再探实际问题与二元一次方程组(4)
人教版数学七年级下册导学案:(二元一次方程组)实际问题与二元一次方程组(导学案)
实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。
再探实际问题与二元一次方程组
实际问题
设未知数,列方程组
数学问题 (二元一次方程组)
解 方 程 组
代入法 加减法 (消元)
实际问题的答案
检验
数学问题的解 (x=a , y=b)
4、某班同学参加运土劳动,一部分同学抬 土,另一部分同学挑土,已知全班共有筐 59只,扁担36条,试求有多少同学抬土, 多少同学挑土?
5、一支部队第一天行军4小时,第二天行 军5小时,两天共行军98km,第 一天比第 二天少走2km,第一天和第二天行军的平均 速度各是多少?
6、据市场调查,某种消毒液的大瓶装 (500克)和小瓶装(250克)两种产品的 销售数量比(按瓶计算)为2:5,某厂每 天生产这种消毒液22.5吨,这些消毒液应 该分装大、小瓶装两种产品各多少瓶?
x = 48 y = 52
1、鸡兔同笼,共有12个头,36只腿, 则笼中有 只鸡 只兔; 2、甲、乙两数之和是42,甲数的3倍等于乙数的4倍, 求甲、乙两数各是多少? 若设甲数为x,乙数为y,依题意可列方程组_____ 3、甲、乙、丙三数的和是35,甲、乙的差是7, 乙数是丙数的3倍, 则甲数= ,乙数= , 丙数=
等关系,根据这些相等关系列出方程并 组成方程组; ⑶解:解方程组,求出未知数的值; ⑷答:检验所求的解,写出答案。
2、某工厂去年的利润(总产值-总支出) 为200万元,今年总产值比去看增加了20%, 总支出比去年减少了10%,今年的利润为780 万元。去年的总产值、总支出各是多少万元?
总产值 (万元) x (1+20%)x 总支出 (万元) y (1-10%)y 利润 (万元) 200 780
⑴ . 工作量问题 工作量 = 工作效率 × 工作时间 ⑵. 行程问题 路程 = 速度 × 时间 顺风(水)速度 = 航速 + 风速(水速) 逆风(水)速度 = 航速 – 风速(水速) ①相遇问题:两者路程之和 = 总路程 ②追及问题:两者路程之差 = 总路程 ⑶. 利润问题 利润 = 售价 – 进价 售价 利润 折率 = 利润率 = 标价 ×100% 进价
七年级数学人教版下册课件8.3实际问题与二元一次方程组
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?
关于“再探实际问题与二元一次方程组”一节课的教学设计思考
关于“再探实际问题与二元一次方程组”一节课的教学设计思考【摘要】本文主要阐述了人民教育出版社七年级下学期数学教材在第八章“二元一次方程组”第三小节“再谈实际问题与二元一次方程组”第一课时教学设计思考,以及在教、学过程中如何实施等问题。
主要内容包括:一、新课引入的设计;二、讲授新知的设计;三、课堂练习的设计;四、课堂小结的设计;五、布置作业、教学评价、板书的设计。
【关键词】二元一次方程组;估算;教学评价;数学思想;教学方法人民教育出版社七年级下学期数学教材在第八章“二元一次方程组”第三小节中,又特别安排了“再探实际问题与二元一次方程组”的内容,选择了三个具有一定综合性的问题:“牛饲料问题”、“种植计划问题”、“成本与产出问题”。
;提供给学生利用方程组为工具进行具有一定深度的思考,增加运用方程组解决实际问题的实践,将全章所强调的以方程组为工具,把实际问题模型化的思想提到了新的高度。
这一小节内容的问题形式包括:估算与精确计算的比较,如探究1;开放地寻求设计方案,如探究2;根据图表所表示的实际问题的数据信息列方程组,如探究3。
安排这节的目的在于:一方面,通过实际生活中的问题,进一步突出方程组这种数学模型应有的广泛性和有效性;另一方面,使学生能在解决实际问题的情境下运用所学知识,进一步提高分析问题和解决问题的综合能力。
下面就这一小节的第一课时,即探究1的教学过程设计谈一点自己粗浅的想法。
1.关于新课引入的设计建议播放反映新疆美丽自然风光和介绍新疆畜牧业发展较好的短片或照片,并配上巴哈尔古丽的演唱的歌曲《新疆好》。
其目的有三:一是激发和增强学生学习数学的兴趣;二是教师借机可对学生进行热爱祖国、热爱家乡的德育教育;三是为本节课的引入、探究活动中问题的展示,做了一个很好的引子。
2.关于讲授新知的设计探究1:养牛场原有30只母牛和15只小牛,1天约需饲料675kg,一周后又购进12只母牛和5只小牛,这时一天需用饲料940kg,饲养员李大叔估计平均每只母牛一天需要饲料18~20kg,每只小牛一天约需用饲料7~8kg,你能否通过计算检验他的估计?2.1先给学生充足的时间(大约5分钟~8分钟)进行独立思考、小组讨论,探索分析解决这个问题的方法。
新人教版七年级数学下册第八章导学案及参考答案
新人教版七年级数学(下册)第八章导学案及参考答案第八章二元一次方程组课题:8.1二元一次方程组【学习目标】:弄懂二元一次方程、二元一次方程组和它的解的含义,并会检验一对数是不是某个二元一次方程组的解;【学习重点】:二元一次方程、二元一次方程组及其解的意义.【学习难点】:弄懂二元一次方程组解的含义.【导学指导】一、温故知新1.含有()个未知数,且未知数的次数为()的方程叫一元一次方程。
方程中“元”是指()“次”是指()2.使一元一次方程()的未知数的值叫一元一次方程的解。
3.写出一个—元一次方程(),并指出它的解是()。
二、自主学习:阅读课本93-94页回答下列问题1.含有()个未知数,且未知数的次数为()的方程叫二元一次方程。
方程中“元”是指()“次”是指()2.使二元一次方程()的未知数的值叫二元一次方程的解。
3.写出一个二元一次方程(),并指出它的解是()。
4.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个()5. ( )叫二一次方程组的解。
【课堂练习】1.课本95页1 ;22、x +y =2的正整数解是__________3.若13x y =-⎧⎨=-⎩是方程3x-ay=3的一个解,那么a 的值是__________。
4.下列各式中是二元一次方程是( )(A) 6x-y=7; (B) x 2 =3x+y ; (C)y=5;(D) x 1y=35. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .35251025x y x y +=⎧⎨+=⎩6.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩【要点归纳】本节课你有哪些收获?【拓展训练】1. 349x y +=中,如果2y = 6,那么x = 。
再探二元一次方程与实际问题4
(2)根据计算结果制作扇形统计图表示快餐 成分的信息.
根据以上计算,可得下面的统计表: 中学生营养快餐成分统计表
蛋白 脂 质 肪 135 15 矿物 质 30 碳水化 合物 120 40% 合计 300 100%
各种成分的 质量(g) 各种成分所 占百分比
45% 5% 10%
中学生营养快餐成分统计表
长度l可用公式l=pt+q计算.
已测得当t=100 ℃时l=2.002米;
当t=500 ℃时l=2.01米.
(1)求p,q的值 (2)若这根金属棒加热后长度伸长到2.0 16米,问此时金属棒的温度是多少?
练一练
将大拇指与小拇指尽量张开时,两指间的 距离 称为指距。研究表明,一般情况下,人的身高h 和指距d之间有 关系式h=ad+k .下表是测得一些 人的指距与身高的一组数据: 指距d(cm) 20 身高h(cm) 160 (1)求a,k (2)某人身高为196cm,他的指距估计是多少 21 169 22 178 23。。。 187。。。
2 解:设甲、乙速度分别为x千米/小时, y千米/小时,根据题意得:
4( x y) 36 x 4 36 6 x 2(36 6 y) y 5
6000x 2500z 100500, 解得: x z 36, x 3 z 33 (3 )只购进B型电脑和C型电脑,依题意可得
4000x 2500z 100500, y z 36, y 7 解得: z 29.
例1:一根金属棒在0℃时的长度是q米,温度每升高 1 ℃ ,它就伸长p米,当温度为t ℃ 时,金属棒的
根据题意得
x+y=25 5x×4=30y
实际问题与二元一次方程组教学反思5篇
实际问题与二元一次方程组教学反思5篇实际问题与二元一次方程组教学反思5篇篇一:《实际问题与二元一次方程组》教学反思本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。
教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。
教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的三道实际问题:牛饲料问题,捐款问题以及红茶沟门票问题。
在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的主动意识,因此在学生解决(探究1)牛饲料问题当中,学生能想出三种列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。
从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。
教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。
同时,我能改变传统教学的方法,跳出文本,活用教材。
如:在探究1解决牛饲料问题中,我先让学生对平均每只母牛和每只小牛1天的食量进行估算,再寻求检验估算的方法,使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。
同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。
8.3再探实际问题与二元一次方程组
8.3再探实际问题与二元一次方程组☆趣味导读许多实际问题都可以通过设两个(或更多)未知数,列出方程或方程组来解决,这种方法要比其他方法简单、容易得多.下面这则小故事最早出现于《希腊文选》,读完后,试试看,聪明的你能否知道驴和骡各驮着几个包裹呢?(假定每个包裹重量相等)驴和骡肩并肩走在街上,各自都驮着几个包裹,驴抱怨主人给它压的担子太重,骡却说:“老兄,别抱怨,你的负担并不算重!你瞧,假如你从背上拿一个包裹给我,我的负担就是你的两倍;而假如你从你的背上取走一个包裹,你的负担也不过和我相同呀!”☆智能点拨【例1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【点拨】两个未知数是制盒身、盒底的铁皮张数,两个相等关系是:①制盒身铁皮张数+制盒底铁皮张数=190;②制盒身铁皮张数的2倍=制盒底铁皮张数.【答案】设x 张铁皮制盒身,y 张铁皮制盒底,根据题意,得{1902822x y x y+=⨯=解这个方程组,得{11080x y ==答:用110张制盒身,800张制盒底,正好制成一批完整的盒子. 【例2】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.【点拨】题目中涉及的未知数较多:甲、乙单独完成所需的时间,甲、乙单独完成所需的工钱.我们可以根据第一类等量关系:(1)甲、乙两个装饰公司合作6周完成;(2)甲公司单独做4周后,剩下的由乙公司来做,还需9周完成;列方程组求出甲、乙单独完成所需的时间.再根据另一类等量关系:(1)甲、乙两个装饰公司合作6周完成需工钱5.2万元;(2)甲公司单独做4周后剩下的由乙公司来做,还需9周完成,需工钱4.8万元,由此在得到一个方程组.【答案】设甲公司单独完成需x 周,需工钱a 元;乙公司单独完成需y 周,需工钱b 元,依题意可得661491x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩采取换元法可解得{1510y x ==∴依题意可得 5.2101549 4.81015a b a b ⎧+=⎪⎨⎪⨯+⨯=⎩解得 {64a b == 即甲公司单独完成需6万元,乙公司单独完成需4万元,故从节约的角度考虑,应选乙公司单独完成.【例3】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为 3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)【点拨】扣税的情况:本金×年利率×(1-20%)×年数=利息(其中,利息所得税=利息 金额×20%).不扣税时:利息=本金×年利率×年数.【答案】设第一种储蓄的年利率为x ,第二种储蓄的年利率为y ,根据题意,得{2000(120%)1000(120%)43.923.24%x y x y -+-=+=整理得{160080043.920.00324x y x y +=+=解这个方程组,得 {0.0225 2.25%0.00990.99%x y ==== 答:第一种储蓄的年利率为2.25%,第二种储蓄的年利率为0.99%.☆随堂反馈*画龙点睛1.小明对小飞说:“我想了两个数,如果第一个数加上第二个数的一半得90;若果第二个数减去第一个数的三分之一得68.”小飞很快说出了小明想好的数.小明想好的两个数是 .2.某车间有62个工人,生产甲、乙两种零件,每3个甲种零件和2个一种零件配成一套.已知每人每天能加工甲种零件12个或乙种零件23个;现将62个工人分成2组,其中x 人加工甲种零件,y 人加工乙种零件,要使每天生产的零件配成套,则x= ,y= .3.甲、乙两个团体共100人去风景区旅游风景区规定超过60人可购买团体票,已知每张团体票比个人票优惠20%,而甲、乙两团体人数均不足60人;两团体决定合起来买团体票,共优惠1600元.则团体票为每张 元.4.某人只带2元和5元两种货币,他要买一件27元的商品;而商店不给他找钱,要他恰好付27元,他有 种付款方式.*慧眼识金1.有一个两位数,它的十位上的数与个位上的数的和是6,则符合条件的两位数有( )A.4个B.5个C.6个D.无数个2.商店购进某种商品的进价是每件8元,销售价是每件10元,现为了扩大销售量,将每件降低x%出售,但要求每件商品所获得的利润是降价前的90%,则x 等于( )A.10B.4C.2D.1.83.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分,答错一题扣1分,不答记0分;已知李同学不答的题比答错的题多2个,他的总分为74分,则他答对了( )A.18个B.19个C.20个D.21个☆课后沟通1.甲、乙两人的收入之比为4∶3,支出之比为8∶5,一年间两人各存了500元,求两人的年收入各是多少?2.甲轮船从A 码头顺流而下,乙轮船从B 码头逆流而上,两船同时出发相向而行,相遇于中点;而乙船顺流航行的速度是甲船逆流航行的速度的2倍.已知水流速度是4km/h ,求两船在静水中的速度.3.有两个长方形,其中第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.☆同步闯关某一弹簧悬挂2kg物体时长13cm,悬挂5kg物体时长14.5cm,问:(1)弹簧原长是多少?(2)当悬挂3kg的物体时,该弹簧的长度是多少?☆能力比拼在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京二环路、三环路、四环路的车流量(每小时通过观测点的汽车量数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?☆创新乐园一位农场主,又老又病,觉得自己的日子不多了.这是他打算,按如下的次序和方式分配他的财产:第一个儿子分100美元换剩下的财产的10%;第二个儿子分200美元和剩下的财产的10%;第三个儿子分300美元和剩下的财产的10%;第四个儿子分400美元和剩下的财产的10%;……结果,没个儿子分的一样多,你能猜到这位老人共有几个儿子吗?☆单元中考链接1.(2002年,湖南省)二元一次方程组{1021x y x y +=-=-的解是( ) A. {37x y == B. 113193x y ==⎧⎪⎨⎪⎩ C. {28x y == D. {73x y == 【点拨】根据二元一次方程组的解的定义知道,二元一次方程组的解必须同时使两个方程都成立.【答案】A2.(吉林省)二元一次方程组{3827x y x y +=-=的解是 . 【点拨】利用加减消元法【答案】{31x y ==- 3.(新疆乌鲁木齐)今年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输一场得0分.某小组四个队进行单循环赛后,其中一队积了7分,若该队赢了x 场,平了y 场,则(x,y)是( )A.(1,4)B.(2,1)C.(0,7)D.(3,-2)【点拨】由题意可知3x+y=7 ∵x 、y 都是整数,且0≤x ≤3,0≤y ≤3,∴只有当x=2,y=1时,符合单循环赛制,有3×2+1=7.【答案】B.☆单元课题研究【提出问题】要用20张白卡纸做包装盒,每张白卡纸可以做盒身2个,或者做盒盖3个。
二元一次方程组应用题经典题解析版----例题
实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的根本思想列方程组解应用题是把"未知〞转化为"〞的重要方法,它的关键是把量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的根本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比拟直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开场时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比拟直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-本钱(进价);(2);(3)利润=本钱〔进价〕×利润率;(4)标价=本钱(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:"商品利润=售价-本钱〞中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.〔例如八折就是按标价的十分之八即五分之四或者百分之八十〕4.储蓄问题:(1)根本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)根本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥月利率=年利率1 12 .注意:免税利息=利息5.配套问题:解这类问题的根本等量关系是:总量各局部之间的比例=每一套各局部之间的比例.6.增长率问题:解这类问题的根本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的根本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n 为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的根本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的根本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最正确方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最正确方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比拟几种方案得出最正确方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写"答〞,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)"设〞、"答〞两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中根本量之间的关系; ②审题时,注意从文字,图表中获得有关信息; ③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;④正确书写速度单位,防止与路程单位混淆; ⑤在寻找等量关系时,应注意挖掘隐含的条件; ⑥列方程组解应用题一定要注意检验.类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系: ①相向而行:汽车行驶113小时的路程+拖拉机行驶113小时的路程=160千米; ②同向而行:汽车行驶12小时的路程=拖拉机行驶112⎛⎫+ ⎪⎝⎭小时的路程. 解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组()4160,311122x y x y ⎧+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 解这个方程组,得: 90,30x y =⎧⎨=⎩ 1111901165,3011853232⎛⎫⎛⎫⨯+=⨯+= ⎪ ⎪⎝⎭⎝⎭.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.类型二:列二元一次方程组解决——工程问题2.一家商店要进展装修,假设请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;假设先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:此题有两层含义,各自隐含两个等式,第一层含义:假设请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:假设先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元.设甲组单独做一天商店应付*元,乙组单独做一天商店应付y元,由第一层含义可得方程8〔*+y〕=3520,由第二层含义可得方程6*+12y=3480.解:(1)设甲组单独做一天商店应付*元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元.(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少.答:请乙组单独做费用最少.总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进展分析.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价风格整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为*元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元.类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?〔利息所得税=利息金额×20%,教育储蓄没有利息所得税〕思路点拨:设教育储蓄存了*元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在x y一年后 2.25%+⨯ 2.25%80%x x+⨯⨯2042.75y y解:设存一年教育储蓄的钱为*元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.类型五:列二元一次方程组解决——生产中的配套问题5.*服装厂生产一批*种款式的秋装,每2米的*种布料可做上衣的衣身3个或衣袖5只. 现方案用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:此题的第一个相等关系比拟容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.类型六:列二元一次方程组解决——增长率问题 6. *工厂去年的利润〔总产值—总支出〕为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为*万元,总支出为y 万元,则有总产值〔万元〕 总支出〔万元〕 利润〔万元〕 去年* y 200 今年 120%* 90%y 780 根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的量和未知量,可以列出两个等式.解:设去年的总产值为*万元,总支出为y 万元,根据题意得: ,解之得:答:去年的总产值为2000万元,总支出为1800万元总结升华:当题的条件较多时,可以借助图表或图形进展分析.类型七:列二元一次方程组解决——和差倍分问题7.〔2011年丰台区中考一摸试题〕"爱心〞帐篷厂和"温暖〞帐篷厂原方案每周生产帐篷共9千顶,现*地震灾区急需帐篷14千顶,两厂决定在一周赶制出这批帐篷.为此,全体职工加班加点,"爱心〞帐篷厂和"温暖〞帐篷厂一周制作的帐篷数分别到达了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周,"爱心〞帐篷厂和"温暖〞帐篷厂各生产帐篷多少千顶?思路点拨:找出量和未知量,根据题意知未知量有两个,所以列两个方程,根据方案前后,倍数关系由量和未知量列出两个等式,即是两个方程组成的方程组.解:设原方案"爱心〞帐篷厂生产帐篷*千顶,"温暖〞帐篷厂生产帐篷y 千顶,由题意得:9,1.6 1.514x y x y +=⎧⎨+=⎩, 解得:5,4x y =⎧⎨=⎩所以:1.6*=1.65=8, 1.5y =1.54=6答:"爱心〞帐篷厂生产帐篷8千顶,"温暖〞帐篷厂生产帐篷6千顶.类型八:列二元一次方程组解决——数字问题8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,前一个四位数比后一个四位数大2178,求这两个两位数.思路点拨:设较大的两位数为*,较小的两位数为y.问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100*+y 问题2:在较大数的左边写上较小的数,所写的数可表示为: 100y +*解:设较大的两位数为*,较小的两位数为y.依题意可得:,解得:答:这两个两位数分别为45,23.类型九:列二元一次方程组解决——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg ,问甲、乙两种酒精溶液应各取多少?思路点拨:此题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:〔1〕甲种酒精溶液与乙种酒精溶液的质量之和=50;〔2〕混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;〔3〕混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;〔4〕混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比.解:法一:设甲、乙两种酒精溶液分别取*kg , ykg.依题意得:,答:甲取20kg,乙取30kg法二:设甲、乙两种酒精溶液分别取10*kg和5ykg,则甲种酒精溶液含水7*kg,乙种酒精溶液含水ykg,根据题意得:,所以 10*=20,5y=30.答:甲取20kg,乙取30kg总结升华:此题的第〔1〕个相等关系比拟明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等.用它们来联系各量之间的关系,列方程组时就显得容易多了.列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么.有时候需要设间接未知数,有时候需要设辅助未知数.类型十:列二元一次方程组解决——几何问题10.如图,用8块一样的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为*,宽为y,就可以列出关于*、y的二元一次方程组.解:设长方形地砖的长*cm,宽ycm,由题意得:,答:每块长方形地砖的长为45cm、宽为15cm.总结升华:几何应用题的相等关系一般隐藏在*些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解.类型十一:列二元一次方程组解决——年龄问题11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解此题的关键是理解"6年后〞这几个字的含义,即6年后父子俩都长了6岁.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程.解:设现在父亲*岁,儿子y岁,根据题意得:,答:父亲现在30岁,儿子6岁.总结升华:解决年龄问题,要注意一点:一个人的年龄变化〔增大、减小〕了,其他人也一样增大或减小,并且增大〔或减小〕的岁数是一样的〔一样的时间〕.类型十二:列二元一次方程组解决——优化方案问题:12.*地生产一种绿色蔬菜,假设在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进展粗加工,每天可以加工16吨;如果进展细加工,每天可加工6吨. 但两种加工方式不能同时进展. 受季节条件的限制,公司必须在15天之将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进展粗加工;方案二:尽可能多的对蔬菜进展精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将局部蔬菜进展精加工,其余蔬菜进展粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?思路点拨:如何对蔬菜进展加工,获利最大,是生产经营者一直思考的问题. 此题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.解:方案一获利为:4500×140=630000(元).方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).方案三获利如下:设将吨蔬菜进展精加工,吨蔬菜进展粗加工,则根据题意,得:,解得:所以方案三获利为:7500×60+4500×80=810000(元).因为630000<725000<810000,所以选择方案三获利最多答:方案三获利最多,最多为810000元.总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进展比拟从中选择最优方案.。
再探实际问题与二元一次方程组(第1课时)教学设计
再探实际问题与二元一次方程组(第1课时)山阳县城区一中贾礼勇一、教学内容:人教版七年级数学下册8.3再探实际问题与二元一次方程组P105-108二、设计思路教学设计思想:本节知识是探究如何用元二元一次方程解决实际问题。
在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程组以及如何解方程组,在此基础上我们才可以进一步探究用二元一次方程组解决实际问题。
在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
学情与教材分析由于七年级学生以形象思维为主,更加上争强好动的特点,采用动手操作这一手脑并用的方式,既可以解决数学知识抽象性与初中生思维形象性之间的矛盾,又可以使他们在丰富的情感体验中由“要我学”的被动性转变为“我要学”的主动性。
三、教学目标1、知识与技能(1)能正确分析实际问题中的数量关系,建立二元一次方程组模型并能解决实际问题。
(2)学会比较估算与精确计算,以及检验方程组的解是否符合题意,并正确回答。
(3)能将实际问题转化为数学问题,掌握列方程组解决实际问题的方法,进一步提高学生逻辑思维能力和分析问题、解决问题的能力。
2、过程与方法经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型,体会代数方法的优越性。
3、情感态度与价值观通过实际问题的建模,师生之间合作交流,使学生养成合作互助意识,提高数学交流和数学表达能力,体会探索带来的成功的喜悦,提高学习数学的兴趣。
四、教学重点让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。
五、教学难点在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题即二元一次方程组。
六、教学准备PPT多媒体课件,《南非世界杯足球赛》视频七、教学方法分析讨论,讲练结合,归纳点拨八、教学过程九、课后反思本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
8.3 再探实际问题与二元一次方程(3)
课题: 8.3 再探实际问题与二元一次方程(3)
教学过程(师生活动)设计理念估时
必做题:教科书116页习题8.3第2、6题。
选做题:教科书117页习题8.3第9题。
备选题:
)一批蔬菜要运往某批发市场,菜农准备租用汽车公
评价与反思
本课是实际问题与二元一次方程组的最后一节课,问题更加贴近现实生活,解决的难度明显加大,为让学生能从总体上把握题意,一方面设计部分思考题引导学生讨论交流,另一方面利用表格将题目中的数量关系清晰的呈现出来,学生踏着这些台阶,一步步找到了解决问题的途径。
由于本课涉及内容丰富,如何突出重点,突破难点成为这节课能否成功的关键,为此,开始先设计一个简单题目做准备,这样的学习过程符合学生的认知规律,能达到学习的目标。
再探实际问题与二元一次方程
解出方程组,求出未知数的值
检验求得的值是否正确和符合实际情形
写出答案
1、小林骑自行车从甲地到乙地,先以24千米/小时的速度下坡, 后以18千米/小时的速度通过平路,共花时间55分钟, 返回时他以16千米/小时的速度通过平路,后又以8千米/小时的 速度上坡,共1.5小时,求甲、乙两地的距离。 24千米/小时 8千米/小时 18千米/小时 16千米/小时
55分钟
1.5小时
根据等量关系列出方程 解出方程,求出未知数的值 检验求得的值是否正确和符合实际情形 写出答案
列方程解应用题的基本步骤;
说说自己的收获与困惑;
小
审 列 解 验 答
结
分析题意,找出两个等量关系
列方程组解应用题的一般步骤
弄情题目中的数量关系, 设出两个未知数
列出方程组
用含未知数的一次式表示有关的量 根据等量关系列出方程组
例1 甲、乙两人从相距36米的两地相向而行。如果甲比乙先 走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲 先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两 人每小时各走多少千米? 36千米 甲先行2时走的路程 甲 36千米 甲出发后甲、乙3时共走路程 甲
相 遇 相 遇
乙出发后甲、乙2.5时共走路程 乙
1、甲、乙两人从同一地点出发,同向而行,甲乘 车,乙步行,如果乙先走20千米,那么甲用1小时 能追上乙,如果乙先走1小时,那么甲共用15分钟 就能追上乙。若甲、乙两人的速度分别为每小时x千米, 每小时y千米,则可列出方程组为 ,
x y 20 1 1 x 1 y 4 4
乙先行2时走的路程 乙
甲出发后4时甲走的路程
乙先行2时走的路程 A
新人教版七年级数学下册第八章二元一次方程组8.3再探实际问题与二元一次方程组ppt课件
15x 24y
x y 90 C、 30x 24 y
y 90 x D、 2(15 x) 24y
4. 一船顺水航行45千米需要3小时,逆水航 行65千米需要5小时,若设船在静水中的 速度为x千米/小时,水流的速度为y㎞/h, 则x、y的值为 ( )B A、 X=3,y=2 B、x=14,y=1 C、 x=15,y=1 E、x=14,y=2
x y 42 x,乙数为y,依题意可列方程组 3 x 4 y。
3.某车间有90名工人,每人每天平均能生产螺栓15个或螺 帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才 能使螺栓和螺帽刚好配套?设生产螺栓x人,生产螺帽y人, 列方程组为( ) c x 90 y x y 90 A B、 48y 15x
活动一
1.列方程解应用题的一般步骤:
⑴审题,弄清 题意 ,及题中的 相等关系 ; ⑵设未知数,可直接设元 ,也可 间接设元 ; ⑶根据题目中所给的关系找出 相等关系, 列出方程; ⑷ 解方程组,检验解的正确性;
2.练一练: 长18米的钢材,要锯成10段,而每 段的长只能取“1米或2米”两种型号之一,小 明估计2米的有3段,你们认为他估计的是否正 确?为什么呢?那2米和1米的各应多少段?
30x 15y 675 42x 20 y 940 x 20 解这个方程组得 y 5
这就是说平均每只母牛约需饲料 20 克, 每只小牛1天需饲料 5 千克,饲养员李大叔 对母牛的食量估计 较准确 ,对小牛的食量估 计 偏高 。
活动三
已知某电脑公司有A型、B型、C型 三种型号的电脑,其价格分别为A型每台 6000元,B型每台4000元,C型每台 2500元。我市东坡中学计划将100500元 钱全部用于从该电脑公司购进其中两种 不同型号的电脑共36台,请你设计出几 种不同的购买方案供该校选择,并说明 理由。
再探实际问题与二元一次方程组说课
再探实际问题与二元一次方程组说课乌市十三中闫江平各位评委:大家好!我是来自乌市第十三中学的闫江平,今天我说课的内容是人教版初中数学七年级下册第八章第三节《再探实际问题与二元一次方程组》第一课时。
下面我将从教材分析、教学方法、学习指导、教学程序、设计说明这五个方面谈一下我对这节课的设计和认识。
一、教材分析1、教材地位和作用本节内容是在前面学生通过实际问题对二元一次方程组的有关概念及二元一次方程组的解法了解和掌握的基础上,继续探究如何用二元一次方程组解决实际问题。
利用方程或方程组解决实际问题在七年级上册用一元一次方程解决实问题时已初有体会,本小节将在学生已有的认知基础上通过观察、思考、讨论、探究、归纳等数学活动,探究如何将实际问题转化为二元一次方程组的数学模型,进一步提高学生分析问题中的数量关系,设未知数、列方程组并解方程组、检验结果的合理性等能力。
同时,本节内容还体现了方程与函数、统计之间的联系,展示数学的整体性。
为今后学习一次函数、线性方程组及平面几何等知识奠定基础,同时又是今后学习物理、化学等其他学科知识的一个重要基础。
2、教学目标本节内容的第一课时在于引导学生独立探究、合作交流,激发学生自主学习的积极性,初步培养学生的估算能力,增强学生的数感,并能结合具体问题选择恰当的方法。
因此,我确定本节课的教学目标为:知识目标:会用方程组的数学模型刻画现实生活中的实际问题,并利用二元一次方程组解决实际问题。
根据新课程标准中指出:要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维”。
能力目标:1、鼓励学生从数学的角度描述客观事物与现象,寻找其中与数学有关的因素。
2、能估计运算的结果,并对结果的合理性作出解释。
数学知识的形成源于实际的需要和数学内部的需要,因此,培养学生的应用意识是数学教学中的一个重要环节。
情感目标:1、面对新的数学知识,能主动地寻找其实际背景,并探索其应用价值。
初中数学第八章二元一次方程组详细课程标准
第八章二元一次方程组一、新课程标准对本章的要求(1)了解二元一次方程(组)及解的定义。
(2)熟练掌握用代入法和加减法解二元一次方程组的方法并能灵活运用。
(3)能正确列出二元一次方程组解应用题。
二、教学参考书对本章的要求【本章教材分析】1.内容结构特点本章是在学生对一元一次方程已有认识的基础上,从一个篮球联赛中的问题入手,引导学生直接用x和y表示两个未知数,并进一步表示问题中的两个等量关系,得到两个相关的二元一次方程,由此得到二元一次方程(组)的概念,然后,研究用代入消元法和加减消元法解二元一次方程组,并用此解决实际问题。
2.本章知识结构图3.教材的地位及作用本章是在研究一元一次方程的基础上,以实际问题为背景对一次方程及其解法的探索,是数学建模思想在数学中的具体应用,其中的消元思想是解方程的基本思想,它对研究高等数学具有重要作用。
4.教学重点和教学难点教学重点:以方程组为工具分析问题、解决含有多个未知数的问题教学难点:以方程组为工具分析问题、解决含有多个未知数的问题5.教学目标(1)以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型.(2)了解二元一次方程及其相关概念,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系.(3)了解解二元方程组的基本目标(使方程组逐步转化为x=a,的形式),体会“消元”思想,掌握解二元一次方程组的代入法和加减法,能根据二元一次方程组的具体形式选择适当的解法.(4)通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程(见下图),体会数学的应用价值,提高分析问题、解决问题的能力.6.教学建议(1)注意在对方程已有认识的基础上发展,做好从一元到多元的转化本章从一个篮球联赛中的胜负场数问题开始讨论,其中含有两个未知数.在此之前学生已经学习过一元一次方程的内容,用代数方法解决上述问题有两种不同方法:一种方法是设一个未知数为,并用含有的式子表示另一个未知数,根据问题中的等量关系列出一元一次方程;另一种方法是直接设两个未知数和,根据问题中的等量关系列出两个二元一次方程,由它们组成方程组.比较这两种方法,可以发现,第一种方法的难点在于“列”,第二种方法的难点在于“解”.由于列一元一次方程时要综合考虑问题中的各等量关系,因此有一定难度,但是学生已经熟悉一元一次方程的解法;列二元一次方程组时可以分别考虑两个等量关系,分别列出两个方程,一般说这比将这个问题列成一个一元一次方程容易,但是由于方程中出现两个未知数,因此如何解方程组成为新问题.用方程组是新方法,这种方法对于解含有多个未知数的问题很有效,并且它的优越性会随着问题中未知数个数的增加体现得更明显.二元一次方程组是方程组中最基本的类型,通过学习它可以了解一般的一次方程组,提高对多元问题的认识.本章学习中,应注意所学内容与前面有关内容的联系与区别,明确本章内容的特点,做好从“一元”向“多元”的转化.(2)关注实际问题情景,体现数学建模思想现实中存在大量问题涉及多个未知数,其中许多问题中的数量关系是一次(也称线性)的,这为学习“二元一次方程组”提供了大量的现实素材.在本章教科书中,实际问题情境贯穿于全章,对方程组解法的讨论也是在解决实际问题的过程中进行的,“列方程组”在本章中占有突出地位.在本章的教学和学习中,要充分注意二元一次方程组的现实背景,通过大量丰富的实际问题,反映出方程组来自实际又服务于实际,加强对方程组是解决现实问题的一种重要数学模型的认识.本章明确提出“方程组是解决含有多个未知数问题的重要数学工具”,并在多处体现方程组在解决实际问题中的工具作用,实际上这就是在渗透建立模型的思想.设未知数、列方程组是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的多种等量关系是设未知数、列方程组的基础.在本章的教学和学习中,可以从多种角度思考,借助图形、表格、式子等进行分析,寻找等量关系,检验方程的合理性.教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用二元一次方程组分析解决它们.(3)重视解多元方程组中的消元思想本章所涉及的数学思想方法主要包括两个:一个是由实际问题抽象为方程组这个过程中蕴涵的符号化、模型化的思想,这已在上面进行了讨论;另一个是解方程组的过程中蕴涵的消元化归思想,它在解方程组中具有指导作用.解二元一次方程组的各个步骤,都是为最终使方程组变形为x=a,的形式而实施的,即在保持各方程的左右两边相等关系的前提之下,使“未知”逐步转化为“已知”.解多元方程组的基本策略是“消元”,即逐步减少未知数的个数,以至使方程组化归为一元方程,先解出一个未知数,然后逐步解出其他未知数.代入法和加减法都是消元解方程组的方法,只是具体消元的手法有所不同.在本章的教学和学习中,不能仅仅着眼于具体题目的具体解题过程,而应不断加深对以上思想方法的领会,从整体上认识问题的本质.(4)加强学习的主动性和探究性设计本章教科书的内容和结构时,比较注意加强学习的主动性和探究性.本章内容涉及许多实际问题,多彩的问题情境容易激起学生对数学的兴趣.在本章的教学中,应注意引导学生从身边的问题研究起,主动收集寻找“现实的、有意义的、富有挑战性的”问题作为学习材料,并更多地进行数学活动和互相交流,在主动学习、探究学习的过程中获得知识,培养能力.(5)注重对于基础知识的掌握,提高基本能力本章中二元一次方程组的基本概念和消元解法是基础知识,通过列、解二元一次方程组分析解决实际问题是基本能力,它们对于今后进一步学习有重要作用.教学和学习中应注意打好基础,切实掌握基本方法,并力求能够较灵活地运用它们,逐步培养提高基本能力.7.课时安排本章教学时间约需9课时,具体分配如下(仅供参考):8.1 二元一次方程组 1课时8.2 消元 3课时8.3 再探实际问题和二元一次方程组 3课时8.4三元一次方程组解法举例 1课时复习课 1课时三、具体知识点及详细标准【知识点1】二元一次方程组(一)学习目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.(二)重点难点:教学重点:理解二元一次方程组的解的意义.教学难点:求二元一次方程的正整数解(三)基本题型【题型1】(★)1.下列各式中,是关于x、y的二元一次方程的是( ).(A)2x-y=0 (B)xy+x-2=0 (C)x-3y=-1 (D) 1/x+y=22.已知二元一次方程x+y=1,下列说法不正确的是( ).(A)它有无数多组解 (B)它有无数多组整数解(C)它只有一组非负整数解 (D)它没有正整数解【题型2】(★★)1.写出二元一次方程2x+y=5的所有正整数解.2.二元一次方程4x+y=10共有______组非负整数解.【题型3】(★★★)已知满足二元一次方程5x+y=17的x值也是方程2x+3(x-1)=12的解,求该二元一次方程的解.【知识点2】消元—--解二元一次方程组(代入法)(一)学习目标1、知识与技能:会用代入消元法解二元一次方程组。
再探实际问题与二元一次方程组
例5:有两种合金,第一种合金含金90%,第二种合金含金 80%,这两种合金各取多少克,熔化以后才能得到含金 82.5%的合金100克?
合金重量 含金量
第一种
熔化前 熔化后
第二种
第一种
第二种
x克 y克 100克
90%· x 80%· y 100×82.5%
解:设第一种合金取x克,第二种合金取y克。 x+y=100 依题意,得 90% x+80% y=100×82.5% x+y=100 即 解此方程组,得 9x+8y=825
人教版数学教材七年级下
8.3 再探实际问题与 二元一次方程组3
交通路中学
王晓萍
列方程组解应用题的一般步骤 审
设 列
弄清题目中的数量关系,找出等量关系 设出两个未知数 根据等量关系列出方程组 解出方程组,求出未知数的值 检验求得的值是否正确和符合实际情形 写出答案
解
验 答
1、 张强与李毅二人分别从相距 20 千米的两地出 发,相向而行。若张强比李毅早出发 30 分钟,那 么在李毅出发后 2 小时,他们相遇;如果他们同时 出发,那么 1 小时后两人还相距 11 千米。求张强、 李毅每小时各走多少千米? 解设:张强、李毅每小时各走x, y千米
x=25 y=75
答:第一种合金取25克,第二种合金取75克。
6、两种酒精,甲种含水15%,乙种含水5%,现在要 配成含水12%的酒精500克.每种酒精各需多少克?
酒精重量 含水量
甲 种
熔化前 熔化后
乙 种
甲 种
乙 种
x克 y克 500克
15%· x 5%· y 500×12%
解:设甲种酒精取x克,乙种酒精取y克。 x+y=500 依题意,得 15% x+5% y=500×12% x+y=500 即 3x+y=1200 x=350 解此方程组,得 y=150 答:甲种酒精取350克,乙种酒精取150克。
七年级数学再探实际问题与二元一次方程组
通过探究实际问题与二元一次方程组的关系,培养学生的数学思维 和创造力,促进其全面发展。
02
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,并且未 知数的次数都是一次。
示例
x+y=10, 2x-y=5。
二元一次方程组的解法
解。
口算技巧
掌握一些口算技巧,快 速计算出方程组的解。Βιβλιοθήκη 05案例分析与实践
实际问题的解决过程展示
总结实际问题的解决过程
首先,理解问题背景和要求,明确未知数和已知条件;其次 ,根据问题描述,列出二元一次方程组;然后,运用适当的 方法求解方程组;最后,对解进行检验,确保符合实际情况 。
展示实际问题解决过程
数学中的二元一次方程组问题
01
02
03
几何问题
例如,在计算几何图形的 面积和周长时,需要用到 二元一次方程组来求解。
代数问题
例如,在解代数方程组时, 需要用到二元一次方程组 的解法。
概率问题
例如,在计算概率时,需 要用到二元一次方程组来 表示各种事件的可能性。
科学中的二元一次方程组问题
物理问题
生物问题
例如,在计算力学中的力和加速度的 关系时,需要用到二元一次方程组。
例如,在研究生态系统中各种生物的 数量和它们之间的关系时,需要用到 二元一次方程组来表示这些关系。
化学问题
例如,在计算化学反应中各种物质的 浓度和反应速率的关系时,需要用到 二元一次方程组。
04
解决实际问题的方法与技巧
问题的分析与转化
讨论与分享
在小组完成问题解决后,组织学生进行讨论和分享。学生可以分享自己的解题思路、方法和结果,互相学习和借 鉴。
8.3 再探实际问题与二元一次方程组(2)
甲
乙
例3: 一个长方形,它的长减少4cm,宽增加 2cm,所得的是一个正方形,它的面积与长方形 的面积相等,求原长方形的长与宽。
解:设长方形的长为xcm,宽为ycm,由题意得:
x 4 y 2,
2( x 4) 4 y
2
y X-4 4 Ⅱ
Ⅰ
例4 用如图一中的长方形和正方形纸板作侧面和底面, 做成如图二中竖式和横式的两种无盖纸盒。现在仓库 里有1000张正方形纸板和2000张长方形纸板,问两种 纸盒各做多少只,恰好使库存的纸板用完?
图一
图二
竖式纸盒展开图
横式纸盒展开图
x只竖式 纸盒中 x 正方形纸板张数
y只横式 纸盒中 2y
合计
1000 2000
长方形纸板张数
4x
3y
练 习
图一
上题中如果改为库存正方形纸板500张, 长方形纸板1001张,那么,能否做成 若干只竖式纸盒和若干只横式纸盒后, 恰好把库存纸板用完?
图二
竖式纸盒展开图
【分析】 必须对三种方案进行计算再对比,找出最佳方案. 方案一获利为: 4500×140 =630000(元) 解: 方案二获利为: 7500×(6×15)+1000×(140-6×15) =765000+50000=725000(元) 方案三获利计算如下: 设将x吨蔬菜进行精加工,y吨蔬菜进行粗加工,根据题意,得
横式纸盒展开图
x只竖式 纸盒中 正方形纸板张数 长方形纸板张数
x
4x
y只横式 合计 纸盒中 2y 500 1001 3y
例5 .已知有含盐20%与含盐8%的盐水,若需配
制含盐15%的盐水300千克,则两种盐水需各取多 少千克?
实际问题与二元一次方程组教案
实际问题与二元一次方程组教案实际问题与二元一次方程组教案(通用6篇)作为一位无私奉献的人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么教案应该怎么写才合适呢?以下是店铺为大家收集的实际问题与二元一次方程组教案(通用6篇),欢迎阅读,希望大家能够喜欢。
实际问题与二元一次方程组教案篇1教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系课前自主学习1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量(2)同类量的单位要()(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()新课探究看一看问题:1.题中有哪些已知量?哪些未知量?2.题中等量关系有哪些?3.如何解这个应用题?本题的等量关系是(1)()(2)()解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。
(“有”或“没有”)练一练:1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?小结用方程组解应用题的一般步骤是什么?实际问题与二元一次方程组教案篇2教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1、“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、小亮跟爸爸于9月和10月初两次到超市 购买食品. 9月份: 买6袋牛奶,12个面包,用30元. 10月初: 国庆酬宾,一律七五折优惠,比上次 多买了4袋牛奶和3个面包. 根据打折前后花30元所购买的物品数 量,你能求出打折前牛奶和面包的单 价个是多少吗? 问题:找出等量关系并且列方程或方程组
商战风云再起
4.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜 奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润 1200元,若制成奶片销售,每吨可获利润2000元.该厂生产 能力如下:每天可加工3吨酸奶或1吨奶片,受人员和季节 的限制,两种方式不能同时进行.受季节的限制,这批牛奶 必须在4天内加工并销售完毕,为此该厂制定了两套方案: 方案一:尽可能多的制成奶片,其余直接销售现牛奶 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4 天完成 (1)你认为哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?
人教版数学教材七年级下
8.3 再探实际问题与 二元一次方程组4
1、一个人的工资今年比去年增长了20%后变为3000 元,则该人去年的工资为 2500 元。 2、某药品在1999年涨价25%后,2001年降价20% a 至a元,则该药品在1999年涨价前的价格为____元
3、小李到银行去储蓄500元,这种储蓄的 年利率为8.0%,如果他储蓄了5年,则小 李5年得到的本息和是 700 元。
普通间(元/ 人/天) 三人间 双人间 单人间 50 70 100 豪华间(元/人 /天) 100 150 200 贵宾间(元/ 人/天) 500 800 1500
总收入/万元
去年 今年
总支出/万元
利润/万元
y (1+20%)x (1-10%)y
x
200 780
{
x-y=200 x=2000 (1+20%)x-(1-10%)y=780 解得: y=1800
{
答:去年的总收入为2000万元、总支出是1800万元。
举一反三
2、某企业去年的总产值比总支出多 500万元,而今年计划的总产值比总支 出多950万元,已知今年计划总产值比去年增加 15%,而计划总支出比去年减少10%,求今年计 划的总产值和总支出各是多少?
6、水资源透支令人担忧,节约用水迫在眉 睫,针对居民用水浪费现象,某城市制定了 每月用水标准8立方米,超标部分加价收费, 某户居民连续两个月的用水和水费分别为12 立方米、22元,10立方米,16.2元,试求这个 城市的用水标准
说明:即8立方米以内多少元/立方 米,超过部分多少元/立方米
7.红太阳大酒店客房部有三人间、双人间和单人间客
解:设今年计划的总产值为x万元,总支出为y万元。
{
x y 500 1 15% 1 10%1350
答:今年计划总产值为2300万元,总支出为1350万元。
商战精英
3、某商场以一定的进价购进一批服装,并 以一定的单价售出,平均每天卖出10件,30 天共获利15000元,现在为了尽快回笼资金 商场决定将每件衣服降价20%出售,结果平均每天比 降价前多卖了10件,这样30天可获利12000元,问这 批衣服每件的进价及降价前的出售的单价各是多少? 解:设这批衣服每件的进价为x元/件,降价前出 售的单价为y元/件。 分析: 售价-进价(成本) =利润 x 100 10 ( y x) 30 15000 解得 (10 10) [(1 20%) y x] 30 12000 y 150 答:这批衣服每件的进价为100元/件,降价前出 售的单价为150元/件。
房,收费数据如下表(例如三人间普通间客房每人每 天收费50元)。为吸引客源,在五一黄金周期间进行 优惠大酬宾,凡团体入住一律五折优惠。一个50人的 旅游团在五月二号到该酒店住宿,租住了一些三人间、 双人间普通客房,并且每个客房正好住满,一天一共 花去住宿费1510元。 ①则三人间、双人间普通客房各住了多少间? ②如果你作为旅游团团长,你认为上面这种住宿方式 是不是费用最少?为什么?
商战风云再起
方案一:生产奶片4天,共制成4吨奶片,获利 2000×4=8000 其余5吨直接销售,获利500×5=2500(元) ∴共获利:8000+2500=10500(元) 方案二:设生产奶片用x天,生 另:设x吨鲜奶制成奶 片,y吨鲜奶制成酸奶 产酸奶用y天 x+y=9 x=1.5 x=1.5 x+y=4 x y 4 y=7.5 y=2.5 x+3y=9 1 3 ∴共获利: ∴共获利:
4某药品在1999年涨价25%后,2001年 降价25%,则该药品在1999年涨价前 的价格2001降价后的价格是否相同?
经济腾飞
1、某工厂去年的利润为200万,今年 总收入比去年增加了20%,总支出比去 年减少了10%,今年的利润为780万.去 年的总收入、总支出各是多少?
解:设去年的总收入为x万元,总支出为y万元,则有