一元二次不等式的解法PPT课件

合集下载

一元二次不等式的解法-PPT课件

一元二次不等式的解法-PPT课件
b x x a
一元一次不等式 b b x x x x ax+b>0的解集 a a 一元一次不等式 x x b b x x a a ax+b<0的解集
3、2 一元二次不等式的解法
解不等式 (写出相应的一元二次方程及一元二次不等式的解集) 方程 的解集为 不等式 的解集为 求不等式 的解集 2 不等式 的解集为 x x 6 0 2 x 2 x 3 观察函数 y x x 6 0 的图象
yx x6
2
-2
的解集
不等式 2
ax bx cx x x x 1 2


<0的解集


3、2 一元二次不等式的解法
例1 求不等式 解:注意到
4 x 4 x 1
2
>0的解集
1 x x 2
2 4 x 4 x 1= 2x 1 2≥0
所以原不等式的解集为
x 例2 求不等式 解:不等式可化为
2 (3) 4 x 4 x 1 <0 2 2、若代数式 6 的值恒取非负数,则实数x的 x x 2 取值范围是 2 1
1 x x 2 0 , 开口向上 , 图象与 x 轴无交点 ,x R 3
x 3 x 5>0
2

x x 或 x 3 2
0
3
x
3、2 一元二次不等式的解法
讨论一元二次不等式 与 (a>0) 如果相应的一元二次方程 分 别有两个不等实根、两个相等实根、无实根, 其对应的二次函数 的 图象与x轴的位置关系如何? 二次函数的图象开口向上且分别与x轴交于两 点、一点及无交点.

高中数学 一元二次不等式及解法 PPT课件 图文

高中数学 一元二次不等式及解法 PPT课件 图文

y<0
O x1
x
有两相异实根 x1, x2 (x1<x2)
有两相等实根 b
x1=x2= 2 a
{x|x<x1,或 x>x2}
b {x|x≠ 2 a }
{x|x1< x <x2 }
Φ
△<0 y
y>0
x O 没有实根
R Φ
函数 、方程、不等式的关系
a<0时如何求解呢?
自主练习
1.下列是关于x的一元二次不等式化为(x+2a)(x-a)<0 对应的一元二次方程的根为x1=a,x2=-2a, (1)当a>-2a,即a>0时,-2a<x<a, (2)当a=-2a,即a = 0时,原不等式化为x^2<0,无解, (3)当a<-2a, 即a<0时, a<x<-2a. 综上所述,原不等式的解集为: 当a>0时,{x|-2a<x<a} 当a=0时, ∅ 当a<0时,{x|a<x<-2a}
A.(-3,2) B.(2,+∞) C.(-∞,-3)∪(2,+∞) D.(-∞,-2)∪(3,+∞) 解析:不等式的解集是(-∞,-3)∪(2,+∞),故
选C. 答案: C
课堂 讲 义
求解一元二次不等式
例一 求下列一元二次不等式的解集:
(1)-x2+5x<-6
解:原不等式可化为 x2-5x-6>0
集。
变式训练
求下列不等式的解集:
(1)-2x2+3x+2 ≤ 0;
{ x|x2或 x 2 }
y x1 O x2 x
变式训练
(2)4x2+4x+1>0
{x
|x


1} 2
y
O x1
x
变式训练

高考一元二次不等式及其解法 课件(共51张PPT)

高考一元二次不等式及其解法 课件(共51张PPT)

(4)根据对应二次函数的图象,写出不等
式的解集.
栏目 导引
第六章
不等式与推理证明
例1
解下列不等式:
(1)2x2+4x+3>0; (2)-3x2-2x+8≥0;
(3)12x2-ax>a2(a∈R).
栏目 导引
第六章
不等式与推理证明
【思路分析】
首先将二次项系数转化
为正数,再看二次三项式能否因式分解, 若能,则可得方程的两根,大于号取两边, 小于号取中间;若不能,则再看“Δ”,利
法二比较简单.
栏目 导引
第六章
不等式与推理证明
【解】
(1)要使 mx2-mx-1<0 恒成立,
若 m=0,显然-1<0; 若 m≠0,
m<0 则 ⇒-4<m<0. 2 Δ=m +4m<0
所以-4<m≤0.
栏目 导引
第六章
不等式与推理证明
(2)要使 f(x)<-m+5 在[1,3]上恒成立,就是 12 3 要使 m(x- ) + m-6<0 在 x∈[1,3]上恒 2 4 成立. 有以下两种方法: 12 3 法一:令 g(x)=m(x- ) + m-6,x∈[1,3]. 2 4 当 m>0 时,g(x)在[1,3]上是增函数, 所以 g(x)max=g(3)=7m-6<0, 6 6 所以 m< ,则 0<m< ; 7 7
栏目 导引
第六章
不等式与推理证明
-∞,-1 ∪(1,+∞). ∴不等式的解集为 2
-∞,-1 ∪(1,+∞) 答案: 2
栏目 导引
第六章
不等式与推理证明
5.已知(ax-1)(x-1)>0的解集是{x|x<1 或x>2},则实数a的值为________.

一元二次不等式的解法PPT优秀课件

一元二次不等式的解法PPT优秀课件
2 2 2
一元二次方程 x x20 ,三者之间有什 关系
想一想
2
f x x x 2
2
x x20 x2 x 2 0
y
在初中学习二次函数时, 我们曾解决过这样的问题: 对二次函数y=x2-x-2, 当x为何值时,y=0?
-1
o
2
x
当x为何值时,y<0?
当x为何值时,y>0?
2

巩固练习
判断下列式子是不是一元二次不等式?
1 (1) x 5 x
( 2 ) xy 3 0
2
4 )x 3 x x ( x 1 ) ( 3 ) ( x 2 )( x 3 ) 0(
寻觅方法,解:
代数方法:
x x 2 0
2
x 2 x 1 0
3.2一元二次不等式的解法
现在有一家商店对某种成本价为650元的电视机有一个促销活 商品促销
动:
买一台电视机,单价950元; 买两台,单价是900元; 依次类推,每多买一台,单价降低50元。 要使商店保持每次交易赢利大于200元,
问每人最多买几台?
一元二次不等式
一个整式不等式,若只含有一个未知数,并且未知数
你还能写出多少个?
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]

人教版九年级上册数学课件:一元二次不等式的解法(共29张PPT)

人教版九年级上册数学课件:一元二次不等式的解法(共29张PPT)

b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
二次函数y=ax2+bx+c的图象和x轴交点
Y △<0
△=0 △>0
O
X
探究:利用二次函数图像解一元二次不等式
根据 y x2 2x 3 图象回答下列问题.
• 当 x 取何值时,y=0?
y
1、当 x 取何值时,y<0?
2、当 x 取何值时,y>0?
-1
能否用含有x的不等式来描
3
x
述两个问题?
y=x2-2x-3
探利究用:二次你函能数用图二像解次一函元数二y次=不x2等-2式x-3的
图象求解不等式 x2-2x-3>0和x2-2x-
3 < y04 吗? 3 2
N1
M
-3 -2 -1 0 1 2 3 x
-1
-2
-3
利用二次函数图像解一元二次不等式
-3x2 +6x - 2>0
方 程3 x 2 6 x 2 0的 解 是
y
1
3 3
x
x1 1
3 3
,
x2 1
3 3
原不等式的的解集是
o 1
3 3
x 1
3 3
{x1
3 3

x 1
3 3
}
3) 4x2 -4x + 1>0
解 : 0
方 程4 x 2 4 x 1 0的 解 是
探究
已知二次函数y=-x2+3x+4的图象如图;
y
(1)x方=程-1-,xx2+=34x+4=0的解
4
是__ ___

《一元二次不等式及其解法》示范公开课教学PPT课件pptx

《一元二次不等式及其解法》示范公开课教学PPT课件pptx
定义:含有一个未知数且未知数最高次数为2次的不等式叫做一元二次不等式。
重要性:一元二次不等式在数学中有着重要的地位,是解决许多实际问题的基础。 表达式:一般地,一元二次不等式可以表示为ax^2+bx+c>0或ax^2+bx+c<0,其 中a、b、c是常数且a≠0。
解法:求解一元二次不等式可以通过配方法、图像法、公式法等多种方法进行求解。
添加 标题
化学:在化学中,一元二次不等式可以用来描 述化学反应过程中各物质的浓度变化情况,也 可以用来进行化学分析、计算等。
一元二次不等式的解法
一元二次不等式的解法公式及步骤
公式:$ax^{2} + bx + c = 0$, 其中a、b、c为系数,$\Delta = b^{2} - 4ac$
步骤2:判断不等式的解集
一元二次不等式在数学中的地位
概念:一元二次 不等式是指形如 ax^2+bx+c>0
或 ax^2+bx+c<0
的不等式
重要性:一元二 次不等式是中学 数学中一个重要 的内容,它与一 元二次方程、二 次函数等有着密
切的联系
解题思路:通过 观察和计算,确 定不等式的解集, 掌握解一元二次
不等式的方法
实际应用:一元 二次不等式在实 际生活中有着广 泛的应用,如环 境保护、金融投
题目难度适中,适合不同层次的学 生
覆盖知识点全面,体现一元二次不 等式的重点和难点
添加标题
添加标题
题量适当,避免过多或过少
添加标题
添加标题
题目类型多样,包括填空题、选择 题、解答题等
学生自主练习与思考
练习一元二次不等 式,掌握解题步骤

一元二次不等式解法PPT课件

一元二次不等式解法PPT课件
来解一元二次不等式是 个有效的方法.
下面我们再对一般的一元二次不等式 ax2+bx+c>0与ax2+bx+c<0来进行讨论.
首先讨论a>0的情形.请思考下列问题:
(1)如果相应的一元二次方程分别有 两个实根、唯一实根、无实根的话, 其相应的二次函数的图像与轴的位置 关系如何?
(2)请观察表中的二次函数的图像, 并写出相应的一元二次不等式的解集.
参考答案:
(1) {x | 1 x 2}
(2)
{x
3
|x
1

x
2}
2
3
(3)
(4) R
总结提练
(1)一元二次不等式的解集与一元二 次方程的解及其相应的二次函数的图 像相对于轴的位置密切相关.解题时要 注意解题格式,头脑中要想象图像或 划出草图. (2)对于a<0的一元二次不等式可转 化为a>0的情形求解. (3)一元二次不等式的解法是今后学 习其他不等式的基础,要求大家熟练 掌握解法,准确运算结果.
(x 1)(x 2)
x2 2 2
25 0
所以不等式的解集是{x
|
x
1
或x
2}.
2
请同学们看课本P19的例2~例4,并 在空白处画出相应的二次函数的草图.
演练反馈
1.解下列6x2-x+2≤0 (3)4x2+4x+1<0 (4)x2-3x+5>0
∆=b2-4ac ∆>0
二次函数 y
∆=0 ∆<0
y
y
y=ax2+bx+c 的图像
o ●x1
● x2 x
o●

一元二次不等式的解法ppt课件

一元二次不等式的解法ppt课件

_______
x∈R
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.
-c_≤
ax__
+_b__≤
c
①|ax+b|≤c⇔____
____
___;
≥_c__
或__ax
b≤-
c
②|ax+b|≥c⇔__ax
__+
__b
___
__+
_____
___.
绝对值不等式的解法
不等式3≤|5-2x|<9的解集为 ( D )
x-1≠0,
1
{x|x≥1或x<0}
不等式x ≤1 的解集为______________.
解析
xx-1≥0,
x-1
1
∴x≥1 或 x<0.
∵x ≤1,∴ x ≥0,∴x≠0,

分式不等式的解法
分式不等式的解法:
先通过移项、通分整理,再化成整式不等
式来解.
如果能判断出分母的正负,直接去分母即
A.[-2,1)∪[4,7)
B.(-2,1]∪(4,7]
C.(-2,-1]∪[4,7)
D.(-2,1]∪[4,7)



解二次不等式
① x 2x 3 0
判 别 式
△> 0
2
② 9x 6x 1 0 ③ x 4x 5 0
2
2
△= 0
△< 0
y
y
方程的根




y
O
含参问题
练. 设a∈R,解关于x的不等式 x2+ax+2>0.
解含参数的一元二次不等式的步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以 x 2或x 3
⑤根据图像写出不等式的解集。
所以原不等式的解集是 x x 2或x 3
.
4
练习1
解下列不等式 (1) (2)
.
6
1.探究一元二次不等式的解集
例1:- x2 x 6 0
解:不等式对应方程 - x2 x 6 0
12 - 4 - 1 6 25 0
方程有两根 x1 2,x 2 3
.
9

如果不等式对应的方程判别式 0 ,不等式又会如何?
同学们可以课下思考思考,下节课解答。
.
10
作业布置
• 训练与提高P28
.
11
总结解题过程: ①写出对应一元二次方程, ②判断该方程的判别式, ③求出根,
所以x 2或x 3
④在数轴上画出对应的二次函数简图,
所以原不等式的解集是 x x 2或x 3 ⑤根据图像写出不等式的解集。
.
7
例2练习2
• 例2:解不等式 5 x 2 4x 0
.
8
总结
• 利用二次函数图像解一元二次不等式体现了数学上的数形结合思想。 • 一元二次不等式的具体解题步骤如下: • ①写出对应的一元二次方程 • ②判断对应方程△与0的关系。 • ③求出对应方程的根。 • ④作函数简图 • ⑤根据函数图象写出不等式的解集
一元二次不等式的解法
周颖泓
.
1
定义
• 只含有一个未知数,并且未知数的最高次数是2的 不等式,叫作一元二次不等式.如:2x2-3x+1≤0
判断: (1)4x-5y<x2
(2)x3 x 6
(3)x2>1
.
2
一元二次不等式、一元二次方程、二次函数三者关系
2x2-3x+1≤0 2x2-3x+1=0 y=
例1:- x2 x 6 0
解:不等式对应方程 - x2 x 6 0
12 - 4 - 1 6 25 0
方程有两根 x1 2,x 2 3
总结解题过程: ①写出对应一元二次方程, ②判断该方程的判别式, ③求出根,
④在数轴上画出对应的二次函数简图,
相关文档
最新文档