第5课时 一元二次不等式的解法3
人教版高中数学必修课件一元二次不等式及其解法
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
总结出: 解一元二次不等式
ax2+bx+c>0、ax2+bx+c<0 的步骤是:
(1)化成标准形式 ax2+bx+c>0 (a>0)
ax2+bx+c<0 (a>0)
(2) 写出ax2+bx+c=0判定△的符号,
当x取 0 < x <5 时,y<0?
(3).由图象写出:
不等式x2 -5x>0 的 解集为 ﹛x|x<0或x>5﹜ 。
不等式x2 -5x<0 的 解集为 ﹛x| 0 <x <5﹜ 。
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
一元二次不等式及其解法
=(2x-1)2≥0
(2)解不等式 - x2 + 2x – 3 >0
解:整理,得 x2 - 2x + 3 < 0
因为△= 4 - 12 = - 8 < 0
方程 2 x2 - 3x – 2 = 0无实数根
所以原不等式的解集为ф
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
(3)求出方程 的实根;画出函数图像
(4)(结合函数图象)写出不等式的解集.
简记为:一化—二判—三求—四写
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
人 教 版 高 中 数学必 修5课件 -3.2一 元二次 不等式 及其解 法(共 17张PP T)
初高中数学衔接课程(5)——一元二次不等式与分式不等式讲义
初高中数学衔接课程第五讲 方程与不等式5.1 二元二次方程组解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程。
其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项。
我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组。
下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法。
一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解。
例1 解方程组22440,220.x y x y ⎧+-=⎨--=⎩解:由②,得x =2y +2, ③把③代入①,整理,得8y 2+8y =0,即y (y +1)=0。
解得y 1=0,y 2=-1。
把y 1=0代入③,得x 1=2;把y 2=-1代入③,得x 2=0。
所以原方程组的解是112,0x y =⎧⎨=⎩,;220,1.x y =⎧⎨=-⎩说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解。
例2解方程组7,12.x y xy +=⎧⎨=⎩解:由①,得7.x y =- ③把③代入②,整理,得27120y y -+= 解这个方程,得123,4y y ==。
把13y =代入③,得14x =;把24y =代入③,得23x =。
所以原方程的解是114,3x y =⎧⎨=⎩,;223,4.x y =⎧⎨=⎩【例3】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩分析:本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解。
一元二次不等式的解法
8x 1 16x 2 16x 2 8x 1 0 (4x 1)2 0, 解法二:
x R, 所以原不等式的解集为 R.
突破方法
通过根与系数的关系解一元二次不等式的方法 方法二 : 一元二次不等式解集的两个端点值(不是 )是对应
一元二次方程的两个根,故当已知一元二次不等式的 解集确定不等式中的参数值时,可借助韦达定理给出
授课人:谢水霞
考纲解读
会从实际情境中抽象出一元二次不等 式模型; 通过函数图象了解一元二次不等式与 相应的二次函数、一元二次方程的联 系; 会解一元二次不等式,对给定的一元 二次不等式,会设计求解的程序框图
一元一次不等式(组)的解法
1. 一 元 一 次 不 等 式 ax b : 若 a 0, 解 集 为 {x x }; 若 a 0, 解 集 为
一元二次不等式
1.只含有
1 个未元二次不等式.
2.一元二次不等式的解集如下表:
判别式 b 2 4ac
0
0
0
二次函数 y ax2
bx c(a 0) 的图象
一 元 二 次 方 程 有 两 相 异 实 根 有 两 相 等 实 根 没有实数根
综上所述:
巩固训练
2 x 1 0 1.不等式组 2 的解集为 x 3x 0
C
A.{x 1 x 1 }
B.{x 0 x 3}
D.{x 1 x 3}
C.{x 0 x 1}
2.已知不等式x 2 2 x 3 0的解集为A, 不等式x 2 x 6 0的解集为B, 不等式x 2 ax b 0的解集是A B, 那么a b等于 D.3 B.1 A. - 3 C. 1
微专题05 一元二次不等式、分式不等式(解析版)
微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。
一元二次不等式的基本解法
一元二次不等式的基本解法一元二次不等式是指形如ax^2+bx+c>0的不等式,其中a、b、c 为实数且a≠0。
解一元二次不等式需要根据不等式的性质和基本解法进行推导和求解。
下面将详细介绍一元二次不等式的基本解法。
一、确定不等式的范围和性质在解一元二次不等式之前,首先需要确定不等式的范围和性质。
对于一元二次不等式ax^2+bx+c>0,可以通过判别式Δ=b^2-4ac 来确定其性质:1. 当Δ>0时,不等式有两个不相等的实数根,即抛物线与x轴有两个交点,不等式的解集为两个根之间的区间;2. 当Δ=0时,不等式有两个相等的实数根,即抛物线与x轴有一个交点,不等式的解集为该根;3. 当Δ<0时,不等式没有实数根,即抛物线与x轴没有交点,不等式的解集为空集。
二、解一元二次不等式的基本步骤1. 将不等式转化为标准形式对于一元二次不等式ax^2+bx+c>0,首先将其转化为标准形式,即将不等式右边移项,得到ax^2+bx+c-0>0。
2. 求解一元二次方程的根通过因式分解、配方法或求根公式等方法,求解一元二次方程ax^2+bx+c=0的根。
若方程有两个实数根x1和x2,则将不等式的解集确定为(x1, x2)。
3. 绘制抛物线图像根据一元二次方程的系数a、b、c的正负关系,绘制出抛物线的图像。
根据抛物线与x轴的交点和开口方向,确定不等式的解集。
4. 判断解集的开闭性根据一元二次不等式的形式,判断解集的开闭性。
当不等式为大于号时,解集为开区间;当不等式为大于等于号时,解集为闭区间。
5. 确定不等式的解集根据以上步骤的结果,确定一元二次不等式的解集。
将抛物线与x 轴的交点所对应的区间作为解集,注意考虑区间的开闭性。
三、例题解析例如,求解不等式x^2-4x+3>0。
1. 将不等式转化为标准形式:x^2-4x+3-0>0。
2. 求解一元二次方程x^2-4x+3=0的根。
一元二次不等式及其解法.doc
《一元二次不等式及其解法》教学设计及反思海西州高级中学陈燕课题: 3.2一元二次不等式及其解法【教材分析】《一元二次不等式的解法》这节课属于高中数学必修五的内容,是初中一元一次不等式的解法、一元二次方程的根在知识上的延伸和发展,又是上一章集合知识的运用与巩固,也为下一章研究函数的定义域和值域作铺垫,起着承上启下的作用,它也是《不等式》的核心内容。
同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
【学情分析】现阶段高中生已经掌握了一元一次不等式(组)的解法,一元二次方程的求根等基础知识,有着良好的知识基础;而且他们通过初中的学习心智发育逐渐成熟,发散思维习惯和方式已初步养成,具备了一定的数形结合的思想,有着较好的观察与总结、化归、探究能力【教学目标】1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想.【教学重点】从实际情境中抽象出一元二次不等式模型和一元二次不等式的解法.【教学难点】理解二次函数、一元二次方程与一元二次不等式的关系.【教学过程】1.联系旧知,构建新知.复习:一元二次方程和二次函数.(1)一元二次方程()200ax bx c a ++=≠的解法:*公式法:2b x a-±=. *因式分解法:()()120x x x x --=.(2)二次函数()20y ax bx c a =++≠.*图象:一条抛物线.*开口方向: 0 0 a a >⎧⎨<⎩开口向上,开口向下.*对称轴: 2b x a =-. *顶点坐标: 24,24b ac b aa ⎛⎫-- ⎪⎝⎭. 2.创设情境,提出问题.从实际情境中抽象出一元二次不等式模型:首先认识植树节的图标,然后提出问题:今年的植树节我校高一年级的同学去植树时遇到一个这样的问题,我们准备的树苗恰好能够栽满面积为40平方米的空地,而要绿化的空地是一个长比宽多6 米的矩形,那么,矩形绿化带长为多少时,准备的树苗有剩余?分析:设绿化带长为x m.则依题意有()640x x -<.整理得26400x x --<.这个不等式怎么解呢?3.合作交流,探究新知(1)一元二次不等式的定义:只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.(2)一元二次不等式的一般形式:()22000ax bx c ax bx c a ++>++<≠或.会发现一元二次不等式的左边与二次函数和一元二次方程很相似,提出疑问难道这三者之间有什么关系?(3)探究一元二次不等式220x x --<的解.容易知道:一元二次方程220x x --=的有两个实数根:1212x x =-=或.二次函数22y x x =--与x 轴有两个交点:()()1,02,0-和.思考1:观察图象一元二次方程的根与二次函数之间有什么关系?于是,我们得到:二次方程的根就是二次函数图象与x 轴交点的横坐标.思考2:观察图象,当x 为何值时,0y =;当x 为何值时,0y >;当x 为何值时,0y <.观察函数图象,可知:当12x x =-=或时,函数图象位于x 轴上,此时0y =,即220x x --=; 当 12x x <->或时,函数图象位于x 轴上方,此时,0y >,即220x x -->; 当12x -<<时,函数图象位于x 轴下方,此时,0y <,即220x x --<; 所以,不等式220x x --<的解集是{}12x x -<<.(4)探究一元二次不等式()22000ax bx c ax bx c a ++>++<>或的解法.组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:抛物线=y c bx ax ++2与x 轴的相关位置的情况,也就是一元二次方程c bx ax ++2=0的根的情况,而一元二次方程根的情况是由判别式ac b 42-=∆三种取值情况(0∆>,0∆=,0∆<)来确定.设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生合作讨论完成表格)。
一元二次方程、不等式课件——2025届高三数学一轮复习
链接教材
夯基固本
典例精研
核心考点
课时分层作业
[跟进训练]
2.解关于x的不等式x2+ax+1<0(a∈R).
[解]
Δ=a2-4.
①当Δ=a2-4≤0,即-2≤a≤2时,原不等式的解集为∅.
② 当 Δ= a2 - 4> 0 , 即 a>2 或 a <- 2 时 , 方程x2 + ax +1=0 的 两根为 x1 =
> 0,
> 0,
1
1
a,要满足题意,需൞ ≤1,或 2 > 1,
2
1 ≥0
1
2
1
2
1
2
解得a≥ ,所以实数a的取值范围是 , + ∞ .
> 0,
1 1
1
.因为x∈(1,+∞),
=
<
,所以a≥
.
2 +1
2 +1 +1 2
2
法二(分离变量法):ax2-x+a>0⇔ax2+a>x⇔a>
为-4<0,恒成立;当a≠2时,要使关于x的不等式(a-2)x2+2(a-2)x-4<0对一切实数x恒成立,
< 2,
只需ቊ
4 − 2 2 − 4 − 2 × −4 < 0,
解得-2<a<2.故-2<a≤2.故选D.
(2)法一(函数法):当a=0时,原不等式可化为x<0,易知不合题意;当a≠0时,令f (x)=ax2-x+
− ,
,
整理得到b=-a,c=-6a.
对于A, a<0,正确;
对于B,ax+c>0,即a(x-6)>0,解得x<6,正确;
高三数学一元二次不等式的解法3
易知:二次方程的有两个实数根:X ! =0,x 2 =5二次函数有两个零点:为=0, x 2 = 5于是,我们得到:二次方程的根就是二次函数的零点。
(2)观察图象,获得解集画出二次函数y =x 2 -5X 的图象,如图,观察函数图象,可知:当x<0 ,或x>5时,函数图象位于x 轴上方,此时,y>0,即X 2 - 5x ■ 0 ; 当0<x<5时,函数图象位于 x 轴下方,此时,y<0,即x 2 _5x ::: 0 ;所以,不等式x 2 -5x ::: 0的解集是〈X |0 ::: x ::: 51,从而解决了本节开始时提出的问题。
3、典例实践: 例仁求不等式的解集:(培养学生数形结合的思想)2(1) 4x — 4x+1>02 1解:因为厶=0 ,方程4x - 4x ■ 1 = 0的解是x 1 = x 2 :2(2) x -2x+3<0解:因为= 4 -12 = -8 ::: 0 ,方程x 2 - 2x • 3 = 0无实数解,2所以不等式X- 2x^ 0的解集是...变式:若求不等式—2x 2 + 3x + 2<0的解集?(培养学生转化化归的思想)4、探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式2 2ax bx c 0,( a0)或ax bx c :: 0,( a 0)一般地,怎样确定一元二次不等式ax 2- bx c >0与ax 2- bx c <0的解集呢?从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集的基本步骤:(I )若a<0,可先转化为 a>0(2)抛物线y =ax 2■ bx ■ c (a> 0 )与x 轴的相关位置,分为三种情况,这可以由一元 次方程 ax 2bx c =0的判别式-b 2-4ac 三种取值情况(△ > 0, △ =0, △ <0)来确定.因此, 要分三种情况讨论。
一元二次不等式的解法
一元二次不等式的解法一、学习目标1.掌握一元二次不等式的解法步骤,能熟练地求出一元二次不等式的解集。
2.掌握一元二次不等式、一元二次方程和二次函数的联系。
二、例题第一阶梯例1什么是一元二次不等式的一般式?【解】一元二次不等式的一般式是:ax2+bx+c(a>0)或ax2+bx+c<0(a>0)【评注】1.一元二次不等式的一般式中,严格要求a>0,这与一元二次方程、二次函数只要求a≠0不同。
<0 2.任何一元二次不等式经过变形都可以化成两种“一般式”之一,当a1时,将不等式乘-1就化成了“a>0”。
例2、一元二次不等式、一元二次方程和二次函数的联系是什么?【点拨】用函数的观点来回答。
【解】二次不等式、二次方程和二次函数的联系是:设二次函数y=ax2+bx+c (a≠0)的图象是抛物线L,则不等式ax2+bx+c>0,ax2+bx+c<0的解集分别是抛物线L在x轴上方,在x轴下方的点的横坐标x的集合;二次方程ax2+bx+c=0的根就是抛物线L与x轴的公共点的横坐标。
【评注】二次不等式、二次方程和二次函数的联系,通常称为“三个二次问题”,我们要深刻理解、牢牢掌握,并灵活地应用它。
它是函数与方程思想的应用范例。
应用这“三个二次”的关系,不但能直接得到“二次不等式的解集表”,而且还能解决“二次问题”的难题。
例3请你自己设计一张好用的“一元二次不等式的解集表”。
【解】一元二次不等式的解集表:【评注】1.不要死记书上的解集表,要抓住对应的二次方程的“根”来活记活用。
2.二次方程的解集求法属于“根序法”(数轴标根)。
例4、写出一元二次不等式的解法步骤。
【解】一元二次不等式的解法步骤是:1.化为一般式ax2+bx+c>0 (a>0)或ax2+bx+c<0 (a>0)。
这步可简记为“使a>0”。
2.计算△=b2-4ac,判别与求根:解对应的二次方程ax2+bx+c=0,判别根的三种情况,△≥0时求出根。
3.写出解集:用区间或用大括号表示解集。
一元二次不等式的解法
一元二次不等式的解法一元二次不等式是指形式为ax^2 + bx + c > 0 (或ax^2 + bx + c < 0)的不等式,其中a、b、c为实数,且a ≠ 0。
要解一元二次不等式,需要通过一系列的步骤来确定其解集。
步骤一:将一元二次不等式的左边转化为一个二次函数f(x)。
根据一元二次不等式的形式,我们可以将其左边的项看作是二次函数f(x) = ax^2 + bx + c。
这个二次函数的图像可能是一个抛物线开口向上,也可能是开口向下。
步骤二:求出二次函数f(x)的零点。
为了求出二次函数f(x)的零点,我们需要将其转化为标准形式。
标准形式是指f(x) = a(x - h)^2 + k,其中(h, k)为抛物线的顶点坐标。
步骤三:根据二次函数f(x)的开口方向,确定一元二次不等式的解集。
如果二次函数f(x)开口向上,即a > 0,那么一元二次不等式的解集是抛物线上方的区域。
如果二次函数f(x)开口向下,即a < 0,那么一元二次不等式的解集是抛物线下方的区域。
步骤四:根据一元二次不等式的形式,找出它的解集。
通过分析图像和零点,我们可以进一步确定一元二次不等式的解集。
例如,考虑不等式x^2 - 3x + 2 > 0。
首先,我们将不等式左边的项转化为二次函数f(x) = x^2 - 3x + 2,然后求出其零点。
将f(x)转化为标准形式可以得到f(x) = (x - 1)(x - 2),则它的零点是x = 1和x = 2。
这意味着抛物线与x轴相交于点(1, 0)和(2, 0)。
由于a = 1 > 0,我们知道抛物线开口向上。
因此,不等式的解集是抛物线上方的区域。
我们可以通过测试f(x)在零点以及零点左右的取值来进一步确定解集。
当x < 1时,抛物线在x轴上方,因此f(x) > 0;当1 < x < 2时,抛物线在x轴下方,因此f(x) < 0;当x > 2时,抛物线再次在x轴上方,因此f(x) > 0。
一元二次不等式解法
3. 若0<a<1,则不等式(x-a)(x -
)<0的解集是_______.
四、精炼方法 小结:解一元二次不等式ax2+bx+c>0的步骤:
记忆口诀: (前提a>0). 大于取两边,小于取中间
① 将二次项系数化为“+”(a>0);
② 计算ax 2 +bx + c = 0 判别式;并求其根 ③
2 y = ax +bx + c = 0的图象 画出
④ 由图象写出解集.
五、思维提升
例2.已知一元二次不等式ax2+bx+6>0的 解集为{x∣-2<x<3} ,求a,b的值。
解:由题意得,a<0, 且方程ax2+bx+6=0的两根分别为-2和3,
a < 0 b ∴ - = 1 a 6 = -6 a
解关于x的不等式ax2-(a+1)x+1<0.
解:①当 a= 0 时,不等式的解集为 {x|x>1}; 1 ②当 a≠ 0 时,不等式化为 ax- (x- 1)<0. a 1 (ⅰ )当 a<0 时,原不等式等价于 x- (x- 1)>0,不等式的 a 1 解集为 { x|x>1 或 x< }; a 1 1 (ⅱ )当 0<a<1 时, 1< ,不等式的解集为 { x|1<x< }; a a 1 1 (ⅲ )当 a>1 时, <1,不等式的解集为 { x| <x<1}; a a (ⅳ )当 a= 1 时,不等式的解集为 ;
△=0
y
△<0
y
一元二次不等式及其解法(三)
一元二次方程的根是对应的一元二次不等式解集的端点值.
2.一元二次不等式的解集: 判别式 Δ=b2-4ac 二次函数 y=ax2 +bx+c (a>0)的 图象 一 元 二 次 方 程 有两相异实根 x1,2 有两相等实根 x =x 1 2 -b± b2-4ac ax2 + bx + c = 0 = 没有实根 b 2a =- 2a (a>0)的根 (x1<x2) ax2+bx+c>0 (a>0) ax2+bx+c<0 (a>0)
{x|x<x1,或x>x2} {x|x1< x<x2}
b {x∈R|x≠- } 2a
Δ>0
Δ=0
Δ<0
R
∅
∅
3.解一元二次不等式的步骤: 第一步,化二次项的系数为正数; 第二步,求解相应的一元二次方程的根; 第三步,根据根的情况结合图象写出一元 二次不等式的解集.
探究 一元二次不等式恒成立问题(导学设计49页) 问题探究一 一元二次不等式恒成立问题
价条件是
;
(5)f(x)≤a 恒成立,x∈D⇔[f(x)]max≤a,x∈D; (6)f(x)≥a 恒成立,x∈D⇔[f(x)]min≥a,x∈D.
理论迁移 典型例题
例 1 若不等式 mx2+2mx-4<2x2+4x 的解集为 R,则实数 m 的取值范围是 A.(-2,2) C.(-∞,-2)∪[2,+∞) B.(-2,2] D.(-∞,2) (B )
3.要使关于 x 的不等式 x2+(a-1)x+a-1>0 恒成立,则 a 的
高考数学复习考点知识与题型专题讲解5---一元二次不等式及其解法
高考数学复习考点知识与题型专题讲解1.5一元二次不等式及其解法考试要求1.会从实际问题的情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式.1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(a≠0).2.二次函数与一元二次方程、不等式的解的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0 (a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2} 错误!R ax2+bx+c<0(a>0)的解集{x|x1< x<x2} ∅∅3.分式不等式与整式不等式(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 微思考1.二次函数的零点与一元二次方程的根,二次函数图象与x 轴的交点之间有什么联系? 提示 二次函数的零点即为对应的一元二次方程的根,也是二次函数图象与x 轴交点的横坐标. 2.一元二次不等式ax 2+bx +c >0(<0)恒成立的条件是什么?提示显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.(√)(2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .(×)(3)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.(√) (4)x -ax -b ≥0等价于(x -a )(x -b )≥0.(×)题组二教材改编2.已知集合A ={x |x 2-5x +4<0},B ={x |x 2-x -6<0},则A ∩B 等于() A .(-2,3) B .(1,3) C .(3,4) D .(-2,4) 答案B解析由题意知A ={x |1<x <4},B ={x |-2<x <3}, 所以A ∩B =(1,3).3.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案(-4,1)解析由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.4.函数y =log 2(3x 2-2x -2)的定义域是____________________________. 答案⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞.题组三易错自纠5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案-14解析∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________________. 答案(-∞,-4)∪(4,+∞)解析由题意得Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.题型一一元二次不等式的求解命题点1不含参的不等式例1 (1)(2020·全国Ⅰ)已知集合A ={x |x 2-3x -4<0},B ={-4,1,3,5},则A ∩B 等于() A .{-4,1}B .{1,5}C .{3,5}D .{1,3} 答案D解析∵A ={x |x 2-3x -4<0}={x |(x +1)(x -4)<0}={x |-1<x <4},B ={-4,1,3,5}, ∴A ∩B ={1,3}.(2)不等式1-x 2+x ≥0的解集为()A .[-2,1]B .(-2,1]C .(-∞,-2)∪(1,+∞)D .(-∞,-2]∪(1,+∞) 答案B解析原不等式化为⎩⎪⎨⎪⎧(1-x )(2+x )≥0,2+x ≠0,即⎩⎪⎨⎪⎧(x -1)(x +2)≤0,x +2≠0, 解得-2<x ≤1.命题点2含参不等式例2解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解原不等式变为(ax -1)(x -1)<0,因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 在本例中,把a >0改成a ∈R ,解不等式.解当a >0时,同例2,当a =0时,原不等式等价于-x +1<0,即x >1, 当a <0时,1a <1,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 解得x >1或x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a , 当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1, 当a =0时,不等式的解集为{x |x >1},当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a或x >1.思维升华对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1(1)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________. 答案{x |x ≥3或x ≤2}解析由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝⎛⎭⎫-13=b a,-12×⎝⎛⎭⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.(2)解不等式12x 2-ax >a 2(a ∈R ). 解原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞.题型二一元二次不等式恒成立问题命题点1在R 上的恒成立问题例3对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是() A .(-∞,2) B .(-∞,2] C .(-2,2) D .(-2,2] 答案D解析当a -2=0,即a =2时,-4<0恒成立; 当a -2≠0,即a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0,解得-2<a <2.综上,实数a 的取值范围是(-2,2].命题点2在给定区间上的恒成立问题例4已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围为________. 答案⎝⎛⎭⎫-∞,67 解析要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上单调递减, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0, 所以m <6x 2-x +1.令y =6x 2-x +1,因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎝⎛⎭⎫-∞,67.命题点3给定参数范围的恒成立问题例5若mx 2-mx -1<0对于m ∈[1,2]恒成立,则实数x 的取值范围为________. 答案⎝⎛⎭⎪⎫1-32,1+32 解析设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32.思维升华 (1)解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题常见的类型有两种,一是在全集R 上恒成立,二是在某给定区间上恒成立.对第一种情况恒大于0就是相应的二次函数的图象全部在x 轴上方,恒小于0就是相应的二次函数的图象全部在x 轴下方;对第二种情况,要充分结合函数图象进行分类讨论(也可采用分离参数的方法). 跟踪训练2 (1)若不等式ax 2-x +a >0对一切实数x 都成立,则实数a 的取值范围为() A .a <-12或a >12B .a >12或a <0C .a >12D .-12<a <12答案C解析当a =0时,-x >0不恒成立,故a =0不合题意;当a ≠0时,⎩⎨⎧a >0,Δ<0即⎩⎪⎨⎪⎧a >0,1-4a 2<0.解得a >12.(2)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是() A .(-∞,4] B .(-∞,-5) C .(-∞,-5] D .(-5,-4) 答案C解析令f (x )=x 2+mx +4, ∴x ∈(1,2)时,f (x )<0恒成立,∴⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0,即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0,解得m ≤- 5.设方程ax 2+bx +c =0(a ≠0,Δ>0)有不相等的两根为x 1,x 2,且x 1<x 2,相应的二次函数为f (x )=ax 2+bx +c ,方程的根即为二次函数的图象与x 轴交点的横坐标,它们的分布情况见下面各表(每种情况对应的均是充要条件).表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0(x 1<0,x 2<0)两个正根即两根都大于0(x 1>0,x 2>0)一正根一负根即一个根小于0,一个根大于0(x 1<0<x 2)大致图象(a >0)得出的结论错误!错误!f(0)<0 大致图象(a<0)得出的结论错误!错误!f(0)>0综合结论(不讨论a)错误!错误!a·f(0)<0 表二:(两根与k的大小比较)分布情况两根都小于k即x1<k,x2<k 两根都大于k即x1>k,x2>k一个根小于k,一个根大于k即x1<k<x2大致图象(a>0)得出的结论错误!错误!f(k)<0 大致图象(a<0)得出的结论错误!错误!f(k)>0综合结论(不讨论a)错误!错误!a·f(k)<0 表三:(根在区间上的分布)分布情况两根都在(m ,n )内两根有且仅有一根在(m ,n )内(图象有两种情况,只画了一种)一根在(m ,n )内,另一根在(p ,q )内,m <n < p <q大致图象(a >0)得出的结论错误!f (m )·f (n ) <0错误!或错误!大致图象(a <0)得出的结论错误!f (m )·f (n ) <0错误!或错误!综合结论(不讨论a )错误!f (m )·f (n ) <0错误!根在区间上的分布还有一种情况:两根分别在区间(m ,n )外,即在区间两侧x 1<m ,x 2>n ,(图形分别如下)需满足的条件是(1)a >0时,⎩⎪⎨⎪⎧f (m )<0,f (n )<0;(2)a <0时,⎩⎨⎧f (m )>0,f (n )>0.对以上的根的分布表中,两根有且仅有一根在(m ,n )内有以下特殊情况:(ⅰ)若f (m )=0或f (n )=0,则此时f (m )·f (n )<0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间(m ,n )内,从而可以求出参数的值.如方程mx 2-(m +2)x +2=0在区间(1,3)上有一根,因为f (1)=0,所以mx 2-(m +2)x +2=(x -1)(mx -2),另一根为2m ,由1<2m <3得23<m <2即为所求; (ⅱ)方程有两个相等的根,且这个根在区间(m ,n )内,即Δ=0,此时由Δ=0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数.如方程x 2-4mx +2m +6=0有且只有一根在区间(-3,0)内,求m 的取值范围.分析:①由f (-3)·f (0)<0即(14m +15)(m +3)<0得出-3<m <-1514;②由Δ=0即16m 2-4(2m +6)=0得出m =-1或m=32,当m =-1时,根x =-2∈(-3,0),即m =-1满足题意;当m =32时,根x =3∉(-3,0),故m =32不满足题意.综上分析,得出-3<m <-1514或m =-1. 例1已知二次方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,求实数m 的取值范围. 解设f (x )=(2m +1)x 2-2mx +(m -1), 由(2m +1)·f (0)<0,即(2m +1)(m -1)<0, 解得-12<m <1,即m 的取值范围为⎝⎛⎭⎫-12,1.例2已知方程2x 2-(m +1)x +m =0有两个不等正实根,求实数m 的取值范围. 解设f (x )=2x 2-(m +1)x +m ,由⎩⎪⎨⎪⎧Δ>0,--(m +1)2×2>0,f (0)>0⇒⎩⎨⎧(m +1)2-8m >0,m >-1,m >0⇒⎩⎨⎧m <3-22或m >3+22,m >0⇒0<m <3-22或m >3+22, 即m 的取值范围为(0,3-22)∪(3+22,+∞).例3已知二次函数f (x )=(m +2)x 2-(2m +4)x +3m +3与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围. 解由(m +2)·f (1)<0,即(m +2)·(2m +1)<0⇒-2<m <-12,即m 的取值范围为⎝⎛⎭⎫-2,-12. 课时精练1.已知集合A ={x |x 2-x -2<0},B ={x |x 2+3x <0},则A ∩B 等于() A .(0,2) B .(-1,0) C .(-3,2) D .(-1,3) 答案B解析A ={x |-1<x <2},B ={x |-3<x <0}, ∴A ∩B =(-1,0).故选B.2.若0<t <1,则关于x 的不等式(t -x )⎝⎛⎭⎫x -1t >0的解集为()A.⎩⎨⎧⎭⎬⎫x ⎪⎪1t <x <t B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t 答案D解析原不等式可化为(x -t )⎝⎛⎭⎫x -1t <0, ∵0<t <1,∴t <1t,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t . 3.(2020·廊坊调研)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集为(-1,3),那么不等式f (-2x )<0的解集为()A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞ B.⎝⎛⎭⎫-32,12 C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞ D.⎝⎛⎭⎫-12,32 答案A解析由f (x )=(ax -1)(x +b )>0的解集是(-1,3),则a <0,故1a =-1,-b =3,即a =-1,b =-3. ∴f (x )=-x 2+2x +3,∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,解得x >12或x <-32,故不等式f (-2x )<0的解集是⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞. 4.已知某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是() A .100台B .120台 C .150台D .180台 答案C解析由题设,产量为x 台时,总售价为25x ;欲使生产者不亏本,必须满足总售价大于等于总成本, 即25x ≥3000+20x -0.1x 2,即0.1x 2+5x -3000≥0,x 2+50x -30000≥0, 解得x ≥150或x ≤-200(舍去).故欲使生产者不亏本,最低产量是150台.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是()A .(-2,-1)B .(-3,-6)C .(2,4) D.⎝⎛⎭⎫-3,-32 答案AD解析不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,∴方程(ax -b )(x -2)=0的实数根为12和2,且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,故选AD. 6.(多选)已知函数f (x )=x 2+ax +b (a >0)有且只有一个零点,则() A .a 2-b 2≤4 B .a 2+1b≥4C .若不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则c =4 答案ABD解析因为f (x )=x 2+ax +b (a >0)有且只有一个零点,故可得Δ=a 2-4b =0,即a 2=4b >0. 对于A ,a 2-b 2≤4等价于b 2-4b +4≥0, 显然(b -2)2≥0,故A 正确; 对于B ,a 2+1b =4b +1b≥24b ×1b =4,当且仅当4b =1b >0,即b =12时,等号成立,故B 正确;对于C ,因为不等式x 2+ax -b <0的解集为(x 1,x 2),故x 1x 2=-b <0,故C 错误;对于D ,因为不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则方程x 2+ax +b -c =0的两根为x 1,x 2,故可得(x 1+x 2)2-4x 1x 2=a 2-4(b -c )=4c =2c =4,故可得c =4.7.不等式x +2x -1>2的解集为________.答案{x |1<x <4}解析原不等式可化为x +2x -1-2>0,即(x +2)-2(x -1)x -1>0,即4-x x -1>0,即(x -1)(x -4)<0,解得1<x <4, ∴原不等式的解集为{x |1<x <4}.8.一元二次方程x 2-(k -2)x +k +1=0有一正一负实数根,则k 的取值范围是________. 答案(-∞,-1)解析依题意⎩⎪⎨⎪⎧Δ=(k -2)2-4(k +1)>0,k +1<0,解得k <-1.9.若对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,则x 的取值范围是________. 答案(-∞,1)∪(3,+∞)解析f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4. 令g (m )=(x -2)m +x 2-4x +4,由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)(-1)+x 2-4x +4>0,g (1)=(x -2)×1+x 2-4x +4>0⇒x <1或x >3.10.关于x 的不等式x 2-(a +1)x +a <0的解集中恰有两个整数,则实数a 的取值范围是________. 答案[-2,-1)∪(3,4]解析不等式x 2-(a +1)x +a <0, 可化为(x -1)(x -a )<0,当a =1时,不等式为(x -1)2<0,解集为∅,舍去,当a >1时,不等式的解集为{x |1<x <a },则3<a ≤4, 当a <1时,不等式的解集为{x |a <x <1}, 则-2≤a <-1,综上有-2≤a <-1或3<a ≤4.11.已知关于x 的不等式-x 2+ax +b >0. (1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.解(1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×(-4)=-b ,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅; 当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1); 当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅;当a >-2时,不等式的解集为(-1,a +1).12.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y 元,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10260元,求x 的取值范围.解(1)由题意得,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0, 解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.13.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2021-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是()A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d 答案D解析f (x )=2 021-(x -a )(x -b )=-x 2+(a +b )x -ab +2 021,又f (a )=f (b )=2 021,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.14.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是()A.⎝⎛⎭⎫-235,+∞B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎤-∞,-235 答案A解析由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235.15.已知二次函数f (x )=-x 2+2x +3,不等式f (x )≥m 的解集的区间长度为6(规定:闭区间[a ,b ]的长度为b -a ),则实数m 的值是________.答案-5解析不等式f (x )≥m 可化为x 2-2x -3+m ≤0,令x 2-2x -3+m ≤0的解集为{x |x 1≤x ≤x 2},则x 2-x 1=6,∵⎩⎪⎨⎪⎧x 1+x 2=2,x 1·x 2=m -3, 又∵(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=36,∴4-4(m -3)=36,即m =-5.16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围. 解(1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎨⎧ 0+5=-b 2,0×5=c 2,解得⎩⎪⎨⎪⎧b =-10,c =0. 所以f (x )=2x 2-10x .不等式组⎩⎪⎨⎪⎧ f (x )>0,f (x +k )<0, 即⎩⎪⎨⎪⎧2x 2-10x >0,2(x 2+2kx +k 2)-10(x +k )<0, 解得⎩⎪⎨⎪⎧x <0或x >5,-k <x <5-k , 因为不等式组的正整数解只有一个,可得该正整数解为6,可得6<5-k ≤7,解得-2≤k <-1,所以k 的取值范围是[-2,-1).(2)tf (x )≤2,即t (2x 2-10x )≤2,即tx 2-5tx -1≤0,当t =0时显然成立,当t >0时,有⎩⎪⎨⎪⎧ t ·1-5t ·(-1)-1≤0,t ·1-5t ·1-1≤0, 即⎩⎪⎨⎪⎧t +5t -1≤0,t -5t -1≤0,解得-14≤t ≤16,所以0<t ≤16; 当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增, 所以只要其最大值满足条件即可,所以t -5t -1≤0,解得t ≥-14,即-14≤t <0, 综上,t 的取值范围是⎣⎡⎦⎤-14,16.。
《一元二次不等式的解法》教学设计
基本信息名称《一元二次不等式的解法》教学设计执教者课时1 所属教材目录选修4-5教材分析本节课内容起到了承上启下的作用,地位体现在它的基础性,作用体现在它的工具性。
一元二次不等式的解法不仅是初中一元一次方程、一次函数和二次函数内的容延续和深化,更对已学习过的集合知识的巩固和运用具有重要的作用。
许多问题的解决都会借助一元二次不等式的解法。
学情分析高一聋生对初中部分涉及到的一次函数与二次函数的知识掌握较好,并学习了集合的定义,对本节内容能结合教师的引导、自主探究,能充分地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念。
教学目标知识与能力目标熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。
过程与方法目标培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,通过观察、类比、归纳进一步提高“从具体到抽象”、“从一般到特殊”的能力。
情感态度与价值观目标在教师的启发引导下,让学生通过观察、联想、分析、归纳、总结,根据自身认知规律,按照循序渐进,因材施教的教学原则,使学生亲自体验获得知识的过程,体会由被动到主动的快乐,激发他们求知的兴趣。
教学重难点重点一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
难点一元二次方程、一元二次不等式与二次函数的关系。
教学策略与设计说明将采用联系对比法、启发法、讨论法、类比法等教学方法并辅以多媒体课件演示。
结合各种教学手法,让学生学会独立发现问题,解决问题,利用联想“旧知”对比“新知”完成本节课的教学目标,解决教学重难点。
教学过程教学环节(注明每个环节预设的时间)教师活动学生活动设计意图1.创设情景,自主探究。
(8分钟)请学生们解一元二次方程:x2-x-6=0求解完后教师将上述方程中“=”改成“>”,就得到一元二次不等式x2-x-6>0解方程学生计算,观察图象。
一元二次不等式的解法
尉氏县民开中学数学论文论文名称一元二次不等式的解法教研组高中数学组姓名李慧云目录引言: (1)一、一元二次不等式的概念 (1)二、一元二次不等式的传统解法 (1)2.1 解法一分类讨论法 (1)2.2 解法二配方法 (2)2.3 解法三利用函数图像求解 (2)三、不等式的非传统解法 (3)序轴标根法 (3)判别方法 (5)一元二次不等式的解法引言:一元二次不等式的解法是初中学习的内容,作为高中生应该是能直接熟练运用的,但是在教学过程中发现,并不是每一位学生都会接一元二次不等式,甚至有学生会问,老师,由x²﹤1怎么求出了-1﹤x﹤1?以前没学过。
这就说明在以前的学习过程中,教师的教学方法出现了纰漏,导致有相当一部分学生学习的知识上出现了空白。
也正因为如此,本篇文章就一元二次不等式的解法展开探析就有了必要性和急迫性。
希望由此,可以让学生们揭开一元二次不等式的神秘面纱。
一、一元二次不等式的概念含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式。
它的一般形式是ax²+bx+c>0 或ax²+bx+c<0(a不等于0)其中ax²+bx+c是实数域内的二次三项式。
二、一元二次不等式的传统解法2.1 解法一:分类讨论法当△=b²-4ac≥0时,二次三项式,ax²+bx+c有两个实根,那么ax²+bx+c总可分解为a(x-x1)(x-x2)的形式。
这样,解一元二次不等式就可归结为解两个一元一次不等式组。
一元二次不等式的解集就是这两个一元一次不等式组的解集的交集。
举例:试解一元二次不等式2x²-7x+6<0解:利用十字相乘法2x -3x-2得(2x-3)(x-2)<0然后,分两种情况讨论:1)2x-3<0,x-2>0得x<1.5且x>2。
不成立2)2x-3>0,x-2<0得x>1.5且x<2。
3.2《一元二次不等式及其解法》(人教版必修5)好
ax2+bx+c>0 或 (a>0)的解集 {x|x<x1,或 x>x2} 的解集 ax2+bx+c<0 (a>0)的解集 {x|x1< x <x2 } 的解集
b {x|x≠ − } 2a
R Φ
ks5u精品课件
Φ
求解一元 二次不等式 ax2+bx+c>0 (a>0)的程序 的程序 框图: 框图
△≥0
b x≠− 2a
ks5u精品课件
x< x1或x> x2
题2:解不等式4x2-4x +1>0 解不等式4
因为△ 解: 因为△= 16 -16 =0 方程 4 x2 - 4x +1=0 的解是 x1=x2=1/2 故原不等式的解集为{ 故原不等式的解集为 x| x ≠ 1/2 } 另解:由于4 另解:由于4x2-4x+1 =(2x-1)2≥0
2
{
{
x
x
2
− 16 > 0
x2 − 4x + 3 > 0
2
或
− 16 < 0 x2 − 4x + 3 < 0
返回
ks5u精品课件
习题3.2
A组 第2题 B组 第2题
ks5u精品课件
返回
ks5u精品课件
解 于 等 x − ax − 2a < 0. 关 x不 式
2 2
方程x 2 − ax − 2a 2 = 0.的判别式∆ = a 2 + 8a 2 = 9a 2 ≥ 0
得方程的两根为x1 = 2a, x2 = − a. (1)若a > 0, 则 − a < x < 2a
一元二次不等式的解法 解题步骤有哪些
一元二次不等式的解法解题步骤有哪些一元二次不等式是数学中比较简洁的一个考点,但是同学们在平常也要多加练习,在考试时更要仔细审题,避开丢分。
下面是一元二次不等式的解法及留意事项,一起来看吧!一元二次不等式的解法解一元二次不等式的一般步骤:1、对不等式变形,使一端为0且二次项系数大于0,即ax2+bx +c>0(a>0),ax2+bx+c<0(a>0);2、计算相应的判别式;3、当Δ≥0时,求出相应的一元二次方程的根;4、依据对应二次函数的图象,写出不等式的解集。
解一元二次不等式应留意的问题:1、在解一元二次不等式时,要先把二次项系数化为正数。
2、二次项系数中含有参数时,参数的符号会影响不等式的解集,争论时不要遗忘二次项系数为零的状况。
3、解决一元二次不等式恒成立问题要留意二次项系数的符号。
4、一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同。
一元二次不等式的例题及答案已知f(x)=-3x2+a(6-a)x+b.(1)解关于a的不等式f(1)0;(2)若不等式f(x)0的解集为(-1,3),求实数a,b的值. 解:(1)∵f(1)0,∵-3+a(6-a)+b0,即a2-6a+3-b0.Δ=(-6)2-4(3-b)=24+4b.①当Δ≤0,即b≤-6时,原不等式的解集为∵.②当Δ0,即b-6时,方程a2-6a+3-b=0有两根a1=3-6+b,a2=3+6+b,∵不等式的解集为(3-6+b,3+6+b).综上所述:当b≤-6时,原不等式的解集为∵;当b-6时,原不等式的解集为(3-6+b,3+6+b). (2)由f(x)0,得-3x2+a(6-a)x+b0,即3x2-a(6-a)x-b0.∵它的解集为(-1,3),∵-1与3是方程3x2-a(6-a)x-b=0的两根.∵-1+3=a(6-a)3,-1×3=-b3,解得a=3-3,b=9或a=3+3,b=9.。
一元二次不等式与简单的分式不等式的解法
一元二次不等式与简单分式不等式的解法知识梳理1.一元一次不等式的解法一元一次不等式ax>b(a≠0)的解集为(1)当a>0时,解集为{x|x>b a}.(2)当a<0时,解集为{x|x<b a}.2. 一元二次不等式的解法判别式Δ=b2-4acΔ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c(a>0) 图象一元二次方程的根有两相异实根x1=-b-Δ2a,x2=-b+Δ2a有两相等实根x1=x2=-b2a无实根ax2+bx+c>{x|x<x1或x{x|x≠-b2a,x R0(a>0)的解集>x2} ∈R}ax2+bx+c<0(a>0){x|x1<x<x2} ∅∅口诀:大于取两边,小于取中间.3.分式不等式的解法(1)f(x)g(x)>0f(x)·g(x)>0,f(x)g(x)<0f(x)·g(x)<0;(2)f(x)g(x)≥0⎩⎪⎨⎪⎧f(x)·g(x) ≥0,g(x)≠0,,f(x)g(x)≤0⎩⎪⎨⎪⎧f(x)·g(x) ≤0,g(x)≠0,;(3)f(x)g(x)>mf(x)g(x)-m>0f(x)-m·g(x)g(x)>0.4.简单高次不等式解法对于简单高次不等式一般用序轴标根法求解,步骤是先求出各表达式为零时的根,再作图求解.作图口诀:“自右向左,自上向下,奇穿偶不穿”,其中“奇穿偶不穿”含义为,若对应根对应根为奇数个,则穿过该点,如果为偶数个,则作图时不穿过该点.例如解不等式x (x-1)2(x-2)3>0,在作图时,由于0,2这两个根分别是1个、3个,有奇数个根,因此作图时应穿过;而1这个根有2个,也就是有偶数个,因此作图时不穿过,如下图所示:由图知不等式x (x -1)2(x -2)3>0解集为{x |x <0或x >2}.5.几点注意事项(1)对于不等式ax 2+bx +c >0(或>0),若二次项含有字母参数时,不一定是二次不等式,要分a =0和a ≠0讨论.(2)解分式不等式f (x )g (x )>m 时,不要直接在不等式两边同乘以分母,因为此时g (x )正负不确定.正确做法是移项将右边化为0,即化为f (x )g (x )-m >0,然后通分求解. 典例剖析题型一 一元二次不等式解法例1 解下列不等式(1)-3x 2-2x +8≥0;(2) x 2-3x +2≥0;解析 (1)原不等式可化为3x 2+2x -8≤0,即(3x -4)(x +2)≤0.解得-2≤x ≤43, 所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2≤x ≤43. (2) 原不等式可化为(x -1)(x -2)≥0,解得x ≤1或x ≥2. 所以原不等式的解集为{x | x ≤1或x ≥2}.变式训练 解不等式0<x 2-x -2≤4解析 原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -6≤0 ⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧ x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3.解题要点 求解一元二次不等式时,一般先通过变形,将不等式右边化为0,左边x 2前系数化为正,求出根或因式分解后借助口诀“大于取两边,小于取中间”写出解集.题型二 分式不等式解法例2 不等式x -3x -1≤0的解集为________. 答案 {x |1<x ≤3}解析 原不等式可化为⎩⎪⎨⎪⎧ (x -3)(x -1)≤0,x ≠1,∴1<x ≤3.变式训练 函数f (x )= 1-x x +2的定义域为________. 答案 (-2,1]解析 1-x x +2≥0⇔x -1x +2≤0 ⇔⎩⎪⎨⎪⎧ (x -1)(x +2)≤0,x +2≠0⇔⎩⎪⎨⎪⎧ -2≤x ≤1,x ≠-2⇔-2<x ≤1.解题要点 求解分式不等式时,需要将各个因式x 前系数化为正,然后也可以借助口诀“大于取两边,小于取中间”写出解集.但应注意等号问题,分母不可为0.题型三 一元二次不等式与一元二次方程根之间关系问题 例3 关于x 的不等式x 2+(a +1)x +ab >0的解集是{x |x <-1或x >4},则a +b =________.答案 -3解析 由题意知,-1,4为方程x 2+(a +1)x +ab =0的两根,∴ a +1=-3,ab =-4.∴ a =-4,b =1.∴ a +b =-3.变式训练 已知f (x )=ax 2-x -c ,不等式f (x )>0的解集为{x |-2<x <1},则a =________,c =________.答案 -1,-2 解析 由根与系数的关系知1a =-2+1,-c a=-2,得a =-1,c =-2.解题要点 解决这类习题关键是理解三个二次之间的关系,一元二次函数与x 轴交点的横坐标即为对应一元二次方程的根,利用一元二次方程的根,结合函数图象就可以求出对应一元二次不等式.因此反过来,由一元二次不等式的解集,可以得到对应的一元二次方程的根,结合根与系数关系即可求出参数值. 题型四 一元二次不等式恒成立问题例4 若不等式mx 2-2x -1<0恒成立,则m 的取值范围是________.答案 (-∞,-1)解析 由⎩⎪⎨⎪⎧m <0(-2)2-4m (-1)<0,解得m <-1.变式训练 已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为______________.答案 (-∞,-2)∪(2,+∞)解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2,∴k >2或k <- 2.解题要点 一元二次不等式恒成立的条件(1)不等式ax 2+bx +c >0对任意实数x恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧ a <0,Δ<0.题型五 含参数一元二次不等式解法例5 解关于x 的不等式x 2-2ax -3a 2>0(a ∈R ,a ≠0) 解析 由x 2-2ax -3a 2>0知(x -3a )(x +a )>0.由于a ≠0故分a >0与a <0讨论.当a <0时,x <3a 或x >-a ;当a >0时,x <-a 或x >3a .综上,a <0时,解集为{}x |x <3a 或x >-a ;a >0时,解集为{}x |x >3a 或x <-a .解题要点 对含参数一元二次不等式主要分三种讨论: 讨论二次项系数、讨论Δ,讨论两根的大小,具体如下:(1)当二次项系数含有参数应讨论是系数等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)当确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.当堂练习1.(2015江苏)不等式2x 2-x <4的解集为________.答案 {x |-1<x <2}解析 ∵2x 2-x <4=22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.2.不等式x -2x 2-1<0的解集为________. 答案 {x |x <-1或1<x <2}解析 (x -2)(x 2-1)<0,(x +1)(x -1)(x -2)<0,数轴标根可得,x <-1或1<x <2.3. 不等式x -1x +2<0的解集为________. 答案 (-2,1)解析 原不等式化为(x -1)(x +2)<0,解得-2<x <1,∴原不等式的解集为(-2,1).4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.答案 (2,3)解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).5.若关于x 的不等式12x 2+(2-m )x <0的解集是{x |0<x <2},则实数m =________.答案 3解析 由题知x =0或x =2是方程12x 2+(2-m )x =0的根,可得m =3.课后作业一、 填空题1.不等式x -12x +1≤0的解集为________. 答案 ⎝ ⎛⎦⎥⎤-12,1 解析 不等式x -12x +1≤0⇒⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0⇒-12<x ≤1. 2.不等式(x -1)x +2≥0的解集为________.答案 {x |x ≥1或x =-2}解析 由(x -1)x +2≥0,可知⎩⎪⎨⎪⎧ x +2>0,x -1≥0或x +2=0,解得x ≥1或x =-2.3.若0<m <1,则不等式(x -m )(x -1m)<0的解集为________. 答案 {x |m <x <1m }解析 当0<m <1时,m <1m. 4.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为________.答案 {x |-1<x <12} 解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理⎩⎪⎨⎪⎧ -1+2=-b a ,(-1)×2=2a ⇒⎩⎪⎨⎪⎧ a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0.可知x =-1,x =12是对应方程的根,∴不等式2x 2+bx +a <0的解集为{x |-1<x <12}. 5.若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为________.答案 ⎝ ⎛⎭⎪⎫-43,1 解析 由不等式ax 2+bx +c >0的解集为(-4,1)知a <0,-4和1是方程ax 2+bx +c =0的两根,所以-4+1=-b a ,-4×1=c a ,即b =3a ,c =-4a .故所求解的不等式为3a (x 2-1)+a (x +3)-4a >0,即3x 2+x -4<0,解得-43<x <1.。
3一元二次不等式的解法
设f(x)=ax2+bx+c(a>0),判别式△=b2-4ac
判别式
方程f(x)=0的 解 函数y=f(x)示 意图 不等 f(x) >0 式的 解集 f(x) <0
△>0
△=0
△<0
一元二次不等式的解法 判别式 △=b2- 4ac △>0 y
△=0
y x2 x O x1 x
△<0
y
解:方程x2-4x+5>0无实数解 作函数图象的草图
5
y
所以,不等式的解集是R
o
2
x
例题讲解
例4 解不等式x2-6x-7>0 y
解:方程x2-6x-7=0的解是
x1 1, x2 7
作函数图象的草图 所以,不等式的解集是 {x | x<-1 或 x > 7 }
-1 o
7
x
练习1.解不等式 4x2-4x+1 > 0
-2
1 3
o 1
3
x
所以,不等式的解集是
{x | x<-2 或 x > }
例题讲解
例2 解不等式9x2-6x+1>0
解:方程9x2-6x+1=0有两个相 同的实数解
1 x1 x 2 3
y
作函数图象的草图 所以,不等式的解集是 {x | x≠
1 3
o 1
3
1
x
}
例题讲解
例3 解不等式x2-4x+5>0
求解一元 二次不等式 ax2+bx+c>0 (a>0)的程序 框图:
△≥0
b x 2a
x< x 1或 x> x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课时 一元二次不等式的解法3
高二数学 陈晓娟
【学习目标】
1、知识与技能:
1.进一步理解二次函数、一元二次方程与一元二次不等式的关系,逐步提高自己的运算能力和逻辑思维能力.
2.掌握含有参数的一元二次不等式的解法及一元二次不等式的解的逆向问题.
2、过程与方法:
经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解。
3、情感态度与价值观:
理解一元二次方程、一元二次不等式与二次函数的关系,掌握图像法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力。
【重点难点】
含有参数的一元二次不等式的解法.
【教学过程】
一、知识链接
回忆一元二次不等式与相应的二次函数及一元二次方程之间的联系,写出解一元二次不等式的基本步骤.
预习自测
1.设A,B 分别是不等式x x 19632≤+与不等式05322>++-x x 的解集,试求B A B A ⋃⋂,
2.解关于x 的不等式0)2()1(22<+++-a a x a x .
1.求不等式
的整数解集.
2.已知不等式o c x ax >++52的解集为)2
1,31(,求c a ,的值
3.若对任意实数x,不等式
恒成立,求k 的取值范围.
1.已知不等式)0(2≠<++a o c bx ax 的解集为空集,则( )
A. o a >∆<,0
B. o a ≤∆<,0
C. o a ≤∆>,0
D. o a >∆>,0
2.若不等式o c bx ax ≥++2的解集为}23
1|{≤≤-x x ,求不等式o a bx cx <++2的解集.
3.解关于x 的不等式0)(322<++-m x m m x
课后作业
完成导学案当堂检测。