高考数学①轮课件《函数的图像》

合集下载

2023年新高考数学大一轮复习专题11 函数的图象(解析版)

2023年新高考数学大一轮复习专题11 函数的图象(解析版)

专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。

高考数学一轮复习三角函数的图像与性质培优课件

高考数学一轮复习三角函数的图像与性质培优课件

π
3

2kπ6

π
, 2π +
6
6
,∴函数的递增区间为
π
0, 6
.
π
≤x≤2kπ+ (k∈Z).
6
(k∈Z).
考向2.由单调性求参数
典例突破
例 4.已知 ω>0,函数 f(x)=sin

.
π
+4

π

2
上是减少的,则 ω 的取值范围
答案:
1 5
,
2 4
π
π
解析:由2 <x<π,ω>0,得 2
3π ∴0<a≤ π ,∴a 的最大值为π .
≤ 4 ,
4
4
> 0,
π 3π
−4, 4
,
(2)由题意可知,[a,2]⊆
π
π
− ,
π
2π + 4
, 2π +

4
(k∈Z).
突破技巧1.三角函数定义域的求法
将求复杂函数的定义域问题转化为求解简单的三角函数不等式.
2.简单三角不等式的解法
(1)利用三角函数线求解.
(2)利用三角函数的图像求解.
1
y=tan -1的定义域为
.
(2)函数 y=lg(sin 2x)+ 9- 2 的定义域为
π
3
的递减区间是函数 y=sin 2 −
的递增区间.

π
2kπ-2
π
≤2x-3
π
≤2kπ+ 2 ,k∈Z,得
故所给函数的递减区间为 π −

2021届新高考数学一轮课件:第二章+第10讲+函数的图象

2021届新高考数学一轮课件:第二章+第10讲+函数的图象

到 y=f(wx)(w>0,w≠1)的图象.
(3)对称变换:
1.函数 f(x)=ln(x2+1)的图象大致是( A )
A
B
C
D
2.(2017 年新课标Ⅲ)函数 y=1+x+sixn2 x的部分图象大致为 ( D)
A
B
C
D
解析: 当 x∈0,π2时,y=1+x+sixn2 xபைடு நூலகம்然为正,排除 A, C;当 x→+∞时,sixn2 x→0,y=1+x+sixn2 x→+∞,排除 B.故 选 D.
A
B
C
D
解析:f(x)=csoins xx++xx2显然为奇函数,故排除 A;当 x=π 时 f(x)>0,故排除 C;当 x=π2时 f(x)=1+π2π2=4+π22π>1,∴最大
4 值肯定大于 1,故排除 B.
答案:D
(3)函数y=2x2-e|x|在[-2,2]上的图象大致为( )
A
B
C
D
(a<0)平移|a|个单位长度得到.
(2)伸缩变换: ①把 y=f(x)的图象上所有点的纵坐标伸长(A>1)到原来的 A
倍或缩短(0<A<1)到原来的A1,横坐标不变,就得到 y=Af(x)(A>0,
A≠1)的图象.
②把 y=f(x)的图象上所有点的横坐标伸长(0<w<1)到原来
1
1
的___w___倍或缩短(w>1)到原来的____w____,纵坐标不变,就得
考点 2 函数图象的应用
例 2:(1)已知函数 f(x)=|x-2|+1,g(x)=kx(k>0).若方程 f(x) =g(x)有两个不相等的实根,则实数 k 的取值范围是( )

高考数学一轮复习课件:三角函数的图像与性质

高考数学一轮复习课件:三角函数的图像与性质

4.sinxcosx 与 sinx±cosx 同时存在型可换元转化. 5.y=acssiinnxx++db(或 y=acccoossxx++db)型,可用分离常数法或由 |sinx|≤1 来解决. 6.y=cacsoinsxx++bd型,可用斜率公式来解决.
求下列函数的值域: (文)(1)y=2s1in+x·scionsx2x,x∈[0,2π]; (2)y=sin2x+2sinx·cosx+3cos2x.
(2)求三角函数定义域时,通常归结为解三角不等式或不 等式组.
求下列各函数的定义域: (1)y=1-1cosx;(2)y= sinx+ 1-tanx. [分析]
[解析] (1)函数 y=1-1cosx有意义时,1-cosx≠0,即 cosx≠1,所以 x≠2kπ(k∈Z),所以函数的定义域为{x|x≠2kπ, x∈R,k∈Z}.
(2)第(2)小题解不等式组 2
,然后利用数轴求
tanx≥0
解.
[解析] (1)要使原函数有意义,必须有:
2sinx-1>0, 1-2cosx≥0,
即csionsxx>≤12,12.
由图知,原函数的定义域为:
[2kπ+3π,2kπ+56π)(k∈Z).
(2)要使函数有意义 2+log12 x≥0,
() A.[-2,2]
B.[- 3, 3]
C.[-1,1]
D.[-
23,
3 2]
[答案] B
[解析] 本题考查两角和的余弦公式、辅助角公式,三角 函数的值域.
由题意知,f(x)=sinx-cosxcosπ6+sinxsin6π=32sinx-
3 2 cosx
= 3( 23sinx-12cosx)= 3sin(x-6π),

【恒心】高考数学(理科)一轮复习突破课件002007-函数的图象

【恒心】高考数学(理科)一轮复习突破课件002007-函数的图象

函数图象的变换
3 x≤1, 【例 2】 函数 f(x)=log 1 xx>1, 则 y=f(1-x)的图象是( 3
x
).
规律方法
y
解析 画出 y=f(x)的图象, 再作其关于 y 轴对称的图象, 得到 y=f(-x)的图象, 再将所得图象向右平移 1 个单位, 得到 y=f[-(x-1)]=f(-x+1)的图象. 答案 C
a 横坐标伸长0<a<1或缩短a>1为 纵坐标伸长a>1或缩短0<a<1为
1.图象变换问题
x +3 的图象,只需把函数 y =lg x 的图象上所有的 10 点向左平移 3 个单位长度,再向下平移 1 个单位长度.( ) (2)若函数 y=f (x )满足 f(x -1)=f (x +1), 则函数 f (x )的图象关于直线 x =1 对称.( ) (3)当 x ∈(0,+∞)时,函数 y=|f (x )|与 y=f (|x |)的图象相同.( ) (4)函数 y=2|x -1|的图象关于直线 x =1 对称.( ) (5)将函数 y=f (-x )的图象向右平移 1 个单位得到函数 y=f(-x -1)的图 象.( ) (1)为了得到函数 y=lg
(2)翻折变换
保留x轴上方图象 ①y=f(x)------------------→y= |f(x)| . 将x轴下方图象翻折上去
②y=f(x)-------------------→y= f(|x|) 关于y轴对称的图象
保留y轴右边图象,并作其

(3)伸缩变换
①y=f(x) ------------------------→ y=af(x)(a>0) 原来的a倍,横坐标不变 ②y=f(x)------------------------------→y=f(ax)(a>0) 1 原来的 倍,纵=xcos x+sin x 在 x=π 时为负,排除 A;

高考数学一轮复习 第3章《三角函数》三角函数的图象课件

高考数学一轮复习 第3章《三角函数》三角函数的图象课件

∴φ=-ωx0=-
2
(3
2)=
3
.
返回目录
解法四:(平移法)
由图象知,将y=5sin
2 3
x的图象沿x轴向左平移
2
个单
位,就得到本题图象.故所求函数解析式为
y=5sin〔 2 ( x+ )〕=5sin( 2 x+ ).
3
2
33
返回目录
考点三 三角函数图象的对称性
已知函数y=sin2x+acos2x= 1 a2 sin(2x+φ)(其中
3
(2)由此题两种解法可见,在由图象求解析式时,
“第一个零点”的确定是重要的,应尽量使A取正值.
(3)已知函数图象求函数
y=Asin(ωx+φ)(A>0,ω>0)的解析式时,常用的解题 方法是待定系数法,由图中的最大值或最小值确定A,由 周期确定ω,由适合解析式的点的坐标来确定φ,但由
返回目录
图象求得的y=Asin(ωx+φ)(A>0,ω>0)的解析式一般不唯 一,只有限定φ的取值范围,才能得出唯一解,否则φ的值不 确定,解析式也就不唯一.
学案3 三角函数的图象
考点分析
1. “五点法”作y=Asin(ωx+φ)(A>00,,ω,>,30)的,2简图
五点的取法是:设X=ωx+φ,由X取 2 2 来求相应的x值,及对应的y值,再描点作图.
2.变换作图法作y=Asin(ωx+φ)(A>0,ω>0)的 图象
(1)振幅变换:y=sinx→y=Asinx 返回目录
以“五点法”中的第一零点(
,0)作为突破口,要从图
象的升降情况找准第一零点的位置.要善于抓住特殊量和特

高中数学函数的图像ppt课件

高中数学函数的图像ppt课件
34
真题透析 例 (2010 年高考湖南卷)函数 y=ax2+bx 与 y = logb x(ab≠0,|a|≠|b|)在同一直角坐标系中的图
a
像可能是( )
35
【解析】 从对数的底数入手进行讨论,再 结合各个选项的图像从抛物线对称轴的取值 范围进行判断,故选D. 【答案】 D 【名师点评】 (1)本题易出现以下错误:① 忽视 y= logb x 中底数的绝对值,误认为 a,b
(2)图像的左右平移,只体现出x的变化,与x 的系数无关;图像的上下平移,只与y的变化 有关.
19
识图 对于给定函数的图像,可从图像上下左右分布范 围,变化趋势,特殊点的坐标等方面进行判断, 必要时可借助解方程、解(证)不等式等手段进行 判断,未必非要写出函数的解析式进行判断.
20
例2
(2010年高考山东卷)函数y=2x-x2的图像
过点 P 且与 AB 垂直的截面面积记为 y,则 y=
12f(x)的大致图像是(
)
38
解析:选A.先从起始点排除B,D,再用验证 法,当点P为OA的中点时,截面面积大于大圆 面积的一半,即可判定A正确.
39
x+1,x∈[-1,0 2.已知 f(x)=x2+1,x∈[0,1] ,则下 列函数的图像错误的是( )
11
5.已知下列曲线: 以下编号为①②③④的四个方程 ① x- y=0;②|x|-|y|=0;③x-|y|=0; ④|x|-y=0. 请按曲线 A、B、C、D 的顺序,依次写出与 之对应的方程的编号________.
答案:④②①③
12
考点探究•挑战高考
考点突破
作图 1.熟悉基本初等函数的图像. 2.会通过函数的性质确定图像的形状:如奇偶 性→对称性;函数值的正负→x轴上方下方;渐 近线→变化趋势;过哪些特殊点、定点;极值、 最值等.

届高三数学一轮复习-函数的图像及其应用(共58张PPT)

届高三数学一轮复习-函数的图像及其应用(共58张PPT)

考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是

第2章 第8讲函数的图象-2021版高三数学(新高考)一轮复习课件共56张PPT

第2章 第8讲函数的图象-2021版高三数学(新高考)一轮复习课件共56张PPT

返回导航
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
[分析] (1)先由函数的奇偶性画出y轴右侧图象,再画左侧; (2)先对绝对值分类讨论,将原函数化成分段函数的形式,再分段作图即可; (3)先化简解析式,分离常数,再利用图象变换画出图象; (4)将y=log2x的图象向左平移1个单位→y=log2(x+1)的图象→将y=log2(x+1) 的图象位于x轴下方的部分向上翻折→y=|log2(x+1)|的图象.
高考一轮总复习 • 数学 • 新高考
第二章
返回导航
函数、导数及其应用
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
第八讲 函数的图象
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
1 知识梳理 • 双基自测 2 考点突破 • 互动探究 3 名师讲坛 • 素养提升
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)设 f(x)=2x+2x23 -x(x∈[-6,6]),则 f(-x)=22--x+x23x=-f(x),∴f(x)为奇函 数,排除选项 C;当 x=-1 时,f(-1)=-45<0,排除选项 D;当 x=4 时,f(4)=161+28116 ≈7.97,排除选项 A.故选 B.
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
(2)先化简,再作图. y=x-2-x2x+-x2+,2x,≥x2<,2, 图象如图实线所示.
返回导航
第二章 函数、导数及其应用
高考一轮总复习 • 数学 • 新高考
返回导航
(3)∵y=2xx--11=2x-x-11+1=2+x-1 1,∴其图象可由 y=1x的图象沿 x 轴向右平 移 1 个单位,再沿 y 轴向上平移 2 个单位得到,其图象如图所示.

2019版高考数学(理)一轮总复习课件:2-9函数的图像

2019版高考数学(理)一轮总复习课件:2-9函数的图像
【答案】 D
【讲评】 解决简单函数图像的“搭建型”混搭问题,关键 是熟练把握这些基本初等函数的基本性质,如函数的定义域、值 域、单调性、奇偶性以及周期性等,根据各选项与函数解析式的 特征,抓住一个方面作为突破口,利用排除法就会很容易得到正 确选项.
微专题 2:知图选式 (2)下图可能是下列哪个函数的图像( )
1 x)cosx
为奇函数,所以排除
A,B;取
x=π,则
f(π)=(π-π1 )cos
π=-(π-π1 )<0,故排除 C.
方法二:(特值排除法)f(π)=(π-π1 )cosπ=-(π-π1 )<0, 故可排除 A,C;而 f(-π)=(-π--1π)cos(-π)=(π-π1 )>0, 故排除 B.
1.判断下列说法是否正确(打“√”或“×”). (1)若函数 y=f(x)满足 f(1+x)=f(1-x),则函数 y=f(x)的图 像关于直线 x=1 对称. (2)若函数 y=f(x)满足 f(x+1)=f(x-1),则函数 y=f(x)的图 像关于直线 x=1 对称.
(3)当 x∈(0,+∞)时,函数 y=f(|x|)的图像与 y=|f(x)|的图 像相同.
【答案】 不对.错在由②到③不能通过变换得到.
(2)例 1(2)改为:f(x)=|lg(|x|-1)|如何作图?
【答案】 ①作 y=lgx 的图像; ②将 y=lgx 图像向右平移 1 个单位而得到 y=lg(x-1)图像; ③将 y=lg(x-1)图像沿 y 轴对折后与原图像,同为 y=lg(|x|- 1)的图像; ④将 y=lg(|x|-1)图像在 x 轴下方部分沿 x 轴向上翻折,得 y= |lg(|x|-1)|图像.
③作出 y=(12)x 的图像,保留 y=(12)x 的图像中 x≥0 的部分, 加上 y=(12)x 的图像中 x>0 部分关于 y 轴的对称部分,即得 y=(12)|x| 的图像,如图实线部分.

高考数学一轮总复习 第3章 第4节 三角函数的图像与性

高考数学一轮总复习 第3章 第4节 三角函数的图像与性

ω
ω
拓展延伸
1. 三角函数的周期 (1)若T是函数y=f(x)的周期,则必须是对于定义域内的每一个x值
都具有f(x+T)=f(x)(T≠0). (2)周期和最小正周期的区别:周期函数不一定有最小正周期(如y=
c(c为常数),任何非零实数都是它的周期,显然无最小正周期), 而三角函数的周期一般指最小正周期.
选 B.
3. 已知函数 f(x)=sinx-π2(x∈R),下面结论错误的是(

A. 函数 f(x)的最小正周期为 2π
B. 函数 f(x)在区间0,π2上是增函数
C. 函数 f(x)的图像关于直线 x=0 对称 D. 函数 f(x)是奇函数
解析: ∵y=sinx-π2=-cos x,∴T=2π,在0,π2上是增函数,图 像关于 y 轴对称,为偶函数.选 D
解析: (1)错误.正弦函数y=sin x在 2kπ-π2,2kπ+π2(k∈Z)内单调 递增,并不是在第一、四象限内递增.
(2)错误.如常数函数是周期函数但无最小正周期.
(3)正确.由cos(-x)=cos x可知余弦函数在定义域内是偶函数. π
(4)错误.由y=sin x的图像可知,当x=2kπ+ 2 ,k∈Z时 y=sin x取 得最大值.
最新考纲
基础梳理

自主测评
Байду номын сангаас


典例研析
特色栏目
备课优选
基础梳理
1. “五点法”作图原理
在确定正弦函数y=sinx在[0,2π]上的图像的形状时,起关键作用的五个 点是(0,0)、 π2,1 、(π, 0 )、32π,-1 、(2π,0). 在确定
余弦函数 y=cosx在[0,2π]上的图像的形状时,起关键作用的五个点是

高考数学第一轮复习:《函数的图象》

高考数学第一轮复习:《函数的图象》

高考数学第一轮复习:《函数的图象》最新考纲1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数.2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题.【教材导读】若函数y=f(x+a)是偶函数(奇函数),那么y=f(x)的图象的对称性如何?提示:由y=f(x+a)是偶函数可得f(a+x)=f(a-x),故f(x)的图象关于直线x=a对称(由y=f(x+a)是奇函数可得f(x+a)=-f(a-x),故f(x)的图象关于点(a,0)对称).1.利用描点法作函数图象其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.图象变换(1)平移变换(2)对称变换①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称;③y=f(x)与y=-f(-x)关于原点对称;④y=a x(a>0且a≠1)与y=log a x(a>0且a≠1)关于y=x对称.(3)翻折变换①y=f(x)――→保留x轴上方图象将x轴下方图象翻折上去y=|f(x)|.②y=f(x)――→保留y轴右边图象,并作其关于y轴对称的图象y=f(|x|).(4)伸缩变换①y=f(x) y=f(ax).②y=f(x)――→a>1,纵向伸长为原来的a倍0<a<1,纵向缩短为原来的a倍y=af(x).【重要结论】1.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=f(b-x),则函数f(x)的图象关于直线x=a+b2对称.特别地,若f(a+x)=f(a-x),则函数f(x)的图象关于直线x=a对称.2.对于函数y=f(x)定义域内任意一个x的值,若f(a+x)=-f(b-x),则函数f(x)的图象关于点a+b2,0中心对称.特别地,若f(a+x)=-f(a-x),则函数f(x)的图象关于点(a,0)中心对称.1.为了得到函数y=lg x+310的图象,只需把函数y=lg x的图象上所有的点()(A)向左平移3个单位长度,再向上平移1个单位长度(B)向右平移3个单位长度,再向上平移1个单位长度(C)向左平移3个单位长度,再向下平移1个单位长度(D)向右平移3个单位长度,再向下平移1个单位长度答案:C2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()答案:B3.函数f(x+2)的图象关于直线x=2对称,则函数f(x)的图象关于()(A)原点对称(B)直线x=2对称(C)直线x=0对称(D)直线x=4对称答案:D4.已知下图(1)中的图象对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是________(填序号).①y=f(|x|);②y=|f(x)|;③y=-f(|x|);④y=f(-|x|).答案:④5.使log2(-x)<x+1成立的x的取值范围是________.答案:x∈(-1,0)考点一作函数的图象作出下列函数的图象.(1)y=x2-2x(|x|>1);(2)y=|x-2|·(x+2);(3)y=2x-1x-1;(4)y=|log2x-1|.解:(1)因为|x|>1,所以x<-1或x>1,图像是两段曲线,如图.(2)函数式可化为y =⎩⎪⎨⎪⎧x 2-4,x ≥2,-x 2+4,x <2,其函数图像如图(3)y =2x -1x -1=2+1x -1,故函数图像可由函数y =1x 的图像向右平移1个单位长度,再向上平移2个单位长度得到,如图.(4)先作出函数y =log 2x 的图像,再将该图像向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图像翻折到x 轴上方,即得到y =|log 2x -1|的图像,如图.【反思归纳】 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据这些函数的特征直接作出.(2)图象变换法.若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本初等函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.提醒:可先化简函数解析式,再利用图象的变换作图. 【即时训练】 作出下列函数的图象: (1)y =sin |x |;(2)y =e ln x .解:(1)当x ≥0时,y =sin |x |与y =sin x 的图象完全相同, 又y =sin |x |为偶函数,其图象关于y 轴对称,其图象如图.(2)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0), 所以其图像如图所示.考点二 函数图象的识别(1)函数f (x )=ln ⎝ ⎛⎭⎪⎫x -1x 的图象是( )(2)如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O 沿l1以1 m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()解析:(1)B(2)如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,由0≤t≤1,知|AO|=1-t,cos x2=|OA||OM|=1-t,∴y=cos x=2cos2x2-1=2(t-1)2-1.故选B.【反思归纳】知式选图的策略(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性(有时可借助导数判断),判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特殊点(与坐标轴的交点、经过的定点、极值点等),排除不合要求的图象.提醒:注意联系基本初等函数图象的模型,当选项无法排除时,代特殊值,或从某些量上寻找突破口.【即时训练】(2018全国Ⅱ卷)函数f(x)=e x-e-xx2的图象大致为()A BC DB解析:∵y=e x-e-x是奇函数,y=x2是偶函数,∴f(x)=e x-e-xx2是奇函数,图象关于原点对称,排除A选项.当x=1时,f(1)=e-e-11=e-1e>0,排除D选项.又e>2,∴ 1e <12,∴ e -1e >1,排除C 选项. 故选B.考点三 函数图象的应用(高频考点) 考查角度1:研究函数的性质.(2016高考全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )(A)各月的平均最低气温都在0 ℃以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均最高气温高于20 ℃的月份有5个 解析:依据给出的雷达图,逐项验证.对于选项A ,由图易知各月的平均最低气温都在0 ℃以上,A 正确;对于选项B ,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B 正确;对于选项C ,三月和十一月的平均最高气温均为10 ℃,所以C 正确;对于选项D ,平均最高气温高于20 ℃的月份有七月、八月,共2个月份,故D 错误.【反思归纳】 知图选式或选性质的策略(1)从图象的左右、上下分布,观察函数的定义域、值域; (2)从图象的变化趋势,观察函数的单调性; (3)从图象的对称性方面,观察函数的奇偶性; (4)从图象的循环往复,观察函数的周期性; (5)从图象与x 轴的交点情况,观察函数的零点. 利用上述方法,排除、筛选错误与正确的选项. 考查角度2:确定函数零点(方程根)的个数.已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,恒有f (x )<12,则实数a 的取值范围是________.解析:由题意知,当x ∈(-1,1)时,f (x )=x 2-a x <12,即x 2-12<a x .在同一平面直角坐标系中分别作出二次函数y =x 2-12,指数函数y =a x 的图像(图略).当x ∈(-1,1)时,要使指数函数的图像恒在二次函数图像的上方,则⎩⎪⎨⎪⎧a -1≥12,a ≥12,a ≠1,所以12≤a ≤2且a ≠1.故实数a 的取值范围是12≤a <1或1<a ≤2.答案:[12,1)∪(1,2]【反思归纳】 构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.考查角度3:求参数的取值范围.已知函数f (x )=⎩⎨⎧1-|x +1|,x ∈[-2,0]f x -2,x ∈0,+∞,若函数g (x )=13x -f (x )+b 在区间[-2,6]内有3个零点,则实数b 的取值范围是________.解析:若0≤x ≤2,则-2≤x -2≤0,∴f(x)=f(x-2)=1-|x-2+1|=1-|x-1|,0≤x≤2. 若2≤x≤4,则0≤x-2≤2,∴f(x)=f(x-2)=1-|x-2-1|=1-|x-3|,2≤x≤4. 若4≤x≤6,则2≤x-2≤4,∴f(x)=f(x-2)=1-|x-2-3|=1-|x-5|,4≤x≤6. ∴f(1)=1,f(2)=0,f(3)=1,f(5)=1,设y=f(x)和y=13x+b,则方程f(x)=13x+b在区间[-2,6]内有3个不等实根,等价为函数y=f(x)和y=13x+b在区间[-2,6]内有3个不同的零点.作出函数f(x)和y=13x+b的图象,如图:当直线经过点F(4,0)时,两个图象有2个交点,此时直线y=13x+b为y=13x-43,当直线经过点D(5,1),E(2,0)时,两个图象有3个交点;当直线经过点O(0,0)和C(3,1)时,两个图象有3个交点,此时直线y=13x+b为y=13x,当直线经过点B(1,1)和A(-2,0)时,两个图象有3个交点,此时直线y=13x+b为y=1 3x+2 3,∴要使方程f(x)=13x+b,在区间[-2,6]内有3个不等实根,两个图象有3个交点,则b ∈(-43,23], 故答案为:(-43,23].【反思归纳】 由函数零点的个数或由方程根的个数确定参数的取值(范围),常常转化为两函数图象交点个数问题;利用数形结合可求出参数取值(范围).考查角度4:求不等式的解集.已知f (x )=⎩⎨⎧-x -a 2,x ≥0,-x 2-2x -3+a ,x <0,若∀x ∈R ,f (x )≤f (0)恒成立,则实数a 的取值范围为________.解析:由题意,若∀x ∈R ,f (x )≤f (0)即函数f (x )max =f (0)=-a 2, 要使得函数的最大值为-a 2,当x ≥0时,f (x )=-(x -a )2,此时函数的对称轴x =a ≤0,当x <0时,f (x )=-x 2-2x -3+a ,开口向下,对称的方程x =-1, 则f (-1)=-1+2-3+a ≤-a 2,即a 2+a -2≤0,解得-2≤a ≤1, 综上所述,实数a 的取值范围是[-2,0]. 答案:[-2,0]【反思归纳】 当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.利用函数的变化趋势识别函数图象函数y =2|x |sin 2x 的图象可能是( )(A)(B)(C)(D) 审题指导关键点所获信息函数的解析式函数的奇偶性解题突破:用解析式找出函数图象的特殊点.解析:由y=2|x|sin 2x知函数的定义域为R,令f(x)=2|x|sin 2x,则f(-x)=2|-x|sin (-2x)=-2|x|sin 2x.∵f(x)=-f(-x),∴f(x)为奇函数.∴f(x)的图象关于原点对称,故排除A,B.令f(x)=2|x|sin 2x=0,解得x=kπ2(k∈Z),∴当k=1时,x=π2,故排除C.故选D.答案:D命题意图:本题主要考查函数的奇偶性及函数的特殊点坐标,考查学生的识图、读图以及转化能力.课时作业基础对点练(时间:30分钟)1.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,那么它的图象可能是( )答案:D2.若当x ∈R 时,y =1-a |x |均有意义,则函数y =log a |1x |的图象大致是( )答案:B3.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( ) (A)0<a -1<b <1 (B)0<b <a -1<1 (C)0<b -1<a <-1 (D)0<a -1<b -1<1答案:A4.若直角坐标平面内A 、B 两点满足条件:①点A 、B 都在f (x )的图象上;②点A 、B 关于原点对称,则对称点对(A ,B )是函数的一个“兄弟点对”(点对(A ,B )与(B ,A )可看作一个“兄弟点对”).已知函数f (x )=⎩⎨⎧cos x x ≤0,lg x x >0,则f (x )的“兄弟点对”的个数为( )(A)2 (B)3 (C)4 (D)5 D解析:设P (x ,y )(x <0),则点P 关于原点的对称点为(-x ,-y ),于是cos x =-lg(-x ),只要判断方程根的个数,即y =cos x 与y =-lg(-x )(x <0)图象的交点个数,在同一个坐标系中作出它们的图象,如图所示.所以f (x )的“兄弟点对”的个数为5.故选D. 5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则y =f (2-x )的图象大致是( )A 解析:由题可得y =f (2-x )=⎩⎨⎧32-x ,x ≥1,log 132-x ,x <1,故函数y =f (2-x )仍是分段函数,且以x =1为界分段,只有A 符合条件.6.已知函数f (x )=⎩⎪⎨⎪⎧1x-x ,x <0|ln x |,x >0,则关于x 的方程[f (x )]2-f (x )+a =0(a ∈R )的实根个数不可能为( )(A)2 (B)3 (C)4 (D)5A 解析:当x <0时,f ′(x )=-1x 2-1<0, ∴f (x )在(-∞,0)上是减函数,当x >0时,f (x )=|ln x |=⎩⎪⎨⎪⎧-ln x ,0<x <1ln x ,x ≥1,∴f (x )在(0,1)上是减函数,在[1,+∞)上是增函数,做出f (x )的大致函数图象如图所示:设f (x )=t ,则当t <0时,方程f (x )=t 有一解, 当t =0时,方程f (x )=t 有两解, 当t >0时,方程f (x )=t 有三解. 由[f (x )]2-f (x )+a =0,得t 2-t +a =0.若方程t 2-t +a =0有两解t 1,t 2,则 t 1+t 2=1, ∴方程t 2-t +a =0不可能有两个负实数根, ∴方程[f (x )]2-f (x )+a =0,不可能有2个解. 故选A.7.设函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,x 12, x >0若f (x 0)>1,则x 0的取值范围是________.解析:在同一直角坐标系中,作出函数y =f (x )的图象和直线y =1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)8.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.解析:当-1≤x ≤0时, 设解析式为y =kx +b , 则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1. 所以y =x +1.当x >0时,设解析式为y =a (x -2)2-1, 因为图象过点(4,0), 所以0=a (4-2)2-1, 得a =14,所以y =14(x -2)2-1. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x -22-1,x >09.设函数y =2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称; ④关于原点中心对称. 其中正确的是________.解析:y =2x -1x -2=2x -2+3x -2=2+3x -2, 图象如图所示.可知②③正确. 答案:②③10.已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2x +22x ,x ≥2,若0<a <b <c ,且f (a )=f (b )=f (c ),则abfc 的范围为________.解析:函数图象如图:若f (a )=f (b )=f (c ),则|log 2a |=|log 2b |,即-log 2a =log 2b ,∴log 2(ab )=0,ab =1,f (c )∈(12,1), ∴abf c ∈(1,2). 答案:(1,2)能力提升练(时间:15分钟)11.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )(A)a >0,b >0,c <0 (B)a <0,b >0,c >0 (C)a <0,b >0,c <0 (D)a <0,b <0,c <0C 解析:由图可知-c >0,∴c <0,令x =0,f (0)=b c 2>0,∴b >0,令y =0,x =-ba >0,∴a <0,故选C.12.已知定义在R 上的函数f (x )满足f (x +2)=2f (x ),当x ∈[0,2]时,f (x )=⎩⎨⎧x ,x ∈[0,1]-x 2+2x ,x ∈[1,2],则函数y =f (x )在[2,4]上的大致图象是( )A 解析:当2≤x <3,0≤x -2<1. ∵f (x +2)=2f (x ), ∴f (x )=2f (x -2)=2x -4; 当3≤x ≤4,1≤x -2≤2. ∵f (x +1)=2f (x ),∴f (x )=2f (x -2)=-2(x -2)2+4(x -2)=-2x 2+12x -16; ∴f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[2,3,-2x 2+12x -16,x ∈[3,4].故选A.13.函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )(x ∈[-π,π])的图象大致是( )B 解析:因为f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )=-x e cos x ,则f (-x )=x e cos(-x )=x e cos x =-f (x ),所以函数f (x )=-x ⎝ ⎛⎭⎪⎫1e cos(π+x )为奇函数,根据图象排除A 、C ;由于f ⎝ ⎛⎭⎪⎫π2=-π2f (π)=-πe ,即f ⎝ ⎛⎭⎪⎫π2<f (π),排除D ,故选B.14.(2019新余二模)函数y =2xln|x |的图象大致为( )B 解析:函数y =2xln|x |的定义域为{x |x ≠0且x ≠±1},故排除A. ∵f (-x )=-2xln|x |=-f (x ),排除C. 当x =2时,y =4ln 2>0,排除D.故选B.15.已知函数y =|x 2-1|x -1的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是________. 解析:y =|x 2-1|x -1=|x +1x -1|x -1=⎩⎪⎨⎪⎧-x -1,x ∈-1,1,x +1,x ∈-∞,-1]∪1,+∞,函数图象如图实线部分所示,结合图象知k ∈(0,1)∪(1,2).答案:(0,1)∪(1,2)16.(2019银川模拟)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数.求实数a 的取值范围.解:(1)设f (x )的图象上任一点的坐标为P (x ,y ),点P 关于点A (0,1)的对称点P ′(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x . (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 在[1,2]上恒成立,注意到函数r (x )=3x +1x 在[1,2]上单调递增.故r (x )min =r (1)=4.于是2a ≤4,a ≤2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档