12.2 第1课时 一次函数与正比例函数的概念
2022年八年级上数学:一次函数与正比例函数
一次函数与正比例函数【学习目标】1.理解正比例函数和一次函数的概念,,能利用这些函数分析和解决简单实际问题.2.通过讨论一次函数与一元一次方程的关系,用函数的观点加深对已经学习过的一元一次方程内容的再认识.【基础知识】一.一次函数的定义(1)一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.(2)注意:①又一次函数的定义可知:函数为一次函数⇔其解析式为y=kx+b(k≠0,k、b是常数)的形式.②一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.③一般情况下自变量的取值范围是任意实数.④若k=0,则y=b(b为常数),此时它不是一次函数.二.正比例函数的定义(1)正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数.(2)正比例函数图象的性质正比例函数y=kx(k是常数,k≠0),我们通常称之为直线y=kx.当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y =kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.(3)“两点法”画正比例函数的图象:经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.三.待定系数法求一次函数解析式待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.四.待定系数法求正比例函数解析式待定系数法求正比例函数的解析式.五.一次函数与一元一次方程一次函数与一元一次方程.六.根据实际问题列一次函数关系式根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.【考点剖析】一.一次函数的定义(共3小题)1.(2022春•卧龙区期中)下列函数关系中,y是x的一次函数的是()A.y=x﹣x2B.y=C.y=kx+b D.y=﹣x2.(2022春•杨浦区校级期中)若函数y=(k+3)x﹣2+k是关于x的一次函数,那么k的取值范围是.3.当m取何值时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数?二.正比例函数的定义(共2小题)4.(2021春•新化县期末)若函数y=(m﹣3)x+m2﹣9是正比例函数,求m的值.5.(2021春•饶平县校级期末)已知y=(k﹣3)x是关于x的正比例函数,(1)写出y与x之间的函数解析式:(2)求当x=﹣4时,y的值.三.待定系数法求一次函数解析式(共3小题)6.(2020秋•永嘉县校级期末)一次函数y=kx+b(k≠0)的图象经过点(﹣2,0)和(0,2),求k,b的值.7.(2021春•饶平县校级期末)已知y与x+1成正比例,且x=﹣2时y=2.(1)求y与x之间的函数关系式;(2)设点P(a,4)在(1)中的函数图象上,求点P的坐标.8.(2021春•江城区期末)已知一次函数y=kx+b,当x=2时,y=5;当x=﹣2时,y=﹣11,求k和b的值.四.待定系数法求正比例函数解析式(共3小题)9.(2021春•惠州期末)已知y与x成正比例,且x=2时,y=﹣6.求:y与x的函数解析式.10.(2008秋•淮安区期末)已知y与x成正比例,且当x=1时,y=2,求当x=3时,y的值.11.已知:y=y1+y2,y1与x成正比例,y2与x﹣2成正比例,当x=1时,y=0;当x=3时,y=4.(1)求y与x之间的关系式;(2)当x=﹣1时,求y的值.五.一次函数与一元一次方程(共2小题)12.利用函数图象解下列方程(1)0.5x﹣3=1(2)3x﹣2=x+4【思路导引】把0.5x﹣3=1变化为y=画出函数y=的图象,求得函数和x轴的交点.13.用函数图象求解下列方程.①2x﹣3=x﹣2;②x+3=2x+1.六.根据实际问题列一次函数关系式(共3小题)14.已知矩形ABCD的周长为20cm.若设AB=xcm,BC=ycm.请写出y与x的函数关系式并写出自变量x的取值范围.15.已知等腰三角形的周长是18cm,腰长y(cm)是底边长x(cm)的函数,试求函数的关系式,并写出自变量的取值范围.16.一辆汽车以50千米/小时的速度,从相距150千米的甲城市开往乙城市.(1)求汽车与乙城市的距离y(千米)与行驶时间x(小时)的函数解析式,写出自变量的取值范围.(2)判断y是x的什么函数.【过关检测】一.选择题(共6小题)1.(2022春•杨浦区校级期中)下列函数中,一次函数一共有()个.(1)y=+1;(2)y=kx+b;(3)y=3x;(4)y=(x+1)2﹣x2;(5)y=x2﹣2x+1.A.1B.2C.3D.42.(2022春•南关区校级月考)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定3.(2021秋•芝罘区期末)下列问题中,变量y与x成一次函数关系的是()A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系4.(2021秋•江阴市期末)下列函数中,属于正比例函数的是()A.y=x2+2B.y=﹣2x+1C.y=D.y=5.(2021秋•青羊区校级期末)下列各式①y=﹣8x;②y=﹣;③y=;④y=﹣8x2+2;⑤y=0.5x ﹣3,是一次函数有()A.1个B.2个C.3个D.4个6.(2021春•淄川区期中)已知y是x的一次函数,下表列出了部分对应值:x…﹣213…y…7﹣2﹣8…则y与x的函数表达式为()A.y=﹣2x+1B.y=2x﹣3C.y=3x﹣1D.y=﹣3x+1二.填空题(共7小题)7.(2021秋•杭州期末)正比例函数y=3x的比例系数是.8.(2021秋•丹阳市期末)一次函数y=kx﹣3的图象经过点(﹣1,3),则k=.9.(2021秋•毕节市期末)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m=.10.(2021春•铁西区期末)若关于x的方程﹣2ax+b=0的解为x=2,则直线y=﹣2ax+b一定经过某点的坐标为.11.(2021春•浦北县期末)若函数y=kx+b(k≠0)是正比例函数,则b的值为.12.(2021春•贵港期末)如图,正比例函数y=﹣x的图象与一次函数y=kx+(k≠0)的图象相交于点P,则关于x的方程﹣x=kx+的解是.13.(2021春•鄢陵县期末)已知一次函数y=kx+b(k≠0)的图象与x轴交于(﹣5,0),则关于x的一元一次方程kx+b=0的解为.三.解答题(共7小题)14.(2021春•饶平县校级期末)已知函数y=(k2﹣4)x2+(k+1)x是正比例函数,且y随x的增大而减小,求这个正比例函数的解析式.15.(2021春•和平区校级月考)已知直线l与直线y=2x+1的交点的横坐标为2,与直线y=﹣x﹣8的交点的纵坐标为﹣7,求直线l的表达式.16.(2021春•朝阳区校级期中)已知z=m+y,m是常数,y是x的正比例函数.当x=2时,z=1;当x=3时,z=﹣1,求z与x的函数关系式.17.(2021春•营口月考)已知一次函数的图象过点(1,﹣1),(﹣1,2).(1)求这个函数的解析式;(2)求当x=2时的函数值.18.(2020秋•蚌埠月考)已知直线y=kx+b中,自变量x的取值范围是﹣1≤x≤7,相应函数值的范围是﹣12≤y≤8,求该函数的表达式.19.(2021春•凤山县期末)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.20.(2020秋•安庆期中)已知y=(m﹣2)x+|m|﹣2.(1)m满足什么条件时,y=(m﹣2)x+|m|﹣2是一次函数?(2)m满足什么条件时,y=(m﹣2)x+|m|﹣2是正比例函数?。
一次函数与正比例函数
函数教学目标:理解函数的概念,会求函数值本次学案余留的作业,请家长督促学生完成,并于下次课带来给老师检查。
家长签名: 1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4.【例1-1】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例1-2】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值.谈重点 函数中变量的对应关系 当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 谈重点 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.3.自变量的取值范围(1)使函数有意义的自变量的全体取值叫做自变量的取值范围. (2)自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.【例3】 若等腰三角形的周长为50 cm ,底边长为x cm ,一腰长为y cm ,y 与x 的函数关系式为y =12(50-x ),则变量x 的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.(1)列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.(2)图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.(3)解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.【例4】你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是().5.怎样判定函数关系(1)从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x和y,对于x每一个确定的值,y都有且只有一个值与之对应,当x取不同的值时,y的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.(2)从表格中判定函数 根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.(3)从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.【例5-2】 下列表示y 是x 的函数图象的是( ).练习:一、选择题1.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径④y =12-x 中的y 与xA.1个B.2个C.3个D.4个2.对于圆的面积公式S =πR 2,下列说法中,正确的为( ) A.π是自变量 B.R 2是自变量 C.R 是自变量 D.πR 2是自变量3.下列函数中,自变量x 的取值范围是x ≥2的是( )A.y =x -2B.y =21-x C.y =24xD.y =2+x ·2-x4.已知函数y =212+-x x ,当x =a 时的函数值为1,则a 的值为( ) A.3 B.-1 C.-3 D.15.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( )二、填空题6.轮子每分钟旋转60转,则轮子的转数n与时间t(分)之间的关系是__________.其中______是自变量,______是因变量.7.计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为______,其中______是自变量,______是因变量.8.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为______.9.已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为______.10.已知等腰三角形的周长为20 cm,则腰长y(cm)与底边x(cm)的函数关系式为______,其中自变量x的取值范围是______.三、解答题11.如图所示堆放钢管.(1)填表层数 1 2 3 (x)钢管总数(2)当堆到x层时,钢管总数如何表示?13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.14.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s ,到达坡底时小球的速度达到40 m/s.(1)求小球的速度v (m/s)与时间t (s)之间的函数关系式; (2)求t 的取值范围;(3)求3.5 s 时小球的速度;(4)求n (s)时小球的速度为16 m/s.2一次函数与正比例函数教学目标:理解一次函数与正比例函数的概念及关系,会求函数的解析式本次学案余留的作业,请家长督促学生完成,并于下次课带来给老师检查。
沪科版数学八年级上册(教学设计)12.2《一次函数》
《一次函数》教学设计第1课时《正比例函数的图象和性质》教学目标:1.认识正比例函数的意义,掌握正比例函数解析式的特点;2.理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题;3.经历利用正比例函数图象直观分析正比例函数性质的过程,体会数形结合的思想方法和研究函数的方法,形成合作交流、独立思考的学习习惯.教学重点:认识正比例函数的意义,掌握正比例函数解析式的特点。
教学难点:理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题。
教学过程:一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min ;旋转两圈,表示时间过了2min ……那么,秒针走过的圈数与经过的时间之间的关系如何表示呢?二、合作探究探究点一:一次函数与正比例函数【类型一】 一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数?(1)y =-x -4; (2)y =5x 2-6;(3)y =2πx; (4)y =-x 2; (5)y =1x; (6)y =8x 2+x (1-8x ). 解析:首先看每个函数的表达式能否变形转化为y =kx +b (k ≠0,k 、b 是常数)的形式,如果x的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b=0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数;(2)不是一次函数,也不是正比例函数;(3)是一次函数,也是正比例函数;(4)是一次函数,也是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.【类型二】根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数;(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.探究点二:正比例函数的图象和性质【类型一】正比例函数的图象已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是( )。
12.2.1正比例函数的图像与性质课件
解:函数y=2x 的自变量的取值范围是任意实数,列表表示 几对对应值: x … -3 -2 -1 0 1 2 3 …
y …
5 4 3 2 1 -5 -4 -3 -2 -1 0 12345
-6 y
-4
-2
0
2
4
6
…
y=2x
1 2
3
4
5
x
练习:画出正比例函数y=-2x的图象?
解:列表
y=-2x
y
5 4 3 2 1 1 2 3 4 5
x
x
0
1
y
0
-3
-3 -2 -1 0 12 -3 -
(四)巩固练习:
0 1.正比例 函数 y=-4x的图像是经过( 0,)和
( 1,-4 )两点的一条直线, y随x的————
增大而减小。
2. 正比例函数y=(m-1)x的图象经过一、三象限,则
m的取值范围是 ( B)
A.m=1
B.m>1
C.m<1
D.m≥1
x …
-3 6
-2 4
-1 2
0 0
1 -2
2 -4
3 -6
… …
Y …
-5 -4 -3 -2 -1 0 12345
发现你 画出的 图象与 x y=2x的 图象相 同吗? ?…
比较刚才两个函数的图象的相同点和 观察 不同点,考虑两个函数的变化规律.
思考:经过原点和 5 4 (1,k)的直线是哪个 3 函数的图象?画正比 2 例函数的图象时 ,怎 1 样画最简单 ? 为什么 ? -5 -4 -3 -2 -1 1 2 3
1 1 y x y x 的图象。 在同一坐标系中画出 2 与 2
一次函数和正比例函数常识点总结[整理版]
一次函数知识点总结:一次函数:一次函数图像与性质是中考必考的内容之一。
中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。
甚至有存在探究题目出现。
主要考察内容:①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一ic函数与二元一次方程组,一元一次不等式的关系。
突破方法:①正确理解掌握一次函数的概念,图像和性质。
②运用数学结合的思想解与一次函数图像有关的问题。
③掌握用待定系数法球一次函数解析式。
④做一些综合题的训练,提高分析问题的能力。
函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
沪科版八年级上册12.2一次函数课件 (共17张PPT)
y=2x+3
-2 y=2x-3
-3
-4
-5
y
5 4 3
2 1
-5 -4 -3 -2 -1 0 -1 -2
y=-2x-3
-3 -4 -5
从图中可以看 出:k<0时,y随x 的增大而减小.
1 234 5 x
y=-2x+3
公务员劳动模范事迹材料汇报
埋头苦干甘于奉献的好青年
**同志自19**年参加工作以来,一直勤 勤恳恳, 爱岗敬 业,任 劳任怨, 在平凡 的岗位 上 作出了不平凡的业绩,特别是在区政府
(2)当m为何值时,它的图象经过点(-1,5);
(3)当m为何值时,它的图象不经过第二象限。
通过本节课的学习,你有哪些收获?
提示:可以从学习知识.学习方法等方面来总结.
作业布置:
书面作业: p39,练习:第2、3、4题。 课外作业: 1、同步完成基训 2、预习下一节新课。
4 直线 y=kx-k的图象的大致位置是
( C)
A
B
C
D
你能行的!
1.求出下列函数的解析式 (1)将直线y=5x向下平移6个单位;
(2)将直线 y 5 x 6向上平移3个单位. 2
2.已知一次函数y=(1-2k)x+(2k+1) (1)当k取何值时,y随x的增大而增大? (2)当k取何值时,函数图象经过坐标系原点? (3)当k取何值时,函数图象不经过第四象限?
1、已知直线y=kx+b平行于直线y=-2x+1,且过 点(-2,4),分别求出k和b。
2、一次函数y=4x-3和y=-4x-3的图象分别经 过________象限和_______象限,它们的交点 坐标是______.
沪科版八年级数学上册第12章教学课件:12.2 第1课时 正比例函数的图象和性质(共31张PPT)
5. 比较大小:
(1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接.
的大小关系是(A ) A. k1>k2 B. k1=k2
y y=k1x y=k2x
C. k1<k2 D. 不能确定
ox
例4: 已知正比例函数y=mx的图象经过点(m,4), 且y的值随着x值的增大而减小,求m的值.
解:因为正比例函数y=mx的图象经过点(m,4), 所以4=m·m,解得m=±2. 又y的值随着x值的增大而减小, 所以m<0,故m=-2.
③连线
y=-3x
y 4
y=2x
3
这两个函数图象有
2
什么共同特征?
1
-5 -4 -3 -2 -1 O 1 2 3 4 5 x -1
-2
-3
-4
归纳总结
y=kx (k是常数,k≠0)的图象是一条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
两点 作图法
由于两怎点样确画定正一比条例直函线数,的画图正象比例函数 图象时最我简们单只?需为描什点么(0?,0)和点 (1,k) ,连线即可.
当堂练习
1.下列图象哪个可能是函数y=-x的图象( B )
y
y
y
y
ox ox
o x ox
2.对于正比例函数y =(k-2)x,当x 增大时,y 随
一次函数与正比例函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题4.4一次函数与正比例函数(知识梳理与考点分类讲解)【知识点1】一次函数与正比例函数的定义1.定义若两个变量x,y的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.特别地,当b=0时,称y是x的正比例函数.2.一次函数与正比例函数的关系(1)正比例函数y=kx(k≠0)是一次函数y=kx+b(k,b为常数,k≠0)中b=0的特例,即正比例函数都是一次函数,但一次函数不一定是正比例函数,(2)若已知y与x成正比例,则可设函数关系式为y=kx(k≠0);若已知y是x的一次函数,则可设函数关系式为y=kx+b(k,b为常数,k≠0)【知识点2】一次函数的关系式列一次函数的步骤(1)认真分析,理解题意;(2)同列方程解应用题的思路,找出等量关系;(3)写出一次函数的关系式;(4)注意自变量x的取值范围,对于实际问题,还要考自变量的取值要使实际问题有意义.特别提醒(1)确定一次函数关系式的方法:(2)按相等关系写出含有两个变量的等式;(3)将等式变形为用含有自变量的式子表示一次函数关系式的形式.【考点一】一次函数与正比例函数的定义【例1】(2023春·全国·八年级专题练习)下列函数中,哪些是一次函数?哪些是正比例函数?系数k和常数项b的值各是多少?2πC r =,22003y x =+,200t v =,2(3)y x =-,(50)s x x =-.【分析】根据一次函数与正比例函数逐个分析判断即可求解.一般地,两个变量x 、y 之间的关系式可以表示成形如y kx =的函数(k 为常数,x 的次数为1,且0k ≠),那么y kx =就叫做正比例函数.一次函数的定义:一次函数y kx b =+中k b 、为常数,0k ≠,自变量次数为1.解:2πC r =,是正比例函数,2πk =;22003y x =+是一次函数,23k =,200b =;200t v=不是一次函数,也不是正比例函数;2(3)y x =-26x =-+,是一次函数,2k =-,6b =;(50)s x x =-250x x =-+,不是正比例函数也不是一次函数.【点拨】本题考查了正比例函数与一次函数的定义,掌握正比例函数与一次函数的定义是解题的关键.【举一反三】【变式1】(2022秋·安徽芜湖·八年级统考阶段练习)若y 关于x 的函数(4)y a x b =-+是正比例函数,则a ,b 应满足的条件是()A .4a ≠且0b ≠B .4a ≠-且0b =C .4a =且0b =D .4a ≠且0b =【答案】D【分析】正比例函数的解析式为y kx =,其中0k ≠,据此求解.解: (4)y a x b =-+是正比例函数,∴40a -≠且0b =,∴4a ≠且0b =.故选D .【点拨】本题考查根据正比例函数的定义求参数,解题的关键是掌握正比例函数中一次项系数不能为0,无常数项.【变式2】(2019秋·广东梅州·八年级广东梅县东山中学校考期中)下列关系式:①6x y =;②321y x =+;③25y x =-+;④221y x =+;⑤5y x =-.其中y 是x 的一次函数的有个.【答案】3【分析】形如y kx b =+(0k ≠,k 、b 是常数)的函数,叫做一次函数,进而判断得出答案.解:函数①6xy =,③25y x =-+,⑤5y x =-是一次函数,共有3个,②321y x =+,④221y x =+,不是一次函数,故答案为:3.【点拨】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.【考点二】一次函数与正比例函数的参数【例2】(2022秋·安徽安庆·八年级校考阶段练习)已知函数1012y m x m =-+-().(1)m 为何值时,这个函数是一次函数;(2)m 为何值时,这个函数是正比例函数.【答案】(1)10m ≠;(2)12m =【分析】(1)根据一次函数的定义求解;(2)根据正比例函数的定义求解.解:(1)根据一次函数的定义可得:100m -≠,∴当10m ≠时,这个函数是一次函数;(2)根据正比例函数的定义,可得:100m -≠且120m -=,∴12m =时,这个函数是正比例函数.【点拨】本题考查了一次函数和正比例函数的定义,形如()0y kx b k =+≠的函数叫做一次函数,特别的,当0b =时,()0y kx k =≠叫做正比例函数,熟知概念是关键.【举一反三】【变式1】(2023秋·安徽蚌埠·八年级统考阶段练习)已知一次函数y kx b =+的图象经过()11,A x y ,()22,B x y 两点,且当213x x =+时,211y y =-,则k 的值为()A .3-B .3C .13-D .13【答案】C【分析】分别把点()11,A x y ,()22,B x y 代入一次函数y kx b =+,根据213x x =+,211y y =-时,即可得出结论.解: 一次函数y kx b =+的图象经过()11,A x y ,()22,B x y 两点,∴1122y kx b y kx b =+=+,,∴1212y y kx kx -=-,213x x =+ ,211y y =-,∴121213x x y y -=-=-,,31k ∴-=,即13k =-.故选:C .【点拨】本题考查了一次函数图象上点的坐标特征,掌握一次函数图象上点的坐标满足其解析式是解题关键.【变式2】(2023春·黑龙江大庆·七年级校考期中)已知()2835my m x m -=++-是关于x 的一次函数,则m =.【答案】3【分析】根据一次函数的定义得到281m -=且30m +≠,据此求出m 的值即可.解:()2835my m x m -=++- 是关于x 的一次函数,281m ∴-=且30m +≠,解得:3m =,故答案为:3.【点拨】本题考查了一次函数的定义,一般地,形如()0y kx b k =+≠的函数,叫做一次函数,会利用x 的指数构造方程,会利用k 限定字母的值是解题关键.【考点三】求一次函数的自变理或函数值【例3】(2023秋·全国·八年级专题练习)已知函数()()2324m y m x m -=++-,(1)当m 是何值时函数是一次函数.(2)当函数是一次函数时,写出此函数解析式.并计算当1x =时的函数值.(3)点(),2A n 在此一次函数图象上,则n 的值为多少.【答案】(1)2m =;(2)42y x =-,当1x =时,2y =;(3)1n =【分析】(1)根据一次函数的定义进行求解即可;(2)根据(1)所求代入m 得值求出对应的函数关系式,再把1x =代入对应的函数关系式求出此时y 的值即可;(3)代入2y =,求出此时x 的值即可得到答案.(1)解:∵函数()()2324my m x m -=++-是一次函数,∴22031m m +≠⎧⎨-=⎩,∴2m =,∴当2m =时,函数()()2324my m x m -=++-是一次函数;(2)解:由(1)得()()232442my m x m x -=++-=-,∴当1x =时,4122y =⨯-=;(3)解:在42y x =-中,当422y x =-=时,1x =,∴()1,2A ,∴1n =.【点拨】本题主要考查了一次函数的定义,求一次函数的函数值和自变量的值,一般地,形如y kx b =+(其中k 、b 都是常数,且0k ≠)的函数叫做一次函数.【举一反三】【变式1】(2023春·天津滨海新·八年级校考期末)不论实数k 取何值,一次函数3y kx =-的图象必经过的点是()A .()0,3-B .()0,3C .3,02⎛⎫⎪⎝⎭D .3,02⎛⎫- ⎪⎝⎭【答案】A【分析】令0x =,求出y 值即可得解.解: 一次函数3y kx =-,当0x =时,=3y -,∴不论k 取何值,函数图象必过点(0,3)-.故选:A .【点拨】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.【变式2】(2022秋·安徽芜湖·八年级统考阶段练习)在平面直角坐标系中,直线34y x =+过点(,)P a b ,则32023a b -+的值为.【答案】2019【分析】把(,)P a b 代入34y x =+即可得到34a b +=,代入32023a b -+即可求解.解: 直线34y x =+过点(,)P a b ,34b a ∴=+,34a b ∴-=-,32023420232019a b ∴-+=-+=,故答案为:2019.【点拨】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系y kx b =+是解题的关键.【考点四】列函数解析式及求函数值【例4】(2022秋·辽宁锦州·八年级统考期中)某公交公司的16路公交车每月的支出费用为4000元,每月的乘车人数x (人)与这趟公交车每月的利润(利润=收入费用-支出费用)y (元)的变化关系如表所示(每位乘客乘一次公交的票价是固定不变的)x (人)50010001500200025003000⋯y (元)3000-2000-1000-010002000⋯请回答下列问题:(1)自变量为,因变量为;(2)y 与x 之间的关系式是;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,公交车每月的利润;(2)24000y x =-;(3)当每月乘车人数为4000人时,每月利润为4000元【分析】(1)根据表格中的数量变化可得答案;(2)根据乘坐人数与每月的利润的变化关系可求出每位乘客坐一次车需要的钱数,进而得出函数关系式;(3)把x =4000代入函数关系式求出y 的值即可.(1)解:由题意可知:自变量是:每月的乘车人数,因变量是:公交车每月的利润.故答案为:每月的乘车人数,公交车每月的利润.(2)解: 从表格中数据变化可知,每月乘车人数每增加500人,其每月的利润就增加1000元,∴每位乘客坐一次车需要10005002÷=(元),即函数关系式为:2(500)300024000y x x =--=-.(3)解:当4000x =时,2400040004000y =⨯-=(元).答:当每月乘车人数为4000人时,每月利润为4000元.【点拨】本题考查常量与变量,函数关系式,理解表格中两个变量的变化关系是正确解答的关键.【举一反三】【变式1】(2023春·八年级课时练习)汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是()A .()1203004S t t =-≤≤B .()3004S t t =≤≤C .()120300S t t =->D .()304S t t ==【答案】A【分析】根据汽车距天津的距离=总路程−已行驶路程列函数关系式,再根据总路程判断出t 的取值范围即可.解:∵汽车行驶的路程为:30t ,∴汽车距天津的路程S (千米)与行驶时间t (时)的函数关系为:12030S t =-,∵120304÷=,∴自变量t 的取值范围是04t ≤≤,故选:A .【点拨】本题考查了列一次函数关系式,解决本题的关键是理解剩余路程的等量关系.【变式2】(2021·全国·九年级专题练习)一根长为24cm 的蜡烛被点燃后,每分钟缩短1.2cm ,则其剩余长度y (cm )与燃烧时间x (min )的函数关系式为,自变量的取值范围是.【答案】y =24-1.2x0≤x ≤20【分析】根据题意,剩下的蜡烛长度=总长度-已经燃烧的长度,已经燃烧的长度=每分钟缩短长度×燃烧时间,即可写出解析式;列出关系式,根据蜡烛最长的燃烧时间可得自变量的取值范围;解:由题意可得:函数关系式为:y=24-1.2x ,∵x 0≥,y 0≥∴24-1.2x 0≥∴x 20≤.∴自变量x 的取值范围是0≤x≤20.故答案为:y=24-1.2x ,0≤x≤20.【点拨】本题目考查一次函数的实际应用,正确理解题意,找到实际问题中的等量关系是解题的关键.。
秋八年级数学上册 12.2 一次函数教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案
12.2一次函数第1课时正比例函数1.初步理解正比例函数的概念及其图象的特征.2.能够画出正比例函数的图象.3.能够判断两个变量是否能够构成正比例函数关系.4.能够利用正比例函数解决简单的数学问题.重点正比例函数的概念.难点正比例函数的特征.一、创设情境,导入新课[活动1]问题1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它 (一个月按30天计算).(1)这只百余克重的燕鸥大约平均每天飞行多少千米?(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?(3)这只燕鸥飞行1个半月的行程大约是多少千米?(4)对这个问题你还能提出什么问题?教师用课件或小黑板出示问题,用投影仪展示这只燕鸥飞行的距离.让学生在地图上找出芬兰和澳大利亚的位置,并将两处用直线连接.学生稍作思考,自主解决三个问题:①燕鸥每天飞行的路程;②燕鸥总行程y(千米)与飞行时间x(天)的关系式:y=200x.③燕鸥飞行一个半月的行程.老师提示:这里用函数y=200x对燕鸥的飞行路程问题进行刻画,尽管只是近似的,但它反映了燕鸥的行程与时间之间的对应规律.教师应重点关注:学生对飞行总路程与飞行时间的函数关系的理解;学生能否正确指出自变量、自变量的函数、自变量的取值X围.二、合作交流,探究新知[活动2]问题首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长C随半径r的大小变化而变化.2.铁的密度为7.8 g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.3.每个练习本的厚度为0.5 cm.一些练习本摞在一起的总厚度h(cm)随这些练习本的本数n的变化而变化.4.冷冻一个0 ℃的物体,使它每分钟下降2 ℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.教师出示四个实例问题(用投影仪),要求学生:(1)能找出变量对应表达式;(2)能说出表达式中的自变量,自变量的函数.学生自主探究,分组讨论,然后分小组代表回答问题,教师对回答的问题进行评价.教师提问:C=2πr中,字母π是变量吗?引导学生观察、分析上面4个函数的表达式的共性:都是常数与自变量乘积的形式.教师口述并板书正比例函数的概念.(1)你能举出一些正比例函数的例子吗?(2)表示梯形的面积和圆的面积的函数式是否是正比例函数关系?什么情况下不是?①S =12(a +b )h . ②S =πr 2.教师让学生看书,并提问:这里为什么强调y =kx 中k 是常数,且k ≠0?学生讨论,回答并补充.教师应重点关注:(1)不要认为表达式中的字母都是表示变量.(2)对自变量的取值X 围是否能分析清楚.(3)是否概括出了这几个函数的共同特点.学生举例时教师要提醒:(1)举出实际问题;(2)能对其中的自变量、比例系数、函数关系进行解释.对举例不是正比例函数的要认真分析.[活动3]问题画出下列正比例函数的图象:(1)y =2x ;(2)y =-2x .(1)我们知道了怎样用解析式表示正比例函数,那么怎样在直角坐标系中画出正比例函数的图象呢?教师在黑板上演示用描点法画出y =2x 的图象.应注意:(1)操作规X ,有示X 性.(2)要师生同画.要学生独立画出y =-2x 图象.应注意:(1)评价学生所画的图象;(2)与学生一起总结画图象的主要步骤:列表、描点、连线.(2)观察分析两个图象的异同.两图象都经过________,两图象都是________,函数y =2x 的图象从左向右呈________,经过第________象限;函数y =-2x 的图象从左向右呈________,经过第________象限.练习:在同一坐标系中画出y =12x 和y =-12x 的图象. [活动4]问题1.从以上作图过程可以发现正比例函数的图象有什么特征?2.经过原点与点(1,k )的直线是哪个函数的图象?教师在画图过程中进行指导,学生画完图后,让学生讨论回答这两个图象的特点,与活动3中的两个图象的特点相比较.让学生根据讨论的结果概括、归纳出正比例函数图象特征,教师板书写出正比例函数图象的特征.此处,教师应重点关注:(1)学生是否通过对正比例函数解析式观察分析,发现当k >0时的函数y 与自变量x 同号,当k <0时函数y 与自变量x 异号.(2)学生通过对正比例函数图象的观察分析,发现其图象是一个随x 增大而增大或减小的直线.让学生讨论是否可行.应注意:(1)提醒学生从解析式入手,当x =0或x =1时,函数y 的值分别是几?(2)正比例函数的图象为什么一定过(0,0)和(1,k )两点;(3)因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和(1,k )画一条直线即可.3.用你认为最简单的方法画出正比例函数的图象.学生练习用“两点法”画图象,教师辅导的同时让两名学生在黑板上画.此时应注意:(1)学生画图是否用“两点法”;(2)这两点是否最简单.(关键是k 的取值)三、运用新知,深化理解例1 已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.分析:(1)要使函数是一次函数,根据一次函数的定义,x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m=±5,且m≠5,所以mm=-5时,函数y=(m-5)xm2-24+m+1是一次函数;(2)若y=(m-5)xm2-24+m+1是正比例函数,则m2-24=1,且m-5≠0,且mm=±5,且m≠5,且m=-1,这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.【归纳总结】函数y=kx+b是一次函数,则k≠0,b=0时,一次函数为正比例函数.例2 已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是( )A B CD分析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象.【归纳总结】本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过第一、三象限;当k<0时,图象过第二、四象限.例3 已知正比例函数y=-kx的图象经过第一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为( ) A.y1>y3>y2B.y1>y2>y3C.y1<y3<y2 D.y3>y2>y1分析:由y=-kx的图象经过第一、三象限,可知-k>0,即k<0,∴k,y=(k-2)x的函数值y随x的增大而减小,则由x1>x3>x2得y1<y3<y2.【归纳总结】正比例函数y=kx(k≠0)的函数值y随x的变化情况由k的符号决定.k>0时,y随x的增大而增大;k<0时,y随x的增大而减小.四、课堂练习,巩固提高1.教材P36练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知一般地,正比例函数的y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线,我们称之为直线y=kx,当k>0时,直线y=kx经过第一、三象限且从左向右上升,即y随着x的增大而增大;当k<0时,直线y=kx经过第二、四象限且从左向右下降,即y随着x 的增大而减小.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第2课时一次函数的图象与性质1.理解直线y=kx+b与y=kx直线之间的位置关系.2.会选择两个合适的点画出一次函数的图象.3.掌握一次函数的性质.重点一次函数的图象和性质.难点由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课[活动1]问题1.什么叫正比例函数、一次函数?它们之间有什么联系?2.正比例函数图象形状是什么样的?3.正比例函数y=kx(k是常数,k≠0)中,k的正、负对函数的图象有什么影响?教师展示问题后,学生口答,师生共评,纠正问题.教师应重点注意:(1)学生参与活动的意识及勇气;(2)能否理解直线变化趋势(形)与函数的性质(数)之间的对应关系.二、合作交流,探究新知问题1.画图:用描点法在同一坐标系中画出函数y=-6x,y=-6x+5的图象;2.观察:比较上面两个函数图象的相同点和不同点,根据你的观察结果回答下列问题:(1)这两个函数图象的形状都是________,并且倾斜程度都________,它们的位置________;(2)函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点________,即可以看作由直线y=-6x向________平移________个单位长度而得到;(3)比较两个函数的解析式,试由此解释两个函数图象的位置关系.3.拓展延伸:(1)所有一次函数的图象都是直线吗?(2)直线y=kx与直线y=kx+b之间存在着怎样的位置关系?(3)由直线y=kx可经过怎样的平移得到直线y=kx+b?学生对应描点、画图,并通过观察、比较两个函数图象后,对问题进行推广.教师对学生的观察、推广等结果进行适时的评价,在此基础上,师生共同得出:(1)一次函数的图象y=kx+b也是一条直线,我们称它为直线y=kx+b;(2)直线y=kx与直线y=kx+b互相平行;(3)直线y=kx+b可以由直线y=kx平移|b|个单位而得到.教师应重点注意:(1)学生在描点的过程中,是否注意到了几组对应点的位置变化规律;(2)学生能否通过解析式对“平移”作出解释;(3)为什么说平移|b |个单位,而不说b 个单位.在同一坐标系中画出函数y =2x -1与yx +1的图象.学生独立用两个点画出函数的图象,同桌交流;体验选点的差异性和图象的一致性. 教师应指出:虽然同学们所选的点不一样,但画出的图象却是一致的,通常选取点(0,b ),(-b k,0)这两个点,教师应注意引导选择合适的点. 1.探究:在同一坐标系中画出函数y =x +1,y =-x +1,y =2x +1,y =-2x +1的图象.2.观察上面四个函数的图象,类比正比例函数y =kx 的图象中的k 的正、负对函数图象有什么影响,探究一次函数y =kx +b 中的k 的正、负对函数图象有什么影响,并在此基础上表述一次函数的性质.【归纳总结】(1)当k >0时直线从左向右上升,即y 随x 的增大而增大;当k <0时直线从左向右下降,即y 随x 的增大而减小.应重点指导:(1)观察、类比新知的方法;(2)一次函数的性质与k 有关;(3)从“数”和“形”两个方面去理解和掌握一次函数的性质.做一做1.练习:教材P39练习.2.课外思考:根据已做的题目,归纳y =kx +b (k ≠0)中b 对函数的影响.学生独立板演,老师巡视,了解学生对知识掌握的情况.对学生练习中出现的情况,有针对性地讲解,了解学生是否通过数形结合解决问题.三、运用新知,深化理解例1 已知一次函数y =(6+3m )x +(n -4).(1)m 为何值时,y 随x 的增大而减小?(2)m 、n 为何值时,函数图象与y 轴的交点在x 轴的下方?(3)m 、n 为何值时,函数图象过原点?分析:(1)因为k <0时,y 随x 的增大而减小,故6+3m <0;(2)要使此函数图象与y 轴的交点在x 轴的下方,必有6+3m ≠0,同时n -4<0;(3)函数图象过原点是正比例函数的特征,即6+3m ≠0且n -4=0.解:(1)依题意,得6+3m <0,即mm <-2时,y 随x 的增大而减小;(2)依题意,得⎩⎪⎨⎪⎧6+3m ≠0,n -4<0.解得n <4且m ≠-2.故当m ≠-2且n <4时,函数图象与y轴的交点在x 轴的下方;(3)依题意,得⎩⎪⎨⎪⎧6+3m ≠0,n -4=0.解得n =4且m ≠-2.故当m ≠-2且n =4时,函数图象过原点.【归纳总结】一次函数y =kx +b (k ≠0)中,k 的符号决定直线上升或下降,b 的符号决定直线与y 轴的交点位置,在考虑b 的值时,同时要考虑k ≠0这一隐含条件,在利用一次函数的性质解决问题时,常常结合方程和不等式求解.例2 两个一次函数y 1=ax +b 与y 2=bx +a ,它们在同一坐标系中的图象可能是( )A B CD分析:解此类题应根据k ,b 的符号从而确定y =kx +b 图象的位置或根据图象确定k ,b 的符号.A 选项中,由y 1的图象知a >0,b <0,则y 2的图象应过第一、二、四象限,故A 错,C 对;B 选项中,由y 1的图象知a >0,b >0,则y 2的图象应过第一、二、三象限,故B 错;D 选项中,由y 1的图象知a <0,b >0,则y 2的图象应过第一、三、四象限,故D 错.【归纳总结】对于两种不同函数的图象共存同一坐标系问题,一般常假设某一图象正确,然后根据相同字母系数的符号的不变性,来判定另一图象是否正确,进而解决问题.四、课堂练习,巩固提高1.教材P38练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知一次函数的图象和性质⎩⎪⎪⎨⎪⎪⎧图象:一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到(当b >0时,向上平移;当b <0时,向下平移).性质:⎩⎪⎨⎪⎧当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小;当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P47习题12.2第1~6,13题. 第3课时 用待定系数法求一次函数的表达式1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.重点待定系数法确定一次函数解析式.难点灵活运用有关知识解决相关问题.一、创设情境,导入新课1.复习:画出函数y =3x ,y =3x -1的图象.2.反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗?3.引入新课:在上节课中我们学习了在给定一次函数表达式的前提下,可以说出它的图象特征及有关性质;反之,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.二、合作交流,探究新知(1)求下图中直线的函数表达式.(2)分析与思考:(1)题是经过原点的一条直线,因此是正比例函数,可设它的表达式为y=kx,将点(1,2)代入表达式得2=k,从而确定该函数的表达式为y=2x.(2)设直线的表达式是y=kx+b,因为此直线经过点(0,3),(2,0),因此将这两个点的坐标代入,可得关于k、b方程组,从而确定了k、b的值,确定了表达式.(写出解答过程)(3)反思小结:确定正比例函数的表达式需要1个条件,而确定一次函数的表达式需要2个条件.像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.师生整理归纳.教师引导学生总结出:数学的基本思想方法:数形结合.三、运用新知,深化理解例1 如图所示,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( )A.y=-x+2 B.y=x+2C .y =x -2D .y =-x -2分析:由正比例函数y =-x 可知,当x =-1时,y =1,∴点B 的坐标为(-1,1).设一次函数的表达式为y =kx +b ,把点B (-1,1),A (0,2)的坐标代入所设函数表达式,得⎩⎪⎨⎪⎧-k +b =1,b =2,解得⎩⎪⎨⎪⎧k =1,b =2.∴y =x +2. 【归纳总结】(1)利用待定系数法求一次函数的表达式时一定要有两个独立的条件,如两个点的坐标,或x 与y 的两对对应值等;(2)注意通过读图获取有用的信息,如本题中,A 点的纵坐标为2,即函数图象的截距为2,B 点的横坐标为-1,由B 点在直线y =-x 上可得其纵坐标.例2 如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则kb =______.分析:∵直线y =2x 与直线y =kx +b 平行,∴k =2.∵直线y =kx +b 过点(1,-2),∴2+b =-2.∴b =-4.∴kb =2×(-4)=-8.【归纳总结】两直线y =k 1x +b 与y =k 2x +b 平行,则k 1=k 2.先由两直线平行求得k ,再把点(1,-2)代入y =kx +b 求解可得b 的值.补充练习:(1)若一次函数y =3x -b 的图象经过点P (1,-1),则该函数图象必经过点( )A .(-1,1)B .(2,2)C .(-2,2)D .(2,-2)(2)若直线y =kx +b 平行于直线y =-3x +2,且在y 轴上的截距为-5,则k =______,b =______.(3)小明根据某个一次函数关系式填写了下表:x -2 -1 0 1y 3 1 0其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?解释你的理由.四、课堂练习,巩固提高1.教材P40练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知用待定系数法求一次函数解析式⎩⎪⎨⎪⎧①设出含有待定系数的函数解析式;②把已知条件(自变量与函数的对应值)代入解析式得到关于待定系数的方程(组);③解方程(组),求出待定系数;④将求出的待定系数的值代回所设的解析式即可得出函数解析式. 六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P47~48习题12.2第7~12题.第4课时 一次函数的应用1.理解分段函数的特点,会根据题意求出分段函数的解析式并画出函数图象;能深入了解一次函数的应用价值.2.在多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.重点对分段函数图象的理解.难点能将具体的实际问题转化为数学问题,利用数学模型解决实际问题.一、创设情境,导入新课小明从家里出发去菜地浇水,又去玉米地锄草,然后回家,其中x 表示时间,y 表示小明离他家的距离.该图表示的函数是正比例函数吗?是一次函数吗?你是怎样认为的?二、合作交流,探究新知探究点一:对分段函数图象的理解例1 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车的距离y (千米)与货车行驶的时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是________.分析:根据题意可判断图中OA 为快递车从甲地行驶到乙地过程中两车的间距,AB 为快递车在甲地卸货时两车的间距,BC 为快递车返回甲地直至两车相遇过程两车的间距.通过分析找出各个阶段量的关系,可求出正确结论.①A 点为快递车到达乙地的时刻,快递车从甲地到乙地共用3小时,两车速度差为120÷3=40(千米/时),已知货车速度为60千米/时,则快递车速度为100千米/时,①正确;②甲、乙两地的距离为100×3=300(千米),②错误;③B 点为快递车卸货结束的时刻,快递车卸货45分钟,因此B 点横坐标为334,此时货车行驶距离为60×334=225(千米),300-225=75(千米),所以B 点纵坐标为75,则点B 的坐标为(334,75),③正确;④BC 段所用时间为414-334=12(小时),在B 点时两车相距75千米,相遇时货车行驶距离为60×12=30(千米),快递车行驶距离为75-30=45(千米),故此段快递车的速度为45÷12=90(千米/时),④正确. 【归纳总结】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.探究点二 实际问题中的方案选择例2 电信局为满足不同客户的需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系如图(MN ∥CD ),若通话时间为500分钟,则应选择哪种方案更优惠( )A .方案AB .方案BC .两种方案一样优惠D .不能确定分析:由图可知,通话时间为500分钟时,方案A 的费用是230元,方案B 的费用是168元,∵230>168,∴选择方案B 更优惠.【归纳总结】根据图象可知通话500分钟两种方案的通话费用,选择费用少的一种方案即可.三、运用新知,深化理解例3 某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民免费借用.该社区附近A ,B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.分析:(1)可根据题意,直接写出y A和y B与x之间的关系式;第(2)题在第(1)题的基础上,分类讨论,得到对应的自变量的取值X围;第(3)题须在第(2)题的基础上再次分类讨论,特别需要提醒的是,这里不再限制“只在一家超市购买”,所以,要考虑到B超市免费送羽毛球的情况,经过计算、比较,得到结果.解:(1)y A=27x+270,y B=30x+240;(2)当y A=y B时,27x+270=30x+240,解得x=10;当y A>y B时,27x+270>30x+240,解得x<10;当y A<y B时,27x+270<30x+240,解得x>10.∴当2≤x<10时,到B超市购买划算;当x=10时,两家超市都一样;当x>10时,到A超市购买划算;(3)∵x=15>10,∴①选择在A超市购买,y A=27×15+270=675(元);②可先在B超市购买10副羽毛球拍,送20个羽毛球,后在A超市购买剩下的羽毛球(10×15-20=130)个,则共需费用:10×30+130×3×0.9=651(元).∵651<675,∴最省钱的购买方案是:先在B超市购买10副羽毛球拍,后在A超市购买130个羽毛球.【归纳总结】解答函数的应用题,必须读懂题意,注意题干条件与各个问题的条件之间的关系.题干中的条件适用于每一个小题,但是,各个小题的条件并不互相影响;要针对各个小题的条件,结合所问问题做不同的分类讨论.四、课堂练习,巩固提高1.教材P42及P44练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知1.分段函数⎩⎪⎨⎪⎧对分段函数图象的理解分段函数的具体应用 2.利用一次 函数进行 方案决策⎩⎪⎨⎪⎧①从数学的角度分析数学问题,建立函数, 模型;②列出不等式(方程),求出自变量在取不同值时所对应的函数值,判断大小关系;③结合实际需求,选择最佳方案.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P48习题12.2第15~16题.第5课时 一次函数与一元一次方程、一元一次不等式(组)1.理解一次函数与一元一次方程的关系以及一元一次不等式与一次函数问题的转化关系.2.会根据一次函数的图象解决一元一次方程及不等式的求解问题.3.进一步理解数形结合思想,提高问题间互相转化的能力.重点一次函数与一元一次方程关系的理解以及一元一次不等式与一次函数的转化关系及本质联系的理解.难点对一次函数与一元一次方程关系的理解以及用图象法求解不等式中自变量取值X围的确定.一、创设情境,导入新课[活动1]问题1.解方程2x+20=0.2.在坐标系中画出一次函数y=2x+20的图象.思考:直线y=2x+20与x轴交点的横坐标是方程2x+20=0的解吗?为什么?这两个问题是同一个问题吗?学生独立思考问题1,2,并完成画图,相互交流观察与思考的结果.教师巡视,对学生出现的问题给予帮助.师生共同归纳:(1)在问题1中,解方程0=2x+20,得x=-10.(2)解问题2就是要考虑当函数y=2x+20的值为0时,所对应的自变量x为何值,这可以通过解方程2x+20=0,得x=-10.因此这两个问题实际上是同一个问题.即这两个问题是同一个问题的两种不同的表达方式.(3)从“数”的角度看,方程2x+20=0的解是x=-10;从“形”的角度去看,直线y =2x+20与x轴交点的坐标是(-10,0),这也说明,方程2x+20=0的解是x=-10.在此活动中,教师应关注:(1)学生能否通过问题1,2体会一次函数与一元一次方程在数与形两个方面的关系.(2)学生独立思考.[活动2]问题1.解不等式5x+6>3x+10.思考:不等式5x+6>3x+10可以转化为ax+b>0的形式吗?所有的不等式是否都能转化为这种形式呢?2.当自变量x为何值时,函数y=2x-4的值大于0?思考:以上两个问题是同一个问题吗?3.问题2能用一次函数图象说明吗?引导学生解不等式后再思考问题.师生共同归纳:(1)在问题1中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2.(2)思考问题的答案是肯定的.(3)解问题2就是要解不等式2x-4>0,得出x>2时,函数y=2x-4的值大于0.因此这两个问题实际上是同一个问题.教师导入新课:是不是所有的一元一次不等式都可转化为一次函数的相关问题呢?它在函数图象上的表现是什么?如何通过函数图象来解一元一次不等式?解不等式,讨论归纳.画图尝试.二、合作交流,探究新知探究一方程ax+b=0(a,b为常数)与“求自变量x为何值时,一次函数y=ax+b的值为0”有什么关系?教师引导学生从特殊事例中寻求一般规律,进而总结出一次函数与一元一次方程的内在联系,从思想上真正理解函数与方程的关系.学生在教师引导下,通过自主合作,分析思考,找出这两个具体问题中的一般规律,从而经过讨论,归纳概括出较完整的关系,还要从思想上正确理解函数与方程关系的目的.学生认真思考、积极讨论,并展示自己的结论.师生共同归纳:由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数值为0时,求相应的自变量的值,从图象上看,这。
12.2 一次函数y=kx b的图象与性质.2 一次函数y=kx+b的性质
HFx‘s lesson plans --------沪科版八年级数学(上)
练习巩固
1、完成P39练习
HFx‘s lesson plans --------沪科版八年级数学(上)
练习巩固
1、下列一次函数中,y 的值随 x 值的增大而减小的是( B ) 2 A、y= x-8 B、y=-x+3 C、y=2x+5 D、y=7x-6 3 2、若一次函数 y kx b 的图象经过一、二、三象限,则 k , b 应满足的条件是: (
y随x增大而减小 图像自左向右是下降的
|K|越大,直线倾斜程度越大
y=-3x-1
HFx‘s lesson plans --------沪科版八年级数学(上)
一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性 质: 当k>0时,y随x增大而增大(图像自左向右上升) 当k<0时,y随x增大而减小(图像自左向右下降)
|K|越大,直线倾斜程度越大
HFx‘s lesson plans --------沪科版八年级数学(上)
二、探究活动
y 5 4
k,b k>0,b>0 k>0,b<0 k<0,b>0 k<0,b<0
经过的象限 一、二、三 一、三、四 一、二、四 二、三、四
3 2 1 –5 –4 –3 –2 –1 O –1 –2 –3 –4 –5 1 2 3 4 5 x
(1)分别求出x,y对应值表,观察 x增大时,y值变化情况
x y=3x+1 y=2x-3 …… …… …… ……
6 5 4 3 2 1 1 2
-2 -5
-1 -2
0 1
1 4
一次函数与正比例函数 说课稿
说课班级:XXXX班姓名:XXX《一次函数与正比例函数》说课稿老师、同学们大家好,我叫XXX。
今天我说课的内容是《一次函数与正比例函数》,下面我从说教材、说教案、说教法三个方面来向大家呈现这堂课。
一、说教材我选择的是北师大版初中数学数学教材,这节课的内容处在八年级上册第四章第二节,以下是我的教材分析:(一)前情提要(4.1)在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
在此基础上,本节课进一步研究其中最简单的一种函数——一次函数;由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有少部分学生表述上还不太标准,在教学中,教师要注意纠正学生的一些错误习惯,培养学生良好的书写习惯。
(二)本节内容(4.2)在课前准备工作中,我对比了以下两版教材:从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。
而一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(三)后续学习(4.3,4.4)前一节学习过了函数,本节课学习一次函数与正比例函数,下节课学习一次函数的图像,了解图像的特点,k的意义等等;可以看出,学习好一次函数就相当于拿到了进入函数大家族的钥匙,所以学好本节课的内容对后续的学习至关重要!二、说教案教案的设计我将从教学目标、教学重难点、教学环节设置、板书设计这四个方面来为大家进行说明:(一)教学目标由知识技能、数学思考、情感态度这三个维度展开:1.知识技能根据微格教学的特点,我将本节课的教学目标设置为:理解一次函数与正比例函数的概念,以及它们之间的关系。
一次函数与正比例函数 八年级数学
耗油量y/L
0 6 12 18 24 36
(2)你能写出耗油量y(L)与汽车行驶路程
x(km)之间的关系式吗?
y=0.12x
(3)你能写出油箱剩余油量z(L)与汽车行 驶路程x(km)之间的关系式吗? z = 60-0.12x
探究新知
研讨以下两个函数关系式: (1)y=0.5x+3. (2)y=-0.12x+60. 它们的结构有什么特点?
(1)当每次收入超过800元但不超过4000元时,写出劳务
报酬所得税预扣预缴税款y(元)与每次收入x (元)之间的关
系式;
解:当每次收入超过800元但不超过4 000元时,
y=(x-800)×20%, 即y=0.2x-160;
探究新知
(2)某人某次取得劳务报酬3 500元,他这笔所 得应预扣预缴税款多少元?
课堂检测
能力提升题
为了加强公民的节水意识,合理利用水资源,某城市规定用水收 费标准如下:每户每月用水量不超过6 m3时,水费按0.6元/m3收费,每 户每月用水量超过6 m3时,超过的部分按1元/ m3 收费.设ቤተ መጻሕፍቲ ባይዱ户每月用 水量为x m3,应交水费y元.
( 1 )写出每月用水量不超过6 m3和超过6 m3时,y与x之间的函数 关系式,并判断它们是否为一次函数;
答:(1)是一次函数,又是正比例函数; (4)是一次函数.
探究新知
素养考点 2 利用一次函数的概念求字母的值
例2 已知函数y=(m-2)x+4-m2
(1)当m为何值时,这个函数是一次函数?
(2)当m为何值时,这个函数是正比例函数?注意:利用定义求
解:(1)由题意可得m-2≠0, 解得m≠2. 一次函数 y kx b
一次函数与正比例函数教案
一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即函数表达式为y=kx+b(k、b为常数,k≠0)的形式。
通过实际例子,让学生理解一次函数的图像是一条直线。
1.2 一次函数的斜率与截距解释斜率k和截距b的概念,并引导学生通过函数表达式理解它们的含义。
利用实际例子,展示斜率和截距如何影响函数图像的位置和斜率。
1.3 一次函数的图像利用图形工具,展示不同斜率和截距的一次函数图像。
引导学生观察图像的特性,如斜率和截距对图像的影响。
第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即函数表达式为y=kx(k为常数)的形式。
解释正比例函数是一种特殊的一次函数,其截距b为0。
2.2 正比例函数的斜率与图像解释正比例函数的斜率代表比例常数k,并展示不同k值的图像。
引导学生观察正比例函数图像的特点,如通过原点、斜率为正或负等。
2.3 正比例函数的应用通过实际例子,展示正比例函数在实际生活中的应用,如购物时商品的价格与数量的关系。
引导学生理解正比例函数的局限性,即仅限于变量间成正比的情况。
第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的转化解释一次函数可以通过移项转化为正比例函数的形式。
引导学生掌握如何将一次函数y=kx+b转化为正比例函数y=kx。
3.2 一次函数与正比例函数的图像关系利用图形工具,展示一次函数和正比例函数图像之间的关系。
引导学生观察当截距b为0时,一次函数图像与正比例函数图像的相似性。
3.3 一次函数与正比例函数的交点解释一次函数与正比例函数的交点是两个函数图像的交点。
引导学生利用图形工具,找出一次函数与正比例函数的交点,并分析其含义。
第四章:一次函数与正比例函数的应用4.1 线性方程的解法引导学生掌握线性方程的解法,包括代入法、消元法等。
通过实际例子,展示如何利用一次函数和正比例函数解决实际问题。
八年级数学《一次函数与正比例函数》知识点总结
八年级数学《一次函数与正比例函数》知识点总结1.一次函数的定义 若两个变量x ,y 之间的关系式可以表示成y =kx +b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 是自变量).谈重点 一次函数的条件函数是一次函数必须符合下列两个条件:(1)关于两个变量x ,y 的次数是1;(2)必须是关于两个变量的整式.【例1】 下列函数中,是一次函数的是( ).A .y =7x 2B .y =x -9C .y =6xD .y =1x +1 解析:A× x 的次数是2,不是1,所以它不是一次函数. B√ 符合一次函数的一般形式. C× 含有自变量x 的代数式不是整式,所以不是一次函数. D× 答案:B2.正比例函数的定义对于一次函数y =kx +b ,当b =0,即y =kx (k 为常数,且k ≠0)时,我们称y 是x 的正比例函数.辨误区 一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b =0,且k ≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.【例2】 下列函数中,是正比例函数的是( ).A .y =-2xB .y =-2x +1C .y =-2x 2D .y =-2x 解析:A √ 符合正比例函数的一般形式.B×b=1≠0,所以它不是正比例函数.C×x的次数是2,不是1,所以它不是正比例函数.D×含有自变量x的代数式不是整式,所以它不是正比例函数.答案:A辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx+b(k≠0)的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx(k≠0)的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.【例3】甲、乙两地相距30 km,某人从甲地以每小时4 km的速度走了t h到达丙地,并继续向乙地走.(1)试分别确定甲、丙两地距离s1(km)及丙、乙两地距离s2(km)与时间t(h)之间的函数关系式.(2)它们是什么函数.分析:路程=速度×时间,s2=30-s1.解:(1)s1=4t,s2=30-4t.(2)两个函数都是一次函数,而s1=4t还是正比例函数.点评:此类题目把求函数关系式的问题转化为列代数式的问题,把实际问题转化为函数模型问题.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.联系:①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b =0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.【例4-1】 在下列函数中,x 是自变量,哪些是一次函数?哪些是正比例函数?(1)y =3x ;(2)y =1x ;(3)y =-3x +1;(4)y =x 2.分析:这类判断题,应严格按照有关函数的定义,看函数是不是可以表示为规定的形式.解:一次函数是(1)y =3x 和(3)y =-3x +1.其中(1)y =3x 还是正比例函数,(2)、(4)既不是一次函数,也不是正比例函数.【例4-2】 已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.分析:设正比例函数解析式为y =kx (k ≠0),要求出待定系数k ,必须有x 与y 的一组对应值,所以关键是要将已知条件转化为具体的数值.因为当x =0时,y =0,所以我们可以根据题意,给出一对特殊值:当x =1时,y =-2.这就是我们需要的等量关系.解:设正比例函数解析式为y =kx (k ≠0),根据题意,当x =1时,y =-2.代入函数解析式,得-2=k .故所求函数解析式为y =-2x .5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.【例5】一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L,行驶了1 h 后发现已耗油1.5 L.(1)求油箱中的剩余油量Q(L)与行驶的时间t(h)之间的函数关系式,并求出自变量t 的取值范围;(2)如果摩托车以60 km/h的速度匀速行驶,当油箱中的剩余油量为3 L时,老王行驶了多少千米?分析:根据油箱中原有油9 L,1 h耗油1.5 L,则t h耗油1.5t L,得到行驶t h后油箱中剩余油量为(9-1.5t)L,由此可得出函数关系式.解:(1)Q=9-1.5t,由9-1.5t=0,得到t=6,故t的取值范围为0≤t≤6.(2)由3=9-1.5t,得t=4.于是s=v t=60×4=240(km).故老王行驶了240 km.。
一次函数与正比例函数教案
一次函数与正比例函数教案第一章:一次函数的概念与性质1.1 一次函数的定义引导学生了解一次函数的定义,即形如y = kx + b (k、b 为常数,k 不等于0)的函数。
通过实际例子,让学生理解一次函数的组成和意义。
1.2 一次函数的图像引导学生了解一次函数图像是一条直线,并掌握直线的斜率和截距的概念。
1.3 一次函数的性质引导学生掌握一次函数的增减性和过原点性质。
举例说明一次函数在实际生活中的应用,如成本与数量的关系等。
第二章:正比例函数的概念与性质2.1 正比例函数的定义引导学生了解正比例函数的定义,即形如y = kx (k 为常数)的函数。
通过实际例子,让学生理解正比例函数的组成和意义。
2.2 正比例函数的图像引导学生了解正比例函数图像是一条通过原点的直线。
2.3 正比例函数的性质引导学生掌握正比例函数的单调性和过原点性质。
举例说明正比例函数在实际生活中的应用,如速度与时间的关系等。
第三章:一次函数与正比例函数的关系3.1 一次函数与正比例函数的联系引导学生了解一次函数和正比例函数之间的关系,即一次函数可以看作是正比例函数的一种特殊形式。
3.2 一次函数与正比例函数的转化引导学生掌握如何将一次函数转化为正比例函数,以及如何将正比例函数转化为一次函数。
3.3 一次函数与正比例函数的应用通过实际例子,让学生了解一次函数和正比例函数在实际生活中的应用,如商品价格与数量的关系等。
第四章:一次函数与正比例函数的图像解析4.1 一次函数图像的解析引导学生掌握如何从一次函数的图像中获得斜率和截距的信息。
4.2 正比例函数图像的解析引导学生掌握如何从正比例函数的图像中获得斜率的信息。
4.3 一次函数与正比例函数图像的比较引导学生了解一次函数图像和正比例函数图像的异同,并掌握如何判断一个函数是一次函数还是正比例函数。
第五章:一次函数与正比例函数的综合应用5.1 实际问题转化为一次函数与正比例函数的问题引导学生学会将实际问题转化为一次函数与正比例函数的问题,并利用相关性质解决。
一次函数和正比例函数
一次函数和正比例函数正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.正比例函数图象和性质一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:(1)设出含有待定系数的函数解析式y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程;(3)解方程,求出待定系数k;(4)将求得的待定系数的值代回解析式.一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的图象(1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b.(2)一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).直线y=kx+b的图象和性质与k、b的关系如下表所示:k>0k<0直线y1=kx+b与y2=kx图象的位置关系:(1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.(2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.直线:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定:当k1≠k2时,l1与l2相交,交点是(0,b).直线y=kx+b(k≠0)与坐标轴的交点.(1)直线y=kx与x轴、y轴的交点都是(0,0);(2)直线y=kx+b与x轴交点坐标为(,0)与y轴交点坐标为(0,b).用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.利用图象解题通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.典型例题剖析例1、已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小D.不论x如何变化,y不变答案:A例2(1)若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-1(2)已知是正比例函数,且y随x的增大而减小,则m的值为_____________.(3)当m=_______时,函数是一次函数.解;(1)由于y=(k+1)x+k2-1是正比例函数,∴,∴k=1,∴应选B.(2)是正比例函数的条件是:m2-3=1且2m-1≠0,要使y随x的增大而减小还应满足条件2m-1<0,综合这两个条件得当即m=-2时,是正比例函数且y随x的增大而减小.(3)根据一次函数的定义可知,是一次函数的条件是:解得m=1或-3,故填1或-3.例3、两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()例4、列说法是否正确,为什么?(1)直线y=3x+1与y=-3x+1平行;(2)直线重合;(3)直线y=-x-3与y=-x平行;(4)直线相交.解:(1)该说法不正确,∵k1≠k2,∴两直线相交;(2)该说法不正确,∵k1=k2,但b1≠b2,∴两直线平行;(3)该说法正确,∵k1=k2,b1≠b2,∴两直线平行;(4)该说法不正确,∵k1=k2,b1=b2,∴两直线重合.例5、如果直线y=kx+b经过第一、三、四象限,那么直线y=-bx+k经过第__________象限.例6、直线y=kx+b过点A(-2,0),且与y轴交于点B,直线与两坐标轴围成的三角形面积为3,求直线y=kx+b的解析式.解:设点B的坐标为(0,y),则|OA|=2,|OB|=|y|,有S=·|OA|·|OB|=×2×|y|=3.所以y=±3.所以点B的坐标是(0,3)或(0,-3).(1)当直线y=kx+b过点A(-2,0)和点B(0,3)时,所以y=+3.(2)当直线y=kx+b过点A(-2,0),B(0,-3)时,所以y=-3.因此直线解析式为y=+3或y=-3.例7、如图所示,阅读函数图象,并根据你所获得的信息回答问题:(1)折线OAB表示某个实际问题的函数的图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题分别指出x轴、y轴所表示的意义,并写出A、B 两点的坐标;(3)求出图象AB的函数解析式,并注明自变量x的取值范围.解:本题为开放题,现举一例如下:小明从家骑车去离家800米的学校,用了5分钟,之后又立即用了10分钟步行回到家中,此时x轴表示时间,y轴表示离家的距离,A(5,800),B(15,0).图象AB的解析式为y=-80x+1200(5≤x≤15).例8、某商店销售A、B两种品牌的彩色电视机,已知A、B两种彩电的进价每台分别为2000元、1600元,一月份A、B两种彩电的销售价每台为2700元、2100元,月利润为1.2万元(利润=销售价-进价).为了增加利润,二月份营销人员提供了两套销售策略:策略一:A种每台降价100元,B种每台降价80元,估计销售量分别增长30%、40%.策略二:A种每台降价150元,B种每台降价80元,估计销售量都增长50%.请你研究以下问题:(1)若设一月份A、B两种彩电销售量分别为x台和y台,写出y与x的关系式,并求出A种彩电销售的台数最多可能是多少?(2)二月份这两种策略是否能增加利润?(3)二月份该商店应该采用上述两种销售策略中的哪一种,方能使商店所获得的利润较多?请说明理由.解:(1)依题意,有(2700-2000)x+(2100-1600)y=12000,即700x+500y=12000.则因为y为整数,所以x为5的倍数,故x的最大值为15,即A种彩电销售的台数最多可能为15台.(2)策略一:利润W1=(2700-100-2000)(1+30%)x+(2100-80-1600)(1+40%)y=780x+588y;策略二:利润W2=(2700-150-2000)(1+50%)x+(2100-80-1600)(1+50%)y=825x+630y.因为700x+500y=12000,所以780x+588y>12000,825x+630y>12000.故策略一、策略二均能增加利润.故策略二使该商店获得的利润多,应采用策略二.怎样求一次函数解析式?求字母系数或函数解析式在已知函数解析式中,设置未知的系数,要求该函数是一次函数或具备一次函数的某些性质,据此确定解析式中的未知系数的值或者未知系数的取值范围.求解此类题时,应牢抓一次函数的定义、图象及性质,特别注意容易出错的地方,如系数k≠0,图象经过的象限与k、b的关系等.例1、函数y=(k-5)x|k|-4+2是一次函数,求此函数的解析式.解:由一次函数的定义,知自变量x的指数等于1,系数不为零,即解得k=-5.因此此函数的解析式为y=-10x+2.例2、已知一次函数y=mx+2x-2,要使函数值y随x的增大而增大,则m的取值范围是()A.m≥-2B.m>-2C.m≤-2D.m<2解: B.例3、已知一次函数y=kx+1(k≠0)的函数值y随x的增大而减小,则一次函数y=x +k的图象大致是图中的()解: B.求函数图象与坐标轴围成的三角形面积由于一次函数的图象是直线,所以当它与两坐标轴相交时,可能产生一个三角形,于是就出现了把一次函数与三角形内容相联系的许多问题,大多以考查三角形的周长,面积问题为主.求解此类题时,要多注意利用点的坐标来表示三角形的底与高.例4、直线y=x+4和直线y=-x+4与x轴所围成的三角形的面积是()A.32B.64C.16D.8解: C.利用函数图象解方程组、不等式例5、作出函数y=3x+1的图象,根据图象,回答:(1)x取什么值时,函数值y大于零?(2)x取什么值时,函数值y小于零?(3)x取什么值时,函数值y 小于-2?解:(1)当时,y>0;(2)当时,y<0;(3)当x<-1时,y<-2.待定系数专题概说:待定系数法是求函数解析式的最重要的方法,求解时首先设出函数解析式,再根据已知建立未知系数的方程(组),进而解方程(组)获得未知系数的值,应注意题目中的某些隐含条件的限制作用.例6、已知直线y=kx+b过点A(-1,5),且平行于直线y=-x+2.(1)求直线的解析式;(2)B(m,-5)在这条直线上,O为原点,求m的值及S△AOB.解:(1)由两直线平行,得k=-1.易求b=4.所以y=-x+4;(2)把B(m,-5)代入y=-x+4,得m=9.可求y=-x+4与y轴的交点为C(0,4),则S△AOB=S△ACO+S△BC O.所以S=×|-1|×4+×9×4=20.如图所示.数形结合本章自始自终都是用数形结合的思想方法研究问题,平面直角坐标系的建立是实现数与形转化的重要工具,数形结合使抽象的数形象化、直观化,化数为形,以形思数,常常是解决问题的关键,数形结合思想不仅为分析问题,解决问题提供了有利条件,而且是开发智力、培养能力的重要途径.例7、为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式.其中,使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示.(1)分别求出通话费y1、y2与通话时间之间的函数解析式;(2)请你帮用户计算一下,在一个月内使用哪种卡便宜?解:(1)设y1=k1x+b,y2=k2x.由图象可知,y1=k1x+b,经过点A(0,29),B(30,35).所以解得所以y1=+29(0≤x≤43200),y2=k2x的图象过点(30,15).所以30k2=15.所以k2=.所以y2=(0≤x≤43200);(2)当y1=y2时,即,得;当y1>y2时,即,得,即当x≤96时,y1>y2;当y1<y2时,即,得,即当x≥97时,y1<y2.所以,当通话时间为小于97分钟时,“如意卡”便宜;当通话时间大于或等于97分钟时,“便民卡”便宜.分类讨论在解答某些数学问题时,有时会遇到很多种情况,需要对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法,分类讨论是一种重要的数学方法,不重复、不遗漏是对分类的基本要求.例8、如果一次函数y=kx+b的自变量x的取值范围是-2≤x≤4,相应函数的范围是-9≤y≤11,求此函数的解析式.解:(1)当k>0时,y随x的增大而增大,一定是当x=-2时,y=-9;当x=4时,y=11.所以有解得所以;(2)当k<0时,y随x的增大而减小,一定是当x=-2时,y=11;当x=4时,y=-9.所以有解得所以.综上所述两种情况,符合条件的解析式为.函数思想函数思想就是用运动和变化的观点去观察、分析具体问题中的数量关系,通过函数形式,把这种数量关系表示出来并加以研究,从而使问题获得解决,在解决问题时,根据问题的条件去构造函数关系,并借助已知函数的性质和图象,获得解决问题的途径.例9、小张准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月节存12元.小张的同学小王以前没有存过零用钱,听到小张在存零用钱,表示从现在起每个月存18元,争取超过小张.请你在同一平面直角坐标系中分别画出小张和小王存款数和月份数的函数关系的图象,在图上找一找半年以后小王的存款数是多少,能否超过小张?至少几个月后小王的存款能超过小张?解:设小张存款数为y1元,小王存款数为y2元,月份数为t.则y1=50+12t,y2=18t.在同一平面直角坐标系中画出两个系数的图象如图所示.当t=6时,y1=50+12×6=122,y2=18×6=108,在图上也可以看出半年后小王的存款数是108元,不能超过小张.我们过x轴上(6,0)点作x轴的垂线交两条直线于P1、P2点,显然P2点位置较高,即表示此时小张的存款数比小王的存款数多.由y1<y2,即50+12t<18t,.∵t为整数,∴t≥9.由图象可知至少9个月后小王的存款才能超过小张.。