第1课时--正比例函数的图象和性质-练习题(含答案)(1)
第1课时正比例函数的图象和性质
第1课时 正比例函数的图象和性质知识点1 画正比例函数的图象1.(2017·柳州)如图,直线y =2x 必过的点是( )A .(2,1)B .(2,2)C .(-1,-1)D .(0,0)2.下列各点,不在正比例函数y =-13x 图象上的是( ) A .(0,0) B .(1,-3) C .(-3,1) D .(1,-13) 3.已知正比例函数y =x ,请画出这个函数的图象.知识点2 正比例函数的图象和性质4.下列是正比例函数的图象,且y 随x 值的增大而减小的是( )5.正比例函数y =kx 的图象如图所示,则k 的取值范围是( )A .k >0B .k <0C .k >1D .k <16.关于函数y =2x ,下列结论中正确的是( )A .函数图象经过点(2,1)B .函数图象经过第二、四象限C .y 随x 的增大而增大D .不论x 取何值,总有y >07.函数y =-5x 的图象在第___________象限内,y 随x 的增大而_________8.已知正比例函数y =(5m -3)x ,如果y 随着x 的增大而减小,那么m 的取值范围为_________知识点3 实际问题中的正比例函数9.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )10.(教材P124练习T2变式)小明用16元零花钱购买水果,已知水果单价是每千克4元,设买水果x 千克用去的钱为y 元.(1)求买水果用去的钱y(元)随买水果的数量x(千克)的变化而变化的函数表达式;(2)画出这个函数的图象.11.函数y =2x ,y =-3x ,y =-12x 的共同特点是( ) A .图象位于同样的象限 B .y 随x 的增大而减小C .y 随x 的增大而增大D .图象都经过原点12.已知正比例函数y =kx(k≠0),当x =1时,y =-2,则它的图象大致是( )13.已知正比例函数y =kx(k<0)的图象上两点A(x 1,y 1),B(x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<014.(教材P116习题T4变式)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是( )第14题 第17题A .甲、乙两人的速度相同B .甲先到达终点C .乙用的时间短D .乙比甲跑的路程多15.(2017·天津)若正比例函数y =kx(k 是常数,k≠0)的图象经过第二、四象限,则k 的值可以是_________(写出一个即可).16.当m =______时,函数43+=m mx y 是正比例函数,此函数y 随x 的增大而_______.17.如图,正比例函数y =kx ,y =mx ,y =nx 在同一平面直角坐标系中的图象如图所示,则系数k ,m ,n 的大小关系是____________.18.已知△ABC 的底边BC =8 cm ,当BC 边上的高从小到大变化时, △ABC 的面积也随之变化.(1)写出△ABC 的面积y(cm 2)随BC 边上的高x(cm)而变化的函数表达式,并指出它是什么函数;(2)当x =7时,求出y 的值;19.如图,在平面直角坐标系中,点A 的坐标为(1,0),在直线y =x 上取一点P ,使△OPA 是等腰三角形,求所有满足条件的点P 的坐标.。
4.3 第1课时 正比例函数的图象和性质
6.在同一平面直角坐标系中,分别画出下列函数的图象: (1)y1=-2x; (2)y2=-x; (3)y3=-12x.
7.关于函数y=5x,下列结论中正确的是( C) A.函数图象经过点(1,-5) B.函数图象经过二、四象限 C.y随x的增大而增大 D.不论x为何值,总有y>0
8.(阿凡题:1071128)(2017·西安模拟)已知正比例函数y=(m-1)x的图象上有 两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )A A.m<1 B.m>1 C.m<2 D.m>0
则 t≤1020=50,∴0≤t≤50.图象略
(2)当 t=151650时,Q=2×151650=30.5, 即 t=15 分 15 秒时,水量 Q 为 30.5 m3 (3)水池中的水量 Q 随着时间 t 的增大而增大
1.下列函数的图象经过原点的是( C ) A.y=7x+2 B.y=-5x+1 C.y=-6x
D.y=x-2 3
2.当k>0时,正比例函数y=kx的图象大致是( )A
3.当x<0时,函数y=-2x在(B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.如果y=mxm2-8是正比例函数,且其图象在第二、四象限,那么m的 值是_-__3_. 5.函数y=6x的图象是经过点(0,__0__)和点(__1__,6)的一条直线,点A(2 ,4)_不__在_(填“在”或“不在”)直线y=6x上.
八年级数学上册(北师版) 第四章 一次函数
4.3 一次函数的图象
第1课时 正比例函数的图象和性质
1.把一个函数的自变量x与对应的因变量y的值分别作为点的_横___坐标和 _纵___坐标,在直角坐标系内描出它的 对应点 ,所有这些点组成的图形叫做 函数的_图__象_.
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教案 新版北师大版
八年级数学上册4.3一次函数的图象第1课时正比例函数的图象和性质教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第四章第三节主要讲述了一次函数的图象,其中第一课时为正比例函数的图象和性质。
本节课内容是学生在学习了直线方程、函数概念等基础知识后的进一步拓展,是对一次函数图象和性质的系统学习。
通过本节课的学习,使学生能够掌握正比例函数的图象特征,理解正比例函数的性质,并能运用其解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对直线方程、函数概念等知识有了初步的了解。
但学生在学习过程中,对于函数图象和性质的理解还有一定的困难,需要通过具体的实例和操作来加深理解。
此外,学生对于解决实际问题的能力还需加强,需要通过课堂练习和拓展环节来提高。
三. 教学目标1.知识与技能目标:使学生能够掌握正比例函数的图象特征,理解正比例函数的性质。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:正比例函数的图象特征,正比例函数的性质。
2.难点:正比例函数性质的理解和应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生观察、操作、思考、交流,从而达到对正比例函数图象和性质的理解。
六. 教学准备1.准备相关的一次函数图象和性质的案例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生对正比例函数的图象和性质产生兴趣,激发学生的学习欲望。
2.呈现(10分钟)用多媒体展示正比例函数的图象,引导学生观察、分析,从而总结出正比例函数的图象特征。
然后,通过具体案例,讲解正比例函数的性质。
3.操练(10分钟)让学生分组进行讨论,每组选择一个案例,分析其图象和性质。
第 1课时 正比例函数
第1课时正比例函数基础知识夯实知识沉淀1.正比例函数的定义:一般地,形如(k是常数,k 0)的函数,叫做正比例函数,其中k叫做2.正比例函数的图象是一条直线,其性质为:基础过关1.在下列四个函数中,是正比例函数的是( )A. y=2x+1B.y=2x²+1D. y=2xC.y=2x2.正比例函数y=--3x的大致图象是( )典型案例探究知识点1 正比例函数的概念【例题1】已知y=(k+1)x+k-1是正比例函数,求k的值.【变式1】下面各组变量的关系中,成正比例关系的有( )A.人的身高与年龄B.买同一练习本所要的钱数与所买本数C.正方形的面积与它的边长D.汽车从甲地到乙地,所用时间与行驶速度知识点2 正比例函数的图象【例题 2】画出下列函数的图象:(1)y=4x; (2)y=-4x.【变式2】正比例函数 y=5x 的大致图象是 ( )知识点3 正比例函数的图象及性质【例题3】已知正比例函数图象上一点 A 到x 轴的距离为4,点 A 的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数经过哪几个象限?(3)这个正比例函数的函数值y 随x 的增大而增大?还是随x 的增大而减小?【变式3】已知正比例函数. y =(2m +4)x.求:(1)m 为何值时,函数图象经过第一、三象限;(2)m 为何值时,y 随x 的增大而减小;(3)m 为何值时,点(1,3)在该函数图象上.课后作业A 组1.正比例函数y=3x 的大致图象是 () 二2.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是( )A. m≠2且n=0B. m=2且n=0C. m≠2D. n=0x,下列结论正确的是( )3.y=12A.函数图象必经过点(1,2)B.函数图象必经过第二、四象限C.不论x取何值,总有y>0D. y随x的增大而增大4.若函数y=(k−1)x|k|是正比例函数,则k= .5.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.6.列式表示下列问题中y与x 的函数关系式,并指出哪些是正比例函数.(1)圆的半径为x,周长为y;(2)每本练习本0.5元,购买练习本的总费用y(单位:元)与购买练习本的本数x(单位:本);(3)汽车以80千米/时的速度匀速行驶,行驶时间为x小时,所行驶的路程为y千米;(4)某人一个月的收人为3 500 元,这个人的总收入y(单位:元)随工作时间x(单位:月)的变化而变化.B 组7.已知正比例函数y=(1-2m)x.(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)若函数图象经过(--1,2),求此函数的解析式,并画出函数的图象.8.已知正比例函数y=(m+2)x中,y随x 的增大而增大,而正比例函数y=(2m-3)x中,y随x的增大而减小,且m 为整数,你能求出m 的可能值吗?为什么?C 组9.已知y−3与2x-1成正比例,且当x=1时, y=6.(1)求y与x 之间的函数解析式;(2)如果y的取值范围为( 0≤y≤5,,求x的取值范围;(3)若点A(x₁,y₁),B(x₂,y₂)都在该函数的图象上,且y₁>y₂,试判断x₁,x₂的大小关系.第1 课时正比例函数【基础知识夯实】知识沉淀1. y=kx ≠ 比例系数2.基础过关1. D2. A【典型案例探究】例题1解:根据题意,得k+1≠0且k-1=0.解得k=1.变式1 B例题2解:(1)当x=0时,y=0;当x=1时,y=4.画出函数y=4x的图象,如图(1).(2)当x=0时,y=0;当x=1时,y=-4.画出函数y=-4x的图象,如图(2).变式2 B例题3 解:(1)∵正比例函数图象上一点A到x 轴的距离为4,点A 的横坐标为-2,∴A(-2,4),(-2,-4).设解析式为y=kx,则4=-2k,-4=-2k.解得k=-2,k=2.故正比例函数解析式为y=±2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,y随x的增大而增大;当y=-2x时,y随x的增大而减小.变式3 解:(1)∵函数图象经过第一、三象限,∴2m+4>0.解得m>-2.(2)∵y随x的增大而减小,∴2m+4<0.解得m<-2.(3)∵点(1,3)在该函数图象上,.∴2m+4=3.解得m=−12【课后作业】1. B2. A3. D4.-15. k>m>n6.解:(1)由题意,得y=2πx.是正比例函数.(2)由题意,得y=0.5x.是正比例函数.(3)由题意,得y=80x.是正比例函数.(4)由题意,得y=3 500x.是正比例函数..7.解: (1)m<12.(2)m>12(3)y=-2x,图略.8.解:m的可能值为-1,0,1.理由如下:∵正比例函数y=(m+2)x中,y随x的增大而增大, ∴m+2>0.解得m>-2.∵正比例函数y=(2m-3)x中,y随x的增大而减小,.∴2m-3<0,解得m<32∵m为整数,∴m的可能值为-1,0,1.9.解:(1)由题意可设y--3=k(2x-1).∵当x=1时,y=6,∴6-3=k(2-1).解得k=3.∴y-3=3(2x--1),即y=6x.(2)当y=0时,0=6x,解得x=0;当y=5时,5=6x,解得x=5.6.∴x的取值范围为0≤x≤56(3)由(1)知该函数解析式为y=6x,∵k=6>0,∴y随x的增大而增大.又∵y₁>y₂,∴x₁>x₂.。
中考数学-一次函数正比例函数的图像及性质(含答案)专题练习
中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。
14.2.1正比例函数(第一课时)
一、三 经过第____象限;函数y=-2x的图像从左向右__ 下降 二、四 ___,经过第____象限。
一般地,正比例函数y=kx(k是常数,k≠0)的图像
是一条经过原点的直线,我们称它为直线y=kx.当
k>0时,直线y=kx经过第三、一象限,从左向右上 升,即随着x的增大y也增大;当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即随着x的增 大y反而减小。
下面的函数是否是正比例函数?比例系数是多少?
(1) y 3x (2) y 2 x (3) y x 2 (4)s r 2
是;比例系数是3。 不是。 是;比例系数是1/2。 不是。
应用新知
例1
(1)若y=5x3m-2是正比例函数,m=
m2 3
1
。
(2)若 y (m 2) x
上面这些函数的组成特点:
(1)l=2 r; (3) h=0.5n; (2)m=7.8v (4)T=-2t.
正如函数y=200x一样,上面这些函数都是常数与 自变量的乘积的形式:
一般地,形如
y kx(k是常数,k 0)
②x的系数为1。
叫做正比例函数,其中k叫做比例系数。 注意:①k≠0;
y=200x (0≤x≤128)
(3)这只燕鸥飞行1个半月的行程大约是多少千米?
当x=45时,y=200×45=9000
下列问题中的变量对应的规律可用怎样的函数表示? 并观察这些函数有什么共同的特点? (1)圆的周长l随半径r的大小的变化而变化;
(2)铁的密度为7.8g/cm3 铁块的质量m(单位:g)随它的 体积v(单位:cm3 )的大小的变化而变化;
是正比例函数,m= -2
。
例2 已知△ABC的底边BC=8cm,当BC边上的高线 从小到大变化时, △ABC的面积也随之变化。 (1)写出△ABC的面积y(cm2)与高线x的函数解析 式,并指明它是什么函数;
4.3 第1课时 正比例函数的图象和性质-(共23张PPT)
A.2
B.-2 C.4
D.-4
9.(2019-2020·揭阳期中)若函数y=-3x+a+2
是正比例函数,则a= -2 ,y随x的增大而
减小 .
10.已知正比例函数y=(m- 3 )x的图象上有 2
两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2. (1)求m的取值范围;
解:(1)由题意可知m- 3 <0,解得m< 3 .
14.如图,三个正比例函数的图象分别对 应表达式:①y=ax;②y=bx;③y=cx.将 a,b,c从小到大排列起来并用“<”连接为
a<c<b .
15.已知某套餐内市话的收费标准是每分钟0.2元. (1)写出通话费用y(元)与通话时间x(分钟)之间的函 数关系式,并画出该函数的图象; (2)当x=2时,y的值是 0.4 ; 当y=5时,x的值是 25 . 解:(1)y=0.2x(x≥0), 函数图象如图所示.
第14题,|k|越大,函数图象变化越快. 第17题,确定点P的坐标时,应分 ∠APO=90°和∠OAP=90°两种情况 进行讨论.
知识点一 正比例函数的图象 1.正比例函数y=x的大致图象是( C )
2.正比例函数y=kx的图象如图所示, 则k的取值范围是( A ) A.k>0 B.k<0 C.k>1 D.k<1
3.(2019·陕西中考)若正比例函数y=-2x的图象
经过点O(a-1,4),则a的值为( A )
A.-1 B.0 C.1
知识点二 正比例函数的性质 7.(2019·大冶市期末)关于函数y=2x,下列 说法错误的是( D ) A.图象经过(1,2) B.y随x的增大而增大 C.图象经过第一、三象限 D.当x>0,y<0
湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿
湘教版八下数学4.3一次函数的图象第1课时正比例函数的图象和性质说课稿一. 教材分析湘教版八下数学4.3一次函数的图象第1课时,主要介绍正比例函数的图象和性质。
在这一课时中,学生将学习正比例函数的定义、图象特点以及如何绘制正比例函数的图象。
教材通过丰富的实例和练习题,帮助学生理解和掌握正比例函数的知识。
二. 学情分析在学习本课时,学生已经掌握了函数的基本概念和一次函数的定义,对函数的图象有一定的了解。
但学生对正比例函数的图象和性质的认识还不够深入,需要通过本节课的学习来进一步理解和掌握。
此外,学生可能对如何绘制正比例函数的图象存在一定的困惑,需要教师的引导和讲解。
三. 说教学目标1.知识与技能目标:学生能够理解正比例函数的定义,掌握正比例函数的图象特点,学会绘制正比例函数的图象。
2.过程与方法目标:通过观察、分析和实践,学生能够培养数形结合的思维方式,提高解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。
四. 说教学重难点1.教学重点:正比例函数的定义,正比例函数的图象特点,绘制正比例函数的图象。
2.教学难点:如何引导学生理解正比例函数的图象与性质之间的关系,以及如何绘制正比例函数的图象。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法等,激发学生的学习兴趣,引导学生主动参与课堂讨论和实践活动。
2.教学手段:利用多媒体课件、实物模型、练习题等,辅助教学,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引出正比例函数的概念,激发学生的兴趣。
2.新课导入:介绍正比例函数的定义和图象特点,引导学生观察和分析正比例函数的图象。
3.实例讲解:通过具体的例子,讲解如何绘制正比例函数的图象,让学生动手实践。
4.课堂练习:设计一些练习题,让学生巩固所学知识,并及时给予解答和反馈。
5.总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的思考。
《正比例函数》一次函数(第1课时正比例函数的概念)
总结词
提升学生对正比例函数的掌握程度和 应用能力。
详细描述
进阶练习题包括计算题、作图题和解 析题等,难度略高于基础练习题。这 些题目要求学生能够运用正比例函数 解决实际问题,提高解题技巧和思维 能力。
综合练习题
总结词
检验学生对正比例函数的综合运用能力和问题解决能力。
详细描述
综合练习题包括跨学科的应用题和实际问题的数学建模题目,这些题目需要学生综合运用数学知识,特别是正比 例函数与其他数学知识的结合,以解决复杂问题。题目难度较高,适合学有余力的学生挑战自我。
04
正比例函数的解析式
函数的解析式
函数解析式是表示函 数关系的数学表达式 ,由变量、运算符和 常数组成。
解析式可以表示函数 在任意自变量取值下 的因变量取值。
函数解析式是研究函 数性质、图像和变化 规律的基础。
正比例函数的解析式形式
正比例函数解析式为 $y = kx$ ,其中 $k$ 是比例常数,$x$ 是自变量,$y$ 是因变量。
函数图像是解析式的几何表现,通过 图像可以直观地观察函数的性质和变 化规律。
05
课堂练习与巩固
基础练习题
总结词
帮助学生掌握正比例函数的基本概念 和性质。
详细描述
基础练习题包括判断题、选择题和填 空题等,主要考察学生对正比例函数 定义、图像和性质的理解。这些题目 难度较低,适合全体学生练习。
进阶练习题
制函数图像。
描点
根据正比例函数的表达 式,计算出若干个x值所 对应的y值,并描出对应
的点。
连线
使用直线连接所描出的 点,得到正比例函数的
图像。
验证
通过代入已知的x值,验 证所绘制的图像是否准
4.3 一次函数的图象 第1课时 正比例函数的图象及性质 北师大版八年级上册数学习题课件
C.-3 5
D.-5 3
5.若一个正比例函数的图象经过A(3,-6),B(m,-4)两点,则m的值为( A ) A.2 B.8 C.-2 D.-8 6.函数y=6x是经过点(0,___0___)和点(__1___,6)的一条直线,点A(2,4)_不__在___(填 “在”或“不在”)直线y=关于正比例函数y=-2x,下列结论正确的是( C ) A.图象必经过点(-1,-2) B.图象经过第一、三象限 C.y随x的增大而减小 D.不论x取何值,总有y<0
8.P1(x1,y1),P2(x2,y2)是正比例函数 y=-x 图象上的两点,则下列判断正确的 是( C )
(3)因为点(a,-2)在这个函数图象上,所以-2=2a,解得a=-1 (4)因为k=2>0,所以y的值随着x的值的增大而增大.当x=-1时,y=-2;当x= 5时,y=10.所以当-1<x<5时,y的取值范围是-2<y<10
15.如图,已知正比例函数y=kx的图象经过点A,点A在第四象限,过点A作 AH⊥x轴,垂足为H,点A的横坐标为3,且△AOH的面积为3.
数学 八年级上册 北师版
第四章 一次函数
3 一次函数的图象 第1课时 正比例函数的图象及性质
知识点一 正比例函数的图象 1.正比例函数y=4x的图象大致是( D )
2.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 ____-__2_(答__案__不__唯__一__)__(写出一个即可).
解:(1)图略 (2)两条直线的夹角为90°.发现:当两个正比例函数的两个系数之积为-1时,这两 条直线的夹角为90°,即这两条直线垂直
3.(教材 P85 习题 T2 变式)在同一平面直角坐标系中分别画出下列函数的图象: (1)y=-23 x;(2)y=3x;(3)y=23 x.
北师大版八年级数学上册第正比例函数的图象和性质测试卷
北师大版八年级数学测试卷(考试题)北师大版8年级数学试题4.3 一次函数的图象第1课时正比例函数的图象和性质一、填空题(1)一次函数的图象经过点(-1,2),且函数y的值随自变量x的增大而减小,请你写出一个符合上述条件的函数关系式________.(2)你能根据下列一次函数y=kx+b的草图,得到各图中k和b的符号吗?(3)若一次函数y=(2-m)x+m的图象经过第一、二、四象限时,m的取值范围是________,若它的图象不经过第二象限,m的取值范围是________.二、选择题(1)一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q(m3)与放水时间t(时)的函数关系用图表示为()(2)两个受力面积分别为S A(米2)、S B(米2)(S A、S B为常数)的物体A、B,它们所受压强p(帕)与压力F(牛)的函数关系图象分别是射线l A、l B,则S A与S B的大小关系是()A.S A>S BB.S A<S BC.S A=S BD.不能确定(3)早晨,小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校走去,且v1>v2,则表示小强从家到学校的时间t(分钟)与路程S(千米)之间的关系是()北师大版8年级数学试题三、已知一次函数y=-2x-2(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)求△AOB的面积.(5)利象求当x为何值时,y≥0.参考答案一、(1)y=-x+1,y=-2x,y=-3x-1等,必须使k<0(2)①>>②><③<>④<<(3)m>2,m<0二、(1)D (2)B (3)A三、(1)如右图(2)A(-1,0)B(0,-2)(3)|AB|=5(4)S△AOB=1(5)x≤-1附赠材料:怎样提高答题效率直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。
4.3 正比例函数的图象及性质 练习题 2021——2022学年北师大版八年级数学上册
3 第1课时 正比例函数的图象及性质【基础练习】知识点 1 正比例函数的图象1.正比例函数y=3x 的大致图象是( )图12.(1)函数y=5x 的图象经过的象限是第 象限;(2)写出一个实数k 的值: ,使得正比例函数y=kx 的图象经过第二、四象限.3.在同一平面直角坐标系中画出下列函数的图象:(1)y=-23x ; (2)y=3x ; (3)y=23x.图2知识点 2 正比例函数图象上点的坐标4.已知正比例函数y=3x 的图象经过点(1,m ),则m 的值为( )A .13B .3C .-13D .-35.点(-2,6)在正比例函数y=kx 的图象上,下列各点在此函数图象上的为( )A .(3,1)B .(-3,1)C .(1,3)D .(-1,3)6.(1)函数y=6x 的图象是经过点(0, )和点( ,6)的一条直线;(2)若正比例函数的图象经过点(-1,4)和(m ,3),则m 的值为 .7.[教材习题4.3第4题变式]已知:如图3,正比例函数的图象经过点P(-1,2)和点Q(-m,m+3).(1)求该函数的表达式;(2)求m的值;(3)判定这个函数的图象必经过(1,-2),(-1,-2),(2,-1),(1,2)中的哪个点.图3知识点3正比例函数的性质8.关于正比例函数y=-3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=1时,y=139.已知函数y=(a-1)x,且y的值随着x值的增大而增大,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<010.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,若x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能11.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m的值为()A.2B.-2C.4D.-412.对于关于x的正比例函数y=mx|m|-1,若其图象经过第一、三象限,则m的值为,且y 的值随x值的增大而.13.已知关于x的正比例函数y=(m+2)x.(1)m为何值时,函数图象经过第一、三象限?(2)m 为何值时,y 随x 的增大而减小?(3)m 为何值时,点(1,3)在该函数的图象上?【能力提升】14.设点A (a ,b )是正比例函数y=-32x 图象上的任意一点,则下列等式一定成立的是( )A .2a+3b=0B .2a -3b=0C .3a -2b=0D .3a+2b=0 15.如果一个正比例函数的图象经过不同..象限的两点A (2,m ),B (n ,3),那么一定有( ) A .m>0,n>0 B .m>0,n<0C .m<0,n>0D .m<0,n<016.若关于x 的正比例函数y=(1-m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m<0B .m>0C .m<1D .m>117.正比例函数y=kx ,当x 每增加3时,y 就减小2,则k 的值为( )A .32B .-32C .23D .-23 18.如图4,在同一直角坐标系中,正比例函数y=k 1x ,y=k 2x ,y=k 3x ,y=k 4x 的图象分别是l 1,l 2,l 3,l 4,则下列关系正确的是( )图4A .k 1<k 2<k 3<k 4B .k 2<k 1<k 4<k 3C .k 1<k 2<k 4<k 3D .k 2<k 1<k 3<k 419.定义运算“※”为a ※b={ab (b ≥0),-ab (b <0),则函数y=2※x 的图象大致是( )图520.已知正比例函数图象上一点A 到x 轴的距离为4,点A 的横坐标为-2,则这个函数的表达式为 .21.已知正比例函数y=kx (k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤13,且y 随x 的增大而增大,则k 的值为 .22.已知y 与x 成正比例,当x=1时,y=2.(1)求y 与x 之间的函数关系式;(2)求当x=-1时的函数值;(3)若点(-1,m ),(5,n )在此函数的图象上,比较m ,n 的大小.23.(1)在同一坐标系内画出正比例函数y 1=-2x 与y 2=12x 的图象;(2)请你用量角器度量一下(1)中这两条直线的夹角,你发现这两条直线的位置关系是 ;(3)在平面直角坐标系中,直线y=23x 与直线y=-32x 的位置关系是 ;(4)若直线y=(m -1)x (m 为常数)与直线y=-3x 互相垂直,求m 的值.答案1.B [解析] 因为在y=3x 中,k=3>0,所以图象过原点且经过第一、三象限.故选B .2.(1)一、三 (2)答案不唯一,如-23.解:如图所示.4.B5.D6.(1)0 1 (2)-347.解:(1)设正比例函数的表达式为y=kx.因为它的图象经过点P (-1,2),所以2=-k ,即k=-2.所以正比例函数的表达式为y=-2x.(2)因为正比例函数的图象经过点Q (-m ,m+3),所以m+3=2m.所以m=3.(3)把点(1,-2),(-1,-2),(2,-1),(1,2)的坐标分别代入y=-2x 中,等号成立的点就在正比例函数y=-2x 的图象上,所以这个函数的图象必经过点(1,-2).8.C 9.A 10.B 11.B12.2 增大13.解:(1)因为函数图象经过第一、三象限,所以m+2>0,解得m>-2.(2)因为y 随x 的增大而减小,所以m+2<0,解得m<-2.(3)因为点(1,3)在该函数的图象上,所以m+2=3,解得m=1.14.D [解析] 把点A (a ,b )的坐标代入正比例函数y=-32x 中,可得-32a=b ,即3a+2b=0. 15.D 16.D17.D [解析] 根据题意得y -2=k (x+3),y -2=kx+3k ,而y=kx ,所以3k=-2,解得k=-23.18.B [解析] 对正比例函数的图象来说,当k>0时,k 的值越大,直线与x 轴正半轴所夹的锐角越大,所以k3>k4;当k<0时,k的值越大,直线与x轴负半轴所夹的锐角越小,所以k2<k1.因为正数大于一切负数,所以k2<k1<k4<k3.19.C20.y=2x或y=-2x21.1322.解:(1)设y与x之间的函数关系式为y=kx.将x=1,y=2代入,得k=2,故y与x之间的函数关系式为y=2x.(2)当x=-1时,y=2×(-1)=-2.(3)因为k=2>0,所以y的值随着x值的增大而增大.因为-1<5,所以m<n.23.解:(1)如图.(2)互相垂直(3)互相垂直.(4)由题意可得-3(m-1)=-1,解得m=43。
第12章 12.2 第1课时 正比例函数的图象和性质
教材感知
课关堂键能检力测
-17-
解:(1)由题意可知:m-2≠0.所以 m≠2 时,该函数是一次函数. (2)
m-2≠0, 由题意可知5-m=0. 解得 m=5,所以正比例函数为 y=3x,其图象如 图所示.
教材感知
课关堂键能检力测
-18-
16.在平面直角坐标系 xOy 中,点 P(2,a)在正比例函数 y=12x 的图 象上.判断点 Q(a,3a-5)位于哪个象限.
教必材备知感识知
课堂检测
正比例函数的图象与性质 5.正比例函数 y=2x 的大致图象是( B )
-5-
同步考点手册 P8
教必材备知感识知
课堂检测
-6-
6.已知(x1,y1)和(x2,y2)是直线 y=-3x 的两点,且 x1<x2,则 y1 与
y2 的大小关系是( A )
A.y1>y2
B.y1<y2
第12章 一次函数 12.2 一次函数 第1课时 正比例函数的图象和性质
教必材备知感识知
课堂检测
-1-
一次函数与正比例函数的定义
1.下列函数中不是一次函数的是( C )
A.y=x
B.y=2x-1
C.y=|x|
D.y=1-2x
同步考点手册 P8
教必材备知感识知
课堂检测
-2-
2.下列说法中不成立的是( D ) A.在 y=3x-1 中(y+1)与 x 成正比例 B.在 y=-x2中 y 与 x 成正比例 C.在 y=2(x+1)中 y 与(x+1)成正比例 D.在 y=x+3 中 y 与 x 成正比例
C.y1=y2
D.以上都有可能
教必材备知感识知
课堂检测
第1课时正比例函数的图象和性质课件(湘教版)
解:(1)矩形的面积y(cm2)随宽x(cm)而变化的 函数表达式是:y=6x.
(2)函数的图象略. (3)当x=3时,y=18;当x=4时,y=24;当x=5时,
y=30.
• 连线:视察描出的这些点的散布,我们可以猜测y=2x的图 象是经过原点的一条直线,数学上可以证明这个猜测是正 确的.因此,用一条直线将平面直角坐标系中的各点连接, 即可得到y=2x的图象,如图4-7所示.
结论 类似地,数学上已经证明:正比例函数
y=kx(k为常数,k≠0)的图象是一条直线. 由于两点确定一条直线,因此画正比例函数 的图象,只要描出图象上的两个点,然后过 这两点作一条直线即可.我们常常把这条直线 叫作“直线y=kx”.
4.3 一次函数的图象
第1课时 正比例函数的图象和性质
探究
画出正比例函数y=2x的图象.
• 列表:先取自变量x的一些值,计算出相应的函数值,列 成表格如下:
x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 2 4 6 …
• 描点:建立平面直角坐标系,以自变量值为横坐标,相应 的函数值为纵坐标,描出这些点,如图4-6.
做匀速运动(即速度保持不变)的物体,走过的 路程与时间的函数关系的图象一般是一条线段.
练习
1.画出正比例函数y=- 1 x,y=3x图象略. 第一个函数的图象经过第二、四象限; 第二个函数的图象经过第一、三象限.
练习
2.已知矩形的长为6cm,宽为xcm. (1)求矩形的面积y(cm2)随宽x(cm)而变化的函数
一般地,直线y=kx(k为常数,k≠0)是一 条经过原点的直线.
当k>0时,直线y=kx经过第三、一象限从左 向右上升,y随x的增大而增大;
正比例函数 第一课时 PPT课件(数学人教版八年级下册)
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(3)乘京沪高铁列车从北京南站出发2.5 h后,是否 已经过了距始发站1 100 km 的南京南站?
解:(3)高铁从北京南站出发2.5 h 的行程,是当t 2.5 是函数 y 300t 的值, 即 y 300 2.5 750 (km),
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站 上海虹桥站,约需多少小时(结果保留小数点后一位)?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
数学初中 正比例(第一课时)
认真观察这四个函数解析式,说说这些函数有什么共同点.
l 2r
m 7.8V h 0.5n T 2t
一般地,形如 y kx ( k 是常数, k 0 )的函数,叫做正比例函数, 其中k 叫做比例系数.
数学初中 正比例(第一课时)
例1 下列式子中,哪些表示y 是x 的正比例函数? (1)y=2x ; (2) y=- x ; (3)y=x2 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时正比例函数的图象和性质一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣2 2.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2C.2D.﹣0.5 3.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2C.D.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3C.±3D.不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣2 8.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.48题图9题图9.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4 10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为_________ .12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= _________ .13.写出一个正比例函数,使其图象经过第二、四象限:_________ .14.请写出直线y=6x上的一个点的坐标:_________ .15.已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:_________ .16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为_________ .17.若p1(x1,y1)p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1_________ y2.点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1__________y218.正比例函数y=(m﹣2)x m的图象的经过第_________ 象限,y随着x的增大而_________ .19.函数y=﹣7x的图象在第_________ 象限内,经过点(1,_________ ),y随x的增大而_________ .三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x 之间的函数表达式,并求当x=2时y的值.x kW h g与应付饱费y(元)的关23. 为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()系如图所示。
x≤≤时,y与x的函数关系式。
(1)根据图像,请求出当050(2)请回答:当每月用电量不超过50kW·h时,收费标准是多少?当每月用电量超过50kW·h时,收费标准是多少?24.已知点P(x,y)在正比例函数y=3x图像上。
A(-2,0)和B(4,0),S△PAB =12. 求P的坐标。
参考答案与试题解析一.选择题(共10小题)1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣2考点:正比例函数的定义.分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.解答:解:A、是二次函数,故本选项错误;B、符合正比例函数的含义,故本选项正确;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选B.点评:本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.2.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2C.2D.﹣0.5考点:正比例函数的定义.分析:根据正比例函数的定义可得关于b的方程,解出即可.解答:解:由正比例函数的定义可得:2﹣b=0,解得:b=2.故选C.点评:考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.3.若函数是关于x的正比例函数,则常数m的值等于()A.±2B.﹣2C.D.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣3=1且2﹣m≠0,解得m=±2且m≠2,所以m=﹣2.故选B.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.4.下列说法正确的是()A.圆面积公式S=πr2中,S与r成正比例关系B.三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C.y=中,y与x成反比例关系D.y=中,y与x成正比例关系考点:反比例函数的定义;正比例函数的定义.分析:根据反比例函数的定义和反比例关系以及正比例关系判逐项断即可.解答:解:A、圆面积公式S=πr2中,S与r2成正比例关系,而不是r成正比例关系,故该选项错误;B、三角形面积公式S=ah中,当S是常量时,a=,即a与h成反比例关系,故该选项正确;C、y=中,y与x没有反比例关系,故该选项错误;D、y=中,y与x﹣1成正比例关系,而不是y和x成正比例关系,故该选项错误;故选B.点评:本题考查了反比例关系和正比例故选,解题的关键是正确掌握各种关系的定义.5.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米考点:正比例函数的定义.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:A、依题意得到y=4x,则=4,所以正方形周长y(厘米)和它的边长x(厘米)的关系成正比例函.故本选项正确;B、依题意得到y=πx2,则y与x是二次函数关系.故本选项错误;C、依题意得到y=90﹣x,则y与x是一次函数关系.故本选项错误;D、依题意,得到y=3x+60,则y与x是一次函数关系.故本选项错误;故选A.点评:本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).6.若函数y=(m﹣3)x|m|﹣2是正比例函数,则m值为()A.3B.﹣3C.±3D.不能确定考点:正比例函数的定义.分析:根据正比例函数定义可得|m|﹣2=1,且m﹣3≠0,再解即可.解答:解:由题意得:|m|﹣2=1,且m﹣3≠0,解得:m=﹣3,故选:B.点评:此题主要考查了正比例函数定义,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k 为常数且k≠0,自变量次数为1.7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣2考点:正比例函数的定义.分析:根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数可得k+2=0,且k ﹣2≠0,再解即可.解答:解:∵y=(k﹣2)x+k+2是正比例函数,∴k+2=0,且k﹣2≠0,解得k=﹣2,故选:C.点评:此题主要考查了正比例函数定义,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k 为常数且k≠0,自变量次数为1.8.(2010•黔南州)已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1B.2C.3D.4考点:正比例函数的图象.专题:数形结合.分析:根据图象,列出不等式求出k的取值范围,再结合选项解答.解答:解:根据图象,得2k<6,3k>5,解得k<3,k>,所以<k<3.只有2符合.故选B.点评:根据图象列出不等式求k的取值范围是解题的关键.9.(2005•滨州)如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A.k1<k2<k3<k4B.k2<k1<k4<k3C.k1<k2<k4<k3D.k2<k1<k3<k4考点:正比例函数的图象.分析:首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.解答:解:首先根据直线经过的象限,知:k2<0,k1<0,k4>0,k3>0,再根据直线越陡,|k|越大,知:|k2|>|k1|,|k4|<|k3|.则k2<k1<k4<k3故选B.点评:此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.10.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A.B.C.D.考点:正比例函数的图象.分析:根据正比例函数图象的性质进行解答.解答:解:A、D、根据正比例函数的图象必过原点,排除A,D;B、也不对;C、又要y随x的增大而减小,则k<0,从左向右看,图象是下降的趋势.故选C.点评:本题考查了正比例函数图象,了解正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.二.填空题(共9小题)11.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为 1 .考点:正比例函数的定义.专题:计算题.分析:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,根据正比例函数的定义即可求解.解答:解:∵y﹦(m+1)x+m2﹣1是正比例函数,∴m+1≠0,m2﹣1=0,∴m=1.故答案为:1.点评:本题考查了正比例函数的定义,属于基础题,关键是掌握:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.12.已知y=(k﹣1)x+k2﹣1是正比例函数,则k= ﹣1 .考点:正比例函数的定义.专题:计算题.分析:让x的系数不为0,常数项为0列式求值即可.解答:解:∵y=(k﹣1)x+k2﹣1是正比例函数,∴k﹣1≠0,k2﹣1=0,解得k≠1,k=±1,∴k=﹣1,故答案为﹣1.点评:考查正比例函数的定义:一次项系数不为0,常数项等于0.13.(2011•钦州)写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).考点:正比例函数的性质.专题:开放型.分析:先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解答:解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).点评:本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时函数的图象经过二、四象限.14.(2007•钦州)请写出直线y=6x上的一个点的坐标:(0,0).考点:正比例函数的性质.专题:开放型.分析:只需先任意给定一个x值,代入即可求得y的值.解答:解:(0,0)(答案不唯一).点评:此类题只需根据x的值计算y的值即可.15.(2009•晋江市质检)已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:y=2x(答案不唯一).考点:正比例函数的性质.专题:开放型.分析:根据正比例函数的性质可知.解答:解:y随x的增大而增大,k>0即可.故填y=2x.(答案不唯一)点评:本题考查正比例函数的性质:当k>0时,y随x的增大而增大.16.已知正比例函数y=(m﹣1)的图象在第二、第四象限,则m的值为﹣2 .考点:正比例函数的定义;正比例函数的性质.分析:首先根据正比例函数的定义可得5﹣m2=1,m﹣1≠0,解可得m的值,再根据图象在第二、第四象限可得m﹣1<0,进而进一步确定m的值即可.解答:解:∵函数y=(m﹣1)是正比例函数,∴5﹣m2=1,m﹣1≠0,解得:m=±2,∵图象在第二、第四象限,∴m﹣1<0,解得m<1,∴m=﹣2.故答案为:﹣2.点评:此题主要考查了一次函数定义与性质,关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.17.若p1(x1,y1)p2(x2,y2)是正比例函数y=﹣6x的图象上的两点,且x1<x2,则y1,y2的大小关系是:y1>y2.考点:正比例函数的性质.分析:根据增减性即可判断.解答:解:由题意得:y=﹣6x随x的增大而减小当x1<x2,则y1>y2的故填:>.点评:正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.18.正比例函数y=(m﹣2)x m的图象的经过第二、四象限,y随着x的增大而减小.考点:正比例函数的性质;正比例函数的定义.专题:计算题.分析:y=(m﹣2)x m是正比例函数,根据定义可求出m的值,继而也能判断增减性.解答:解:∵y=(m﹣2)x m是正比例函数,∴m=1,m﹣2=﹣1,即y=(m﹣2)x m的解析式为y=﹣x,∵﹣1<0,∴图象在二、四象限,y随着x的增大而减小.故填:二、四;减小.点评:正比例函数y=kx,①k>0,图象在一、三象限,是增函数;②k<0,图象在二、四象限,是减函数.19.函数y=﹣7x的图象在第二、四象限内,经过点(1,﹣7 ),y随x的增大而减小.考点:正比例函数的性质.分析:y=﹣7x为正比例函数,过原点,再通过k值的正负判断过哪一象限;当x=1时,y=﹣7;又k=﹣7<0,可判断函数的增减性.解答:解:y=﹣7x为正比例函数,过原点,k<0.∴图象过二、四象限.当x=1时,y=﹣7,故函数y=﹣7x的图象经过点(1,﹣7);又k=﹣7<0,∴y随x的增大而减小.故答案为:二、四;﹣7;减小.点评:本题考查正比例函数的性质.注意根据x的系数的正负判断函数的增减性.三.解答题(共3小题)20.已知:如图,正比例函数的图象经过点P和点Q(﹣m,m+3),求m的值.考点:待定系数法求正比例函数解析式.分析:首先利用待定系数法求得正比例函数的解析式为y=﹣2x.然后将点Q的坐标代入该函数的解析式,列出关于m的方程,通过解方程来求m的值.解答:解:设正比例函数的解析式为y=kx(k≠0).∵它图象经过点P(﹣1,2),∴2=﹣k,即k=﹣2.∴正比例函数的解析式为y=﹣2x.又∵它图象经过点Q(﹣m,m+3),∴m+3=2m.∴m=3.点评:此类题目考查了灵活运用待定系数法建立函数解析式,然后将点Q的坐标代入解析式,利用方程解决问题.21.已知y+2与x﹣1成正比例,且x=3时y=4.(1)求y与x之间的函数关系式;(2)当y=1时,求x的值.考点:待定系数法求正比例函数解析式.专题:计算题;待定系数法.分析:(1)已知y+2与x﹣1成正比例,即可以设y+2=k(x﹣1),把x=3,y=4代入即可求得k的值,从而求得函数解析式;(2)在解析式中令y=1即可求得x的值.解答:解:(1)设y+2=k(x﹣1),把x=3,y=4代入得:4+2=k(3﹣1)解得:k=3,则函数的解析式是:y+2=3(x﹣1)即y=3x﹣5;(2)当y=1时,3x﹣5=1.解得x=2.点评:此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x 之间的函数表达式,并求当x=2时y的值.考点:待定系数法求正比例函数解析式.分析:设y1=kx2,y2=a(x﹣2),得出y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得出方程组,求出方程组的解即可,把x=2代入函数解析式,即可得出答案.解答:解:设y1=kx2,y2=a(x﹣2),则y=kx2+a(x﹣2),把x=1,y=5和x=﹣1,y=11代入得:,k=﹣3,a=2,∴y与x之间的函数表达式是y=﹣3x2+2(x﹣2).把x=2代入得:y=﹣3×22+2×(2﹣2)=﹣12.点评:本题考查了用待定系数法求出正比例函数的解析式的应用,主要考查学生的计算能力.。