C1D1,AB=1,AD=2,AA1=3,则异面直线A1B1与AC1所成角的余弦值为( )A.B.C.D.4.已知直三棱柱ABC﹣A1B1C1中,∠ABC=60°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.B.0 C.D.5.如图,在四棱锥P﹣ABCD中,PO⊥平面ABCD,E为线段AP的中点,底面ABCD 为菱形,若BD=2,PC=4,则异面直线DE与PC所成角的余弦值为( )A.B.C.D.6.如图,正四面体ABCD中,E、F分别是棱BC和AD的中点,则直线AE和CF所成的角的余弦值为( )A.B.C.D.参考答案套路一、点线面位置关系(利用长方体/正方体模型)1.【解答】解:过m上一点P作n的平行直线l,则m与l确定一平面α,由l⊂α,n⊄α,∴n∥α;这样的平面有且只有1个.故选:D.2.【解答】解:在B中,.l与l1,l2可以相交,如图:∴B选项错误;在C中,l可以和l1,l2中的一个平行,如上图,∴C选项错误;在D中,l可以和l1,l2都相交,如下图:,∴C选项错误;在A中,“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交; ∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴A选项正确.故选:A.3.【解答】解:∵点A∈直线l,又A∈α,∴直线l与平面α有公共点A,∴l∩α=A或l⊂α.故选:D.套路二、四大公理之确定平面(公理二及推论)1.【解答】解:对于A,不在同一直线上的三点确定一个平面,∴A错误;对于B,依次首尾相接的四条线段不一定共面,如空间四边形,∴B错误;对于C,由不在同一直线上的三点确定一个平面的推理知,直线与直线外一点确定一个平面,C正确;对于D,两条相交或平行直线确定一个平面,两条异面直线不能确定一个平面,∴D错误.故选:C.2.【解答】解:在(1)中,不共线的三点才能确定一个平面,故(1)错误.在(2)中,圆上三点不共线,可以确定一个平面,故(2)正确.在(3)中,当四个点共线时能确定无数个平面,当四个点不共线时,能确定一个或三个平面,故(3)错误.在(4)中,两条平行线确定一个平面,故(4)正确.故选:C.3. 【解答】解:在A中,∵P,Q,R,S分别是所在正方体或四面体的棱的中点, ∴PS∥QR,∴P,Q,R,S共面,故A错误;在B中,过P,Q,R,S可作一正六边形,如图,故P,Q,R,S四点共面,故B错误;在C中,分别连接PQ,RS,则PQ∥RS,∴P,Q,R,S共面,故C错误; 在D中,PS与RQ为异面直线,∴P,Q,R,S四点不共面,故D正确. 故选:D.4. 【解答】解:如图所示:取棱AD,AB,BB1的中点E,F,G,则该截面是一个边长为的正六边形,其面积为6××()2=3.故选:D.5.【解答】解:(1)连结D1E、BE、BF、D1F,则平面D1EBF是过D1、E、F的截面,如下图:证明:(2)设MB1=a,NB1=b,PB1=c,则MN2=a2+b2,NP2=b2+c2,MP2=c2+a2,则△MNP中,同理可得cosN>0,cosP>0,则∠M、∠N、∠P均为锐角,即△MNP是锐角三角形.套路三、四大公理之多点共线(公理三)1.【解答】解:连结A1C1,AC,则AC∩BD=O,A1C∩平面C1BD=M,∴三点C1、M、O在平面C1BD与平面ACC1A1的交线上, ∴C1,M,O三点共线,∴选项A、B、C均正确,选项D错误.故选:D.2.【解答】解:∵直线AB∩l=M,过A,B,C三点的平面记作γ,∴β∩γ=MC,∴γ与β的交线必通过点C和点M,故选:D.3.【解答】证明:连接AC,∵E,H分别为BC,AB的中点,F在CD上,G在AD上,且有DF:FC=DG:GA=2:3,∴HE∥AC,GF∥AC,∴HE∥GF,则E,F,G,H四点共面,而HG与EF不平行,不妨设EF,HG交于点P,∴P∈面BCD,且P∈面ABD,而面BCD∩面ABD=BD,∴P∈BD,∴EF、GH、BD交于一点.套路四、异面直线所成的角(平移)1.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则B(2,2,0),M(2,1,2),A(2,0,0),A1(2,0,2),C1(0,2,2),N(1,1,2),=(0,﹣1,2),=(﹣1,1,2),设BM与AN所成角为θ,则cosθ===.∴BM与AN所成角的余弦值为.故选:C.2.【解答】解:由正方体的平面展开图可得正方体ABCD﹣EFMN,如右图: 在这个正方体的四条面对角线中是异面直线且垂直有AF,CN是异面直线且垂直;BM,DE是异面直线且垂直.故选:B.3.【解答】解:如图,连接BC1,由AB∥A1B1,∴∠C1AB为异面直线A1B1与AC1所成角,由已知可得,则.∴cos∠C1AB=.即异面直线A1B1与AC1所成角的余弦值为.故选:A.4.【解答】解:∵直三棱柱ABC﹣A1B1C1中,∠ABC=60°,AB=2,BC=CC1=1, AC==,∴BC2+AC2=AB2,∴BC⊥AC,以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,A(0,,0),B 1(1,0,1),B(1,0,0),C1(0,0,1),=(1,﹣,1),=(﹣1,0,1),设异面直线AB1与BC1所成角的平面角为θ,∴异面直线AB1与BC1所成角的余弦值为:cosθ==0.故选:B.5.【解答】解:由题意,连接EO,O是底面ABCD为菱形的中点, 又E为线段AP的中点,∴EO∥PC,则异面直线DE与PC所成角的平面角为∠DEO,∵PO⊥平面ABCD,底面ABCD为菱形,AC⊥BD,POC是直角三角形,∴PC⊥BD,则EO⊥BD,∴△DEO是直角三角形,∵BD=2,PC=4,∴OD=1,EO=2,则ED=.∴cos∠DEO=.故选:A.6.【解答】解:连接BF、EF,∵正四面体ABCD中,E、F分别是棱BC和AD的中点, ∴BF⊥AD,CF⊥AD,又BF∩CF=F,∴AD⊥面BCF,∴AE在平面BCF上的射影为EF,设异面直线AE和CF所成的角为θ,正四面体棱长为1, 则,.∵cosθ=cos∠AEF•cos∠EFC,∴cosθ==.故直线AE和CF所成的角的余弦值为.故选:B.。

点线面位置关系小题附答案详解

点线面位置关系小题附答案详解

2.下列命题中,错误的是:AA .平行于同一条直线的两个平面平行.B .平行于同一个平面的两个平面平行.C .一个平面与两个平行平面相交,交线平行.D .一条直线与两个平行平面中的一个相交,则必与另一个平面相交.4.如图所示,用符号语言可表达为AA .α∩β=m ,n ⊂α,m ∩n =AB .α∩β=m ,n ∈α,m ∩n =AC .α∩β=m ,n ⊂α,A ⊂m ,A ⊂ nD .α∩β=m ,n ∈α,A ∈m ,A ∈ n5.给出下列四个命题:A ① 若两条直线和第三条直线所成的角相等,则这两条直线互相平行.② 若两条直线都与第三条直线垂直,则这两条直线互相平行.③ 若两条直线都与第三条直线平行,则这条直线互相平行.④ 若两条直线都与同一平面平行,则这条直线互相平行. 其中正确的命题的个数是:A .1个B .2个C .3个D .4个9.下列命题中正确的是(其中a 、b 、c 为不相重合的直线,α为平面) B①若b ∥a ,c ∥a ,则b ∥c②若b ⊥a ,c ⊥a ,则b ∥c ③若a ∥α,b ∥α,则a ∥b④若a ⊥α,b ⊥α,则a ∥b A .①、②、③、④B .①,④C .①D .④12.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若γα⊥,γβ⊥,则//αβ;②若α⊂m ,α⊂n ,//m β,//n β,则//αβ;③若//αβ,α⊂l ,则//l β; ④若l =βα ,m =γβ ,n =αγ ,//l γ,则//m n 。

其中真命题的个数是 BA .1B .2C .3D . 4βαA n m。

高中数学《点线面的位置关系》专题训练30题(含解析)

高中数学《点线面的位置关系》专题训练30题(含解析)

高中数学《点线面的位置关系》专题训练30题(含解析)高中数学《点线面的位置关系》专题训练30题(含解析)1.如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x 轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.2.如图,四边形为矩形,且平面,,为的中点.(1)求证:;(2)求三棱锥的体积;(3)探究在上是否存在点,使得平面,并说明理由.【答案】(1)见解析;(2);(3)见解析.【解析】【分析】(1)连结,由几何体的空间结构可证得,利用线面垂直的定义可知.(2)由(1)知为腰长为1的等腰直角三角形,结合题意转化顶点可得.(3)在上存在中点,使得.取的中点,连结.易证得四边形EGHC是平行四边形,所以EG//CH,结合线面平行的判断定理可知EG//平面PCD.【详解】(1)连结,∵为的中点, ,∴为等腰直角三角形,则,同理可得,∴,∴,又,且,∴,?又∵,∴,又,∴.(2)由(1)知为腰长为1的等腰直角三角形,∴,而是三棱锥的高,∴.(3)在上存在中点,使得.理由如下:取的中点,连结.∵是的中点,∴,且,?又因为E为BC的中点,且四边形ABCD为矩形,所以EC//AD,且EC=AD,所以EC//GH,且EC=GH,所以四边形EGHC是平行四边形,所以EG//CH,又EG平面PCD,CH平面PCD,所以EG//平面PCD.【点睛】本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.3.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.【详解】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.如图,在三棱锥中,平面平面,,,若为的中点.(1)证明:平面;(2)求异面直线和所成角;(3)设线段上有一点,当与平面所成角的正弦值为时,求的长.【答案】(1)证明见解析;(2)(3).【解析】【分析】(1)先证明平面平面,再证明平面;(2)分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,利用向量法求异面直线和所成角;(3)设,,利用向量法得到,解方程即得t的值和的长.【详解】(1)∵,,∴,∵平面平面,平面平面,平面,∴平面.(2)∵,,∴,,如图,分别以,,为轴,轴,轴的非负半轴,建立空间直角坐标系,∵,,,,∴,,∵,∴异面直线和所成角为.(3)设为平面的法向量,∵,,∴,即,设,,∴,设与平面所成角为,∵,∴,,,,(舍),,∴的长为.【点睛】本题主要考查空间直线和平面位置关系的证明,考查异面直线所成的角和线面角的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.5.如图,在三棱锥中,,,为的中点.?(1)证明:平面;?(2)若点在棱上,且,求点到平面的距离.【答案】(1)详见解析(2).【解析】【详解】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM 的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM= ,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【答案】(1)见解析;(2).【解析】【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C到平面的距离,得到结果.【详解】(1)连接,,分别为,中点?为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)在菱形中,为中点,所以,根据题意有,,因为棱柱为直棱柱,所以有平面,所以,所以,设点C到平面的距离为,根据题意有,则有,解得,所以点C到平面的距离为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.7.如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底面,是的中点.(1)证明:直线平面;(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】【详解】试题分析:(1)取的中点,连结,,由题意证得∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:,,然后利用空间向量的相关结论可求得二面角的余弦值为.试题解析:(1)取中点,连结,.因为为的中点,所以,,由得,又所以.四边形为平行四边形,.又,,故(2)由已知得,以A为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系A-xyz,则则,,,,,则因为BM与底面ABCD所成的角为45°,而是底面ABC D的法向量,所以,即(x-1)2+y2-z2=0又M在棱PC上,设由①,②得所以M,从而设是平面ABM的法向量,则所以可取.于是因此二面角M-AB-D的余弦值为点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与互补或相等,故有|cosθ|=|cos<m,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.8.如图,在四棱锥P?ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A?PB?C的余弦值.【答案】(1)见解析;(2).【解析】【详解】(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,.所以,,,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.9.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用长方体的性质,可以知道侧面,利用线面垂直的性质可以证明出,这样可以利用线面垂直的判定定理,证明出平面;(2)以点坐标原点,以分别为轴,建立空间直角坐标系,设正方形的边长为,,求出相应点的坐标,利用,可以求出之间的关系,分别求出平面、平面的法向量,利用空间向量的数量积公式求出二面角的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角的正弦值.【详解】证明(1)因为是长方体,所以侧面,而平面,所以又,,平面,因此平面;(2)以点坐标原点,以分别为轴,建立如下图所示的空间直角坐标系,,因为,所以,所以,,设是平面的法向量,所以,设是平面的法向量,所以,二面角的余弦值的绝对值为,所以二面角的正弦值为.【点睛】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.10.如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,,由平面知识可知,,由相似比可求出,再根据四棱锥的体积公式即可求出.【详解】(1)因为底面,平面,所以,又,,所以平面,而平面,所以平面平面.(2)[方法一]:相似三角形法由(1)可知.于是,故.因为,所以,即.故四棱锥的体积.[方法二]:平面直角坐标系垂直垂直法?由(2)知,所以.建立如图所示的平面直角坐标系,设.因为,所以,,,.从而.所以,即.下同方法一.[方法三]【最优解】:空间直角坐标系法?建立如图所示的空间直角坐标系,设,所以,,,,.所以,,.所以.所以,即.下同方法一.[方法四]:空间向量法?由,得.所以.即.又底面,在平面内,因此,所以.所以,由于四边形是矩形,根据数量积的几何意义,得,即.所以,即.下同方法一.【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.11.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN ,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1 AMN所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由分别为,的中点,,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)连接,先求证四边形是平行四边形,根据几何关系求得,在截取,由(1)平面,可得为与平面所成角,即可求得答案.【详解】(1)分别为,的中点,,又,,在中,为中点,则,又侧面为矩形,,,,由,平面,平面,又,且平面,平面,平面,又平面,且平面平面,,又平面,平面,平面,平面平面.(2)[方法一]:几何法如图,过O作的平行线分别交于点,联结,由于平面,平面,,平面,面,所以平面平面.又因平面平面,平面平面,所以.因为,,,所以面.又因,所以面,所以与平面所成的角为.令,则,由于O为的中心,故.在中,,由勾股定理得.所以.由于,直线与平面所成角的正弦值也为.[方法二]【最优解】:几何法因为平面,平面平面,所以.因为,所以四边形为平行四边形.由(Ⅰ)知平面,则为平面的垂线.所以在平面的射影为.从而与所成角的正弦值即为所求.在梯形中,设,过E 作,垂足为G,则.在直角三角形中,.[方法三]:向量法由(Ⅰ)知,平面,则为平面的法向量.因为平面,平面,且平面平面,所以.由(Ⅰ)知,即四边形为平行四边形,则.因为O为正的中心,故.由面面平行的性质得,所以四边形为等腰梯形.由P,N为等腰梯形两底的中点,得,则.设直线与平面所成角为,,则.所以直线与平面所成角的正弦值.[方法四]:基底法不妨设,则在直角中,.以向量为基底,从而,,.,,则,.所以.由(Ⅰ)知平面,所以向量为平面的法向量.设直线与平面所成角,则.故直线与平面所成角的正弦值为.【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法;方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.12.如图,长方体ABCD–A1B1C1D1的底ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积.【答案】(1)见详解;(2)18【解析】【分析】(1)先由长方体得,平面,得到,再由,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为,根据题中条件求出;再取中点,连结,证明平面,根据四棱锥的体积公式,即可求出结果.【详解】(1)因为在长方体中,平面;平面,所以,又,,且平面,平面,所以平面;?(2)设长方体侧棱长为,则,由(1)可得;所以,即,又,所以,即,解得;取中点,连结,因为,则;所以平面,所以四棱锥的体积为.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.13.如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)方法一:连接、,证明出四边形为平行四边形,进而可证得点在平面内;(2)方法一:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可计算出二面角的余弦值,进而可求得二面角的正弦值.【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱上取点,使得,连接、、、,如图1所示.在长方体中,,所以四边形为平行四边形,则,而,所以,所以四边形为平行四边形,即有,同理可证四边形为平行四边形,,,因此点在平面内.[方法二]:空间向量共线定理以分别为x轴,y轴,z轴,建立空间直角坐标系,如图2所示.设,则.所以.故.所以,点在平面内.[方法三]:平面向量基本定理同方法二建系,并得,所以.故.所以点在平面内.[方法四]:根据题意,如图3,设.在平面内,因为,所以.延长交于G,平面,平面.,所以平面平面①.延长交于H,同理平面平面②.由①②得,平面平面.连接,根据相似三角形知识可得.在中,.同理,在中,.如图4,在中,.所以,即G,,H三点共线.因为平面,所以平面,得证.[方法五]:如图5,连接,则四边形为平行四边形,设与相交于点O,则O 为的中点.联结,由长方体知识知,体对角线交于一点,且为它们的中点,即,则经过点O,故点在平面内.(2)[方法一]【最优解】:坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,如图2.则、、、,,,,,设平面的一个法向量为,由,得取,得,则,设平面的一个法向量为,由,得,取,得,,则,,设二面角的平面角为,则,.因此,二面角的正弦值为.[方法二]:定义法在中,,即,所以.在中,,如图6,设的中点分别为M,N,连接,则,所以为二面角的平面角.?在中,.所以,则.[方法三]:向量法由题意得,由于,所以.如图7,在平面内作,垂足为G,则与的夹角即为二面角的大小.由,得.其中,,解得,.所以二面角的正弦值.[方法四]:三面角公式由题易得,.所以...设为二面角的平面角,由二面角的三个面角公式,得,所以.【整体点评】(1)方法一:通过证明直线,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出.14.如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】【详解】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC =CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE =1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.15.如图,在四棱锥中,底面为矩形,平面平面,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:平面平面;(Ⅲ)求证:平面.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(1)欲证,只需证明即可;(2)先证平面,再证平面平面;(3)取中点,连接,证明,则平面.【详解】(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴;(Ⅱ)∵底面为矩形,∴.∵平面平面,平面平面,平面,∴平面,又平面,∴.又,,、平面,平面,∵平面,∴平面平面;(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴,又平面,平面,∴平面.【点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.16.如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥P?ABC的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据已知可得,进而有≌,可得,即,从而证得平面,即可证得结论;(2)将已知条件转化为母线和底面半径的关系,进而求出底面半径,由正弦定理,求出正三角形边长,在等腰直角三角形中求出,在中,求出,即可求出结论.【详解】(1)连接,为圆锥顶点,为底面圆心,平面,在上,,是圆内接正三角形,,≌,,即,平面平面,平面平面;(2)设圆锥的母线为,底面半径为,圆锥的侧面积为,,解得,,在等腰直角三角形中,,在中,,三棱锥的体积为.?【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.17.如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.【答案】(1)证明见解析(2)存在,理由见解析【解析】【详解】分析:(1)先证,再证,进而完成证明.(2)判断出P为AM中点,,证明MC∥OP,然后进行证明即可.详解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D 的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM 中点,所以MC∥OP.MC平面PBD,OP平面PBD,所以MC∥平面PBD.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P为AM中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.18.四棱锥中,侧面为等边三角形且垂直于底面,(1)证明:直线平面;(2)若△面积为,求四棱锥的体积.【答案】(Ⅰ)见解析(Ⅱ)【解析】【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取中点,由于平面为等边三角形,则,利用面面垂直的性质定理可推出底面ABCD,设,表示相关的长度,利用的面积为,求出四棱锥的体积.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】19.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,(Ⅰ)设分别为的中点,求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.【答案】(I)见解析;(II)见解析;(III).【解析】【分析】(I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;(II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;(III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.【详解】(I)证明:连接,易知,,又由,故,又因为平面,。

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析

高三数学点线面的位置关系试题答案及解析1.如图,正方体ABCD-A1B1C1D1中,点P是直线BC1的动点,则下列四个命题:①三棱锥A-D1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变:其中正确的命题有____ .(把所有正确命题的编号填在横线上)【答案】①③【解析】①,点到线的距离不变,点到面的距离不变,所以体积不变,②取特殊点,当点与重合时,线与面所成角的大小改变;③点变化,但二面角都是面与面所成的角,所以大小不变.故①③正确.【考点】1.几何体的体积;2.二面角的大小;3.线面角.2.如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有()A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面【答案】A【解析】折成的四面体有AH⊥EH,AH⊥FH,∴AH⊥面HEF.3.直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)【答案】(1)见解析(2)【解析】解:(1)证法一:连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.证法二:取A′B′中点P,连接MP,NP.而M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,因此平面MPN∥平面A′ACC′.而MN⊂平面MPN,因此MN∥平面A′ACC′.(2)解法一:连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC. 又A′N=B′C′=1,故V-MNC=V N-A′MC=V N-A′BC=V A′-NBC=.A′解法二:V-MNC=V A′-NBC-V M-NBC=V A′-NBC=.A′4.如图,正方体ABCD-A′B′C′D′的棱长为4,动点E、F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′-EFQ的体积()A.与点E、F的位置有关B.与点Q的位置有关C.与点E、F、Q的位置都有关D.与点E、F、Q的位置均无关,是定值【答案】D【解析】因为V-EFQ=V Q-A′EF=×(×2×4)×4=,故三棱锥A′-EFQ的体积与点E、F、A′Q的位置均无关,是定值.5.如图是正方体的展开图,则在这个正方体中:①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④【答案】C【解析】画出正方体,如图所示,易知,①②错误,③④正确.故选C.6.已知直线a,b异面, ,给出以下命题:①一定存在平行于a的平面使;②一定存在平行于a的平面使∥;③一定存在平行于a的平面使;④一定存在无数个平行于a的平面与b交于一定点.则其中论断正确的是( )A.①④B.②③C.①②③D.②③④【答案】D【解析】若直线不是异面垂直则不可能存在平行于a的平面使,所以①不正确;②③④正确;故选D.【考点】1.线面平行的位置关系.2.异面直线的概念.7.如图,ABCD是边长为2的正方形,,ED=1,//BD,且.(1)求证:BF//平面ACE;(2)求证:平面EAC平面BDEF;(3)求二面角B-AF-C的大小.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)记与的交点为,连接,则可证,又面,面,故平面;(2)因⊥平面,得,又是正方形,所以,从而平面,又面,故平面平面;(3)过点作于点,连接,则可证为二面角的平面角.在中,可求得,又,故,∴,即二面角的大小为;证明:(1)记与的交点为,连接,则所以,又,所以所以四边形是平行四边形所以,又面,面,故平面;(2)因⊥平面,所以,又是正方形,所以,因为面,面,所以平面,又面,故平面平面;(3)过点作于点,连接,因为,面所以面,因为面,所以因为所以面所以又所以面所以,即得为二面角的平面角.在中,可求得,又,故,∴,即二面角的大小为;【考点】线面平行的判定;面面垂直的判定;二面角的求解.8.如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.(1)求证:平面ACFE;(2)当EM为何值时,AM//平面BDF?证明你的结论.【答案】(1)见解析;(2)当时,平面.【解析】(1)由已知可得四边形是等腰梯形,且,,得到.再根据平面平面,交线为,即得证.(2)在梯形中,设,连接,则,再根据,而,得到,确定得到四边形是平行四边形,从而,得证.(1)在梯形中,,,四边形是等腰梯形,且,,. 3分又平面平面,交线为,平面 . 6分(2)当时,平面, 7分在梯形中,设,连接,则,,而,, 9分,四边形是平行四边形,,又平面,平面平面. 12分【考点】立体几何平行关系、垂直关系.9.如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F 是DC上的点且DF=AB,PH为△PAD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;(3)证明:EF⊥平面PAB.【答案】(1)见解析(2)(3)见解析【解析】(1)证明:因为PH为△PAD边上的高,所以PH⊥AD,又因为AB⊥平面PAD,平面PAD,所以AB⊥PH,又因为PH AD=H,所以PH⊥平面ABCD;(2)因为E是PB的中点,所以点E到平面BCF的距离等于点P到平面ABCD距离的一半,即=,又因为=,所以三棱锥E-BCF的体积为;(3)取PA的中点Q,连结EQ、DQ,则因为E是PB的中点,所以EQ∥AB且EQ=AB,又因为DF=AB且DF∥AB,所以EQ∥DF且EQ=DF,所以四边形EQDF是平行四边形,所以EF∥DQ,由(1)知AB⊥平面PAD,所以AB⊥DQ,又因为PD=AD,所以DQ⊥PA,因为PAAB=A,所以DQ⊥平面PAB,因为EF∥DQ,所以EF⊥平面PAB.【考点】本题考查空间线线、线面的平行与垂直的证明以及三棱锥体积的求解,考查同学们的空间想象能力、逻辑推理能力以及分析与解决问题的能力.10.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】如下图所示,在正方体中,直线和与底面所成的角均为,但是直线和相交,A选项错误;取、、、的中点、、、,则、、三点到平面的距离相等,但是平面与平面相交,B选项错误;平面,平面,但是直线与平面和平面的交线平行,C选项正确;平面和平面都与平面都垂直,但是平面和平面相交,D选项不正确,故选C.【考点】空间中点、线、面的位置关系11.设平面、,直线、,,,则“,”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由平面与平面平行的判定定理可知,若直线、是平面内两条相交直线,且有“,”,则有“”,当“”,若,,则有“,”,因此“,”是“”的必要不充分条件.选B.【考点】1.平面与平面平行的判定定理与性质;2.充分必要条件12.设m,n是平面内的两条不同直线,l是平面外的一条直线,则且是的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据线面垂直的判定,即直线垂直于面,需要直线垂直于面内相交额两条直线,故且,根据线面垂直的性质,直线垂直面,则垂直于面内的所有直线,故且,所以且是的必要不充分条件,故选B【考点】线面垂直的判断线面垂直的性质13.已知不重合的直线m、l和平面,且,.给出下列命题:①若,则;②若,则;③若,则;④若,则,其中正确命题的个数是()A.1B.2C.3D.4【答案】B【解析】因为,,所以,,又,所以,.①正确;因为,,所以或,又,所以或相交或互为异面直线. ②不正确;因为,,所以,又,所以,故③不正确,④正确.选.【考点】平行关系,垂直关系.14.如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.(1)求棱AA1与BC所成的角的大小;(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为.【答案】(1)(2)P(1,3,2)【解析】(1)如图,以A为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A1(0,2,2),B1(0,4,2),=(0,2,2),==(2,-2,0).cos〈,〉===-,故AA1与棱BC所成的角是.(2)P为棱B1C1中点,设=λ=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB的法向量为n1=(x,y,z),=(2λ,4-2λ,2),则故n1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉===,解得λ=,即P为棱B1C1中点,其坐标为P(1,3,2).15.如图,在四棱锥PABCD中,M、N分别是侧棱PA和底面BC边的中点,O是底面平行四边形ABCD的对角线AC的中点.求证:过O、M、N三点的平面与侧面PCD平行.【答案】见解析【解析】∵O、M分别是AC、PA的中点,连结OM,则OM∥PC.∵OM∥平面PCD,PC平面PCD,∴OM∥平面PCD.同理,知ON∥CD.∵ON∥平面PCD,CD平面PCD,∴ON∥平面PCD.又OM∩ON于O,∴OM、ON确定一个平面OMN.由两个平面平行的判定定理知平面OMN与平面PCD平行,即过O、M、N三点的平面与侧面PCD平行.16.如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C的中点.求证:(1)直线FM∥平面A1EB;(2)平面A1FC⊥平面A1BC.【答案】(1)见解析(2)见解析【解析】(1)取A1B中点N,连结NE、NM,则MN∥=BC,EF∥=BC,所以MN∥=FE,所以四边形MNEF为平行四边形,所以FM∥EN.又FM平面A1EB,EN∥平面A1EB,所以直线FM∥平面A1EB.(2)因为E、F分别为AB和AC的中点,所以A1F=FC,所以FM⊥A1C.同理,EN⊥A1B.由(1)知FM∥EN,所以FM⊥A1B.又A1C∩A1B=A1,所以FM⊥平面A1BC.因为FM平面A1FC,所以平面A1FC⊥平面A1BC17.由平面α外一点P引平面的三条相等的斜线段,斜足分别为A、B、C,O为△ABC的外心,求证:OP⊥α.【答案】见解析【解析】学生错解:证明:因为O为△ABC的外心,所以OA=OB=OC,又因为PA=PB=PC,PO公用,所以△POA,△POB,△POC都全等,所以∠POA=∠POB=∠POC=90°,所以OP⊥α.审题引导:要记OP⊥α,需记OP垂直于α内两条相交的直线,由图形易知,可考虑证OP垂直于△ABC的两条边,注意到图中的等腰三角形PBC、OBC,不准找到证题途径.规范解答:证明:取BC的中点D,连结PD、OD,∵PB=PC,OB=OC,∴BC⊥PD,BC⊥OD,(5分)又PD平面POD,OD平面POD,且PD∩OD=D,∴BC⊥平面POD.(8分)∵PO平面POD,∴BC⊥PO.同理AB⊥PO.(12分)又AB、BC是α内的两条相交直线,∴PO⊥α.(14分)错解分析:上述解法中∠POA=∠POB=∠POC=90°,是对的,但它们为什么是直角呢?这里缺少必要的证明.18.如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.(1)求证:MN∥平面AA1C1 C;(2)若AC=AA1,求证:MN⊥平面A1BC.【答案】(1)见解析(2)见解析【解析】证明:(1)连结AC1,因为M为A1B与AB1的交点,所以M是AB1的中点.又N为棱B1C1的中点,所以MN∥AC1.又AC1平面AA1C1C,MN平面AA1C1C,所以MN∥平面AA1C1C.(2)由AC=AA1,则四边形AA1C1C是正方形,所以AC1⊥A1C.因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为BC平面ABC,所以CC1⊥BC.因为∠ACB=90°,所以AC⊥BC.因为CC1∩AC=C,所以BC⊥平面AA1C1C,所以BC⊥AC1.又AC1平面AA1C1C,MN∥AC1,所以MN⊥A1C,MN⊥BC.又BC∩A1C=C,所以MN⊥平面A1BC.19.如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;【答案】见解析【解析】(解法1)选取条件①,在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC=.又∵PA=AC,∴PA=.∴在△PAB中,AB=1,PA=.又∵PB=,∴AB2+PA2=PB2.∴∠PAB=90°,即PA⊥AB.又∵PA⊥AC,AB∩AC=A,AB,AC真包含于平面ABC,∴PA⊥平面ABC.(解法2)选取条件②,∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面PAB.∵PA真包含于平面PAB,∴BC⊥PA.又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(解法3)选取条件③,若平面PAB⊥平面ABC,∵平面PAB∩平面ABC=AB,BC真包含于平面ABC,BC⊥AB,∴BC⊥平面PAB.∵PA真包含于平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.20.如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.(1)证明:PQ⊥平面DCQ;(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.【答案】(1)见解析(2)存在CP中点R【解析】(1)证法一:∵QA⊥平面ABCD,∴QA⊥CD,由四边形ABCD为正方形知DC⊥AD,又QA、AD为平面PDAQ内两条相交直线,∴CD⊥平面PDAQ,∴CD⊥PQ,在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD,又CD、QD为平面ADCB内两条相交直线,∴PQ⊥平面DCQ.证法二:∵QA⊥平面ABCD,QA平面PDAQ,∴平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,∴DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD,又CD、QD为平面ADCB内两条相交直线,∴PQ⊥平面DCQ.(2)存在CP中点R,使QR∥平面ABCD.证明如下:取CD中点T,连结QR、RT、AT,则RT∥DP,且RT=DP,又AQ∥DP,且AQ=DP,从而AQ∥RT,且AQ=RT,∴四边形AQRT为平行四边形,所以AT∥QR,∵QR平面ABCD,AT平面ABCD,∴QR∥平面ABCD.21.从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确的结论有________个.【答案】4【解析】四边形ABCD适合(1),四面体ACB1D1适合(2),DB1C1D1适合(3),DA1C1D1适合(4),因此正确的结论有4个22.已知是两条不同的直线,是一个平面,且∥,则下列命题正确的是( ) A.若∥,则∥B.若∥,则∥C.若,则D.若,则【答案】D【解析】由∥,∥,可得或∥,不正确;由∥,∥,可得∥或,相交或,互为异面直线,不正确;由∥,,可得∥或,相交,不正确;由∥,,可得,正确.选.【考点】平行关系,垂直关系.【考点】二项式定理23.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.【答案】【解析】∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=AC=×2=.24.已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.【答案】①③【解析】α∥β⇒直线l⊥平面β,由于直线m⊂平面β,∴l⊥m故①正确;由l∥m,直线l⊥平面α可推出直线m⊥平面α,而直线m⊂平面β,∴α⊥β故③正确.25.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】选项A正确,因为SD垂直于底面ABCD,而AC⊂平面ABCD,所以AC⊥SD;再由四边形ABCD为正方形,所以AC⊥BD;而BD与SD相交,所以,AC⊥平面SBD,AC⊥SB.选项B正确,因为AB∥CD,而CD⊂平面SCD,AB⊄平面SCD,所以AB∥平面SCD.选项C正确,设AC与BD的交点为O,易知SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.26.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.【答案】(1)见解析(2)【解析】(1)由AB是圆的直径,得AC⊥BC,由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.因为BC⊂平面PBC,所以平面PBC⊥平面PAC.(2)过C作CM∥AP,则CM⊥平面ABC.如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.在Rt△ABC中,因为AB=2,AC=1,所以BC=.因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故=(,0,0),=(0,1,1).设平面BCP的法向量为n1=(x1,y1,z1),则所以不妨令y1=1,则n1=(0,1,-1).因为=(0,0,1),=(,-1,0),设平面ABP的法向量为n2=(x2,y2,z2),则所以不妨令x2=1,则n2=(1,,0).于是cos〈n1,n2〉==.由题图可判断二面角为锐角,所以二面角C-PB-A的余弦值为.27.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PAC;【答案】(1)证明见解析;(2)证明:见解析.【解析】(1)由直线与平面平行的判定定理即得.(2)注意到在直角梯形ABCD中,过C作CE⊥AB于点E,四边形ADCE为矩形利用勾股定理计算三角形的边长,进一步得到再根据平面,即可得出平面.试题解析:(1)证明:,且平面,平面.∴∥平面. 5分(2)证明:在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形∴,又,在,所以,则,∴ 9分又∵平面,,∴平面 12分【考点】直线与平面平行,勾股定理,垂直关系.28.在正方体中,是棱的中点,是侧面内的动点,且∥平面,记与平面所成的角为,下列说法错误的是()A.点的轨迹是一条线段B.与不可能平行C.与是异面直线D.【答案】B【解析】由已知可取的中点,的中点,连结,易证平面∥平面,故可知点的轨迹是一条线段,与是异面直线,A、C对;当点与重合时与平行,B不对;在上取点F,连结,可证为与平面所成的角,当点F在MN的中点时最大,此时,则,D对,故选B.【考点】1.直线与平面平行的性质与判断;2.直线和平面的夹角;3.空间两直线的位置关系29.如图所示,正方体的棱长为1, 分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为。

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题

高一数学点线面的位置关系试题1.若,是异面直线,直线∥,则与的位置关系是()A.相交B.异面C.异面或相交D.平行【答案】C【解析】空间中直线与直线有三种位置关系:相交,平行,异面;当直线与直线在同一个平面内,则相交,不在任何一个平面内,则是异面直线;要是,由平行公理得,这与为异面直线相矛盾,故位置关系是相交或异面.【考点】空间中直线和直线的位置关系.2.若、、是互不相同的直线,是不重合的平面,则下列命题中为真命题的是()A.若∥,,,则∥B.若,则C.若,∥,则D.若,则∥【答案】C【解析】对于,直线可能平行,可能异面;对于没有说明直线垂直交线;对于由平面与平面垂直的性质得正确;对于,垂直于同一条直线的两条直线可能平行、相交、异面.【考点】空间中点、线、面的位置关系.3.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.【答案】(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,;(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面;(3).【解析】(1)由勾股定理得,由面得到,从而得到面,故;(2)连接交于点,则为的中位线,得到∥,从而得到∥面;(3)过作垂足为,面,面积法求,求出三角形的面积,代入体积公式进行运算.试题解析:(1)证明:在中,由勾股定理得为直角三角形,即.又面,,,面,.(2)证明:设交于点,则为的中点,连接,则为的中位线,则在中,∥,又面,则∥面.(3)在中过作垂足为,由面⊥面知,面,.而,,.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.4.已知m,n是两条不同直线,是三个不同平面,下列命题中正确的是()A.若m,n,则m n B.若C.若D.若【答案】D【解析】A选项中m,n可以相交;B选项中可能相交,不同于平面中的垂直于同一直线的两直线平行;C选项中m有可能与的相交线平行,同时也与平行,但平面不平行;综合选D.【考点】直线与平面的位置关系.5.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF AB,则EF与CD所成的角为().A.B.C.D.【答案】D【解析】设为的中点,连接,由三角形中位线定理可得,则即为与所成的角,结合,在中,利用三角函数即可得到答案.【考点】异面直线及其所成的角.三角形中位线定理.6.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若既在平面内,又在平面内,则平面和平面重合.D.四条边都相等的四边形是平面图形【答案】B【解析】对于A,当三个点在同一直线上时,不能确定一个平面,故A不正确;对于B,三角形三条直线两两相交,有不共线的三点,因此一定是平面图形,故B正确;对于C,当在一条直线上时,平面和平面也可能相交,故C不正确;对于D,当四边形的对边所在直线是异面直线时,四边形不是平面图形,故D不正确,故选B.【考点】平面的基本性质.7.已知△中,,,平面,,、分别是、上的动点,且.(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?【答案】(1)见解析;(2)见解析.【解析】(1)通过证明⊥平面,说明平面平面;(2)将平面平面作为条件,利用三角形关系求解.试题解析:(1)∵⊥平面,∴⊥.∵⊥且,∴⊥平面,又∵,∴不论为何值,恒有,∴⊥平面.又平面,∴不论为何值,总有平面⊥平面.(2)由(1)知,⊥,又平面⊥平面,∴⊥平面,∴⊥.∵,,,∴,,∴,由,得,∴,故当时,平面平面.【考点】两平面的位置关系的证明.8.下列四个结论:⑴两条不同的直线都和同一个平面平行,则这两条直线平行.⑵两条不同的直线没有公共点,则这两条直线平行.⑶两条不同直线都和第三条直线垂直,则这两条直线平行.⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行.其中正确的个数为()A.B.C.D.【答案】A【解析】两条不同的直线都和同一个平面平行,则这两条直线平行、相交或异面的位置关系.所以(1)不正确;两条不同的直线没有公共点,则这两条直线平行,或异面,所以(2)不正确;两条不同直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以(3)不正确;一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行或直线在平面内,所以(4)不正确.故选A.【考点】1.直线与平面的位置关系.2.直线与直线的位置关系.3.相关的判断定理.9.在正四面体(所有棱长都相等)中,分别是的中点,下面四个结论中不成立的是()A.平面平面B.平面C.平面平面D.平面平面【答案】C【解析】由AF⊥BC,PE⊥BC,可得BC⊥平面PAE,而DF//BC,所以,DF⊥平面PAE,故A正确.若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面PAE,故B正确.由DF⊥平面PAE可得,平面PAE⊥平面ABC,故D正确.故选C.【考点】正四面体的几何特征,平行、垂直关系。

点线面之间的位置关系参考答案

点线面之间的位置关系参考答案

点线面之间的位置关系参考答案516、⑴证明:因为1CC ⊥平面ABC ,又1CC ⊂平面1C CD ,所以平面1C CD ⊥平面ABC .⑵证明:连结1BC 交1B C 于O ,连结DO ,则O 是1BC 的中点,DO 是1BAC ∆的中位线.所以1DO AC ∥.因为DO ⊂平面1CDB ,所以1AC ∥平面1CDB ;⑶解:因为1CC ⊥平面ABC ,所以1BB ⊥平面ABC ,所以1BB 为 三棱锥1D CBB -的高.112111124332D CBB B CBD BCD V V S BB --∆==⋅=⨯⨯=. 所以三棱锥1D CBB - 17、(1)证明:如图,连BD 、B 1D 1,∵ A 1B 1C 1D 1是正方形, ∴ A 1C 1⊥B 1D 1,又∵ BB 1⊥底面A 1B 1C 1D 1,A 1C 1底面A 1B 1C 1D 1, ∴ A 1C 1⊥BB 1,∴ A 1C 1⊥平面BB 1D 1D ,∴ B 1D ⊥A 1C 1,同理可证:B 1D ⊥BC 1,且A 1C 1∩BC 1=C 1, 故B 1D ⊥平面A 1C 1B . (2)解:111111111113B A C B B A B C A B C V V S BB --∆==⋅=13·12·1·1·1=16. (3)解:∵ AA 1∥BB 1,∴ 异面直线BC 1与AA 1所成的角就是BC 1与BB 1所成的角,即∠B 1BC 1=450. 故异面直线BC 1与AA 1所成的角为450.18、(1) 证明: 如图, 连结BD , 则E 是BD 的中点.又F 是PB 的中点,,所以EF ∥PD .因为EF 不在平面PCD 内,所以EF ∥平面PCD . (2) 连结PE . 因为ABCD 是正方形,所以BD ⊥AC . 又P A ⊥平面ABC ,所以P A ⊥BD .因此BD ⊥平面P AC .故∠EPD 是PD 与平面P AC 所成的角. 因为EF ∥PD ,所以EF 与平面P AC 所成的角的大小等于∠EPD.因为P A =AB =AD, ∠P AD =∠BAD =90,所以Rt △P AD ≌ Rt △BAD . 因此PD =BD .在Rt △PED 中,sin ∠EPD =21=PD ED ,得∠EPD = 30. 所以EF 与平面PAC 所成角的大小是30.19、⑴∵三棱柱111ABC A B C -是直棱柱,∴1BB ⊥平面ABC .OAB CD A 1B 1C 1又∵CF ⊂平面ABC , ∴CF 1BB ⊥. ⑵解:∵三棱柱111ABC A B C -是直棱柱,∴1BB ⊥平面ABC .又∵AC ⊂平面ABC ,∴AC 1BB ⊥ .∵90ACB ∠=,∴AC BC ⊥.∵1BB BC B =,∴AC ⊥平面1ECBB .∴1113A ECBB ECBB V S AC -=⋅. ∵E 是棱1CC 的中点,∴1122EC AA ==.∴1111()(24)2622ECBB S EC BB BC =+⋅=⨯+⨯=.∴111162433A ECBB ECBB V S AC -=⋅=⨯⨯=.⑶解:CF ∥平面1AEB .证明如下:取1AB 的中点G ,联结EG ,FG .∵F 、G 分别是棱AB 、1AB 中点,∴1FG BB ∥,12FG =1BB .又∵1EC BB ∥,112EC BB =,∴FG EC ∥,FG EC =.∴四边形FGEC 是平行四边形, ∴CF ∥EG .又∵CF ⊄平面1AEB ,EG ⊂平面1AEB , ∴CF ∥平面1AEB .19、 ⑴∵PA ⊥面ABCD ,四边形ABCD 是正方形,其对角线BD 、AC 交于点E ,∴PA BD ⊥,AC BD ⊥.∴BD ⊥平面APC , ∵FG ⊂平面PAC ,∴BD FG ⊥⑵当G 为EC 中点,即34AG AC =时,FG ∥/平面PBD , 理由如下: 连结PE ,由F 为PC 中点,G 为EC 中点,知FG PE∥,而FG ⊄平面PBD ,PB ⊂平面PBD , 故FG //平面PBD .21、⑴因为PA ⊥平面ABC ,所以PA BC ⊥,又AC BC ⊥,所以BC ⊥平面PAC ,所以BC AD ⊥.由三视图可得,在PAC ∆中,4PA AC ==,D 为PC 中点,所以AD PC ⊥, 所以AD ⊥平面PBC , ⑵由三视图可得4BC =,由⑴知90ADC ∠=︒,BC ⊥平面PAC , 又三棱锥D ABC -的体积即为三棱锥B ADC -的体积,所以,所求三棱锥的体积111164443223V =⨯⨯⨯⨯⨯=.⑶取AB 的中点O ,连接CO 并延长至Q ,使得2CQ CO =,点Q即为所求.因为O 为CQ 中点,所以PQ OD ∥, 因为PQ ⊄平面ABD ,OD ⊂平面ABD ,所以PQ ∥平面ABD , 连接AQ ,BQ ,四边形ACBQ 的对角线互相平分,所以ACBQ 为平行四边形,所以4AQ =,又PA ⊥平面ABC ,所以在直角PAD ∆中,PQG C 1B 1A 1F E C BA P G F E DCB AOQ ABC DP。

点线面位置关联典典范题

点线面位置关联典典范题

点线面位置关系典型例题一,直线与平面平行的判定与性质典型例题一例1 简述下列问题的结论,并画图说明:(1)直线⊂a 平面α,直线A a b = ,则b 和α的位置关系如何?(2)直线α⊂a ,直线a b //,则直线b 和α的位置关系如何?分析:(1)由图(1)可知:α⊂b 或A b =α ;(2)由图(2)可知:α//b 或α⊂b .说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了.证明:如图所示,连结AC ,交BD 于点O ,∵四边形ABCD 是平行四边形∴CO AO =,连结OQ ,则OQ 在平面BDQ 内,且OQ 是APC ∆的中位线,∴OQ PC //.∵PC 在平面BDQ 外,∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢?由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,若线线平行,则线面平行.典型例题三例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论.分析:可考虑P 点的不同位置分两种情况讨论.解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面;(2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a ='' ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面.说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论.典型例题四例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.已知:直线b a //,//a 平面α,α⊄b .求证:α//b .证明:如图所示,过a 及平面α内一点A 作平面β.设c =βα ,∵α//a ,∴c a //.又∵b a //,∴c b //.∵α⊄b ,α⊂c ,∴α//b .说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的.典型例题五例5 已知四面体ABC S -的所有棱长均为a .求:(1)异面直线AB SC 、的公垂线段EF 及EF 的长;(2)异面直线EF 和SA 所成的角.分析:依异面直线的公垂线的概念求作异面直线ABSC 、的公垂线段,进而求出其距离;对于异面直线所成的角可采取平移构造法求解.解:(1)如图,分别取AB SC 、的中点F E 、,连结CF SF 、.由已知,得SAB ∆≌CAB ∆.∴CF SF =,E 是SC 的中点,∴SC EF ⊥.同理可证AB EF ⊥∴EF 是AB SC 、的公垂线段.在SEF Rt ∆中,a SF 23=,a SE 21=. ∴22SE SF EF -=a a a 22414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角.连结FG ,在EFG Rt ∆中,a EG 21=,a GF 21=,a EF 22=. 由余弦定理,得 22222124142412cos 222222=⋅⋅-+=⋅⋅-+=∠a a a a a EF EG GF EF EG GEF . ∴45=∠GEF .故异面直线EF 和SA 所成的角为 45.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 如果一条直线与一个平面平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.已知:直线α//a ,α∈B ,b B ∈,a b //.求证:α⊂b .分析:由于过点B 与a 平行的直线是惟一存在的,因此,本题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否定性命题,所以使用反证法.证明:如图所示,设α⊄b ,过直线a 和点B 作平面β,且'b =αβ .∵α//a ,∴α//'b .这样过B 点就有两条直线b 和'b 同时平行于直线a ,与平行公理矛盾.∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的依据.(2)本例还可以用同一法来证明,只要改变一下叙述方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b . 这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条, ∴b 与'b 重合.∵α⊂'b ,∴α⊂b .典型例题七例7 下列命题正确的个数是( ).(1)若直线l 上有无数个点不在平面α内,则α//l ;(2)若直线l 平行于平面α内的无数条直线,则α//l ;(3)若直线l 与平面α平行,则l 与平面α内的任一直线平行;(4)若直线l 在平面α外,则α//l .A .0个B .1个C .2个D .3个分析:本题考查的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解本题的关键.要注意直线和平面的位置关系除了按照直线和平面公共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l 上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因而直线可能与平面平行亦有可能与直线相交.解题时要注意“无数”并非“所有”.(2)直线l 虽与α内无数条直线平行,但l 有可能在平面α内,所以直线l 不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当α//l 时,若α⊂m 且l m //,则在平面α内,除了与m 平行的直线以外的每一条直线与l 都是异面直线.(4)直线l 在平面α外,应包括两种情况:α//l 和l 与α相交,所以l 与α不一定平行.故选A .说明:如果题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完整,考虑要全面.如直线l 、m 都平行于α,则l 与m 的位置关系可能平行,可能相交也有可能异面;再如直线m l //、α//l ,则m 与α的位置关系可能是平行,可能是m 在α内.典型例题八例8 如图,求证:两条平行线中的一条和已知平面相交,则另一条也与该平面相交. 已知:直线b a //,P a =α平面 .求证:直线b 与平面α相交.分析:利用b a //转化为平面问题来解决,由b a //可确定一辅助平面β,这样可以把题中相关元素集中使用,既创造了新的线面关系,又将三维降至二维,使得平几知识能够运用. 解:∵b a //,∴a 和b 可确定平面β.∵P a =α ,∴平面α和平面β相交于过点P 的直线l .∵在平面β内l 与两条平行直线a 、b 中一条直线a 相交,∴l 必定与直线b 也相交,不妨设Q l b = ,又因为b 不在平面α内(若b 在平面α内,则α和β都过相交直线b 和l ,因此α与β重合,a 在α内,和已知矛盾).所以直线b 和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公共点;否定直线在平面内以及直线和平面平行;用此结论:一条直线如果经过平面内一点,又经过平面外一点,则此直线必与平面相交(此结论可用反证法证明).典型例题九例9 如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行. 已知:a 与b 是异面直线.求证:过b 且与a 平行的平面有且只有一个.分析:本题考查存在性与唯一性命题的证明方法.解题时要理解“有且只有”的含义.“有”就是要证明过直线b 存在一个平面α,且α//a ,“只有”就是要证满足这样条件的平面是唯一的.存在性常用构造法找出(或作出)平面,唯一性常借助于反证法或其它唯一性的结论. 证明:(1)在直线b 上任取一点A ,由点A 和直线a 可确定平面β.在平面β内过点A 作直线'a ,使a a //',则'a 和b 为两相交直线, 所以过'a 和b 可确定一平面α.∵α⊂b ,a 与b 为异面直线,∴α⊄a .又∵'//a a ,α⊂'a , ∴α//a .故经过b 存在一个平面α与a 平行.(2)如果平面γ也是经过b 且与a 平行的另一个平面,由上面的推导过程可知γ也是经过相交直线b 和'a 的. 由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a 和b ,过b 存在一平面α且与a 平行,同样过a 也存在一平面β且与b 平行.而且这两个平面也是平行的(以后可证).对于异面直线a 和b 的距离,也可转化为直线a 到平面α的距离,这也是求异面直线的距离的一种方法.典型例题十例10 如图,求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行. 已知:l =βα ,α//a ,β//a ,求证:l a //.分析:本题考查综合运用线面平行的判定定理和性质定理的能力.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线平行,即线面平行可得线线平行.然后再用线面平行的判定定理和性质定理来证明a 与l 平行.证明:在平面α内取点P ,使l P ∉,过P 和直线a 作平面γ交α于b .∵α//a ,γ⊂a ,b =αγ ,∴b a //.同理过a 作平面δ交β于c .∵β//a ,δ⊂a ,c =βδ ,∴c a //.∴c b //.∵β⊄b ,β⊂c ,∴β//b .又∵α⊂b ,l =βα ,∴l b //.又∵b a //,∴l a //.另证:如图,在直线l 上取点M ,过M 点和直线a 作平面和α相交于直线1l ,和β相交于直线2l .∵α//a ,∴1//l a ,∵β//a ,∴2//l a ,但过一点只能作一条直线与另一直线平行.∴直线1l 和2l 重合.又∵α⊂1l ,β⊂2l ,∴直线1l 、2l 都重合于直线l ,∴l a //.说明:“线线平行”与“线面平行”在一定条件下是可以相互转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各取一点P 、Q ,且DQ AP =.求证://PQ 面BCE .分析:要证线面平行,可以根据判定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与PQ 平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作AB PM //交BE 于M ,在平面ABCD 内过Q 作AB QN //交BC 于N ,连结MN .∵AB PM //,∴AE PE AB PM =. 又∵CD AB QN ////, ∴BD BQ DC QN =,即BD BQ AB QN =.∵正方形ABEF 与ABCD 有公共边AB ,∴DB AE =.∵DQ AP =,∴BQ PE =.∴QN PM =.又∵AB PM //,AB QN //,∴QN PM //.∴四边形PQNM 为平行四边形.∴MN PQ //.又∵⊂MN 面BCE ,∴//PQ 面BCE .证明二:如图,连结AQ 并延长交BC 于S ,连结ES .∵AD BS //,∴QB DQ QS AQ =. 又∵正方形ABEF 与正方形ABCD 有公共边AB ,∴DB AE =,∵DQ AP =,∴QB PE =. ∴QS AQ QBDQ PE AP ==. ∴ES PQ //,又∵⊂ES 面BEC ,∴//PQ 面BEC .说明:从本题中我们可以看出,证线面平行的根本问题是要在平面内找一直线与已知直线平行,此时常用中位线定理、成比例线段、射影法、平行移动、补形等方法,具体用何种方法要视条件而定.此题中我们可以把“两个有公共边的正方形”这一条件改为“两个全等的矩形”,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或平行、或相交于一点. 已知:a =βα ,b =γβ ,c =αγ .求证:a 、b 、c 互相平行或相交于一点.分析:本题考查的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据共面的两条直线平行或相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ ,∴β⊂b a 、.∴a 与b 平行或相交.①若b a //,如图∵γ⊂b ,γ⊄a ,∴γ//a .又∵c =αγ ,α⊂a ,∴c a //.∴c b a ////.②若a 与b 相交,如图,设O b a = ,∴a O ∈,b O ∈.又∵βα =a ,γβ =b .∴α∈O ,γ∈O又∵c =γα ,∴c O ∈.∴直线a 、b 、c 交于同一点O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是1CC 、11B A 的中点,画出点D 、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ∆的BC 边上的高,DF 是BCD ∆的BC 边上的中线,求证:AE 和DF 是异面直线.证法一:(定理法)如图由题设条件可知点E 、F 不重合,设BCD ∆所在平面α.∴⇒⎪⎪⎩⎪⎪⎨⎧∉∈∉⊂DF E E A DF αααAE 和DF 是异面直线. 证法二:(反证法)若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β.(1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾.(2)若E 、F 不重合,∵EF B ∈,EF C ∈,β⊂EF ,∴β⊂BC .∵β∈A ,β∈D ,∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾.综上,假设不成立.故AE 和DF 是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?”对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14 已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别是AB 、BC 、CD 的中点,求证:平面EFG 和AC 平行,也和BD 平行.分析:欲证明AC //平面EFG ,根据直线和平面平等的判定定理只须证明AC 平行平面EFG 内的一条直线,由图可知,只须证明EF AC //.证明:如图,连结AE 、EG 、EF 、GF .在ABC ∆中,E 、F 分别是AB 、BC 的中点.∴EF AC //.于是AC //平面EFG .同理可证,BD //平面EFG .说明:到目前为止,判定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的判定定理.典型例题十五例15 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证:ACD PQ 平面//.分析:欲证线面平行,须证线线平行,即要证明PQ 与平面ACD 中的某条直线平行,根据条件,此直线为AD ,如图.证明:取BC 的中点E .∵P 是ABC ∆的重心,连结AE ,则1∶3=PE AE∶,连结DE , ∵Q 为BCD ∆的重心,∴1∶3=QE DE∶, ∴在AED ∆中,AD PQ //.又ACD AD 平面⊂,ACD PQ 平面⊄,∴ACD PQ 平面//.说明:(1)本例中构造直线AD 与PQ 平行,是充分借助于题目的条件:P 、Q 分别是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行”.判定定理给我们提供了一种证明线面平等的方法.根据问题具体情况要熟练运用.典型例题十六例16 正方体1111D C B A ABCD -中,E 、G 分别是BC 、11D C 的中点如下图.求证:D D BB EG 11//平面.分析:要证明D D BB EG 11//平面,根据线面平等的判定定理,需要在平面D D BB 11内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件.证明:取BD 的中点F ,连结EF 、F D 1.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,则DC EF //,且CD EF 21=.∵G 为11D C 的中点,∴CD G D //1且CD G D 211=,∴G D EF 1//且G D EF 1=,∴四边形G EFD 1为平行四边形,∴EG F D //1,而111B BDD F D 平面⊂,11B BDD EG 平面⊄,∴11//B BDD EG 平面.典型例题十七例17 如果直线α平面//a ,那么直线a 与平面α内的( ).A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确.∴应选D .说明:本题主要考查直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是( ).A .一定平行B .一定相交C .一定异面D .相交或异面解:如图中的甲图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系;如图中的乙图,分别与异面直线a 、b 平行的两条直线c 、d 是相交关系.综上,可知应选D .说明:本题主要考查有关平面、线面平行等基础知识以及空间想象能力.典型例题十九例19 a 、b 是两条异面直线,下列结论正确的是( ).A .过不在a 、b 上的任一点,可作一个平面与a 、b 平行B .过不在a 、b 上的任一点,可作一个直线与a 、b 相交C .过不在a 、b 上的任一点,可作一个直线与a 、b 都平行D .过a 可以并且只可以作一平面与b 平行解:A 错,若点与a 所确定的平面与b 平行时,就不能使这个平面与α平行了.B 错,若点与a 所确定的平面与b 平等时,就不能作一条直线与a ,b 相交.C 错,假如这样的直线存在,根据公理4就可有b a //,这与a ,b 异面矛盾.D 正确,在a 上任取一点A ,过A 点做直线b c //,则c 与a 确定一个平面与b 平行,这个平面是惟一的.∴应选D.说明:本题主要考查异面直线、线线平行、线面平行等基本概念.典型例题二十例20 (1)直线b a //,α平面//a ,则b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行. 解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b .∴应填:α//b 或α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,(分别称'a ,'b )经过'a ,'b 的平面也是惟一的.所以只能作一个平面;还有不能作的可能,当这个平面经过a 或b 时,这个平面就不满足条件了.∴应填:1.说明:考虑问题要全面,各种可能性都要想到,是解答本题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.解:∵α//a ,ABD EG 平面 α=.∴EG a //,即EG BD //, ∴FC AF AF BD EG CD BC FG EF AC AF CD FG BC EF +==++===. 则9204545=+⨯=+⋅=FC AF BD AF EG . ∴应填:920.说明:本题是一道综合题,考查知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考查了综合运用知识,分析和解决问题的能力.二,面面平行的性质与判定典型例题一例1:已知正方体1111-D C B A ABCD .求证:平面//11D AB 平面BD C 1.证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//,又 ⊂B C 1平面BD C 1,故 //1A D 平面BD C 1.同理 //11B D 平面BD C 1.又 1111D B D A D = ,∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγ ,b =γβ .∵βα//∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交.已知:如图,βα//,A l =α .求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B .∴γ与α、β都相交.设a =αγ ,b =γβ .∵βα//∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A .∵l 与b 相交.所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G .∵F CD AG =∴ AG ,CD 确定平面γ,且AC =αγ ,DG =βγ .∵βα//,所以 DG AC //,∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =,∴ △ACF ≌△DFG .∴ FG AF =.又 BE AE =,∴ BG EF //,β⊂BG .故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形.证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β.同理1BB 和1CC 确定平面γ.又11//BB AA ,且γ⊂1BB∴γ//1AA同理γ//AD又A AD AA = 1∴γβ//又11D A =βα ,11C B =γα∴1111//C B D A .同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ).A .α⊂l ,α⊂m ,且β//l ,β//mB .α⊂l ,β⊂m ,且m l //C .α⊥l ,β⊥m ,且m l //D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b .∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ,∴MN PQ //.又∵p a //,Q a PQ = ,N b MN = ,∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ;(2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN .∵M 是AB 的中点,∴BD PM //.又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //.∵α⊂AC ,∴α//PN .∵βα//,P PM PN = ,∴平面β//PMN .∵MN ⊂平面PMN ,∴β//MN .(2)分别连结MC 、MD .∵b BD AC ==,a BM AM 21==,又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM ,∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =,∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥.在CMN Rt ∆中,22222421c a b CN CM MN -+=-=.说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解.(3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究.解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内;∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行.已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可. 证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉.点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N .在平面M 、N 内过A 分别作直线a a //'、b b //',故'a 、'b 是两条相交直线,可确定一个平面β. ∵α⊄'a ,α⊂a ,a a //',∴α//'a .同理α//'b .又β⊂'a ,β⊂'b ,A b a ='' ,∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知: m =ρβ ,n =ργ ,∴c m //,c n //,又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H ,∵DE 是ABC ∆的中位线,∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //,∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //.又SG ⊄平面DEF ,FH ⊂平面DEF ,∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出. 证法2:∵EF 为SBC ∆的中位线,∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB ,∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF = ,∴平面SAB //平面DEF ,又∵⊂SG 平面SAB ,∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =α ,平面BE QAF =β ,又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin .由BE FA //,得212412∶∶∶∶===QA QB AF BE, ∴AF BE 21=由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=. 又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF . ∴EBD BD BE S DBE ∠⋅⋅=∆sin 21FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167847267=⨯=.∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB。

空间点、线、面位置关系(经典例题+训练)

空间点、线、面位置关系(经典例题+训练)

空间点、线、面的位置关系【基础回顾】1.平面的基本性质公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线.公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面.推论2:经过________________,有且只有一个平面.推论3:经过________________,有且只有一个平面.2.直线与直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 异面直线:不同在任何一个平面内(2)异面直线判定定理过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线.(3)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角.②范围:____________.3.公理4平行于____________的两条直线互相平行.4.定理如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.自我检测1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________.2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________.4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________.5.下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________(填序号).【例题讲解】1、平面的基本性质例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.求证:EH、FG、BD三线共点.变式迁移1如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG相交于点O.求证:B、D、O三点共线.2、异面直线的判定例2如图所示,直线a、b是异面直线,A、B两点在直线a 上,C、D两点在直线b上.求证:BD和AC是异面直线.变式迁移2如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,这四个点不共面的是________(填序号).3、异面直线所成的角例3已知三棱柱ABC—A 1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为_______________________________________________________ _________________.变式迁移3在空间四边形ABCD中,已知AD=1,BC=3,且AD⊥BC,对角线BD=132,AC=32,求AC和BD所成的角.二、空间的平行关系基础回顾1.空间直线与平面、平面与平面的位置关系(1)直线a和平面α的位置关系有三种:________、__________、__________.(2)两个平面的位置关系有两种:________和________.2.直线与平面平行的判定与性质(1)判定定理:如果平面外一条直线和这个________________平行,那么这条直线与这个平面平行.(2)性质定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.3.平面与平面平行的判定与性质(1)判定定理:如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线________.自我检测1.下列各命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④垂直于同一直线的两个平面平行.不正确的命题个数是________.2.经过平面外的两点作该平面的平行平面,可以作______个.3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是________.4.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.【例题讲解】1、线面平行的判定例1已知有公共边AB的两个全等的矩形ABCD和ABEF不在同一平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ.求证:PQ∥平面CBE.变式迁移1在四棱锥P—ABCD中,四边形ABCD是平行四边形,M、N分别是AB、PC的中点,求证:MN∥平面PAD.2、面面平行的判定例2在正方体ABCD—A 1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.变式迁移2已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.求证:平面G1G2G3∥平面ABC;3、平行中的探索性问题例3如图所示,在四棱锥P—ABCD中,CD∥AB,AD⊥AB,AD=DC=12AB,BC⊥PC.(1)求证:PA⊥BC;(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由.变式迁移3如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q 在什么位置时,平面D1BQ∥平面PAO?三、空间的垂直关系基础回顾1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线垂直于这个平面.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也________这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内________直线.②垂直于同一个平面的两条直线________.③垂直于同一直线的两个平面________.2.直线与平面所成的角平面的一条斜线与它在这个平面内的________所成的锐角,叫做这条直线与这个平面所成的角.一条直线垂直于平面,说它们所成的角为________;直线l∥α或l⊂α,说它们所成的角是______角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面经过另一个平面的____________,那么这两个平面互相垂直.(2)平面与平面垂直的性质如果两个平面互相垂直,那么在一个平面内垂直于它们________的直线垂直于另一个平面.4.二面角的平面角以二面角的棱上的任意一点为端点,在两个面内分别作________棱的射线,这两条射线所成的角叫做二面角的平面角.自我检测1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是________(填序号).①若l⊥m,m⊂α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m⊂α,则l∥m;④若l∥α,m∥α,则l∥m.2.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,直线m⊂β,使得l∥m;④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.其中,可以判定α与β平行的条件有________个.【例题讲解】1、线面垂直的判定与性质例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC.求证:BD⊥平面SAC.变式迁移1四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,SA=SB.证明:SA⊥BC.2、面面垂直的判定与性质例2如图所示,已知四棱柱ABCD—A 1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.变式迁移2如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.3、直线与平面、平面与平面所成的角例3如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE;(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tan θtan φ=1,求λ的值.变式迁移3如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE ∥BC.(1)求证:BC⊥平面PAC.(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
第二章 点、直线、平面之间的位置关系
[基础训练A 组]
一、选择题
1.下列四个结论:
⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )
A .0
B .1
C .2
D .3
2.下面列举的图形一定是平面图形的是()
A .有一个角是直角的四边形
B .有两个角是直角的四边形
C .有三个角是直角的四边形
D .有四个角是直角的四边形 3.垂直于同一条直线的两条直线一定()
A .平行
B .相交
C .异面
D .以上都有可能 4.如右图所示,正三棱锥V ABC -(顶点在底面的射影是底面正三角形的中心)中,,,D
E
F 分别是,,VC VA AC 的中点,P 为VB 上任意一点,则直线DE 与PF 所成的角的大小是( )
A .0
30 B .0
90 C .0
60 D .随P 点的变化而变化。

5.互不重合的三个平面最多可以把空间分成()个部分 A .4B .5C .7D .8
6.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为() A .90 B .60 C .45 D .30
二、填空题
1. 已知,a b 是两条异面直线,//c a ,那么c 与b 的位置关系____________________。

2. 直线l 与平面α所成角为0
30,,,l A m A m αα=⊂∉ ,
则m 与l 所成角的取值范围是 _________
3.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为
1234,,,d d d d ,则1234d d d d +++的值为。

4.直二面角α-l -β的棱l 上有一点A ,在平面,αβ内各有一条射线AB ,
AC 与l 成045,,AB AC αβ⊂⊂,则BAC ∠=。

5.下列命题中: (1)、平行于同一直线的两个平面平行; (2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行; (4)、垂直于同一平面的两直线平行. 其中正确的个数有_____________。

三、解答题
1.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,
且//EH FG .求证://EH BD .
2.自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。

(数学2必修)第二章 点、直线、平面之间的位置关系
[综合训练B 组] 一、选择题
1.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是() A.16π B.20π
H G F
E D B
A C
C.24π D.32π
2.已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥, 则EF 与CD 所成的角的度数为( )
A.90 B.45
C.60
D.30
3.三个平面把空间分成7部分时,它们的交线有( ) A.1条 B.2条 C.3条 D.1条或2条
4.在长方体1111ABCD A BC D -,底面是边长为2的正方形,高为4,
则点1A 到截面11AB D 的距离为( )
A .
83 B .3
8 C .43 D .34
5.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为()
A .
361a B .3123a C .
3
6
3a D .3121a
6.下列说法不正确的....
是() A .空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D .过一条直线有且只有一个平面与已知平面垂直.
二、填空题
1.正方体各面所在的平面将空间分成_____________部分。

2.空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点,则BC 与AD 的 位置关系是_____________;四边形EFGH 是__________形;当___________时,四边形EFGH 是菱形;当___________时,四边形EFGH 是矩形;当___________时,四边形EFGH 是正方形
3.四棱锥V ABCD -中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角V AB C --的平面角为_____________。

4.三棱锥,10,8,6,P ABC PA PB PC AB BC CA -======则二面角
P AC B --的大小为____
5.P 为边长为a 的正三角形ABC 所在平面外一点且PA PB PC a ===,则P 到 AB 的距离为______。

三、解答题
1.已知直线//b c ,且直线a 与,b c 都相交,求证:直线,,a b c 共面。

2.求证:两条异面直线不能同时和一个平面垂直;
3.如图:S 是平行四边形ABCD 平面外一点,
,M N 分别是,SA BD 上的点,且
SM AM =ND
BN
,求证://MN 平面SBC
(数学2必修)第二章 点、直线、平面之间的位置关系
[提高训练C 组] 一、选择题
1.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则n m ⊥②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n //④若αγ⊥,βγ⊥,则//αβ
其中正确命题的序号是 ( )
A .①和②
B .②和③
C .③和④
D .①和④
2.若长方体的三个面的对角线长分别是,,a b c ,则长方体体对角线长为()
A
C 3.在三棱锥A BC
D -中,AC ⊥底面0,,,,30BCD BD DC BD DC AC a ABC ⊥==∠=, 则点C 到平面ABD 的距离是( )
A B C D 4.在正方体1111ABCD A BC D -中,若E 是11AC 的中点,则直线
CE 垂直于() A .AC B .BD C .1A D D .11A D
5.三棱锥P ABC -的高为PH ,若三个侧面两两垂直,则H 为△ABC 的() A .内心 B .外心 C .垂心 D .重心
6.在四面体ABCD 中,已知棱AC 1,则二面角
A CD
B --的余弦值为()
A .
12 B .13 C D .7.四面体S ABC -中,各个侧面都是边长为a 的正三角形,,E F 分别是SC 和AB 的中点,则异面直线EF 与SA 所成的角等于() A .0
90B .0
60 C .0
45D .0
30
二、填空题
1.点,A B 到平面α的距离分别为4cm 和6cm ,则线段AB 的中点M 到α平面的
距离为_________________.
2.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为_______。

3.一条直线和一个平面所成的角为0
60,则此直线和平面内不经过斜足的所有直线所成的角中最大的角是____________.
4.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为则侧面与底面所成的二面角等于_____。

5.在正三棱锥P ABC -(顶点在底面的射影是底面正三角形的中心)中,4,8AB PA ==,过A 作与,PB PC 分别交于D 和E 的截面,则截面∆ADE 的周长的最小值是________
三、解答题
1.正方体1111ABCD A BC D -中,
M 是1AA 的中点.求证:平面MBD ⊥平面BDC .
2.求证:三个两两垂直的平面的交线两两垂直。

3.在三棱锥S ABC -中,△ABC 是边长为4的正三角形,
平面SAC ⊥平面,ABC SA SC ==M 、N 分别为,AB SB 的中点。

(Ⅰ)证明:AC ⊥SB ;
(Ⅱ)求二面角N -CM -B 的大小; (Ⅲ)求点B 到平面CMN 的距离。

相关文档
最新文档