无穷级数11-3
高数(二)期末复习题库
∫L xdy − 2 ydx = (
B
).
( D ) 4. xdy − ydx 2 2 2. 判断:若 L为正向单位圆周 x + y = 1, 则∫ = 2π .( ) 2 2 L x + y 3. 计算曲线积分 I = ∫ ( 2 xy − x 2 )dx + ( x + y 2 )dy , 其中L是由
2. 设f ( x )是周期为2π的周期函数,且
⎧ 0 , − π ≤ x < 0, 当x = π 时,它的傅里叶级数 f ( x) = ⎨ ⎩ x , 0 ≤ x < π.
收敛于:
π
2
第一型曲线积分
第10章 线面积分
⎧ x = ϕ ( t ), 1. 设f ( x , y )在曲线弧 L上连续, L的参数方程为 ⎨ ⎩ y = ψ ( t ), (α ≤ t ≤ β ), 其中ϕ ( t ),ψ ( t )在[α , β ]上具有一阶连续导数, 且ϕ ′ 2 ( t ) + ψ ′ 2 ( t ) ≠ 0,则曲线积分 ∫ f ( x , y )ds =
∞ n =1
( B ) 若交错级数 ∑ ( −1)n un收敛,则必为条件收敛 ; (C ) 当 lim un = 0时,级数 ∑ un一定收敛;
n→ ∞ n =1 ∞
( D ) 若对级数 ∑ un的项任意加括号后所成 的新级数发散,
n =1
∞
则原级数一定发散 .
级数敛散性的判别
5. 下列命题正确的是 ( B )
L
( A) 1; ( B ) 3 ;
(C ) 2 ;
√
抛物线 y = x 2和x = y 2所围成的区域 D正向边界曲线 .
无穷级数求和问题的几种方法-无穷级数求和的方法
⽆穷级数求和问题的⼏种⽅法-⽆穷级数求和的⽅法⽬录摘要 (2)1⽆穷级数求和问题的⼏种⽅法 (2)利⽤级数和的定义求和 (2)利⽤函数的幂级数展开式求和 (3)利⽤逐项求积和逐项求导定理求和 (4)逐项求极限 (5)利⽤Flourier级数求和 (7)构建微分⽅程 (9)拆项法 (9)'将⼀般项写成某数列相邻项之差 (10)2总结 (12)3参考⽂献 (12)$⽆穷级数求和问题的⼏种⽅法摘要:⽆穷级数是数学分析中的⼀个重要内容,同时⽆穷级数求和问题,也是学⽣学习级数过程中较难掌握的部分.然⽽,⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 关键词:数项级数;幂级数;级数求和⽆穷级数是数学分析中的⼀个重要内容,它是以极限理论为基础,⽤以表⽰函数,研究函数的性质以及进⾏数值计算的⼀种重要⼯具.然⽽数学分析中注重函数的敛散问题,却对⽆穷级数求和问题的⽅法介绍的⽐较少,所以求和问题是学⽣学习级数过程中较难掌握的部分.⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据不同的⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 1利⽤级数和的定义求和定义[1]若级数1n n u ∞=∑的部分和数列{}n S 收敛于有限值S ,即1lim lim n n n n n S u S ∞→∞→∞===∑,则称级数1n n u ∞=∑收敛,记为1n n u S ∞==∑,此时S 称为级数的和数;若部分和数数列{}n S 发散,则称级数1n n u ∞=∑发散.例1 /例2求级数()∑∞=--1112n n q n ,1≤q 的和 .解: 2311357(21)n n S q q q n q -=+++++- (1) 2341357(23)(21)n n n qS q q q q n q n q -=+++++-+- (2)(1)-(2)得:11(1)12(21)1n n n q q S q n q q ---=+---12112(21)1(1)1n nn q q S q n q q q--=+-----212lim 1(1)n n qS q q →∞=+--即级数和2121(1)q S q q =+--. 2利⽤函数的幂级数展开式求和利⽤函数的幂级数展开式可以解决某些级数的求和问题.下⾯是⼏个重要的幂级数展开式:例(01,!xnn e x x n ∞==-∞<<+∞∑1,111n n x x x ∞==-<<-∑ 01ln(1),11!n x x x n ∞=-=--≤<∑3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-等等. 例2 求0(1)(21)!nn nn ∞=-+∑的和.解 : 0(1)(21)!nn n n ∞=-+∑0(21)11(1)(21)!2n n n n ∞=+-=-?+∑ 0111(1)2(2)!(21)!n n n n ∞=??=--??+??∑=001111(1)(1)2(2)!2(21)!n n n n n n ∞∞==---+∑∑ 注意到3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-242cos 1(1),()2!4!(2)!nx x x x x n =-+-+-+-∞<+∞>得1(1)(cos1sin1)(21)!2nn n n ∞=-=-+∑.3利⽤逐项求积和逐项求导定理求和定理[2]设幂级数()nnn a x x ∞=-∑的收敛半径为R ,其和函数为()x S ,则在00(,)x R x R -+内幂级数可以逐项积分和逐项微分.即:对00(,)x R x R -+内任意⼀点x ,有:10000()()()1xx nn nn x x N n a a x x x x S x dx n ∞∞+==-=-=+∑∑10000()()()n n n n n n d d a x x na x x S x dx dx ∞-==??-=-=??∑∑并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R . 例3[]3 计算⽆穷级数()() +-++?-+--14534231215432n n x xxxxnn之和(1)x <.解:对于级数()xxnn n+=∑-∞=111(1)x <. ^两边从0积分到x 得()()x nx n n n+=++∞=∑-1ln 11,(1)x <,两边从0积分到x 得()()()()()()x x x x dt t n n xn n nx++-+=+=++?∑-+∞=1ln 1ln 1ln 21021,(1)x <上式右边是原级数. 故级数和()()x x x x S ++-+=1ln 1ln ,(1)x <.例4 求幂级数()()x nn n n n 2112111??-+∑-∞=的和函数()x S .解:令2t x =,幂函数()11111(21)n n n t n n ∞-=??-+??-??∑的收敛半径 '11(21)lim 11(1)(21)n n n R n n →∞+-=+++故原函数的收敛半径1R ==,从⽽收敛区间为(1,1)-,⽽知级数2122211(1)(),(1,1)1n nnn n x xx x x ∞∞-==-=--=∈-+∑∑,记1211()(1),(0)0(21)n n n x x n n ??∞-==-=-∑,'121'12()(1),(0)021n n n x x n ??∞--==-=-∑且''12212212()(1)22(1),(1,1)1n n n n n n x xx x x∞∞---===-?=-?=∈-+∑∑ 于是(1,1)x ∈-,对上式,从0到x 作积分得'''0 ()()()2arctan x x x d x x ??==?,'()()()2arctan xxx x d x xdx ??==??=122012(arctan 2arctan ln(1)1x x dx x x x x -=-++?因此222()2tan ln(1),(1,1)1x f x x x x x x=+-+∈-+. 4逐项求极限如果函数在端点处⽆定义,那么可⽤求极限的⽅法讨论在端点处的和函数. 例5 []4 求幂级数121(1)1n nn x n +∞=--∑的和函数.,解:(1)容易验证该幂级数的收敛域为[]1,1-.(2)再求幂级数在其收敛区间(1,1)-上的和函数,下⾯⽤逐项求导的⽅法求解.设1122()(1)1n n n x f x n +∞-==--∑,(1,1)x ∈- 则有1'12()(1)1n n n x f x n +∞-==--∑ 1n x x n ∞==-∑再设1()(1)nnn x g x n ∞==-∑,(1,1)x ∈-⼜有1'11()(1)1n nn x g x n x -∞==-=-+∑-于是对上式两边进⾏积分,得1()()(0)1xg x dt g t=-++?ln(1)x =-+ 并有'()()ln(1)f x xg x x x ==-+.再进⾏积分,⼜得0()ln(1)(0)xf x t t dt f =-++?221ln(1)224x x x x -=+-+(3)最后讨论幂级数在其收敛域上的和函数.因为函数221()ln(1)224x x x f x x -=+-+在1x =处左连续,⽽幂级数在1x =处收敛,所以等式》21(1)ln(1),1224n n n x x x x x n +∞-=--=+-+-∑ 在1x =处也成⽴.但因()f x 在1x =-处⽆定义,故要改⽤逐项求极限来确定该幂级数在1x =-处的值,即由22111lim ()lim ln(1)224x x x x x f x x ++→-→-??-=+-+ 11ln(1)3lim 1241x x x x +→-??-+=?++?12131lim 14(1)x x x +→-+=+-+34= 得到112123lim ((1))41n n x n x n ++∞-→-==--∑11212lim ((1))1n n x n x n ++∞-→-==--∑ 1122(1)(1)1n n n n +∞-=-=--∑2211n n ∞==-∑ %所以原幂级数的和函数为221ln(1),(1,1]224()3,14x x x x x S x x ?-+-+∈-??=??=-??.5利⽤Flourier 级数求和求某些数值级数的和可选择某个特殊的函数在[]0,2π或[],ππ-上展成傅⾥叶级数,然后再去适当的x 值或逐项积分即可.例6[5]求21(1)nn n ∞=-∑的和.解:21(1)n n n ∞=-∑可以看作是余弦函数21(1)cos nn nx n∞=-∑在0x =时的值,因此可以考虑适当选取⼀个偶函数()f x ,满⾜21(1)()cos nf x nxdx nπππ--=?对于上式左端利⽤分部积分,得到'''22111()cos ()cos ()cos f x nxdx f x nx f x nxdx n n πππππππππ---??=-='''(3)233111()cos ()sin ()f x nx f x nx f x n n nπππππππππ---??-+ 注意到$cos cos()(1)nn n ππ=-=-有1(1)1()cos ()()()sin n f x nxdx f f f x nxdx n n πππππππππ---??=--+?取21()4f x x =,则21(1)()cos nf x nxdx nπππ--=?同时211()6f x dx n πππ-=?,这样21()4f x x =在[],ππ-上的Flourier 级数为 222111(1)cos 412n n x nx nπ∞=-==+∑ `令0x =,得2=-=∑ 例7[4]证明: 441190k k π∞==∑.证明:将函数2()()2xf x π-=展成傅⾥叶级数222001()26xa dx ππππ-==22211()cos 2k xa kxdx k πππ-=, 0k b =是2221cos ()(),02212k xkxf x x k πππ∞=-==+≤≤∑由柏塞⽡尔等式(函数2()( )2xf x π-=连续)2224040111()()22k k k a xa b dx k πππ∞=-++=∑?,有2422444011111ππππππππ∞-=-+===∑?即441190k k π∞==∑. 6构建微分⽅程如果某些级数的⼀般项的分母类似于阶乘的级数时,可以利⽤经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分⽅程,然后解微分⽅程来求其和.例8 求级数11112242462468-+-+之和.解:设幂级数246821()(1)2242462468(2)!!nn x x x x x S x n -=-+-++-+则3572'1()(1)224246(2(1))!!nn x x x x S x x n -=-+-++-+24681()2242462468x x x x x ??=--+-+(1())x S x =-于是所得⼀阶微分⽅程:'()(1())S x x S x =-,其通解为22()1,x S x Ce-=+由(0)0S =得1C =- 因此得22121()(1)1(2)!!x nn N xS x Ce n ∞--==-=-∑从⽽121111(1)12242462468S e --+-+==-.7拆项法⽆穷级数求和时,有时根据⼀般项的特点,将⼀般项进⾏拆分来简化运算过程.例9 求幂级数121(1)n n n n x ∞-=-∑的和函数.解:先求幂级数的收敛域.因为1n =,且级数121(1)n n n ∞-=-∑与21所以幂级数的收敛域为(1,1)-. 由于2(1)(2)3(1)1n n n n =++-++因此12111111(1)(1)(1)(2)3(1)(1)(1)n nn nnnn n n n n n n x n n x n x x ∞∞∞∞---====-=-++--++-∑∑∑∑12''11'11(1)()3(1)()1n n n n n n x xx x ∞∞-+-+===---++∑∑ 12''11'1())3((1)())1n n n n n n x xx x∞∞-+-+===---++∑∑ 32'''()3()111x x x x x x=-++++ 【23(1)x x x -=+,(1,1)x ∈-因为幂级数的收敛域为,所以所求和函数为23()(1)x x S x x -=+,(1,1)x ∈-.8将⼀般项写成某数列相邻项之差⽤这⼀⽅法求⽆穷级数的和,⾸先需要解决:已知1n n u ∞=∑,如何求n v当111n n n n m u b b b ++-=,其中(1,2,)i b i =形成公差为d 的等差数列时,1111n n n n m v md b b b ++-=-(m 为待定因⼦).于常数项级数1n n u ∞=∑,如果能将⼀般项写某数列{}n v 的相邻两项之差:1n n n u v v +=-且极限lim n n u v ∞→∞=存在,则21321111()()()n k n n n n S u v v v v v v v v ∞++===-+-+。
高等数学无穷级数
第七章无穷级数10常数项级数概念及性质1、定义P264 ∑an=a1+a2+ +an+n=1∞an称为一般项或通项 Sn=u1+u2+ +un称为前n项部分和例1、1 =3+3+ +3+ =0.331010210n1+2+3+ +n+1-1+1-1+ +(-1)n-1+2、定义Sn=∑uKK=1nan=Sn+1-Sn如{Sn}收敛,则∑an收敛n=1∞3、几个重要极限等比级数(几何)∑aqn,当q<1 收敛,q≥1 发散;n=0∞P级数∑Pn=1∞1nP>1 收敛,P≤1 发散;∞1P=1当,∑ 又称调和级数。
n=1n4、级数性质 P266性质5是级数收敛的必要条件即∑an收敛→liman=0n=1n→∞∞例1、∑n=1∞n-11n-1 发散,∵ liman=lim=≠0 n→∞n→∞2n+122n+1 3n例2、∑ 发散,∵ lim=-1≠0 nnn→∞n-3n=1n-3∞3n例3、∑11 发散,但lim=0 n→∞nn=1n∞20正项级数判别法∑un∞n=1un≥0正项级数部分和数列{Sn}单调递增∴正项级数收敛部分和数列有上界1、比较判别法设Vn≥un,如∑Vn收敛,则∑un收敛n=1∞n=1∞∞∞ 如∑un发散,则∑Vn发散n=1n=1例、判别下列级数敛散性∞(1)∑n=114n+n2 (2)∑∞sin2n=1n2nπ 解(1)由于∞14n2+n≥14n2+n2=11⋅ 5n∵∑1发散,∴原级数发散 nn=1sin2(2)由于nπ∞1≤1,而∑收敛,∴原级数收敛 222n=1nnn比较判别法的极限形式如limun=A 则有n→∞Vn∞∞0<A<+∞时∑un,∑Vn,同时收敛,同时发散 n=1n=1A=0 如∑Vn 收敛,则∑un收敛n=1∞n=1∞∞∞A=+∞ 如∑un 收敛,则∑Vn收敛 n=1n=1判别下列级数敛散性例、∑lnn=1∞n+1 nlnn+1∞1=1 又∑发散,∴原级数发散 1n=1nn limn→∞1例、(1)∑ (2)∑(1-cos) nn=1n2+1+nn=1∞1∞ (3)∑lnn n=2n∞1解:(1)由limn→∞nn2+n+n=lim=1 21n→∞n+n+nn111-cos21(2)lim=lim= 1n→∞n→∞12n2n2∵ ∑∞12n=1n 收敛∴原级数收敛lnn1(3)∵ >nn∴∑例、P2712、比判别法∞(n≥3) ∵ ∑1 发散,nn=1∞lnn 发散 n=1n例7.7 7.8 设正项级数∑un的一般项满足n=1∞un+1lim=ρ n→∞un则当ρ<1时,级数收敛,ρ>1时发散,ρ=1不定3、根值法设∑un为正项级数,如limun=ρn=1∞n→∞则当ρ<1时,级数收敛,ρ>1时发散,ρ=1不定正项级数判别其敛散性的步骤:⎧≠0发散首先考察limun⎨ n→∞=0需进一步判别⎩①如un中含n!或n的乘积通常选用比值法;②如un是以n为指数幂的因子,通常用根值法,也可用比值法;③如un含形如nα(α可以不是整数)因子,通常用比较法;④利用级数性质判别其敛散性;⑤据定义判别级数敛散性,考察limSn是否存在,实际上考察{Sn}n→∞是否有上界。
河海大学理学院《高等数学》11-3函数项级数
高等数学(下)
2.收敛点与收敛域:
如果 x0 I ,数项级数 un ( x0 )收敛,
n1
则称 x0为级数 un ( x)的收敛点,否则称为发散点.
n1
函数项级数 un( x)的所有收敛点的全体称为收敛域,
n1
所有发散点的全体称为发散域.
高等数学(下)
3.和函数:
在收敛域上,函数项级数的和是 x的函数 s( x),
高等数学(下)
Abel 定理的推广
(1)如果级数 an( x x0 )n 在 x x1( x1 x0 ) 处收敛,则 n0
对一切满足不等式 x x0 x1 x0 的点 x,该级数绝对
收敛;
(2)如果级数 an( x x0 )n 在 x x1 处发散,则对一 n0
切满足不等式 x x0 x1 x0 的点 x,该级数都发
第三节 幂级数
高等数学(下)
河海大学理学院
一、函数项级数的概念
1.定义:
设u1( x), u2( x), ,un( x), 是定义在 I R上的
函数,则 un( x) u1( x) u2 ( x) un( x)
n1
称为定义在区间 I 上的(函数项)无穷级数.
例如级数 xn 1 x x2 ,
称 s( x)为函数项级数的和函数.
s( x) u1( x) u2( x) un( x)
函数项级数的部分和 sn ( x),
lim
n
sn
(
x)
s(
x)
余项 rn ( x) s( x) sn ( x)
lim
n
rn
(
x)
0
( x 在收敛域上)
注意 函数项级数在某点 x 的收敛问题, 实质上是数项级数的收敛问题.
11-4 无穷级数 函数展开成幂级数
牛顿二项式展开式
x
2
( 1) 2!
( 1)( n 1) n!
的取值有关
( 1 ,1 );
( 1 ,1 ];
x
n
x (1,1)
注意:
在 x 1 处收敛性与
收敛区间为
收敛区间为
.
1
1 1
1
收敛区间为
[ 1 ,1 ].
n 2
) 1
x ( , )
n
sin x x
1 3!
x
3
1 5!
x ( 1)
5
x
2 n 1
( 2n 1)!
x ( ,)
例3 将f ( x ) (1 x ) ( R)展开成x的幂级数.
n
解 f
f
(n)
(n)
( n 1 )!
x
n
n1
x
x s ( x ) x ( 1 ) x
2
( 1 ) ( n 1 )
x
n
利用
( m 1)( m n 1) ( n 1)!
( m 1)( m n) n!
m ( m 1)( m n 1) n!
n
( n 1 )!
0 , 故 lim R n ( x ) 0 ,
n
x ( x 0 R, x 0 R )
可展成点 x 0的泰勒级数
.
二、函数展开成幂级数
1.直接法(泰勒级数法)
步骤: ( 1 ) 求 a n (2)
f
(n)
11-3_含参变量广义积分讲解
d
d
d
g( y)dy dy f (x, y)dx dx f (x, y)dy 。
c
c
a
a
c
定理5: 设函数 f (x, y) , f y (x, y) 在区域
{(x, y) | a x , c y d} 上连续且积分
g( y) f (x, y) dx
0
2 1t2
及 ue 1t2 u2 dt eu2 I 0
分别对于t 及u是连续的, 积分互换后的逐次积分显然存在.
于是,(1)式中的积分顺序可以互换, 且有
I 2
dt
0
ue 1t2 u2 du
0
1 2
dt 0 1t2
.
4
I 0, I ex2 dx .
则含参变量无穷积分
f (x, y)g(x, y)dx
a
在 Y 上一致收敛。
对任意项级数(阿贝尔判别法)
若序列an 单调有界,而级数
则级数 anbn 收敛。 n1
bn
n1
收敛,
对函数项级数(Abel 判别法)
若函数项级数 an (x)bn (x) 满足: n1
(1)函数序列an (x) 对于固定的 x X 关于n单调,
都有
f x, y dx A
,
则称含参变量的无穷积分
a
f
x,
y dx
在
Y上一致收敛.
命题: 设含参变量的无穷积分
f x, ydx
a
在 Y上
点点收敛, 若存在常数 l 0 , 不论 N 多么大,
第11章 无穷级数 习题 11- (2)
2
故 ∑ vn 收敛, 所以原级数收敛.
n =1
∞
注意 当直接用比值审敛法去判断级数的敛散性但求极限问题较复杂时, 应考 虑先将级数通项变形, 再用比值审敛法. u 2 ⋅ 5" (3n − 1) 3(n + 1) − 1 3 (5) 设 un = , 则 lim n +1 = lim = < 1 , 所以原级数收 n n →∞ →∞ 1 ⋅ 5" (4n − 3) 4(n + 1) − 3 4 un 敛.
所以级数 ∑ un 收敛, 因此 lim un = 0 .
n =1 n →∞
∞ u an a n +1 n ! a = = < , 所以级数 , 而 lim n +1 = lim lim 0 1 un ∑ n →∞ u n →∞ ( n + 1)! a n n →∞ n + 1 n! n =1 n
(2)
n =1 n =1
∞ ∞ 1 但 ∑ un = ∑ (− ) 发散. n n =1 n =1 ∞ ∞
(2)
不正确. 如对于 p -级数 ∑
1 , 当 p > 1 时, p n =1 n
∑ n p 收敛,
பைடு நூலகம்n =1
1
但
un +1 np 1 = lim = lim =1. n →∞ u n →∞ ( n + 1) p n →∞ 1 p n ( + 1) n lim
u π π 设 un = tan n , vn = n , 而 lim n = lim n →∞ vn n →∞ 2 2
tan
π ∞ 2n = 1 , 且 v 收敛, 所以原 ∑ n π n =1 2n
第十一章-无穷级数(习题及解答)
第十一章 无穷级数§11.1 级数的概念、性质一、单项选择题1. 若级数1n n aq ∞=∑收敛(a 为常数),则q 满足条件是( ). (A)1q =; (B)1q =-; (C)1q <; (D)1q >. 答(D).2. 下列结论正确的是( ).(A)若lim 0n n u →∞=,则1n n u ∞=∑收敛;(B)若1lim()0n n n u u +→∞-=,则1n n u ∞=∑收敛;(C)若1n n u ∞=∑收敛,则lim 0n n u →∞=;(D)若1n n u ∞=∑发散,则lim 0n n u →∞≠. 答(C).3. 若级数1n n u ∞=∑与1n n v ∞=∑分别收敛于12,S S ,则下述结论中不成立的是( ).(A)121()nn n u v S S ∞=±=±∑; (B)11nn ku kS ∞==∑;(C)21nn kvkS ∞==∑; (D)112nn nu S vS ∞==∑. 答(D). 4. 若级数1n n u ∞=∑收敛,其和0S ≠,则下述结论成立的是( ).(A)1()n n u S ∞=-∑收敛; (B)11n nu ∞=∑收敛; (C)11n n u∞+=∑收敛; (D)n ∞=收敛. 答(C).5. 若级数1n n a ∞=∑收敛,其和0S ≠,则级数121()n n n n a a a ∞++=+-∑收敛于( ).(A)1S a +; (B)2S a +; (C)12S a a +-; (D)21S a a +-.答(B).6. 若级数∑∞=1n na发散,∑∞=1n nb收敛则 ( ).(A)∑∞=+1)(n n nb a发散;(B)∑∞=+1)(n n nb a可能发散,也可能收敛;(C)∑∞=1n nn ba 发散; (D)∑∞=+122)(n n n b a发散. 答(A).二、填空题1. 设1a <,则().n n a ∞=-=∑答:11a +. 2. 级数0(ln 3)2nnn ∞=∑的和为.答:21ln 3-.3. 级数0n ∞=∑,其和是 . 答: 14.数项级数∑∞=+-1)12)(12(1n n n 的和为.答:12. 5*. 级数0212nn n ∞=-∑的和为. 答: 3.三、简答题1. 判定下列级数的敛散性(1)23238888(1)9999nn -+-++-+答: 收敛.解: (2) 11113693n+++++ 答: 发散.解:(3)1133n++ 答: 发散.解:(4) 232333332222n n +++++ 答: 发散.解:(5) 22331111111123232323n n ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答: 收敛.解:§11.2 正项级数收敛判别法、P — 级数一、单项选择题1. 级数1n n u ∞=∑与1n n v ∞=∑满足0,(1,2,)n n u v n <≤=,则( ).(A)若1n n v ∞=∑发散,则1n n u ∞=∑发散;(B)若1n n u ∞=∑收敛,则1n n v ∞=∑收敛; (C)若1n n u ∞=∑收敛,则1n n v ∞=∑发散;(D)若1n n u ∞=∑发散,则1n n v ∞=∑发散. 答(D).2. 若10,(1,2,)n a n n≤<=,则下列级数中肯定收敛的是( ).(A)1nn a ∞=∑; (B)11()n n n a a ∞+=+∑;(C)21n n a∞=∑; (D)n ∞=. 答(C).3. 设级数 (1)12!nn n n n ∞=∑与 (2) 13!nn n n n ∞=∑,则( ). (A)级数(1)、(2)都收敛; (B) 级数(1)、(2)都发散;(C)级数(1)收敛,级数(2)发散; (D) 级数(1)发散,级数(2)收敛. 答(C).4. 设级数(1) n ∞=与 (2) 110!nn n ∞=∑, 则( ).(A)级数(1)、(2)都收敛; (B) 级数(1)、(2)都发散;(C)级数(1)收敛,级数(2)发散; (D) 级数(1)发散,级数(2)收敛. 答(D).5. 下列级数中收敛的是( ).(A)1n ∞= (B)11sin n n ∞=∑; (C)1(1)31nn n n ∞=--∑; (D)1121n n ∞=-∑. 答(A).6*. 若级数22116n n π∞==∑,则级数211(21)n n ∞==-∑( ). (A)24π; (B)28π; (C)212π; (D)216π. 答(B).7. 设1n n u ∞=∑与1n n v ∞=∑均为正项级数,若1lim=∞→nnn v u ,则下列结论成立的是( ).(A)1nn u ∞=∑收敛, 1n n v ∞=∑发散; (B) 1n n u ∞=∑发散, 1n n v ∞=∑收敛;(C)1nn u∞=∑与1n n v ∞=∑都收敛,或1n n u ∞=∑与1n n v ∞=∑都发散. (D)不能判别. 答(C).8. 设正项级数∑∞=1n nu收敛,则( ).(A)极限1limn n n u u +→∞≤1; (B) 极限1lim n n nuu +→∞<1;(C)极限1n; (D)无法判定. 答(A)9. 用比值法或根值法判定级数1n n u ∞=∑发散,则∑∞=1n nu( ).(A)可能发散; (B)一定发散;(C)可能收敛; (D)不能判定. 答(B)二、填空题1. 正项级数1n n u ∞=∑收敛的充分必要条件是部分和nS .答:有上界.2. 设级数1n n α∞=∑收敛,则α的范围是. 答:32α>. 3. 级数1n n u ∞=∑的部分和21n nS n =+,则n u =. 答:2(1)n n +. 4. 级数0212n n n ∞=+∑是收敛还是发散. 答:收敛.5. 若级数11sin p n n n π∞=∑收敛,则p 的范围是. 答:0p >.6. 级数13!n n n n n∞=∑是收敛还是发散 . 答:发散.三、简答题1. 用比较法判定下列级数的敛散性:(1) 2111n nn ∞=++∑; 答:发散. (2) 11(1)(2)n n n ∞=++∑; 答: 收敛.(3) 1sin2nn π∞=∑; 答:收敛. (4)11(0)1n n a a∞=>+∑.答1a >收敛;1a ≤发散.2. 用比值法判定下列级数的敛散性:(1) 132nnn n ∞=⋅∑; 答:发散. (2) 213n n n ∞=∑; 答: 收敛. 解:(3) 12!n n n n n ∞=⋅∑; 答: 收敛. (4)11tan2n n n π∞+=∑. 答: 收敛.解:3. 用根值法判定下列级数的敛散性:(1) 121nn n n ∞=⎛⎫ ⎪+⎝⎭∑; 答: 收敛. (2)11[ln(1)]nn n ∞=+∑; 答:收敛.解: 解:(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑; 答:收敛.解:(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑其中,()n a a n →→∞,,,n a b a 均为正数.答:当b a <时收敛,当b a >时发散,当b a =时不能判断.§11.3 一般项级数收敛判别法一、单项选择题1. 级数1nn u∞=∑与1nn v∞=∑满足,(1,2,)n n u v n ≤=,则( ).(A) 若1n n v ∞=∑收敛,则1n n u ∞=∑发散;(B) 若1nn u∞=∑发散,则1nn v∞=∑发散;(C) 若1n n u ∞=∑收敛,则1n n v ∞=∑发散;(D) 若1n n v ∞=∑收敛,则1n n u ∞=∑未必收敛.答(D).2. 下列结论正确的是( ).(A) 1nn u∞=∑收敛,必条件收敛; (B) 1nn u∞=∑收敛,必绝对收敛;(C) 1nn u ∞=∑发散,则1nn u ∞=∑必条件收敛;(D)1n n u∞=∑收敛,则1nn u∞=∑收敛. 答(D) .2. 下列级数中,绝对收敛的是( ).(A) 1(1)31nn n n ∞=--∑; (B) 1211(1)n n n ∞-=-∑; (C) 111(1)ln(1)n n n ∞-=-+∑; (D) 111(1)n n n ∞-=-∑. 答(B) .3. 下列级数中,条件收敛的是( ).(A) 1(1)n n ∞-=-∑; (B) 112(1)3nn n ∞-=⎛⎫-⎪⎝⎭∑; (C) 1211(1)n n n ∞-=-∑; (D) 111(1)2n n n n ∞-=-⋅∑. 答(A) . 4. 设α为常数,则级数21sin n n n α∞=⎛- ⎝∑( ). (A) 绝对收敛; (B) 条件收敛;(C) 发散; (D)敛散性与α的取值有关. 答(C).5. 设),3,2,1()11ln(cos =+=n nn a n π,则级数( ).(A)∑∞=1n na与∑∞=12n na都收敛. (B)∑∞=1n na与∑∞=12n na都发散.(C)∑∞=1n na收敛,∑∞=12n na发散. (D)∑∞=1n na发散,∑∞=12n na收敛. 答(C).6.设),3,2,1(10 =<<n na n ,则下列级数中肯定收敛的是( ). (A)∑∞=1n n a . (B)∑∞=-1)1(n n na . (C) ∑∞=2ln n n n a . (D)∑∞=22ln n n n a . 答(D). 7.下列命题中正确的是( ).(A) 若∑∞=12n nu与∑∞=12n nv都收敛,则21)(n n nv u+∑∞=收敛.(B)若∑∞=1n nn v u收敛,则∑∞=12n n u 与∑∞=12n n v 都收敛.(C) 若正项级数∑∞=1n n u 发散,则nu n 1≥. (D)若),3,2,1( =<n v u n n ,且∑∞=1n nu发散,则∑∞=1n nv发散. 答(A).二、填空题1. 级数11(1)n n n α-∞=-∑绝对收敛,则α的取值范围是 . 答: 1.α> 2. 级数11sin 2n n nαπ∞=∑条件收敛,则α的取值范围是 . 答:0 1.α<≤3. 级数2n n a ∞=∑收敛,则0(1)nn n a n ∞=-∑是条件收敛还是绝对收敛 .答:绝对.收敛三、简答题1. 判定下列级数的敛散性,若收敛,是条件收敛还是绝对收敛?(1) 1(1)n n ∞-=-∑ 答: .条件收敛解: (2)111(1)3n n n n∞--=-∑; 答: .绝对收敛 解: (3)21sin (1)n n n α∞=+∑; 答: .绝对收敛 解: (4)111(1)32n nn ∞-=-⋅∑; 答: .绝对收敛 解: (5)111(1)ln(1)n n n ∞-=-+∑; 答: .条件收敛 解:(6) 2112(1)!n n n n ∞+=-∑ 答: .发散 解:§11.4 幂级数收敛判别法一、单项选择题1. 幂级数1nn x n∞=∑的收敛区间是( ).(A)[1,1]-; (B)(1,1)-; (C)[1,1)-; (D)(1,1]-. 答(C).2. 幂级数1(1)(1)2nnnn x n ∞=+-⋅∑的收敛区间是( ).(A)[2,2]-; (B)(2,2)-; (C)[2,2)-;(D)(2,2]-. 答(D).3. 幂级数2213nn n x n ∞=⋅∑的收敛半径是( ).(A)3R =; (B)R ; (C)13R =; (D)R = 答(B). (A ) (C)(B )(D)4. 若级数∑∞=+1)2(n nnx C 在4x =处是收敛的,则此级数在1x =处( ).(A)发散;(B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 答(C).5. 若级数∑∞=+1)2(n nnx C 在4x =-处是收敛的,则此级数在1x =处( ).(A)发散;(B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 答(D).6.若幂级数nn nx a)1(0-∑∞=在1-=x 处条件收敛,则级数∑∞=0n n a ( ).(A)条件收敛; (B)绝对收敛; (C)发散; (D)敛散性不能确定. 答(B).二、填空题1. 幂级数21nn x n∞=∑的收敛域是 . 答: [1,1].-2. 幂级数2123n n nn x nn ∞=⎛⎫+ ⎪⎝⎭∑的收敛域是. 答: 11,.33⎡⎤-⎢⎥⎣⎦3. 幂级数1211(1)(21)!n n n x n --∞=--∑的收敛半径R = ,和函数是 .答:,sin .R x =+∞4. 幂级数20(1)(2)!n nn x n ∞=-∑的收敛半径R = ,和函数是 .答:,cos .R x =+∞5. 设0nn n a x ∞=∑的收敛半径为R ,则20n n n a x ∞=∑的收敛半径为 .答:6. 设幂级数0nn n a x ∞=∑的收敛半径为4,则210n n n a x ∞-=∑的收敛半径为 .答:2.7. 幂级数1(23)(1)21nn n x n ∞-=---∑的收敛域是 . 答:(1,2].8. 幂级数∑∞=-02)1(n n nx a在处2=x 条件收敛,则其收敛域为 .答:]2,0[.一、简答题1. 求下列幂级数的收敛域. (1)1nn nx∞=∑; 答: (1,1).- (2)121(1)nn n x n ∞-=-∑; 答: [1,1].- (3) 13nnn x n ∞=⋅∑; 答:[3,3)-. (4) 2121n n n x n ∞=+∑; 答:11,22⎡⎤-⎢⎥⎣⎦.(5) nn ∞= 答:[4,6). (6)211(1)21n nn x n +∞=-+∑. 答:[1,1].-2. 用逐项求导或逐项积分,求下列幂级数的和函数.(1)11n n nx∞-=∑; 答:21(),(1,1)(1)S x x x =∈--. 解:(2) 21121n n x n -∞=-∑. 答:11()ln ,(1,1)21xS x x x +=∈--.解:3*. 求级数112nn n ∞=⋅∑的和. 答:2ln 2. 解:§11.5 函数展开成幂级数一、单项选择题1. 函数2()x f x e -=展开成x 的幂级数是( ).(A) 46212!3!x x x ++++;(B) 46212!3!x x x -+-+;(C) 2312!3!x x x ++++ ; (D) 2312!3!x x x -+-+. 答(B).2. 如果()f x 的麦克劳林展开式为20n n n a x ∞=∑,则n a 是( ).()(0)(A)!n f n ;(2)(0)(B)!n f n ;(2)(0)(C)(2)!n f n ;()(0)(D)(2)!n f n . 答(A). 3. 如果()f x 在0x x =的泰勒级数为00()n n n a x x ∞=-∑,则n a 是( ).()0(A)()n f x ;(2)0()(B)!n fx n ;(2)0()(C)!n f x n ;()0()(D)!n f x n . 答(C). 4. 函数()sin 2f x x =展开成x 的幂级数是( ).357(A)3!5!7!x x x x -+-+; 224466222(B)12!4!6!x x x -+-+; 335577222(C)23!5!7!x x x x -+-+; 462(D)14!6!x x x -+-+. 答(C).二、填空题1. 函数()xf x a =的麦克劳林展开式为. 答: 0(ln ).!n nn a x n ∞=∑ 2. 函数12()3x f x +=的麦克劳林展开式为. 0ln 3.2!nn n xn ∞=⎛⎫ ⎪⎝⎭ 3. 幂级数2111(1)(21)!n n n x n -∞-=--∑的和函数是 . 答:sin .x4. 函数1()1f x x =-的麦克劳林级数为. 答:0.n n x ∞=∑5. 函数1()1f x x=+的麦克劳林级数为. 答:0(1).n n n x ∞=-∑6. 函数()ln(1)f x x =+的麦克劳林级数为.答: 11(1).nn n x n∞-=-∑ 7. 函数()xf x e =在1x =处的泰勒级数. 答:0(1).!n n ex n ∞=-∑8. 函数1()1f x x =+在1x =处的泰勒级数.答: 10(1)(1).2nnn n x ∞+=--∑ 9. 函数1()f x x=展开成3x -的幂级数为. 答: 1(3)(1).3nnn n x ∞+=--∑ 10. 函数2()cos f x x =展开成x 的幂级数为. 答:212012(1).2(2)!n nn n x n -∞=+-∑ 11. 级数0(1)(2)!nn n ∞=-∑的和等于. 答:cos1.三、简答题1. 将下列函数展开成x 的幂级数,并求展开式成立的区间. (1) ()ln(),(0)f x a x a =+>; 解:答:11ln()ln (1).nn nn x a x a n a ∞-=+=+-⋅∑ (2) 2()sin f x x =;解:答:2211(2)sin (1),(,).2(2)!nn n x x n ∞-==--∞+∞∑ (3) ()(1)ln(1)f x x x =++; 解:答:12(1)(1)ln(1),(1,1].(1)n nn x x x x n n -∞=-++=+--∑(4*) ()f x =;解:21212(2)!(1),[1,1].(!)2n nn n x x n +∞=⎛⎫=+-- ⎪⎝⎭∑(5). 2()23xf x x x =--.解:答:211221112(2)!(1),(1,1).2343(!)2n n nn n x n x x x x n +∞-=⎡⎤⎛⎫=-+-- ⎪⎢⎥--⎣⎦⎝⎭∑2. 将函数()cos f x x =展开成3x π⎛⎫+ ⎪⎝⎭的幂级数.解:答: 221011cos (1),(,).2(2)!33nn n nn x x x n ππ+∞=⎡⎤⎛⎫⎫=-+++-∞+∞⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦∑3*. 将函数2()ln(3)f x x x =-在1x =展开成幂级数. 解:答: 2101(1)ln(3)ln 2(1),(0,2].2n n n n x x x n ∞-=-⎡⎤-=+--⎢⎥⎣⎦∑ 4*. 将函数21()32f x x x =++展开成4x +的幂级数.解:答: 2110111(4),(6,2).3223n n n n x x x ∞++=⎛⎫=-+-- ⎪++⎝⎭∑§11.6 2π为周期的傅里叶级数一、单项选择题1. 函数系{}1,cos ,sin ,cos 2,sin 2,,cos ,sin ,().x x x x nx nx(A) 在区间[,]ππ-上正交; (B) 在区间[,]ππ-上不正交;(C) 在区间[0,]π上正交; (D) 以上结论都不对. 答(A).2. 函数系{}1,sin ,sin 2,,sin ,().x x nx(A) 在区间[0,]π上正交; (B) 在区间[0,]π上不正交;(C) 不是周期函数; (D) 以上结论都不对. 答(B).3. 下列结论不正确的是( ).(A)cos cos d 0,()nx mx x n m ππ-=≠⎰;(B)sin sin d 0,()nx mx x n m ππ-=≠⎰; (C)cos sin d 0nx mx x ππ-=⎰; (D)cos cos d 0nx nx x ππ-=⎰. 答(D).4. ()f x 是以2π为周期的函数,当()f x 是奇函数时,其傅里叶系数为( ).(A)010,()sin d n n a b f x nx x ππ==⎰;(B)010,()cos d n n a b f x nx x ππ==⎰; (C)020,()sin d n n a b f x nx x ππ==⎰;(D)020,sin d n n a b nx x ππ==⎰.答(C).5. ()f x 是以2π为周期的函数,当()f x 是偶函数时,其傅里叶系数为( ).(A)010,()sin d n n b a f x nx x ππ==⎰;(B)020,()cos d n n b a f x nx x ππ==⎰; (C)010,()cos d n n b a f x nx x ππ==⎰;(D)020,cos d n n b a nx x ππ==⎰. 答(B).二、填空题1. ()f x 是以2π为周期的函数,()f x 傅里叶级数为.答:01(cos sin ).2n n n a a nx b nx ∞=++∑其中1()cos d ,0,1,2,,n a f x nx x n πππ-==⎰1()sin d ,1,2,.n b f x nx x n πππ-==⎰2. ()f x 是以2π为周期的偶函数,()f x 傅里叶级数为.答:01cos .2n n a a nx ∞=+∑ 02()cos d ,0,1,2,.n a f x nx x n ππ==⎰其中3. ()f x 是以2π为周期的奇函数,()f x 傅里叶级数为.答:1sin .n n b nx ∞=∑ 02()sin d ,1,2,.n b f x nx x n ππ==⎰其中4. 在(),()f x x x πππ=--≤≤的傅里叶级数中,sin x 的系数为 .答:2.5. 在()1,()f x x x ππ=+-<≤的傅里叶级数中,sin 2x 的系数为 .答: 1.-6. 在()1,()f x x x ππ=+-<≤的傅里叶级数中,cos2x 的系数为 .答:0.三、简答题1. 下列函数()f x 的周期为2π,试将其展开为傅里叶级数.(1) 2()31,()f x x x ππ=+-≤<;解:答: 221(1)()112cos ,(,).nn f x nx nπ∞=-=++-∞+∞∑(2) ,0(),0bx x f x ax x ππ-≤<⎧=⎨≤≤⎩;解:答:121[1(1)]()(1)()()()cos sin ,4n n n b a a b fx a b nx nx n n ππ-∞=⎧⎫----+=-++⎨⎬⎩⎭∑ (21).x k π≠+2. 将函数()2sin ()3xf x x ππ=-≤≤展开为傅里叶级数.解:答:121()(1)sin ,(,).91n n n f x nx n ππ∞+==---3. 将函数()cos ,()2x f x x ππ=-≤≤展开成傅里叶级数. 解:答:121241()(1)cos ,[,].41n n f x nx n ππππ∞+==+---∑4. 将函数(),(0)2xf x x ππ-=≤≤展开成正弦级数.解:答:1sin (),(0,].n nxf x n π∞==∑ 5. 将函数2()2,(0)f x x x π=≤≤展开成正弦级数和余弦级数.解:答:2331422()(1)sin ,[0,).n n f x nx n n n πππ∞=⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎣⎦∑ 2212(1)()8cos ,[0,].3nn f x nx nππ∞=-=+∑§11.7 一般周期函数的傅里叶级数一、单项选择题1. 下列结论不正确的是( ).(A)coscos d 0,()lln x m xx n m l l ππ-=≠⎰; (B)sin sin d 0,()l l n x m x x n m l l ππ-=≠⎰;(C)cos sin d 0l l n x m x x l l ππ-=⎰; (D)sin sin d 0l l n x n x x l lππ-=⎰. 答(D).2. ()f x 是以2l 为周期的函数,则()f x 的傅里叶级数为( ).(A)01cos n n n n x n x a a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑;(B)01cos 2n n n a n x n x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑; (C)1nn n xb l π∞=∑; (D)01cos 2n n a n x a l π∞=+∑. 答(B). 3. ()f x 是以2l 为周期的函数,当()f x 是偶函数时,其傅里叶级数为( ).01(A)cos2n n a n x a l π∞=+∑; 01(B)cos n n n xa a l π∞=+∑; 1(C)sin n n n x b l π∞=∑; 01(D)sin 2n n a n xa l π∞=+∑. 答(A). 4. ()f x 是以2l 为周期的函数,当()f x 是奇函数时,其傅里叶级数为( ).01(A)sin 2n n b n x b l π∞=+∑; 01(B)cos n n n x b b l π∞=+∑1(C)sin n n n x b l π∞=∑; 1(D)cos n n n xb l π∞=∑. 答(C).二、填空题1. ()f x 是以2为周期的函数, ()f x 的傅里叶级数为.答:01cossin .222n n n a n n a x b x ππ∞=⎛⎫++ ⎪⎝⎭∑ 111()cos d ,0,1,2,,22n n a f x x x n π-==⎰其中111()sin d ,1,2,.22n n b f x x x n π-==⎰2. ()f x 是以2l 为周期的偶函数, ()f x 的傅里叶级数为.答:01cos .2n n a n a x l π∞=+∑ 02()cos d ,0,1,2,.l n n a f x x x n l lπ==⎰其中3. ()f x 是以2l 为周期的奇函数,()f x 的傅里叶级数为.答:1sin.n n n b x l π∞=∑ 02()sin d ,1,2,.n n b f x x x n l l ππ==⎰其中4. 设()f x 是以3为周期的函数,1,10(),02x x f x x x +-≤<⎧=⎨≤<⎩.又设()f x 的傅里叶级数的和函数为()S x ,则(0)S =,(3)S =.答:1(0)(3).2S S ==5. 设()f x 是以3为周期的函数,32,10(),01x f x x x -≤<⎧=⎨≤<⎩,则()f x 的傅里叶级数在1x =处收敛于.答:3.26. 设()f x 是以2为周期的函数,1,02()10,12x x f x x ⎧≤<⎪⎪=⎨⎪≤<⎪⎩,又设()S x 是()f x 的正弦级数的和函数,则74S ⎛⎫= ⎪⎝⎭.答: 71.44S ⎛⎫=- ⎪⎝⎭三、简答题1. 设周期函数在一个周期内的表达式为211()122f x x x ⎛⎫=--≤< ⎪⎝⎭,试将其展开为傅里叶级数.解:答: 121111(1)()cos(2)(,).122n n f x n x ππ=∞=-=+-∞+∞∑2. 设周期函数在一个周期内的表达式为21,30()1,03x x f x x +-≤<⎧=⎨≤<⎩,试将其展开为傅里叶级数.解:答: 1221166()[1(1)]cos(1)sin ,3(21).233n n n n n f x x x x k n n ππππ∞+=⎧⎫=-+--+-≠+⎨⎬⎩⎭∑ 3*. 将函数2(),(02)f x x x =≤≤分别展开成正弦级数和余弦级数.解:答: 123218(1)2[(1)1]sin ,0 2.2n n n n x x x n n πππ+∞=⎧⎫-=+--≤<⎨⎬⎩⎭∑ 2221416(1)cos ,0 2.32n n n x x x n ππ∞=-=+≤≤∑。
高等数学(三)第11章 无穷级数
无穷级数是高等数学的一个重要内容,是无限个常量或变量之和的数学模型,它是表示函数、研究函数性态以及进行数值计算的一种有效工具,在数学理论以及工程技术中都有广泛的应用.11.1 数项级数的概念及性质11.1.1 数项级数的概念 实例1 小球运动的时间小球从1米高处自由落下, 每次跳起的高度减少一半, 问小球运动的总时间. 解 由自由落体运动方程221gt s =知g s t 2=.设k t 表示第k 次小球落地的时间, 则小球运动的总时间为+++++=k t t t t T 222321.这里出现了无穷多个数依次相加的式子.在物理、化学等许多学科中,也常能遇到这种无穷多个数或函数相加的情形,在数学上称之为无穷级数.上述级数的定义只是一个形式上的定义,怎样理解无穷级数中无穷多个数相加呢?我们可以从有限项出发,观察它们的变化趋势,由此来理解无穷多个数量相加的含义.令n n u u u S +++= 21,称n S 为级数(11.1.1)的部分和.当n 依次为1,2,3,…,时,得到一个数列1S ,2S ,…,n S ,…,称为级数(11.1.1)的部分和数列.从形式上不难知道∑∞=1n n u =n n S ∞→lim ,所以我们可以根据部分和数列的收敛与发散来定义级数的敛散性. 当级数∑∞=1n n u 收敛于S 时,常用其部分和S n 作为和S 的近似值,其差∑∑∑∞+==∞==-=-111n k knk k k k n u u u S S叫做该级数的余项,记为n r .用部分和S n 近似代替和S 所产生的绝对误差为| r n |.例11.1.1 判定级数 ++⋅++⋅+⋅)1(1321211n n 的敛散性.解 所给级数的一般项为111)1(1+-=+=n n n n u n ,部分和)1(1321211+⋅++⋅+⋅=n n S n 111)111()3121()211(+-=+-++-+-=n n n ,所以1)111(lim lim =+-=∞→∞→n S n n n ,故该级数收敛于1,即1)1(11=+∑∞=n n n . 例11.1.2 考察波尔察诺级数∑∞=--11)1(n n 的敛散性.解 它的部分和数列是1, 0, 1, 0, … ,显然n n S ∞→lim 不存在,∑∞=--11)1(n n 发散.例11.1.3 讨论几何级数(也称等比级数)∑∞=0n naq +++++=n aq aq aq a 2的敛散性,其中a ≠ 0, q 称为级数的公比.解 该几何级数前n 项的部分和21(1),11 ,1n n n a q q qS a aq aq aq na q -⎧-≠⎪-=++++=⎨⎪=⎩, 当q = 1时,由于lim lim n n n S na →∞→∞==∞,所以级数发散;当q = -1时,级数变为 +-+-a a a a ,显然lim n n S →∞不存在,所以级数发散;当| q | > 1时,由于lim n n S →∞=∞,所以级数发散;当| q | < 1时,由于lim 1n n a S q →∞=-,所以级数收敛于1a q-.因此,几何级数0n n aq ∞=∑当| q | < 1时收敛于qa-1;当| q | ≥ 1时发散. 几何级数的敛散性非常重要,许多级数敛散性的判别,都要借助几何级数的敛散性来实现.11.2 .2 数项级数的性质根据级数敛散性的概念,可以得到级数的几个基本性质.12()n n n ku k u u u kS ++=+++=,112)()k k k n k u u u u u u +++++++-+++S S -lim .从性质1的证明可以看出,如果n S 没有极限且k ≠0,则n σ也不可能有极限.换句话说,级数的每一项同乘以一个非零常数,其敛散性不改变.例如,47412)31(1313213231(32(3)1(2111=-=---+-=-+=-+∑∑∑∞=∞=∞=nn nn n n n n .由性质4知,若级数加括号后发散,则原级数必发散.但加括号后收敛的级数,去括号后未必收敛.例如,级数⋅⋅⋅+-+-+-)11()11(11()收敛,但去括号后级数⋅⋅⋅+-+-+-111111却发散.由级数收敛的必要条件可知,如果0lim ≠∞→n n u 或不存在,则级数一定发散.因此可用性质5判定级数∑∞=1n n u 发散性,有时性质5也称为“级数发散的第n 项判别法”.例11.1.4 判定级数∑∞=+112n n n 的敛散性.解 由于02112limlim ≠=+=∞→∞→n n u n n n ,故此级数发散.例11.1.5 证明调和级数 +++++n131211发散. 证明 将调和级数的两项、两项、四项、…、2m 项、… 加括号,得到一个新级数++++++++++++++++)21221121()81716151()4131()211(1m m m .因为 2141414131 ,21211=+>+>+, ,218181818181716151=+++>+++,21212121212211211111=+++>+++++++++m m m m m m , 所以新级数前m + 1项的和大于21+m ,故新级数发散.由性质4知,调和级数发散. 由于调和级数的一般项)(01∞→→=n nu n ,因此例5说明:级数的一般项u n 趋于零仅仅是级数收敛的必要条件,并非充分条件.所以,不可用性质5来判定级数的收敛性.例11.1.6 有甲,乙,丙三人按以下方式分一个苹果:先将苹果分成4份,每人各取一份;然后将剩下的一份又分成4份,每人又取一份;按此方法一直下去.那么最终每人分得多少苹果?解 依题意,每人分得的苹果为+++++n 4141414132. 它是41==q a 的等比级数,因此其和为 3141141=-=S . 即最终每人分得苹果的31.习题 11.11.写出下列级数的一般项.(1) -+-+-5645342312; (2) +-+-97535432a a a a .2.判断下列级数的敛散性. (1))1(1n n n -+∑∞=; (2)∑∞=16sinn n π; (3) ++⋅-++⋅+⋅)12()12(1531311n n ; (4) +++++++41312110021;(5)n n n n-∞=-+-∑)11()1(11; (6))31(1n n n+∑∞=.11.2 数项级数的审敛法11.2.1正项级数及其审敛法对于正项级数∑∞=1n n u ,其部分和S n = S n -1 + u n ≥ S n -1 (n = 2, 3, …),即部分和数列{S n }单调递增.若数列{S n }有界,则由单调有界数列必有极限的准则知,数列{S n }收敛,所以正项级数∑∞=1n n u 必收敛,设其和为S ,则有S n ≤ S .反之,若正项级数∑∞=1n n u 收敛于S ,则由收敛数列必有界的性质知,数列{S n }必有界.于是我们得到下述重要结论:例11.2.1证明正项级数 +++++=∑∞=!1!21!111!10n n n 收敛.证明 因为),2,1( 2122211211!11 ==⋅⋅⋅⋅≤⋅⋅⋅=-n n n n , 于是对任意的n ,有2221212111)!1(1!21!111-+++++≤-++++=n n n S,3213211211121<-=--+=--n n即正项级数∑∞=0!1n n 的部分和数列有界,故级数∑∞=0!1n n 收敛.利用定理11.2.1,可导出正项级数的若干审敛法,这里只介绍其中较为重要的两个.例11.2.2讨论广义调和级数(又称p —级数) +++++=∑∞=pppn pn n13121111 (其中p为常数)的敛散性.解 当 p ≤ 1时,有n n p 11≥,由于∑∞=11n n发散,由定理2.2知,p 级数发散. 当p >1时,取n x n ≤<-1,有ppx n 11≤,得到11111d d (2,3,)n n p pp n n x x n n n x --=≤=⎰⎰ 于是p 级数的部分和111123n p p p S n=++++231211111d d d np p pn x x x x x x -≤++++⎰⎰⎰1111111d 1(11,11n p p x x p n p -=+=+-<+--⎰即部分和数列{S n }有界,由定理11.2.1知,p 级数收敛.综上所述,当p > 1时,p 级数收敛 ;当p ≤ 1时,p 级数发散,以后我们常用p 级数作为比较审敛法时使用的级数.例11.2.3 判定下列级数的敛散性. (1) 2111n n ∞=+∑; (2)n ∞=. 解 (1) 因为22111n n u n ≤+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法知,级数∑∞=+1211n n 也收敛. (2) 因为n n n u n 111122=≥-=,而调和级数∑∞=11n n 发散,故级数∑∞=-1211n n 也发散.使用比较审敛法时,需要找到一个敛散性已知的正项级数来与所给正项级数进行比较,这对有些正项级数来说是很困难的.自然提出这样的问题:能否仅通过级数自身就能判定级数的敛散性呢?如果正项级数的一般项中含有乘积、幂或阶乘时,常用比值审敛法判定其敛散性. 例11.2.4 判定下列级数的敛散性:(1) 2132nnn n ∞=∑; (2) 11(1)!n n ∞=-∑; (3)11(21)n n n ∞=+∑. 解 (1) 因为123)1(23lim 322)1(3lim lim 2221211>=+=⋅+=∞→++∞→+∞→n n n n u u n n n n n n nn n ,所以级数∑∞=1223n n n n 发散.(2) 因为101lim !)!1(lim lim1<==-=∞→∞→+∞→n n n u u n n nn n ,所以级数∑∞=-1)!1(1n n 收敛. (3) 因为1)32)(1()12(lim lim1=+++=∞→+∞→n n n n u u n nn n ,此时比值审敛法失效,必须改用其他方法判别此级数的敛散性.由于22121)12(1n n n n u n <<+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法可知,级数∑∞=+1)12(1n n n 也收敛.11.2.2 交错级数及其审敛法交错级数的特点是正负项交替出现.关于交错级数敛散性的判定,有如下重要定理. 例11.2.5 判定交错级数 +-++-+--nn 1)1(41312111的敛散性.解 此交错级数的n u n 1=,且满足 1111+=+>=n n u n n u 且01lim lim ==∞→∞→n u n n n ,由定理11.2.4知,该交错级数收敛,其和小于1.11.2.3 任意项级数及其审敛法设有级数∑∞=1n n u ,其中u n ( n = 1, 2,…)为任意实数,称此级数为任意项级数.对于任意项级数,如何来研究其敛散性?除了用级数定义来判断外,还有什么办法?为此要介绍绝对收敛与条件收敛概念.1,2,)的级数,称为交错级例如,级数2111)1(n n n ∑∞=--绝对收敛,级数n n n 1)1(11∑∞=--条件收敛.定理11.2.5说明,对于任意项级数∑∞=1n n u ,如果它所对应的级数∑∞=1||n n u 收敛,则该级数必收敛,从而将任意项级数的敛散性判别问题转化为正项级数来讨论.但应注意,如果级数∑∞=1||n n u 发散,不能判定级数∑∞=1n n u 也发散.例11.2.6 判定级数∑∞=12)sin(n nn α的敛散性,其中α为常数. 解 由于n nn 212)sin(0≤≤α,而级数∑∞=121n n 是收敛的,由比较审敛法可知,级数∑∞=12)sin(n n n α收敛,即级数∑∞=12)sin(n n n α绝对收敛,由定理11.2.5知,级数∑∞=12)sin(n n n α收敛. 例11.2.7讨论交错p-级数p n n n 1)1(11∑∞=--的绝对收敛与条件收敛性,其中p 为常数.解 当p ≤ 0时,pn n nu 1)1(1--=不趋于)(0∞→n ,故该级数发散.当p >1时,有ppn n n11)1(1=--,且级数∑∞=11n p n收敛,故该级数绝对收敛.当0<p ≤ 1时,级数∑∞=11n p n 发散,但p n n n 1)1(11∑∞=--是交错级数,且满足定理11.2.4的条件,故所给级数条件收敛.习题11.21.用比较审敛法判定下列级数的敛散性. (1) ∑∞=-+133)1(n n n ;(2) )0(111>+∑∞=a an n .2.用比值审敛法判定下列级数的敛散性.(1) ∑∞=⋅1!2n n nnn ; (2) ∑∞=123n n n .3.判定下列级数是否收敛?若收敛,是条件收敛还是绝对收敛?(1) ;3)1(111-∞=-∑-n n n n (2) ∑∞=13sin n nn α. 11.3 幂 级 数11.3.1函数项级数的概念 实例1存款问题设年利率为r (实际上其随时间而改变),依复利计算,想要在第一年末提取1元,第二年末提取4元,第三年末提取9元,第n 年末提取2n 元,要能永远如此提取,问至少需要事先存入多少本金?分析:这里本金为存入的钱,设为A ,则一年后本金与利息之和为一年的本利和,即为)1(r A +,两年后的本利和为2)1(r A +,n 年后的本利和为n r A )1(+.解 若本金A 为n r -+)1(元,n 年后可提取本利和1)1()1(=+⋅+-n n r r (元).从而 若要n 年后提取本利和2n 元,则本金应为n r n -+)1(2元.所以为使第一年末提1元本利和,则要有本金1)1(-+r ;第二年末能提取本利和22=4元,则要有本金22)1(2-+r 元;第三年末能提取本利和32=9元,则要有本金32)1(3-+r 元,…第n 年末能提取2n 元本利和,则要有本金n r n -+)1(2元;如此下去,所需本金总数为∑∞=-+12)1(n n r n.令r x +=11,得∑∑∞=∞=-=+1212)1(n n n nx n r n .实例2中的∑∞=12n n x n 即为一个无穷级数,但通项不再是我们前面所学的常数,而是函数,称为函数项无穷级数.对于区间I 上的任意确定值x 0,函数项级数(3.1)便成为数项级数++++)()()(00201x u x u x u n . (11.3.2) 如果数项级数(11.3.2)收敛,则称点x 0为函数项级数(11.3.1)的收敛点;如果数项级数 (11.3.2)发散,则称点x 0为函数项级数(3.1)的发散点.函数项级数(11.3.1)的全体收敛点(或发散点)的集合叫做该级数的收敛域(或发散域).设函数项级数(11.3.1)的收敛域为D ,则对于任意的x ∈D ,函数项级数(11.3.1)都收敛,其和显然与x 有关,记作S (x ),称为函数项级数(11.3.1)的和函数,并记作D x x u x u x u x S n ∈++++=,)()()()(21 .例如,级数201n n n x x x x ∞==+++++∑的收敛域为(-1,1),和函数为x-11,即 01(1, 1)1n n x x x ∞==∈--∑.把函数项级数(11.3.1)的前n 项的和记作S n (x ),则在收敛域上有)()(lim 1x S x S un n n n==∞→∞=∑.将 r n (x ) = S (x ) -S n (x )称作该函数项级数的余项,则0)(lim =∞→x r n n .11.3.2 幂级数及其收敛性特别地,当x 0 = 0时,+++++=∑∞=n n n nn x a x a x a a x a 22100(11.3.4)称为关于x 的幂级数.本节主要讨论幂级数(11.3.4),幂级数(11.3.3)可通过代换t = x – x 0化成幂级数(11.3.4)来研究.下面首先讨论幂级数(11.3.4)的收敛域问题,即x 取数轴上哪些点时幂级数(11.3 .4) 收敛.0,1,2,),因此.定理11.3.1表明,如果幂级数(11.3.4)在x= x0处收敛(发散),则对于开区间(-| x0 |, | x0 |)内(闭区间[-| x0 |, | x0 |]外)的一切x,幂级数(11.3.4)都收敛(发散) .这样的正数R称为幂级数(11.3.4)的收敛半径.由于幂级数(11.3.4 )在区间(-R, R)一定是绝对收敛的,所以我们把(-R, R)称为幂级数(11.3.4)的收敛区间.幂级数在收敛区间内部有很好的性质.幂级数(11.3.4)在区间(-R, R)的两个端点x = ±R处可能发散也可能收敛,需要把x = ±R代入幂级数(11.3.4),化为数项级数来具体讨论.一旦知道了x =±R处幂级数(3.4)的敛散性,则幂级数(11.3.4)的收敛域为下面四个区间(-R, R), [-R, R) , (-R, R ], [-R, R ]之一.若幂级数(11.3.4)仅在x = 0处收敛,则规定收敛半径R = 0,此时收敛域退缩为一点,即原点;若对一切实数x,幂级数(11.3.4)都收敛,则规定收敛半径R = +∞,此时收敛区间与收敛域都是(-∞, +∞).下面给出幂级数(11.3.4)的收敛半径的求法.例11.3.1求下列幂级数的收敛半径.(1) 1(1)31nn n n x ∞=-+∑ (2) 0!n n x n ∞=∑; (3) 202n n n x ∞=∑.解 (1) 因311313lim 13)1(13)1(lim lim1111=++=+-+-==+∞→++∞→+∞→n n n n n n n n nn n a a ρ,故收敛半径31==ρR . (2) 因011lim !1)!1(1lim lim1=+=+==∞→∞→+∞→n n n a a n n nn n ρ,故收敛半径R = + ∞.(3) 因为该级数缺少奇次幂的项,定理3.2失效,换用比值审敛法求收敛半径.由于2(1)121212limlim 22n n n n n n nnx u x x u +++→∞→∞==,因此,由正项级数的比值审敛法知,当2112x <,即2||<x 时该幂级数绝对收敛;当2112x >,即2||>x 时该幂级数发散.故收敛半径2=R . 例11.3.2 求下列幂级数的收敛区间和收敛域.(1) 11(1)n nn x n +∞=-∑; (2) 21(2)n n x n ∞=-∑. 解 (1) 因为11lim )1(1)1(lim lim121=+=-+-==∞→++∞→+∞→n nnn a a n n n n nn n ρ, 所以收敛半径11==ρR ,收敛区间是(-1, 1),即该级数在(-1, 1)内绝对收敛.在端点x = 1处,级数成为交错级数∑∞=+-11)1(n n n ,这是收敛的级数.在端点x = -1处,级数成为∑∞=-11n n,这是发散的级数,故该级数的收敛域为(-1, 1].(2) 令t = x -2,则所给级数变成∑∞=12n n nt .因为 ,1)1(lim 1)1(1lim lim22221=+=+==∞→∞→+∞→n n n n a a n n nn n ρ故级数∑∞=12n n n t 的收敛半径11==ρR ,即级数∑∞=12n n nt 在区间(-1, 1)内绝对收敛.在端点t = 1处,级数∑∞=12n n n t 变成p 级数∑∞=121n n ,故收敛;在t = -1处,级数∑∞=12n n n t 变成交错级数∑∞=-121)1(n n n 也收敛.因此,幂级数∑∞=12n n n t 的收敛区间为(-1,1),收敛域为[-1, 1],从而级数∑∞=-12)1(n nn x 的收敛区间为(1,3),收敛域为[1, 3].(因为-1 ≤ t ≤ 1,即-1 ≤ x - 2 ≤ 1,所以13x ≤≤).11.3.3幂级数的运算 1. 四则运算设幂级数∑∞=0n n n x a 和∑∞=0n n n x b 的收敛半径分别为R 1和R 2,它们的和函数分别为S 1(x )和S 2( x ),令R = min{ R 1, R 2},则在(-R , R )内有(1) 加法运算(2) 乘法运算2. 分析运算设幂级数∑∞=0n n n x a 的收敛半径为(0)R R >),在(-R , R )内的和函数为S (x ),则有(1) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内连续.(2) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可导,且有逐项求导公式:(3) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可积,且有逐项积分公式:注意:逐项求导和逐项积分前后,两幂级数具有相同的收敛半径和收敛区间. 例11.3.3 求下列幂级数的和函数. (1)11(11)n n nx x ∞-=-<<∑; (2)10(11)1n n x x n ∞+=-<<+∑.解 (1) 设11(), (1, 1)n n S x nx x ∞-==∈-∑,两端积分,得111()d d 1xxn n n n xS x x nx x x x∞∞-=====-∑∑⎰⎰, 上式两端对x 求导,得21(), (1, 1)(1)S x x x =∈--.(2) 设10(), (1, 1)1n n x S x x n ∞+==∈-+∑,两端对x 求导,得 ∑∑∞=∞=+-=='+='10111)1()(n n n n x x n n x S .上式两端从0到x 积分,得01()(0)d ln(1)1xS x S x x x-==---⎰, 而S ( 0 ) = 0,所以()ln(1), (1, 1)S x x x =∈---.例11.3.4求幂级数20, (1, 1)21nn x x n ∞=∈-+∑的和函数,并计算()2011212nn n ∞=+∑的值.解 设20(), (1, 1)21nn x S x x n ∞==∈-+∑,两端同时乘以x ,得,12)(012∑∞=++=n n n x x xS 两端对x 求导,得 ,1112])([202012x x n x x xS n nn n -=='⎪⎭⎫ ⎝⎛+='∑∑∞=∞=+ 上式两端从0到x 积分,得 20111()ln ,211xx x x x xx S +==--⎰d 所以 11()ln , (1, 1)21x S x x x x+=∈--.因为21=x 在(-1, 1)内部,代入上式,得 3ln 211211ln21212112120=-+⨯=⎪⎭⎫ ⎝⎛+∑∞=nn n . 习题 11.31.求下列幂级数的收敛区间.(1) +⋅⋅+⋅+64242232x x x ; (2)∑∞=++-11212)1(n n nn x ;(3)∑∞=--122212n n nx n ; (4)∑∞=-1)5(n n n x .2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数. (1) )11( 14014<<-+∑∞=+x n x n n ; (2)∑∞=+<<-+0)1(2)11( )1(2n n x x n ,并求级数∑∞=-+01221n n n 的和. 11.4 函数展开成幂级数前面我们讨论了幂级数在收敛域内求和函数的问题,在实际应用中常常遇到与之相反的问题,就是对一个给定的函数,能否在一个区间内展开成幂级数?如果可以,又如何将其展开成幂级数?其收敛情况如何?本节就来解决这些问题.11.4.1泰勒(Taylor)级数如果函数f (x )在点x 0的某邻域U ( x 0, δ )内有定义,且能展开成x - x 0的幂级数,即对于任意的x ∈U ( x 0, δ ),有+-++-+-+=n n x x a x x a x x a a x f )()()()(0202010 . (11.4.1)由幂级数的分析性质知,函数f (x )在该邻域内一定具有任意阶导数,且 ),2,1( )()!1(!)(01)( =+-++=+n x x a n a n x fn n n . (11.4.2)在式(11.4.1)和式(11.4.2)中,令x = x 0,得)(00x f a =,!1)(01x f a '=,,!2)(02x f a ''= ,!)(,0)(n x f a n n =. (11.4.3) 将式(11.4.3)代入式(11.4.1)中,有+-++-''+-'+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)()(!1)()()(00)(200000.这说明,如果函数f (x )在x 0的某邻域U ( x 0, δ )内能用形如式(11.4.1)右端的幂级数表示,则其系数必由式(11.4.3)确定,即函数f (x )的幂级数展开式是唯一的.函数f (x )的泰勒级数(11.4.4)的前n + 1项之和记为S n +1(x ),即n n n x x n x f x x x f x x x f x f x S )(!)()(!2)()(!1)()()(00)(2000001-++-''+-'+=+ ,并把差式f (x )- S n +1(x )叫做泰勒级数(4.4)的余项,记作R n ( x ),即)()()(1x S x f x R n n +-=.显然,只要函数f (x )在点x 0的某邻域U ( x 0,δ )内具有任意阶导数,则它的泰勒级数(11.4.4) 就已经确定,问题是级数(11.4.4)是否在x 0的某邻域内收敛?若收敛,是否以f (x )为其和函数?为此有下面的定理.显然,使用定理11.4.1来进行收敛性的判定是困难的.下面直接给出余项R n (x )的表达式称上式为拉格朗日型余项.在实际应用,若取常数x 0 = 0,此时泰勒级数(11.4.4)变成称为f (x )的麦克劳林(Maclaurin)级数,其余项为11.4.2函数展开成幂级数将函数)(x f 展开成0x x -或x 的幂级数,就是用其泰勒级数或麦克劳林级数表示)(x f .下面结合例题来研究如何将函数展开成幂级数.1. 直接展开法直接利用麦克劳林公式将函数f (x )展开为x 的幂级数的方法称为直接展开法,可以按照下列步骤进行(展开为(x -x 0)的幂级数与之类似):第一步 求出函数f ( x )在x = 0处的各阶导数 ),0(,),0(),0(),0()(n ff f f '''.若函数在x = 0处的某阶导数不存在,就停止进行,该函数不能展开为x 的幂级数.例如,在点x = 0处,37)(x x f =的三阶导数不存在,它就不能展开为x 的幂级数.第二步 写出幂级数+++''+'+nn x n f x f x f f !)0(!2)0()0()0()(2并求出收敛半径R 及收敛区间(-R , R ).第三步 在收敛区间(-R , R )内,考察余项R n ( x )的极限1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ(ξ介于0与x 之间), 是否为零?如果为零,第二步所写出的幂级数就是函数f ( x )在(-R , R )内的展开式,即),(,!)0(!2)0()0()0()()(2R R x x n f x f x f f x f nn -∈+++''+'+= .如果不为零,第二步写出的幂级数虽然收敛,但它的和并不是所给的函数f ( x ). 例11.4.1将下列函数展开为x 的幂级数.(1) ()e x f x =; (2) x x f sin )(=; (3) m x x f )1()(+=(m 为任意常数). 解 (1) 因为f (x ) = e x ,故f (n )(0 ) = 1( n = 0,1, 2,…).从而e x 的麦克劳林级数为++++++!!3!2132n x x x x n . 容易求得它的收敛半径R = +∞,下面考察余项1e ()(1)!n n R x x n ξ+=+, (ξ介于0与x 之间). 因为ξ介于0与x 之间,所以||e e x ξ<,因而有||11e e |()|||||(1)!(1)!x n n n R x x x n n ξ++=<++. 对于任一确定的x 值,e |x |是一个确定的常数,而级数++++++!!3!2132n x x x x n是绝对收敛的,由级数收敛的必要条件可知0)!1(||lim 1=++∞→n x n n , 所以 1||||lime 0(1)!n x n x n +→∞=+.由此可得,0)(lim =∞→x R n n ,这表明级数收敛于e x ,所以23e 1 ()2!3!!n x x x x x x n =++++++-∞<<+∞.(2) 因为x x f sin )(=,所以),2,1( )2sin()()( =+=n n x x f n π,则 ,)1()0(,0)0(,,1)0(,0)0(,1)0(,0)0()12()2(n n n ff f f f f -==-='''=''='=+.于是sin x 的麦克劳林级数为++-++-+-+)!12()1(!7!5!312753n x x x x x n n .它的收敛半径R = + ∞,考察余项的绝对值)(0)!1(||)!1()21sin()(11∞→→+≤+++=++n n x n x n x R n n n πξ.于是得展开式)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n.(3) 用同样的方法,可以推得牛顿二项展开式)11( !)1()1(!2)1(1)1(2<<-++--++-++=+x x n n m m m x m m mx x nm .这里m 为任意实数.当m 为正整数时,就退化为中学所学的二项式定理.最常用的是12m =±的情形,读者可自己写出这两个式子.2.间接展开法以上几个例子是用直接展开法把函数展开为麦克劳林级数,直接展开法虽然步骤明确,但运算常常过于繁琐,尤其最后一步要考察n →∞时余项R n ( x )是否趋近于零,这不是一件容易的事.下面我们从一些已知函数的幂级数展开式出发,利用变量代换或幂级数的运算求得另外一些函数的幂级数展开式,这种将函数展开成幂级数的方法叫间接展开法.例11.4.2将下列函数展开为x 的幂级数. (1) x x f cos )(=; (2) )1ln()(x x f +=.解(1) 由例1中的(2)知,)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n,两边对x 逐项求导,得).( !2)1(!4!21cos 242+∞<<-∞+-+-+-=x n x x x x nn )( (2) 由牛顿二项展开式得)11( )1(11132<<-+-++-+-=+x x x x x xn n .上式两端从0到x 逐项积分,得)11( 1)1(432)1ln(1432<<-++-++-+-=++x n x x x x x x n n . 又因为当x = -1时该级数发散,当x = 1时该级数收敛,故有)11(11)1()1ln(10≤<-+-=++∞=∑x x n x n n n.例11.4.3将下列函数展开为x - 1的幂级数: (1) x x f ln )(=; (2) 2)(2--=x x x x f . 解 (1) )]1(1ln[ln )(-+==x x x f ,利用)1ln(x +的展开式得),111( 1)1()1(3)1(2)1()1(ln 132≤-<-++--+--+---=+x n x x x x x n n 即 )20(1)1()1(ln 1≤<+--=+∞=∑x n x x n n n.(2) ⎪⎭⎫ ⎝⎛--+=--=--=x x x x x x x x x f 221131)1)(2(2)(2 ][)1(12)211(2131----+=x x . 由)11( )1(110<<--=+∑∞=x x x n n n ,得 )1211( 21)1(212112111 2<-<-+⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=-+x x x x x nn . )111( )1()1()1(1)1(112<-<-+-++-+-+=--x x x x x n . 于是⎥⎦⎤⎢⎣⎡----=--∑∑∞=∞=002)1(2)21()1(21312n n n n n x x x x x n n n n x )1(22)1(3101-⎥⎦⎤⎢⎣⎡--=∑∞=+,)20(<<x . 习题 11.41.将下列函数展开成x 的幂级数,并指出其收敛区间. (1) xx f -=31)(; (2) x x f 2cos )(=; (3) x x f arcsin )(=. 2.将函数231)(2++=x x x f 展开成(x + 4)的幂级数.11.5幂级数展开式的应用利用函数的幂级数展开式,可以进行近似计算,即展开式成立的区间内,函数值用级数的部分和按规定的精度要求近似计算.例11.5.1计算2的近似值( 精确到小数点四位,即误差不超过0.0001).解 由于 ++--++-+⋅+=+n x n n x x x !)1()1(!2)1(!11)1(2ααααααα21)211(2242-=-=根据上一节二项式展开式,取21-=x ,21=α 21)211(2242-=-=)21!453121!33121!21211(28642 -⋅⋅-⋅---=取前四项的和作为近似值,其差(称截断误差)为4r )21!5753121!4531(2108 +⋅⋅⋅+⋅⋅=0098.025225))21()21(211(21!45312910328≈=⋅=++++⋅⋅< 于是,近似值为≈24219.1)21!33121!21211(2642≈⋅---=.由“四舍五入”引起的误差叫做舍入误差. 计算时取五位小数,四舍五入后误差不会超过小数点后四位.本题如果用下面做法,展开的级数收敛很快,同样取前四项计算,误差很小.2150114.12-⎪⎭⎫ ⎝⎛-⨯=⎥⎦⎤⎢⎣⎡+⋅+⋅+⋅+⋅+⨯= 43250112835501165501835012114.1取前四项来作计算, 则4142.1]50116550183501211[4.1232≈⋅+⋅+⋅+⨯≈前四项的截断误差⎪⎭⎫ ⎝⎛++⨯⨯< 544501*********.1r ⎪⎭⎫ ⎝⎛+++⨯⨯⨯= 245015011501128354.1 83341025.65012814950128354.14950501128354.1-⨯≈⨯=⨯⨯⨯=⨯⨯⨯=例11.5.2 计算2ln 的近似值(精确到小数点后第4位). 解 将展开式)11()1(432)1ln(1432≤<-+-++-+-=+-x nx x x x x x nn 中的x 换成x -,得)11(432)1ln(432<≤--------=-x nx x x x x x n两式相减,得到不含有偶次幂的展开式)11(7531211ln 753<<-⎪⎪⎭⎫ ⎝⎛+++=-+x x x x x x x令211=-+xx ,解出31=x .以31=x 代入得⎪⎭⎫⎝⎛+⋅+⋅+⋅+⋅= 753317131513131311122ln若取前四项作为2ln 的近似值,则误差为0001.0700001341911132])91(911[32)31131311113191(2||911211131194<<⨯=-⨯=+++<+⨯+⨯+⨯= r于是取 6931.0317131513131311122ln 753≈⎪⎭⎫⎝⎛⋅+⋅+⋅+⋅≈.例11.5.3 利用x sin 求12sin 的近似值(精确到小数点后第6位). 解 由于展开式+--+-+-=--!)12()1(!5!3sin 12153n x x x x x n n (+∞<<∞-x ) 是交错级数,取前n 项部分和做近似估计,误差!)12(!)12()(1212+=+≤++n x n x x R n n n (+∞<<∞-x )151801212ππ=⨯== x ,取前三项能满足精度要求,于是53)15(!51)15(!311515sin12sin ππππ+-≈= 20791170.0)20943951.0(1201)20943951.0(6120943951.053≈+-≈ 精确到六位小数,207912.012sin ≈.例11.5.4 计算定积分⎰=10sin dx x xI 的近似值,精确到0.0001.解 因1sin lim0=→xxx ,所给积分不是广义积分,若定义函数在0=x 处的值为1,则它在区间]1,0[上连续.由前一节知,被积函数的展开时为+--+-+-=--!)12()1(!5!31sin )1(2142n x x x x x n n (∞<<∞-x ) 在区间]1,0[上逐项积分,得⎰10sin dx x x+-⋅--++⋅-⋅+⋅-=-!)12()12(1)1(!771!551!33111n n n这是交错级数,因为第四项5109.2352801!771-⨯<=⋅,所以取前三项的和作为积分的近似值就能满足精度要求.0.9461!551!3311≈⋅+⋅-≈I 例11.5.5 在爱因斯坦(Einstein )的狭义相对论中,速度为v 的运动物体的质量为220/1cv m m -=其中0m 为静止着的物体的质量,c 为光速.物体的动能是它的总动能与它的静止能量之差202c m mc K -=(1)证明在v 与c 相比很小时,关于K 的表达式就是经典牛顿物理学中的动能公式2021v m K =(2)估计s m v /100≤时,这两个动能公式的差别.解 (1)]1)1[(212220202--=-=-cv c m c m mc K ,记22c v x -=,展开成泰勒级数,有]1)16583211[(66442220-+⋅+⋅+⋅+= cv c v c v c m K)1658321(66442220 +⋅+⋅+⋅=cv c v c v c m当cv 很小时,2022202121v m c v c m K =⋅⋅≈.(2) 由解(1)可见,泰勒公式中一阶余项为(22cv x -=)252240225202252021)-(83)1(83)1(83!2)()(v c cv m x x c m x x c m x x f x r =+≤+=''=θθ(10<<θ).因为s m c /1038⨯=,s m v /100≤,则252240225201)(83)1(83)(v c cv m x x c m x r +=-≤010252283840)107.4(]100-103[8)103(1003m m -⨯<⨯⨯⨯⨯≤)()(.可见,误差极小,说明两个公式极为接近.习题 11.51.利用函数的幂级数展开式求下列各函数的近似值: (1)ln 3(误差不超过0.0001); (2)cos2︒(误差不超过0.0001);2.利用函数的幂级数展开式求下列定积 分的近似值:(1)0.54011dx x +⎰(误差不超过0.0001); (2)0.5arctan xdx x⎰(误差不超过0.001); 11.6傅里叶级数实例1振动问题一根弹簧受力后产生振动,如不考虑各种阻尼,其振动方程为)sin(ϕω+=t A y ,其中A 为振幅,ω为频率,ϕ为初相,t 为时间,称为简谐振动.人们对它已有充分的认识.如果遇到复杂的振动,能否把它分解为一系列简谐振动的叠加,从而由简谐振动去认识复杂的振动呢?实例2正弦波问题在电子线路中,对一个周期性的脉冲)(t f ,能否把它分解为一系列正弦波的叠加,从而由正弦波去认识脉冲)(t f 呢?实际上科学技术中其他一些周期运动也有类似的问题,这些问题的解决都要用到一类重要的函数项级数―傅里叶级数.为了研究傅里叶级数,我们先来认识下面一个概念—三角级数.它在数学与工程技术中有着广泛的应用.三角级数的一般形式是)sin cos (210nx b nx a a n n n ++∑∞=, 其中n n b a a ,,0 ( n = 1,2,…)都是常数,称为三角级数的系数.特别地,当a n = 0 ( n = 0,1,2,…)时,级数只含正弦项,称为正弦级数;当b n = 0 ( n = 1,2,…)时,级数只含常数项和余弦项,称为余弦级数.对于三角级数,我们讨论它的收敛性以及如何把一个周期为2l 的周期函数展开为三角级数的问题.11.6.1 以2π为周期的函数展开成傅里叶级数 1三角函数系 函数列,sin cos , ,2sin ,2cos ,sin ,cos 1nx nx x x x x ,, (11.6.1)称作三角函数系.三角函数系(11.6.1)有下列重要性质.这个定理的证明很容易,只要通过积分的计算即可验证,请读者自己进行.设两个函数ϕ和φ在[,]a b 上可积,且满足⎰=bax x x 0d )()(φϕ,则称函数ϕ和φ在[,]a b 上正交.由定理11.6.1,三角函数系(11.6.1)在[,]ππ-上具有正交性,称为正交函数系.-π2 周期为2π的函数的傅里叶级数设函数f (x )是周期为2π的周期函数,且能展开成三角级数,即设)sin cos (2)(10nx b nx a a x f n n n++=∑∞= (11.6.2)为了求出式(11.6.2)中的系数,假设式(11.6.2)可逐项积分,把它从-π到π逐项积分,得1()(cos sin ),2n n k a f x x x a nx x b nx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d 由三角函数系的正交性知,上式右端除第一项外均为0,所以0(),2a f x x x a πππππ--==⎰⎰d d 于是得01(),a f x x πππ-=⎰d 为求a n ( n = 1,2,…),先用cos kx 乘以式(5.2)两端,再从-π到π逐项积分,得1()cos cos (cos cos sin cos )2n n k a f x kx x kx x a nx kx x b nx kx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d .由三角函数系正交性知,上式右端除k = n 的一项外其余各项均为0,所以2()cos cos ,n n f x nx x a nx x a πππππ--==⎰⎰d d于是得1()cos (1,2,3,) n a f x nx x n πππ-==⎰d .类似地,为求b n ( n = 1,2,…),用sin kx 乘以式(11.6.2)两端,再从-π到π逐项积分,得1()sin (1,2,3,). n b f x nx x n πππ-==⎰d显然,当f (x )为奇函数时,公式(5.3)中的a n = 0 (n = 0, 1, 2, 3,…);当f (x )为偶函数时,公式(11.6.3)中的b n = 0 (n = 1, 2, 3,…),所以有(1) 当f (x )是周期为2π的奇函数时,其傅里叶级数为正弦级数nx b n n sin 1∑∞=,其中2()sin (1,2,3,) n b f x nx x n πππ-==⎰d ;(2) 当)(x f 是周期为2π的偶函数时,其傅里叶级数为余弦级数nx a a n n cos 21∑∞=+,其中 2()cos (1,2,3,) n a f x nx x n πππ-==⎰d .3 傅里叶级数的收敛性对于给定的函数)(x f ,只要)(x f 能使公式(5.3)的积分可积,就可以计算出)(x f 的傅里叶系数,从而得到)(x f 的傅里叶级数.但是这个傅里叶级数却不一定收敛,即使收敛也不一定收敛于)(x f .为了确保得出的傅里叶级数收敛于)(x f ,还需给)(x f 附加一些条件.对此有下面的定理.2,3,)2,3,)例11.6.1 正弦交流电i (x ) = sin x 经二极管整流后变为(如图11.6.1)⎩⎨⎧+<≤<≤-=ππππ)12(2,sin 2)12(,0)(k x k x k x k x f ,其中k 为整数.把函数f (x )展开为傅里叶级数.解 函数)(x f 满足收敛定理的条件,且在整个数轴上连续,因此)(x f 的傅里叶级数处处收敛于)(x f .函数f (x )的傅里叶系数为00112()sin a f x x x x ππππππ-===⎰⎰d d ,图11.6.120,11()cos d sin cos d 2,1)n n a f x nx x x nx x n n ππππππ-⎧⎪===⎨-⎪-⎩⎰⎰为奇数为偶数(, 00,111()sin d sin sin d 1, 12n n b f x nx x x nx x n πππππ-≠⎧⎪===⎨=⎪⎩⎰⎰.所以)(x f 的傅里叶展开式为)142cos 356cos 154cos 32cos (2sin 211)(2 +-++++-+=k kx x x x x x f ππ,)(+∞<<-∞x . 例11.6.2 如图11.6.2所示,一矩形波的表达式为⎩⎨⎧+<≤<≤--=ππππ)12(2,12)12(,1)(k x k k x k x f ,k 为整数.求函数)(x f 的傅里叶级数展开式.图11.6.2解 函数)(x f 除点x = k π ( k 为整数)外处处连续,由收敛定理知,在连续点(x ≠ k π)处,)(x f 的傅里叶级数收敛于)(x f .在不连续点(x = k π)处,级数收敛于02)1(1=-+.又因)(x f 是周期为2π的奇函数,因此,函数)(x f 的傅里叶系数为0 (0,1,2,3,)n a n ==,004,22()sin d 1sin d 0, n n n b f x nx x nx x n πππππ⎧⎪==⋅=⎨⎪⎩⎰⎰为奇数为偶数.所以)(x f 的傅里叶展开式为)( )12)12sin(55sin 33sin (sin 4)(为整数,k k x k xk x x x x f ππ≠+--++++= .该例中)(x f 的展开式说明:如果把)(x f 理解为矩形波的波函数,则矩形波可看作是由一系列不同频率的正弦波叠加而成.4 [-,]ππ或[0,]π上的函数展开成傅里叶级数在实际应用中,经常会遇到函数)(x f 只在[-π, π]上有定义,或虽在[-π, π]外也有定义但不是周期函数,而且函数)(x f 在[-π, π]上满足收敛定理的条件,要求把其展开为傅里叶级数.由于求)(x f 的傅里叶系数只用到)(x f 在[-π, π]上的部分,所以我们仍可用公式(11.6.3)求()f x 的傅里叶系数,至少)(x f 在(-π,π)内的连续点处傅里叶级数是收敛于)(x f的,而在x =±π处,级数收敛于)]0()0([21+-+-ππf f .类似地,如果)(x f 只在[0, π]上有定义且满足收敛定理条件,要得到)(x f 在[0, π]上的傅里叶级数展开式,可以任意补充)(x f 在[-π, 0]上的定义(只要公式(11.6.3)中的积分可积),称为函数的延拓,常用的两种延拓办法是把)(x f 延拓成偶函数或奇函数(称为奇延拓或偶延拓),然后将奇延拓或偶延拓后的函数展开成傅里叶级数,再限制x 在[0, π]上,此时延拓后的函数F (x )≡f (x ),这个级数必定是正弦级数或余弦级数,这一展开式至少在(0, π)内的连续点处是收敛于)(x f 的.这样做的好处是可以把)(x f 展开成正弦级数或余弦级数.例11.6.3 将函数f (x ) = x, x ∈[0, π ]分别展开成正弦级数和余弦级数.解 为了把)(x f 展开成正弦级数,先把)(x f 延拓为奇函数F (x ) = x, x ∈[-π, π],如图11.6.3所示,则1222()sin sin (1)n n b F x nx x x nx x nππππ+==⋅=-⎰⎰d d . 由此得F (x )在(-π, π)上的展开式,也即)(x f 在[0, π)上的展开式为)0( )sin )1(33sin 22sin (sin 21π<≤+-+-+-=+x nnxx x x x n . 在x = π处,上述正弦级数收敛于 图11.6.30)(21)]0()0([21=+-=-++-ππππf f . 为了把)(x f 展开成余弦级数,把)(x f 延拓为偶函数||)(x x F =, x ∈[-π, π],如图11.6.4所示,则0022()a F x x x x πππππ===⎰⎰d d ,222()cos d cos d 4, (1,2,)0,n a F x nx x x nx xn n n n πππππ==-⎧⎪==⎨⎪⎩⎰⎰为奇数时为偶数时 于是得到)(x f 在[0, π]上的余弦级数展开式为 图11.6.4。
2014考研数学基础课件第11章无穷级数
(1)
n 1
u n1 n ((ii{i)) ulnni}m单u调n递减0.
(u n
0)
第7页,共50页。
(1) u n1 n收敛.
n 1
7
★正项级数审敛程序:
必要条件
lim
n
un
0
满足
不满足 发 散
比值审敛法 根值审敛法
lim un1
u n n
lim n
n
un
比较审敛法
1不确定
定义法
用其它法判别 性质法
n1
1
发散 ,
n1 n 1
故原级数发散 .
第9页,共50页。
9
请熟记:lim n n 1; lim n a 1(a 0)
n
n
解(2)
P323 题2(1)
1 发散 , 故原级数发散 .
n n1
(3)
n2 sin
n1
2n
解(3) lim un1
u n n
lim
n
(
n
1)2
sin
2n1
C.
u 收敛 n
u 收敛. n
若
un收敛
un1收敛.
n1
n1
n1
n1
性质3.在级数前面加上或去掉有限项, 不会影响级数
的敛散性. 16
第16页,共50页。
16
3. [04数三、4分] 设有下列命题:
(1) 若 (u2n1 u2n ) 收敛,则 un收敛.
n1
n1
(2) 若 un收敛,则 un1000 收敛.
n1
n1
n1
n1
性质2. 设 两un,级v数n收收敛敛 s ( un vun )n收,敛且 ( unvn,vn ) ( un vn ).
高等数学习题详解-第9章 无穷级数
习题9-11. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6) 0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则lim lim(11)nnnS n ,级数发散。
(2)由于14113n n nn,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。
(3)11ln[ln ln(1)]ln1ln(1)ln(1)1nnnk k n S n n n n n ,则lim lim[ln(1)]nnnS n ,级数发散。
(4) 2 , 21, 1,2,3,; 0 , 2nn k S k nk因而lim n nS 不存在,级数发散。
(5)级数通项为1nn u n ,由于1lim10nn n,不满足级数收敛的必要条件,原级数发散。
(6)级数通项为(1)21n nnu n ,而lim n n S 不存在,级数发散。
2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n nn ∞=⎛⎫+ ⎪⎝⎭∑; (2) 11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4)πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nn n nk kkk n n n nk k k S 所以该级数的和为31113lim lim(),22232nn nnnSS 即1113.232nnk(2)由于1111[](1)(2)2(1)(1)(2)n n nn n n n,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnnk kS k k kk kk kn n所以该级数的和为 1111limlim [],22(1)(2)4nnn SS n n即111.(1)(2)4n n n n(3)级数的通项为sin2nu n n,由于sin2lim sinlim()02222nnnn nn,不满足级数收敛的必要条件,所以原级数发散。
级数知识点总结和例题
n
n
lim
un +1 u 1 或 lim n +1 不易计算或不存在时,不能用此法 (见例 6 评注、例 7(5)、例 9) 。 n u n u n n
5.用根植审敛法 (1)若 1 ,则
设 lim n un
n
un 收敛;(2)若 1(或 ) ,则 un 发散;
n
思路二:求 s2 n ,而 s2 n +1 =s2 n +u2 n +1 ,则 lim sn s lim s2 n lim s2 n 1 s .(见例 2 解法
n n n
1) 2.用收敛级数的性质判定级数的敛散性 (1)要判定某一级数的敛散性,可根据级数的性质将该级数转化成敛散性已知的级数来讨 论,(见例 2 解法 2,例 4,例 5).需要掌握下面三个最常用级数的敛散性: 等比级数
x
们将一些简单函数间接展开成幂级数. 11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 [l , l ] 上的函数展开为傅 里叶级数,会将定义在 [0, l ] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和 函数的表达式.
11.2 基本题型及解题思路分析 题型 1 用级数敛散性的定义与性质判定级数的敛散性
例 5 (1991-研)已知级数
(1)n1 an 2 , a2n1 5 ,则级数 an =__________.
n 1 n 1 n 1
【分析】此题关键是弄清三个级数的一般项之间的关系。 解:因为 an 2a2 n1 (1)
n 1
an ,又 (1) n 1 an , a2 n 1 均收敛,故由收敛级数的
11高等数学第11章无穷级数教案1
n=0
∑ 解: Sn
=
n−1
aq k
k =0
=
a(1 − qn ) , q ≠ 1 1− q
1)当
q
<
1
时,
lim
n→∞
S
n
=
a 1− q
,收敛。
2)当
q
>
1
时,
lim
n→∞
S
n
=
∞ ,发散。
3)当 q = 1时,
q = 1, Sn = na → ∞ ,发散。
第十一章 无穷级数第 3 页 共 41 页
《高等数学》Ⅱ—Ⅱ备课教案
张谋
q = −1, Sn = a − a + a − a + ⋅ ⋅ ⋅ + (−1)n a ,极限不存在,发散。
综上所述:等比级数,当
q
<
1
时收敛,其和为
第一项 1 − 公比
当 q ≥ 1时发散。
∑ ∑ (6)
∞ n=1
ln 2 2n
2
,
∞ n=1
9n 8n
例 试用无穷级数说明循环小数 0.3 = 1 。 3
与发散的定义。
∞
∑ 定义
如果级数
un
n=1
的部分数列
{S
n
}
有极限
s
,即
lim
n→∞
S
n
=
s ,则称无穷级
∞
∞
数 ∑ un 收敛,其极限值 s 叫做这个级数的和,即 ∑ un = s 。
n=1
n=1
∞
如果{Sn }没有极限,称无穷级数 ∑ un 发散。
n=1
高等数学11-1 无穷级数的概念与性质
1 sin 1 n 1 0, 解. (1)因为 lim n sin lim n n n 1 / n 所以级数发散.
17/21
常数项级数的概念与性质
1 ln n 3 (2) n 3 n 1 3n 1 1 因调和级数 解 发散, 由性质1知, 发散. n 1 n n 1 3n ln n 3 l n3 而级数 n 是以 r 为公比的等比级数, 3 n 1 3
常数项级数的概念与性质
一、常数项级数的概念
引例 求圆的面积
正六边形:a1 正十二边形:a1+a2 正二十四边形:a1+a2 a3
正3 2n 边形:a1+a2 a3
圆:A a1+a2 a3 圆:A a1+a2 a3 an
an
an
1/21
常数项级数的概念与性质
n 1 n 1
n 1
n 1
n 1
n 1
12/21
常数项级数的概念与性质
性质3 添加或去掉有限项不影响一个级数的敛散性 .
注:
仅讨论级数 un 的敛散性时, 可简记为 un ,
n1
但求收敛级数的和时,需指明从哪一项开始!
13/21
常数项级数的概念与性质
性质4 设级数 un 收敛, 则对其各项任意加括号所得
n
矛盾! 级数发散 .
9/21
常数项级数的概念与性质
小结:判断级数敛散性步骤:
(1)求出级数的前n项和(部分和)Sn;
(2)讨论 lim Sn 的存在性.
n
10/21
常数项级数的概念与性质
二、收敛级数的基本性质
性质1 设常数 k 0, 则 un与 kun
高中数学数列及其极限知识点总结及练习题
高中数学数列及其极限知识点总结及练习题中国魏晋时期的数学家刘徽创「割圆术」﹐利用圆的内接正多边形﹐当边数愈来愈多时﹐会愈靠近圆的面积﹐从而得出了圆周率 π 的近似值。
刘徽采用的「割圆术」﹐其程序蕴含了「无穷」﹑「极限」等数学概念。
例题1 ---------------------------------------------------------------------------------------------------------------- 写出下列各数列的前 8 项。
(1)〈3n -1〉。
(2)〈(-1)n 〉。
(3)〈a n 〉﹐其中 a 1=1﹐a n =a n -1+n ﹐n 为正整数且 n ≥2。
(4)〈a n 〉﹐其中 a n =20+21+…+2n -1﹐n 为正整数。
随堂练习 ------------------------------------------------------------------------------------------------------------ 写出下列各数列的前 6 项:(1)n 1。
(2)〈2n -1〉。
(3)()211nn -+。
(4)〈a n 〉﹐其中 a 1=1﹐a n =a n -1+n 2﹐n 为正整数且 n ≥2。
------------------------------------------------------------------------------------------------------------------------将下列各数列用〈a n 〉表示: (1)等差数列:7﹐10﹐13﹐16﹐…。
(2)等比数列:1﹐-12﹐14﹐-18﹐…。
(3)平方数的倒数所成的数列:11﹐14﹐19﹐…﹐1100。
随堂练习 ------------------------------------------------------------------------------------------------------------ 将下列各数列用〈a n 〉表示:(1)等差数列:7﹐10﹐13﹐16﹐…。
级数的收敛性2
级数
是否收敛即
当级数收敛时, 称差值
为级数的余项. 显然
7
例1. 讨论等比级数 (又称几何级数)
( q 称为公比 ) 的敛散性.
解: 1) 若
则部分和
a(1qn ) 1q
因此级数收敛 , 其和为 S
a
从而
lim Sn
n
a 1q
;
1 q
因此级数发散 .
从而
lim
n
Sn
,
8
2). 若
则 级数成为
S
用反证法可证
推论: 若加括弧后的级数发散, 则原级数必发散.
注意: 收敛级数去括弧后所成的级数不一定收敛.
例如,(11) (11) 0 , 但
发散.
18
例5.判断级数的敛散性: 解: 考虑加括号后的级数
发散? , 从而原级数发散 .
19
例6 设数列{nan}收敛,级数 n (an an1) 收敛,
lim
n
k
0
ak
lim
n
nan
lim n
k (ak
k 1
ak1)
级数 an 收敛.
n1
20
例7 证明调和级数
1 1 1 1 1 发散.
n1 n
23
n
证明: 考虑曲边为 y 1曲边梯形的面积(如图),
x
由图知
Sn
1 1 1
2
n
A1 A2 An
n1 1dx ln(1 n)
第十二章 数项级数
本章内容: 第一节、级数的收敛性
第二节、正项级数 第三节、一般项级数
1
第十二章 数项级数
数项级数 无穷级数 幂级数
12无穷级数的概念与性质
将s2n写成两种形式:
s2n (u1 u2 ) (u3 u4 )
(u2n1 u2n )
(1)
s2n u1 (u2 u3) (u4 u5 )
(u2n2 u2n1) u2n (2)
由定理的第一个条件:un un1,
由<1>式可知{s2n}是单调增加的;
由<2>式可知s2n<u1.
n1 n(n 1)
证明
n(n 1) (n 1)2
1
1
n(n 1) (n 1)2
1 1 n(n 1) n 1
而级数
1
1 1
1
是发散的;
n1n 1 2 3
n 1
由比较判别法可知,所给级数也发散.
三、正项级数收敛的比值判别法
定理4<达朗贝尔比值判别法> 设 u n为正项级
n 1
数,如果 lim un1 l
其中第n项un叫作级数的一般项或通项.
级数(1)的前n项相加得到它的前n项和,记作
Sn.即: n Snu 1u2u3 un uk k 1
例如 级数 1 1 1 的 1 2 23 3 4
一般项
un
1 n(n 1)
它的前n项和
Sn
1 1 2
1 23
1 34
1 n(n 1)
1 1 1
n(n 1) n n 1
调和级数
1是发散的
;
n1n
p 级数n1n1p也发散 .
(2)当p 1时,
n1n1p
1
(
1 2p
1 3p
)
(41p
1 5p
1 6p
1 7p
)
1
( 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an ( n 1) 2 1 lim lim , n a n ( 2n 2)( 2n 1) 4 n 1
1 收敛半径 R ; 4
-理学院工科数学教学中心-
哈 尔 滨Leabharlann 工 程 大 学1 当| x | 时, 原级数收敛 ; 4
2
1 当| x | 时, 原级数发散 . 4 1 原级数的收敛半径为 . 2
又当 R 2时, 级数为 (1)
n 0
n 0
n
,发散;
当 R 2时,级数为 n,发散。 所以这个幂级数的收敛域为 (1, 1) 。
-理学院工科数学教学中心-
例 2 求级数 ( 1) n1
哈 尔 滨 工 程 大 学 微 积 分
n 1
xn 的收敛区间. n
解
an n1 R lim lim 1; 当 x 1 时, 级数收敛; n a n n n 1
n 0
幂级数可能收敛也可能发散
-理学院工科数学教学中心-
2,收敛半径
哈 尔 滨 工 程 大 学 微 积 分
正数R称为幂级数的收敛半径. 从而决定了收敛域为以下四个区间之一:
( R, R ), [ R, R ), ( R, R], [ R, R].
规定 (1) 幂级数只在 x 0 处收敛,
n
n
n 0
M,
n
使得an x0 M ( n 0,1,2,)
n
x x x n a n x a n x0 n a n x0 M x0 x0 x0
n
n
n
n
x x 当 1 时,等比级数 M x0 n 0 x0
n
收敛,
an x 收敛,即级数 an x 收敛.
S ( x ) u1 ( x ) u2 ( x ) u3 ( x ) un ( x ) un ( x )
n 1
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
和函数的定义域就是级数的收敛域。 函数项级数(1)的前n项和
Sn ( x) u1 ( x) u2 ( x) u3 ( x) un ( x)
概念、两者之间的关系、绝对收 敛 的 性质;幂级数的四则运算、和的连 续性、逐项积分与逐项微分均不证。
§11.3
哈 尔 滨 工 程 大 学 微 积 分
幂级数
一、函数项级数 1 函数项级数的定义 定义在区间I上的一列函数
u1 ( x), u2 ( x), u3 ( x), , un ( x),
2
1 ( 2n)! 1 ( 2n 1)!! 1 当 x 时, 级数 , 2 2n 2 n 0 ( n! ) 2 n 1 ( 2n)!! n 1 2n 微
掌握比较简单的幂级数收敛区间的求法(区间端点 的收敛性可不作要求)。 了解幂级数在其收敛区间内的一些基本性质。 了解函数展开为泰勒级数的充分必要条件。 了解函数展开为泰勒级数的充分必要条件。 会利用ex、sinx、cosx、ln(1+x)和(1+x)u的马克劳林 (Maclaurin)展开式将一些简单的函数间接展开 成幂级数。 了解级数在近似计算上的简单应用。 了解函数展开为傅里叶(Fourier)级数的狄利克雷 (Dirichlet)条件,会将定义在(-π,π)和(- L ,+L)上的 函数展开为傅里叶级数,并会将定义在(0, +L )上的函 数展开为正弦或余弦级数。
2 n
即当 x 1 时,收敛;当 x 1时,发散. 收敛域 (1,1); 发散域( ,1] [1, ).
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
定理1 (阿贝尔Abel定理) (1)如果级数
则它在满足不等式 | x || x0 | 的一切 x 处绝对 收敛; (2)如果级数
对于每一个确定的值 x0 I , 函数项级数就成 为常数项级数:
u1 ( x0 ) u2 ( x0 ) u3 ( x0 ) un ( x0 ) un ( x0 ) (1’)
n 1
此级数可能收敛可能发散。 如果(1’)收敛, 称点x0是函数项级数(1)的收敛点;
n 0
(1)n1 n (3) x 的收敛域为(1, 1], 收敛半径 R 1; n n 1
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
1 n (4) x 的收敛域为[1, 1), 收敛半径 R 1; n 1 n
1 n (5) 2 x 的收敛域为[1, 1], 收敛半径 R 1; n 1 n
x 0,
a n1 x 有 an x n
从而级数
n1
0 ( n ), 级数 | an x n | 收敛,
n 0
( 3) 如果 ,
x 0, 级数 an x n 必发散.
n 0
an x n 0
n
绝对收敛. 收敛半径 R ;
(否则由定理1知将有点 x 0 使 | an x | 收敛)
定理2
如果幂级数 an x n 的所有系数 a n 0 ,
0 时,R ;
(3)则当 时, R 0.
微 积 证明 对级数 分 n 0
an x
n
应用达朗贝尔判别法
lim
n
a n 1 x n 1 an x n
a n 1 lim x x, n a n
n
n
n 0
n 0
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
( 2) 假设当 x x0 时发散, 而有一点 x1适合
| x1 || x0 |
使级数收敛. 由(1)结论,则级数当 x x0 时应收敛, 这与所设矛盾. 几何意义 收敛区域 发散区域 R
o
R
称为幂级数的系数。
微 积 分
一个幂级数的和是定义在它们的收敛域内的一 个函数,即和函数。
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
如幂级数 1 x x 2 x n 的收敛域是(-1,1),当 x (1,1)时有
1 1 x x x 1 x
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
a n 1 ( 0) 存在 (1) 如果 lim n a n 1 | an x n | 收敛, 由比值审敛法, 当 | x | 时,级数 n 0 an x n 绝对收敛. 从而级数
n 0
n n 0
收敛半径 R 0.
定理证毕.
-理学院工科数学教学中心-
收敛域也可叫收敛区间。
哈 尔 滨 工 程 大 学 微 积 分
n n 例1 求幂级数 n x 的收敛域。 n 0 2
解:因为
an1 n1 1 lim lim , n a n 2n 2 n
n
当 x 1 时, 级数发散, 收敛域为 (1, 1].
例3
xn 求级数 的收敛区间. n0 n!
an R lim lim ( n 1) , n a n n 1
收敛域为 (, ).
-理学院工科数学教学中心-
解
例 4 求级数 n! x n 的收敛区间.
发散区域
x
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
an x n 不是仅在x 0 一点收敛, 推论 如果幂级数
也不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,使得 当 | x | R 时,幂级数绝对收敛; 当| x | R 时,幂级数发散; 当 x R 与x R 时,
重点与难点
重点:无穷级数收敛和发散的概念; 正项级数的比值审敛法; 级数绝对收敛与收敛的关系; 幂级数的收敛半径与收敛区间;
Taylor级数;
函数的幂级数展开式;
函数的Fourier级数;
函数展开为正弦或余弦级数。
难点:求幂级数的收敛半径与收敛区间, 函数展开为正弦级数或余弦级数。
深度与广度:绝对收敛与条件收敛包括
如果(1’)发散,
则称点x0是函数项级数(1)的发散点。
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
由所有的收敛点构成的集合称为函数项级数 的收敛域,由所有的发散点构成的集合称为函数
项级数的发散域。
显然,在收敛域上,函数项级数的和是x的函 数,记作 S (x), 称为函数项级数的和函数,即
R 0,
收敛域 x 0;
(2)幂级数对一切 x 都收敛,
R , 收敛域 ( , ).
-理学院工科数学教学中心-
哈 尔 滨 工 程 大 学 微 积 分
幂级数收敛域举例(先不证明):
(1)
n! x n 的收敛域为{0}, 收敛半径 R 0;
n 0
(2)
x n 的收敛域为(1, 1), 收敛半径 R 1;
1 n (6) x 的收敛域为( , ), 收敛半径 R . n 0 n!
-理学院工科数学教学中心-
哈 n 0 a n1 尔 lim ( 或 lim n an ) 滨 设 n n an 工 程 0 时,R 1 ; (2)则当 大 (1)则当 学
an x n 0
n
在 x x0 ( x0 0) 处收敛,
足不等式| x || x0 |的一切 x 处发散.