概率统计4

合集下载

概率统计4-1

概率统计4-1

每出售一吨可赚3万元 ,售不出去,则每吨需仓库保管费1万元, 问应该生产这种商品多少吨, 才能使平均利润最大?(类例 类例4.16) 类例 ) 解 设每年生产 N 吨的利润为 Y 显然,2000 < N < 4000 3N, N ≤ X, Y = g( X ) = 3X − (N − X ) ⋅1, N > X 1 N ≤ x, 3N, , 2000 < x < 4000, f X (x) = 2000 g(x) = 0, 4x − N, N > x 其 它
0,
+∞ 0
−λx 5
其 , 它
60λ
E(M) = ∫−∞ xfM (x)dx = ∫ 5λxe−λx (1− e−λx )4 dx = 137
E(M) 13760λ = >11 1 E(N) 5λ
可见, 并联组成整机的平均寿命比串联组成整机的平均寿 命长11倍之多.
11
r.v.函数 r.v.函数 Y = g(X ) 的数学期望 设离散 r.v. X 的概率分布为 若无穷级数
1 即 N ~ E( 5λ), E(N) = 5λ
10
m ax (2) 设整机寿命为 M = k=1,2,L,5{Xk }
5 i=1
FM (x) = P(M < x) = P(∏Xi < x) =∏F (x) = [F(x)]5
k =1
5
fM (x) = (x
+∞
(1− e ) , x > 0, = 0, 其 , 它 5λe−λx (1− e−λx )4 , x > 0,
4000 1 1 E(Y) = ∫−∞ g(x) f X (x)dx = ∫ (4x − N) dx + ∫ 3N dx 2000 20006 N 2000 1 2

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章考点手册

《概率论与数理统计》第四章 随机变量的数字特征考点33 离散型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是离散型随机变量,概率分布为P {X =x i }=p i ,i =1,2,…。

则∑∞==1)(i i ip x X E 为X 的数学期望(或均值)。

2.常用离散型随机变量的数学期望(1)两点分布:X ∼B(1,p),0<p<1,则E(X)=p 。

(2)二项分布:X ∼B(n,p),其中0<p<1,则E(X)=np 。

(3)泊松分布:X ∼P(λ),其中λ>0,则E(X)=λ。

考点34 连续型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是连续型随机变量,则称⎰∞∞-=dx x f x X E )()(为X 的数学期望。

2. 常用连续型随机变量的数学期望(1)均匀分布若X~U[a,b],即X 服从[a,b]上的均匀分布,则; 21)()(b a dx a b x dx x xf X E b a +=-==⎰⎰+∞∞- (2)指数分布若X 服从参数为λ的指数分布,则 ; /1)(0λλλ⎰+∞-==dx e x X E x 正态分布若X 服从),(2s µN ,则.)(μ=X E考点35 二维随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.二维离散型随机变量的数学期望:设二维离散型随机向量(X,Y)的概率分布为p ij ,i=1,2,⋯,j=1,2,⋯.则:.),()],([11åå¥=¥==i j ij j i p y x g Y X g E2. 二维连续型随机变量的数学期望:设二维连续型随机向量(X,Y)的密度函数为f(x,y),则:. ),(),()],([dxdy y x f y x g Y X g E òò¥¥-¥¥-=考点36 数学期望的性质(★★★一级考点,选择、填空)(1).设C 是常数,则E(C)=C;E(C)=C ×1=C(2).若k 是常数,则E(kX)=kE(X);(3).E(X+Y)=E(X)+E(Y);(4).设X,Y 相互独立,则E(XY)=E(X)E(Y);考点37 方差的概念(★★二级考点,选择、填空)1.方差的概念:设X 是一随机变量,若E [X -E (X )]2 存在,则称其为X 的方差,记成Var(X ),即Var(X )=E {[X -E (X )]2} 并称)(X Var 为X 的标准差。

概率论与数理统计教程第四版课后答案

概率论与数理统计教程第四版课后答案

1i jk n
若事件 A1 , A2 ,, An 互不相容,则
PA1 A2 An PA1 PA2 PAn 3
2.条件概率及乘法定理
条件概率
PA
|
B
PAB PB
,
PB
|
A
PAB PA
.
乘法定理 PAB PB PA| B PA PB | A
PA1 A2 An PA1 PA2 | A1PA3 | A1A2 PAn | A1A2 An1
N
P10 10
设事件A 表示指定的3本放在一起,
则A所包含的基本事件的数: M P33 P88

P(A)
M N
P33 P88 P10
10
8!3! 1 0.067 10! 15
11
6. 为减少比赛场次,把20个球队任意分成两组(每组10队)进行 比赛,求最强的两队分在不同组内的概率。

解 基本事件的总数:N 9 105
设事件A 表示电话号码是由完全不同的数字组成, 则A所包含的基本事件的数: M 9 P95

P( A) M N
9 P95 9 105
189 1250
0.1512
10
5. 把10本书任意地放在书架上, 求其中指定的3本放在一起的概率。

基本事件的总数:
C
1 4
C
2 3
C
1 3
43
9 0.5625
16
13. 某工厂生产的100个产品中,有5个次品,从这批产品中任取一
半来检查,设A表示发现次品不多于1个,求A的概率。

P( A)
C
50 95
C
1 5

正态分布概率4σ

正态分布概率4σ

正态分布概率4σ正态分布,也被称为高斯分布,是概率论和统计学中最重要的概率分布之一。

它在自然界和人类活动中的广泛应用使得我们不禁思考,为什么正态分布的概率密度函数有着如此特殊的形状?正态分布的概率4σ,指的是在正态分布曲线下,落在均值加减4倍标准差范围内的概率。

在统计学中,标准差是用来衡量数据集中值的离散程度,而4倍标准差则被认为是一个非常极端的情况。

根据正态分布的性质,大约68%的数据会落在均值加减1倍标准差的范围内,而落在均值加减4倍标准差范围内的概率则非常小,仅约为0.003%。

正态分布的概率4σ在实际应用中具有重要意义。

在金融领域,例如股票市场的波动性分析中,正态分布被广泛用来描述股票价格的变动情况。

当股票价格远离均值4倍标准差的时候,往往意味着市场出现了异常波动,投资者需要警惕风险。

在医学领域,正态分布的概率4σ也有着重要的应用。

例如,身高和体重的分布通常符合正态分布。

通过研究正态分布的特性,医学研究人员可以判断一个人的身高或体重是否正常,是否存在偏离正常范围的情况。

除了金融和医学领域,正态分布的概率4σ在工程学、社会科学等领域也具有重要的应用。

例如,在工程结构设计中,我们需要考虑材料的强度和可靠性。

正态分布的概率4σ可以帮助我们评估结构是否能够承受极端条件下的负载,从而确保结构的安全性。

然而,正态分布的概率4σ也有其局限性。

在某些情况下,数据集的分布可能并不符合正态分布,这就需要我们使用其他的概率分布进行建模和分析。

此外,正态分布的概率4σ只是一个统计指标,不能直接用来预测具体事件的发生概率,需要结合具体的问题和背景进行综合考虑。

正态分布的概率4σ是一种重要的统计指标,可以帮助我们理解和分析数据的分布情况。

它在金融、医学、工程学等领域的广泛应用使得我们能够更好地理解和处理现实世界中的问题。

然而,我们也要意识到正态分布的概率4σ只是一个参考指标,需要结合具体的问题和背景进行合理的解读和应用。

新教材高中数学第4章概率与统计4-1-1条件概率课件新人教B版选择性必修第二册

新教材高中数学第4章概率与统计4-1-1条件概率课件新人教B版选择性必修第二册
提醒:当题目涉及“在……前提下”等字眼时,一般为条件概率, 如题目中没有上述字眼,但已知事件的发生影响了所求事件的概率, 也是条件概率.在条件概率的表示中,“|”之后的部分表示条件.
1.(对接教材 P43 例 3)设某动物由出生算起活到 20 岁的概 率为 0.8,活到 25 岁的概率为 0.4,现有一个 20 岁的这种动物,则它 活到 25 岁的概率是________.
2 3
3 5
[由公式 P(A|B)=PPA∩BB=23,P(B|A)=PPA∩AB=53.]
类型 2 利用基本事件个数求条件概率
在一个坛子中装有 10 个除颜色外完全相同的玻璃球,其中有 2 个红球,8 个黄球.现从中任取一球后(不放回),再取一球,则已知 第一个球为红色的情况下第二个球为黄色的概率为多少?
[解] 设第 1 次抽到舞蹈节目为事件 A,第 2 次抽到舞蹈节目为事 件 B,则第 1 次和第 2 次都抽到舞蹈节目为事件 A∩B.
(1)从 6 个节目中不放回地依次抽取 2 个的事件数为 n(Ω)=A26=30, 根据分步乘法计数原理 n(A)=A14A15=20,于是 P(A)=nnΩA=2300=23. (2)因为 n(A∩B)=A24=12,于是 P(A∩B)=nnA∩ΩB=1320=25.
[由公式 P(A|B)=PPA∩BB=23,P(B|A)=PPA∩AB=53.]
[跟进训练]
1.甲、乙两市都位于长江下游,根据一百多年来的气象记录, 知道一年中下雨天的比例甲市占 20%,乙市占 18%,两地同时下雨 占 12%,记 P(A)=0.2,P(B)=0.18,P(A∩B)=0.12,则 P(A|B)= ________,P(B|A)=________.
[解] 由古典概型的概率公式可知

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。

2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。

3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。

DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。

6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。

试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。

(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。

概率论与数理统计-第4章-第2讲-随机变量函数的数学期望

概率论与数理统计-第4章-第2讲-随机变量函数的数学期望

02 典型例题
应用 设市场上对某种产品每年需求量为X 吨 ,其中X ~ U [200,400],
每出售一吨可赚300元 , 售不出去,则每吨需保管费100元,问应
该组织多少货源, 才能使平均利润最大?
f
X
(
x)
1 200
,
0,
200 x 400, 其它
解 设组织n吨货源, 利润为 Y,
Y
因此只要掌握了期望的计算,所有的数字特征计算都解决了!
概率论与数理统计
学海无涯,祝你成功!
主讲教师 |
01 随机变量函数的数学期望
(1) Y = g(X) 的数学期望
设离散 r.v. X 的概率分布为 P( X xi ) pi , i 1, 2,
若无穷级数 g(xi ) pi 绝对收敛,则 i 1 E(Y ) g(xi ) pi i 1
设连续 r.v. X 的密度为 f (x)
若广义积分 g(x) f (x)dx 绝对收敛, 则
例 设风速V是一个随机变量,它服从(0,a)上的均匀分布,而飞 机某部位受到的压力F是风速V 的函数:
F kV 2
(常数k > 0),求F 的数学期望.
01 随机变量函数的数学期望
如何计算随机变量函数的数学期望?
一种方法是: 因为g(X)也是随机变量,故应有概率分布,它 的分布可以由X的分布求出来. 一旦我们知道了g(X)的分布,就 可以按照期望的定义把E[g(X)]计算出来.
xf (x, y)dxdy
0
0
dx
2xdy 1
1 x1
3
E(3X 2Y )
(3x 2 y) f (x, y)dxdy
0
0

概率论与数理统计第四版答案

概率论与数理统计第四版答案

概率论与数理统计第四版答案概率论与数理统计是一门非常重要的学科,它在各行各业中都有着广泛的应用。

而对于许多学生来说,最棘手的问题就是如何解答习题。

在这里,我将分享《概率论与数理统计》第四版的答案,帮助大家掌握这门学科。

首先,我要强调的是:在学习概率论与数理统计时,强调掌握概念和理论,并不是练习习题的替代品。

因此,在看答案之前,一定要仔细地阅读教材,并确保自己真正理解了相关的概念和原理,这样才能更好地掌握习题。

接下来,我将给出一些具体的例子,展示如何应用教材中所学的知识,解答部分练习题。

第一题:“若A、B、C三人轮流掷硬币,求A先掷到正面且B先掷到正面的概率。

”解答:这是一道典型的条件概率问题。

我们可以先求出A、B、C三人轮流掷到正面的概率,即P(A)P(B)P(C)+P(A)P(C)P(B)+P(B)P(A)P(C),然后再分别求出A、B、C先掷到正面的概率,即P(A先掷正面)P(B先掷正面)P(C)+P(A先掷正面)P(C先掷正面)P(B)+P(B先掷正面)P(A先掷正面)P(C)。

将这两个概率相除即可得到答案。

第二题:“有N件产品,其中n件有缺陷。

从这N件产品中随机抽取M件,求恰有k件有缺陷的概率。

”解答:这是一道常见的二项分布问题。

我们知道,二项分布的概率质量函数为:P(X=k)=C(M,k)p^k(1-p)^(M-k),其中C(M,k)表示在M个产品中选择k个的组合数,p为每个产品有缺陷的概率。

因此,我们可以将原问题转化为求出p和C(M,k),然后代入公式即可。

第三题:“在直角三角形中,分别用最短边、中间边、最长边作为直径画出圆,求这三个圆的面积的和与这个三角形的面积之比。

”解答:这是一道比例问题。

我们可以计算出三个圆的面积,分别为πa^2/4、πb^2/4和πc^2/4,其中a、b、c分别为三角形的三条边。

由于这是直角三角形,因此a^2+b^2=c^2,所以a/b=b/c=(a+b+c)/c。

概率论与数理统计教程第四版课后答案-文档资料

概率论与数理统计教程第四版课后答案-文档资料
i 1 1 i j n n n 1 P ( A A A ) ( 1 ) P ( A A A ) i j k 1 2 n

1 i j k n
,A 若事件 A 1,A 2, n 互不相容,则
P A A A P A P A P A 4 1 2 n 1 2 n
m m n m n
其中 pq1 。
6
第一章
一、几种概率
1、统计概率
2、古典概率
随机事件及其概率
M P( A) N
随机事件 A 所占的几何度量 ( A ) 3、几何概率 P 试验的总的几何度量 P (AB ) P (A| B ) 4、条件概率 P (B )
( m ) C p q 5、贝努利概率 P n n
3.事件运算的性质
(1). A A ,
A A , A A ;
B C AB AC , (2). A
(3). A B AB , AB A B .
i 1 n n
Ai Ai ,
i 1
i 1
Ai Ai .
i 1
n
n
3
(三) 概率的定义 概率的定义 事件 A 发生的可能性大小 概率的统计定义
第一章
一、基本内容
随机事件及其概率小结
(一)随机试验与样本空间 1.随机试验 具有下列特点的试验称为随机试验 ( 试验 ): (1)试验在相同的条件下可重复进行; 并且可能的结果不止一个; (2)试验前知道试验的所有可能结果, (3)试验前不知道那一个结果会出现。 2.样本空间与样本点
样本空间 随机试验的所有可能的结果所组成的集合, 记作Ω; 样本点 样本空间Ω中的每个元素, 即试验的每一可能的结果, 记作ω。

概率与数理统计第4章时间序列分析

概率与数理统计第4章时间序列分析

概率与数理统计第4章时间序列分析第4章时间序列分析[引例]某酿酒公司⽣产⼀种红葡萄酒,这种红葡萄酒颇受市场欢迎,其销售量稳步上升(表4-1),对公司盈利起到重要作⽤。

表4-1 某酿酒公司红葡萄酒销售量单位:件——资料来源:国际通⽤MBA教材配套案例《管理统计案例》机械⼯业出版社1999.3 本章⼩结1.时间序列是把同⼀现象在不同时间上的观察数据按时间先后顺序排列起来所形成的数列,它是动态分析的基础。

时间序列的分析有指标分析和构成因素分析两类。

时间序列的影响因素可归结为长期趋势、季节变动、循环变动和不规则变动等四种,常以乘法模型为基础来进⾏时间序列的分解和组合。

2.⽔平分析指标主要有平均发展⽔平、增减量(逐期、累计)和平均增减量。

不同类型的时间序列计算平均发展⽔平的⽅法有所不同。

累计增减量等于相应逐期增减量之和。

平均增减量是观察期内各个逐期增减量的平均数。

速度分析指标有发展速度、增减速度、平均发展速度和平均增减速度。

定基发展速度也即发展总速度,它等于相应时期内各环⽐发展速度的连乘积。

增减速度等于发展速度减1。

平均发展速度是环⽐发展速度的平均数,其计算⽅法通常采⽤⼏何平均法。

平均增减速度等于平均发展速度减1。

3. 长期趋势的分析⽅法主要有平滑法(移动平均、指数平滑法)和⽅程拟合法。

移动平均关键在于选择平均项数;能消除序列中的季节影响(平均项数与季节周期长度必须⼀致)。

指数平滑法是关键在于确定平滑系数。

⽅程拟合法通常采⽤最⼩⼆乘法来估计趋势⽅程中的参数。

4. 季节⽐率的测定⽅法:原资料平均法和趋势剔除法。

原资料平均法适⽤于⽔平趋势的季节序列;趋势剔除法适⽤于有明显上升(或下降)趋势的季节序列。

当没有季节因素影响时,季节⽐率为1或100%。

序列的季节调整即以原始数据除以对应季节的季节⽐率,⽬的是从时间序列中去掉季节影响,便于分析其它成分。

5.利⽤分析⼯具库中的“移动平均”、“指数平滑法”、“回归”或图表中的添加趋势线功能,可以测定时间序列的长期趋势。

概率论与数理统计 第四章

概率论与数理统计 第四章
可见,方差是二阶中心矩,协方差是二阶混合中心
矩,它们都是随机变量函数的数学期望。
河南理工大学精品课程
概率论与数理统计
【例3】[P.115:eg6]
〖解〗设X为随机取一球的标号,则r.v.X等可 能地取值1,2,3,4,5,6;
又Y=g(X),且
g(1)= g(2)= g(3)=1; g(4)= g(5)=2, g(6)=5. 故随机摸一球得分的期望为
河南理工大学精品课程 概率论与数理统计
显然, 方差D(X)就是随机变量X的函数 g ( X ) [ X E( X )]2 的数学期望.因此,当X的分布律 p 或概率密度 k 已知时,有
2 [ x E ( X )] pk , 离散型 k k 1 D ( X ) [ x E ( X )]2 f ( x)dx, 连续型
1500 (分) □
河南理工大学精品课程 概率论与数理统计
二、随机变量函数的数学期望 利用随机变量函数的分布可以证明下列两定理: 定理1 设Y=g(X)是随机变量X的连续函数,则 Y 也是随机变量,且其数学期望为
离散型 g ( xk ) pk , k 1 E (Y ) E[ g ( X )] g ( x) f ( x)dx, 连续型
X2 Pk 3X2+5 Pk 0 0.3 5 0.3 4 0.7 17 0.7
于是,
E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2;
河南理工大学精品课程 概率论与数理统计
例6-续
E(X2)=0×0.3+4×0.7=2.8; E(3X2+5)=5×0.3+17×0.7=13.4.
方法2(定义+性质法) 因为 E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2; E(X2)=(-2)2×0.4+02×0.3+22×0.3=2.8; 所以, E(3X2+5)=3E(X2)+5=3×2.8+5=13.4. □

概率统计4,5

概率统计4,5

定义4.1 设事件 与B是同一试验 的两个事件, 如果 设事件A与 是同一试验E的两个事件 是同一试验 的两个事件, 定义 P(AB)=P(A)P(B), , 则称A与 相互独立 简称A与 独立 相互独立, 独立. 则称 与B相互独立,简称 与B独立.
说明 1.事件A 1.事件A与B独立即事件A的发生对事件B的发生没有影响. 事件 独立即事件A的发生对事件B的发生没有影响. 2.必然事件 Ω和不可能事件Φ 2.必然事件 与任何事件都是相互独立 的. P( AΩ) = P( A) = P( A) ⋅1 = P( A)P(Ω)
虽然A,B,C两两独立, 虽然A,B,C两两独立, A,B,C两两独立 A,B,C不相互独立 不相互独立. 但A,B,C不相互独立
例4.3 设每个人血清中含有肝炎病毒的概率为0.4%,求 设每个人血清中含有肝炎病毒的概率为0.4%, 混合100个人的血清中含有肝炎病毒的概率 个人的血清中含有肝炎病毒的概率. 混合100个人的血清中含有肝炎病毒的概率. 解 记 Ai = {第 i个人血清含肝炎病毒 }, i = 1,2,⋅⋅⋅,100
(1 ≤ i1 <⋅⋅⋅ < ik ≤ n, k = 2,⋅⋅⋅, n) 相互独立(独立) 则称事件 A1, A2,⋅⋅⋅, An相互独立(独立)
两两独立 三三独立 ……
说明 是相互独立的,则其中任意k(1<k≤n) 1. 若A1, A2,…, An是相互独立的,则其中任意k(1<k≤n) 个事件是相互独立的. 个事件是相互独立的. 2. 若n个事件 1, A2,…, An相互独立,则将A1, A2,…, An中 个事件A 相互独立, 个事件 的任意多个事件换成它们的逆事件后,所得的n个事件也 多个事件换成它们的逆事件后 的任意多个事件换成它们的逆事件后,所得的 个事件也 是相互独立的. 是相互独立的. 是相互独立的, 3. 若A1, A2,…, An是相互独立的,则

概率论与数理统计第四章期末复习

概率论与数理统计第四章期末复习

概率论与数理统计第四章期末复习(一)随机变量的数学期望1.数学期望的定义定义1设离散随机变量X 的分布律为)()(i i i x X P x p p ===, ,2,1=i .若+∞<∑+∞=1i i i p x ,则称∑+∞==1)(i i i p x X E 为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.定义2设连续随机变量X 的密度函数为)(x f .若+∞<⎰∞+∞-x x f x d )(,则称xx xf X E d )()(⎰∞+∞-=为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.2.随机变量函数的数学期望定理1设随机变量Y 是随机变量X 的连续函数:)(X g Y =.设X 是离散型随机变量,其分布律为)(i i x X P p ==, ,2,1=i ,若∑+∞=1)(i i i p x g 绝对收敛,则有∑+∞===1)()]([)(i i i p x g X g E Y E .设X 是连续型随机变量,其概率密度为)(x f ,若⎰∞+∞-x x f x g d )()(绝对收敛,则有x x f x g X g E Y E d )()()]([)(⎰∞+∞-==.【例1】设随机变量X 的分布律为X 2-1-0123P1.02.025.02.015.01.0求随机变量X 的函数2X Y =的数学期望.【解】1.0315.022.0125.002.0)1(1.0)2()(222222⨯+⨯+⨯+⨯+⨯-+⨯-=Y E 3.2=.【例2】设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤=,其他.;,001)(ππx x f X ,求X Y sin =的数学期望.【解】x x f x g X g E Y E d )()()]([)(⎰∞+∞-==πππ2d 1sin 0=⋅=⎰x x .【例3】某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X (单位:吨)服从)500,300(上的均匀分布.每售出1吨该原料,公司可获利1.5(千元);若积压1吨,则公司损失0.5(千元).问公司应该组织多少货源,可使平均收益最大?【解】设该公司应该组织a 吨货源,则显然应该有500300≤≤a .又记Y 为在a 吨货源条件下的收益额(单位:千元),则收益额Y 为需求量X 的函数,即)(X g Y =.由题设条件知:当a X ≥时,此a 吨货源全部售出,共获利a 5.1.当a X <时,则售出X 吨(获利X 5.1),且还有X a -吨积压(获利)(5.0X a --),所以共获利a X X a X 5.02)(5.05.1-=--.由此知⎩⎨⎧<-≥=.,;,a X a X a X a X g 5.025.1)(则x x g x x f x g Y E X 2001)(d )()()(500300⎰⎰==∞+∞-]d 5.1d )5.02([2001500300x a x a x a a ⎰⎰+-=)300900(200122-+-=a a .易知,当450=a 时,能使)(Y E 达到最大,即公司应该组织450吨货源.定理2设随机变量Z 是随机变量X ,Y 的连续函数:),(Y X g Z =.设),(Y X 是二维离散型随机变量,其联合分布律为),(j i ij y Y x X P p ===,,2,1,=j i ,若∑∑+∞=+∞=11),(i j ij j i p y x g 收敛,则有∑∑+∞=+∞===11),()],([)(i j ij j i p y x g Y X g E Z E .设),(Y X 是二维连续型随机变量,其联合概率密度函数为),(y x f ,若y x y x f y x g d d ),(),(⎰⎰∞+∞-∞+∞-收敛,则有y x y x f y x g Y X g E Z E d d ),(),()],([)(⎰⎰∞+∞-∞+∞-==.【例4】设随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<--=其他.,,,,010102),(y x y x y x f 求)(X E ,)(XY E .【解】⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(125d d )2(1010=--=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x f xy XY E d d ),()(61d d )2(1010=--=⎰⎰y x y x xy .3.数学期望的性质性质1若a 是常数,则a a E =)(.性质2对任意常数a ,有)()(X aE aX E =.性质3对任意的两个函数)(1x g 和)(2x g ,有)]([)]([)]()([2121X g E X g E X g X g E +=+.性质4设),(Y X 是二维随机变量,则有)()()(Y E X E Y X E +=+.推广到n 维随机变量场合,即)()()()(2121n n X E X E X E X X X E +++=+++ .性质5若随机变量X 与Y 相互独立,则有)()()(Y E X E XY E =.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X E X E X E X X X E =.【例5】设随机变量X 与Y 相互独立,X ~)4,1(-N ,Y ~)2,1(N ,则=-)2(Y X E .【解析】因为X ~)4,1(-N ,Y ~)2,1(N ,所以1)(-=X E ,1)(=Y E ,故3)(2)()2(-=-=-Y E X E Y X E .(二)随机变量的方差1.方差的定义定义1设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为)(X D ,即})]({[)(2X E X E X D -=.称方差的平方根)(X D 为随机变量X 的标准差,记为)(X σ或X σ.定理1(方差的计算公式)【例1】设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<<-+=其他.,;,;,0101011)(x x x x x f ,求)(X D .【解】0d )1(d )1()(101=-++=⎰⎰-x x x x x x X E ,61d )1(d )1()(120122=-++=⎰⎰-x x x x x x X E ,所以61)]([)()(22=-=X E X E X D .2.方差的性质性质1常数的方差为0,即0)(=c D ,其中c 是常数.性质2若a ,b 是常数,则)()(2X D a b aX D =+.性质3若随机变量X 与Y 相互独立,则有)()()(Y D X D Y X D +=±.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X D X D X D X X X D +++=±±± .【例2】已知2)(-=X E ,5)(2=X E ,求)31(X D -.【解】9})]([)({9)()3()31(222=-=-=-X E X E X D X D .(三)常见随机变量的数学期望、方差1.两点分布X ~),1(p b p X E =)(,)1()(p p X D -=.2.二项分布X ~),(p n b np X E =)(,)1()(p np X D -=.3.泊松分布X ~)(λP λ=)(X E ,λ=)(X D .4.均匀分布X ~),(b a U )(21)(b a X E +=,12)()(2a b X D -=.5.指数分布X ~)(λE λ1)(=X E ,21)(λ=X D .6.正态分布X ~),(2σμN μ=)(X E ,2)(σ=X D .【例1】设X ~),(p n b 且6)(=X E ,6.3)(=X D ,则下列结论正确的是()A .15=n ,4.0=pB .20=n ,3.0=pC .10=n ,6.0=p D .12=n ,5.0=p 【解析】6)(==np X E ,6.3)1()(=-=p np X D ,解之得15=n ,4.0=p .正确选项为A .【例2】若X ~)5,2(N ,Y ~)1,3(N ,且X 与Y 相互独立,则=)(XY E ()A .6B .2C .5D .15【解析】因为X ~)5,2(N ,所以2)(=X E ,因为Y ~)1,3(N ,3)(=Y E ,故6)()()(==Y E X E XY E ,正确选项为A .【例3】X 与Y 相互独立,X ~)2(P ,Y ~)1(E ,则=-)2(Y X D .【解析】因为X ~)2(P ,所以2)(=X D ,因为Y ~)1(E ,所以1)(=Y D ,又因为随机变量X 与Y 相互独立,所以9)()1()(2)2(22=-+=-Y D X D Y X D .(四)协方差、相关系数与矩1.协方差定义1设),(Y X 是一个二维随机变量,若)]}()][({[Y E Y X E X E --存在,则称其为X 与Y 的协方差,记为),(Cov Y X .即)]}()][({[),(Cov Y E Y X E X E Y X --=.定理1)()()(),(Cov Y E X E XY E Y X -=.【例1】设二维随机变量),(Y X 的联合分布律为:求协方差),(Cov Y X .【解】由题易得32)(=X E ,0)(=Y E ,0311131003111)(=⨯⨯+⨯⨯+⨯⨯-=XY E .于是0)()()(),(Cov =-=Y E X E XY E Y X .定理2若X 与Y 相互独立,则0),(Cov =Y X ,反之不然.定理3对任意二维随机变量),(Y X ,有),(Cov 2)()()(Y X Y D X D Y X D ±+=±.关于协方差的计算,还有下面四条有用的性质.性质1协方差),(Cov Y X 的计算与X ,Y 的次序无关,即),(Cov ),(Cov X Y Y X =.性质2任意随机变量X 与常数a 的协方差为零,即0),(Cov =a X .性质3对任意常数a ,b ,有),(Cov ),(Cov Y X ab bY X a =.性质4设X ,Y ,Z 是任意三个随机变量,则),(Cov ),(Cov ),(Cov Z Y Z X Z Y X +=+.2.相关系数定义2设),(Y X 是一个二维随机变量,且()0D X >,()0D Y >,则称Y X XY Y X Y D X D Y X σσρ),(Cov )()(),(Cov ==为X 与Y 的相关系数.性质11≤XY ρ.性质21=XY ρ的充要条件是X 与Y 间几乎处处有线性关系,即存在)0(≠a 与b ,使得1)(=+=b aX Y P .其中当1=XY ρ时,有0>a ;当1-=XY ρ时,有0<a .性质3设随机变量X 与Y 独立,则它们的相关系数等于零,即0=XY ρ.【例2】设1)()(==Y D X D ,21=XY ρ,则=+)(Y X D 3.【解析】因为21)()(),(Cov ==Y D X D Y X XY ρ,所以)()(21Y D X D XY =ρ21=,故),(Cov 2)()()(Y X Y D X D Y X D ++=+3=.【例3】已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E 6.【解析】)]2([3)]2(3[22-=-X E X E }2)]([)({32-+=X E X D 6=.【例5】设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,,,,02020)(81),(y x y x y x f 求),(Cov Y X ,)(Y X D +和XY ρ.【解】⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(67d d )(822=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(2235d d )(820202=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f xy XY E d d ),()(34d d )(82020=+=⎰⎰y x y x xy ,由轮换对称性,有67)(=Y E ,35)(=Y E ,361)()()(),(Cov -=-=Y E X E XY E Y X ,3611)]([)()()(22=-==X E X E X D Y D ,95),(Cov 2)()()(=++=+Y X Y D X D Y X D ,111)()(),Cov(-==Y D X D Y X XY ρ.。

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。

概率论与数理统计第四版答案习题答案

概率论与数理统计第四版答案习题答案

习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。

试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++;(5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ;(9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。

概率论与数理统计第四版

概率论与数理统计第四版

概率论与数理统计第四版1. 简介概率论与数理统计是现代科学中的两个重要领域,它们在各个学科中都有广泛的应用。

本文档将介绍概率论与数理统计第四版的主要内容和特点。

2. 内容概述概率论与数理统计第四版主要分为两大部分:概率论和数理统计。

下面将对每个部分进行详细的介绍。

2.1 概率论概率论是研究随机现象规律的数学理论。

本书在概率论部分包括了以下几个主要内容:•随机事件与概率•随机变量及其分布•数学期望与方差•多维随机变量的分布•大数定律与中心极限定理•随机过程通过学习概率论的基本理论和方法,读者能够更好地理解和应用随机现象的规律。

2.2 数理统计数理统计是研究如何利用数据来推断总体特征的统计学分支。

本书的数理统计部分包括了以下几个主要内容:•统计数据的描述与分析•参数估计•假设检验•方差分析•相关与回归分析•非参数统计方法数理统计是概率论的应用,它使我们能够利用样本数据对总体进行推断与决策。

3. 特点概率论与数理统计第四版具有以下几个特点:3.1 理论与实践结合本书在介绍概率论和数理统计的基本理论的同时,也强调实际应用。

每个章节都配有大量的实例和案例分析,帮助读者将所学的理论知识应用到实际问题中。

3.2 全面而深入本书的内容全面而深入,涉及了概率论和数理统计的基本概念、原理和方法。

它不仅适合作为大学本科生的教材,也适合作为研究生和科研人员的参考书。

3.3 清晰的表达和结构概率论与数理统计第四版的作者通过清晰的表达和结构化的组织,使得书籍容易理解和阅读。

每个概念和方法都有详细的解释和定义,使读者能够更好地掌握和运用。

3.4 丰富的习题和答案为了帮助读者巩固所学的知识,本书的每个章节都附有大量的习题和答案,读者可以通过做习题来检验自己的理解和掌握程度。

4. 结论概率论与数理统计第四版是一本全面而深入的概率论与数理统计教材,它以理论与实践结合的方式,清晰地介绍了概率论和数理统计的基本概念、原理和方法。

通过学习本书,读者可以获得概率论和数理统计的基本知识,提高数据分析和决策能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意

引入随机变量的意义
使得随机试验中的各种事件 随机变量的引入, 随机变量的引入, 可通过随机变量的关系表达出来. 可通过随机变量的关系表达出来 例如, 例如,某城市的120 急救电话每小时收到的呼 唤次数 X 是一个随机变量 是一个随机变量. 收到不少于20次呼叫 事件: 收到不少于 次呼叫} 事件:{收到不少于 次呼叫 { X ≥ 20将分布律写成 或将分布律写成
X
0 0.6
1 0.075
2 0.325
pk
2.三种重要的离散型随机变量的概率分 2.三种重要的离散型随机变量的概率分 布
(1) 0-1分布
只可能取0与 两个值 设随机变量 X 只可能取 与1两个值 , 它的分 布律为
P{X = k} = p (1− p) , k = 0,1(0 < p < 1)
解:设X表示商店每月销售某种商品的件数,则X ~ P(10), 于是 10k −10 P{X = k } = e , k = 0,1,.... k! 假设月底的进货为n件,按题意要求有 10k −10 P{X ≤ n} ≥ 0.95 ⇒ ∑ e ≥ 0.95 k = 0 k!
n
由查表和计算得 10k −10 ∑ k! e = 0.9166 < 0.95 k =0
地震 火山爆发 特大洪水
电话呼唤次数
商场接待的顾客数
交通事故次数
例:某城市每天发生火灾的次数X服从参 数为λ=0.8的普阿松分布,求该城市一天 内至少发生3次火灾的概率。
P {X = k } = 解 : 由题意, P {X ≥ 3 } =
λk
k! X ~ P ( 0 . 8 ),
e
−λ
, k = 0 ,1 ,...;
2、连续型随机变量 、
随机变量所取的可能值可以连续地充 满某个区间,叫做连续型随机变量 满某个区间 叫做连续型随机变量. 叫做连续型随机变量
实例 灯泡的寿命” 随机变量 X 为“灯泡的寿命”.
则 X 的取值范围为 [0, +∞). 实例 随机变量 X 为“测量某零件尺寸时的测量
误差” 误差”. 则 X 的取值范围为 (a, b) .
称 X 服从参数为n,p 的二项分布,记 作 x~B n p ( , ) 0 – 1 分布是 n = 1 的二项分布.
例:某炮击中目标的概率为0.2,现在共发 射了14发炮弹,若至少有两发炮弹击中目 标才能摧毁它,试求催毁目标的概率。
解:设 X表示14发炮弹中击中目标的炮 弹数,则 X ~ B (14,0.2), 所以 P{X ≥ 2} = 1 − P{X = 0}− P{X = 1} = 1 − (0.8) − C (0.2)(0.8)
k
20 − k
(3)泊松分布 )
设随机变量所有可能取的值为 0, 1, 2,L, 而取各个 值的概率为 k! 其中λ > 0 是常数.则称 X 服从参数为 λ 的泊松分 布, 记为 X ~ P(λ ). P{ X = k} =
λk e −λ
, k = 0,1,2, L,
在生物学、医学、工业统计、 在生物学、医学、工业统计、保险科学及 泊松分布是常见的. 公用事业的排队等问题中 , 泊松分布是常见的 例如地震、火山爆发、特大洪水、 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布. 话呼唤次数等 都服从泊松分布
k 1−k
X pk
0
1− p
1
p
(其中 0<p<1) 其中
分布, 则称 X 服从 0-1分布,简称
x ~ B(1 p) ,
实例 如果掷一次篮球投中篮圈的概率为 0.3,求一次掷球投中次数的分布律 , 解:X的所有可能取值为0,1,且
P {X = 0} = 0 . 7 , P {X = 1} = 0 . 3
X
pk
0
0.72
1
2 0.02
0.26
例1
所有可能取的值为0, , 解 X 所有可能取的值为 ,1,2. 记事件第一次罚球时罚中, 以A记事件第一次罚球时罚中 以B记事件第二 记事件第一次罚球时罚中 记事件第二 次罚球时罚中,则有 次罚球时罚中 则有
P( A) = 0.75, P ( B | A) = 0.80, P ( B | A) = 0.70.
{ 50 < Y ≤ 100 }
表示通过的汽车数大于 50 辆但不超过 100 辆这一 随机事件. 随机事件
随机变量因其取值方式的不同, 随机变量因其取值方式的不同, 通常分为两类: 通常分为两类: 1、离散型随机变量 、 随机变量所取的可能值是有限多个或 无限可列个, 叫做离散型随机变量. 无限可列个 叫做离散型随机变量
第二章 一维随机变量及其分布
2009/9/18
2.1 一维随机变量 随机变量的引入: 一、随机变量的引入:
为全面研究随机试验的结果, 揭示随机现象的统 为全面研究随机试验的结果, 计规律性, 计规律性,需将随机试验的结果数量化 在有些随机试验中, 1. 在有些随机试验中,试验的结果本身就由数 量来表示. 例如, 在抛掷一颗骰子, 量来表示 例如, 在抛掷一颗骰子,观察其出 现的点数的试验中, 现的点数的试验中, 试验的结果就可分别由数 1, 2, 3, 4, 5, 6 来表示; 来表示; 又如,在测度灯泡寿命的试验中, 又如, 在测度灯泡寿命的试验中,每一个灯泡 的实际使用寿命可能是 [0,+∞ ) 中的任何一个 实数. 实数 ……
于是分布律为
P { X = 0} = P ( A B ) = P ( B | A ) P ( A )
= 0.30 × 0.25 = 0.075.
P { X = 1} = P ( A B U AB ) = P ( A B ) + P ( AB )
= P ( B | A) P ( A) + P ( B | A) P ( A) = 0.20 × 0.75 + 0.70 × 0.25 = 0.325. P{ X = 2} = P ( AB) = P ( B | A) P ( A) = 0.80 × 0.75 = 0.6.
2.2 离散型随机变量
1. 离散型随机变量的分布律
定义
1. 2.
pk ≥0, k =12,..., ,
∑p
k= 1

k
=1 ,
则称 P X = xk}= pk , k =12 为随机变量 的 { , ,... 为随机变量X的 概率分布律,简称分布律. 概率分布律,简称分布律 X的分布律也可用如下的表格形式来表示: 的分布律也可用如下的表格形式来表示: 的分布律也可用如下的表格形式来表示 X
pk
x1 p1
x2
p2
L
xk pk
L
L
L
例 某系统有两台独立地运转的机器。 设第一台与第二台机器发生故障的 概率分别为0.1,0.2,以X表示系统中 发生故障的机器数,求X的分布律。
解:设 Ai 表示事件“第 i台机器发生故障”( i = 1, 2) . X 所有可能取值为 0,2,则 1, P {X = 1} = P ( A1 A2 ) + P ( A1 A2 ) = 0 .1 * 0 .8 + 0 .9 * 0 .2 = 0 .26 P{ X = 2} = P ( A1 A2 ) = 0 .1 * 0 .2 = 0 .02 P {X = 0} = P ( A1 A2 ) = 0 .9 * 0 .8 = 0 .72
w
X(w) Rx
实例3 设盒中有5个球 白 黑 从中任抽3个 则 实例3 设盒中有 个球 (2白3黑), 从中任抽 个,则
X(e) = 抽 的 球 , 得 白 数 是一个随机变量. 的所有可能取值为: 是一个随机变量 且 X(e) 的所有可能取值为 0, 1 , 2. 实例4 设某射手每次射击打中目标的概率是0.8, 实例4 设某射手每次射击打中目标的概率是
分布. 随机变量 X 服从 (0—1) 分布
X
其分布律为
0
1
0.3
pk
0 .7
实例2 200件产品中 有190件合格品 件不合格 件产品中,有 件合格品,10件不合格 实例 件产品中 件合格品 现从中随机抽取一件,那末 品,现从中随机抽取一件 那末 若规定 现从中随机抽取一件 那末,若规定 取得不合格品, 1, 取得不合格品 X = 取得合格品. 0, 取得合格品
{ X = 10}
在某路口观察, 【例5】上午 8:00~9:00 在某路口观察,令 】 ~ Y:该时间间隔内通过的汽车数. :该时间间隔内通过的汽车数. 就是一个随机变量. 则 Y 就是一个随机变量.它的取值为 0, , 1,….100} ,Y . { < 表示通过的汽车数小于100辆这一随机事件; 辆这一随机事件; 表示通过的汽车数小于 辆这一随机事件


P(X = k)
= 1 − P {X = 0 } − P {X = 1 } − P {X = 2 } = 1 − 0 . 4493 − 0 . 3595 − 0 . 1438 ≈ 0 . 0474
k =3
例:某商店的历史销售记录表明,某种商品每 月的销售量服从参数为λ=10的普阿松分布。 为了以95%以上的概率保证该商品不脱销,问 商店在月底至少应进该商品多少件?
X = X
(e)
0, e = H = 1, e = T
X是定义在样本空间 上的实值函数。 是定义在样本空间 上的实值函数。

随机变量的定义
定义:设随机试验 的样本空间是 定义:设随机试验E的样本空间是 Ω = {w}, , 如果对于每一个w∈ 有一个实数X(w)与之 如果对于每一个 ∈Ω ,有一个实数 与之 对应,这样就得到一个定义在上的单值实值 单值实值函 对应,这样就得到一个定义在上的单值实值函 随机变量,简记为 数X=X(e),称为随机变量 简记为 。 ,称为随机变量 简记为X。
相关文档
最新文档