第四章第2节直线、射线、线段同步练习

合集下载

人教版数学七年级上册4.2《直线、射线、线段》同步练习(有答案)

人教版数学七年级上册4.2《直线、射线、线段》同步练习(有答案)

4.2 直线、射线、线段 同步练习一、选择题1.如图所示,直线L 线段a 及射线OA ,能相交的图形是( ).A .○a 、○c 、○dB .○a 、○d 、○fC .○a 、○d 、○eD .○b 、○c 、○f 2.在下图中,不同的线段的条数是( ).A .4B .5C .10D .12 3.下图中共有线段( ).A .8条B .9条C .10条D .12条 4.A 、B 、C 不可能在同一条直线上的是( ).A .cm 2cm,6,cm 4===AC BC AB B .cm 13cm,5,cm 8===AC BC AB C .cm 12cm,7,cm 18===AC BC ABD .cm 6cm,9,cm 3===AC BC AB 5.如图,AB BD AB AC 41,31==,且CD AE =,则CE 为AB 长的( ).A .61B .81C .121D .1616.下列语句中正确的个数有( ).①直线MN 和直线NM 是同一条直线 ②射线AB 和射线BA 是同一条射线 ③线段PQ 和线段QP 是同一条线段 ④直线上一点把这条直线分成的两部分都是射线A .4个B .3个C .2个D .1个二、填空题1.过一点可以画__________条直线,过两点可以画______条直线,过三点不一定能画_______条直线.2.同一平面上四条直线两两相交最多有_________个交点,最少__________个交点.3.以平面上任意三点不共线的四个点中每个点为端点,通过另一个点画射线总共可画出_________条射线.4.在线段AB 上再添上________个点,能使线段AB 上共有15条不同的线段.5.如图,已知10,8==BD BC ,点D 是AC 的中点,则.________,==AC AB6.已知线段8.1=AB cm ,点C 在AB 的延长线上,BC AC 35=,则线段BC的长为______cm .7.如图,共有线段_________条.8.平面上的四条直线,交点的个数最多为_________个.9.经过一点的直线有________条,经过两点的直线有___________条.经过不在同一直线上的三点的每两点的直线共有________条.10.如图,已知D 是AB 的中点,C 在DB 上.AC =________+___________=_________-____________. CB =________-___________=_________-____________.11.线段AB =8cm ,M 是AB 的中点,N 是MB 的中点,则AN =______cm . 三、解答题1.已知16=AB cm ,点C 是AB 上一点,10=AC cm ,点M 是AC 的中点,点N 是BC 的中点,求线段MN 的长.2.如图,已知7:5:4::=CD BC AB ,且点E 是AB 的中点,点F 是CD 的中点,线段EF 长为105,求线段BC 的长.3.“经过两点有一条直线,并且只有一条直线”,根据这个公理,你知道过平面内三点中的每两点画一条直线,能画几条直线?过平面内的四个点呢?4.平面上有两点A 、B ,它们之间的距离为8cm ,分别就下列条件研究点P 的存在性及与线段AB 的位置关系.(1)点P 到A 、B 两点的距离之和为8cm ; (2)点P 到A 、B 两点的距离之和大于8cm ; (3)点P 到A 、B 两点的距离之和小于8cm .5.如图,是由20根火柴棒摆出的9个小正方形,请你移动3根火柴棒,使它变成5个正方形.6.已知线段AC 和BC 在同一条直线上,如果cm 4.2,cm 6.5==BC AC ,则线段AC 和线段BC 的中点间的距离是多少?7.延长线段AB 到C ,使AB BC 21=;反向延长AC 到D ,使AC AD 21=,若AB =8 cm ,则CD 的长是多少8.如图,已知C 是线段AB 的中点,D 是线段AC 上任一点(端点除外),试比较DB AD ⋅与CB AC ⋅的大小.9.(1)刚开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是为什么?(2)某村庄和小学校分别位于两条交叉的大路边,可是每年冬天麦田里总会走出一条小路来(如图),这是什么原因呢?10.往返于甲、乙两地的客车,中途停靠三个车站,问可设几种不同票价?要准备几种车票?11.天河宾馆在重新装修后,准备在大厅的主楼梯铺设某种红色地毯.已知主楼梯道宽3米,其侧面如图所示,地毯每平方米售价30元,则购买地毯至少需要多少钱?12.在屋檐悬挂的一个立方体上,一只蜘蛛想要查看立方体的每一个面上是否有苍蝇,它应该怎样爬过立方体的每一面,又能尽快返回原处休息呢?13.某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在同一条直线上,位置如图所示.该公司的接送车打算在此间只设一个停靠点.为使所有员工步行到停靠点的路程之和最小,你知道停靠点应设在哪里吗?14.小明只有一个没有刻度的三角板,他将一条线段两等分,你知道他是怎样做的吗?参考答案一、选择题1.C 2.C 3.B 4.C 5.C 6.B二、填空题1.无数,1,1,2.6,13.124.45.12,46.2.77.108.69.无数条,1,310.AD、DC、AB、BC、AB、AC、DB、DC.11.6三、解答题1.8cm2.503.应分点共线和不共线两种情况讨论.在3个点共线时,只能画1条;当3个点不共线时,能画3条;而4点共线时,也只能画1条,不共线时,可以画4条或6条直线4.(1)点P在线段AB上(2)点P在线段AB外(3)这样的点P不存在5.6.4cm或1.6cm7.1.8cm8.CB<⋅AD⋅BDAC9.(1)两点确定一条直线;(2)两点之间,线段最短10.10种,20种11.756克12.蜘蛛爬行的路线应是立方体展开图上的一条直线(如图)13.应设在A处14.用三角板等分一条线段,关键是要找出一个中点,可以画出长方形的对角线,沿没对角线的交点对折,如图所示,使AB和CD重合,用这种方法就可以将线段两等分。

人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。

4.2 直线、射线、线段同步练习测试卷

4.2  直线、射线、线段同步练习测试卷

4.2 直线、射线、线段第1课时直线、射线、线段【课前预习】1.直线的性质:经过两点有条直线,并且只有条直线.即两点确定条直线.2.当两条不同的直线有一个公共点时,我们就称这两条直线,这个公共点叫做它们的.线段射线直线图例端点个端点个端点个端点字母表示的位置个端点个端点和射线上任一点直线上任意点读法线段AB,线段BA,线段a射线(端点字母放前面)直线AB,直线BA,直线l延伸方向没有延伸向方无限延伸向方无限延伸【当堂演练】1.手电筒射出的光线,给我们的形象是()A.直线B.射线C.点D.折线2.如图,能相交的图形是()3.如图,图中线段和射线的条数分别为()A.一条,两条B.两条,三条C.三条,六条D.四条,三条4.如图,下列语句表达错误的是()A.直线l经过点A、点BB.点A、点B在直线l上C.点C在直线l外D.直线AB和直线l不是同一条直线5.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不可能是同一条直线6.经过一点可以画条直线,经过两点可以画条直线.7.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为同学的说法是正确的.8.如图,已知A,B,C,D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画线段AB;(2)画直线AC;(3)过点D画AC的垂线,垂足为E;(4)在直线AC上找一点P,使得PB+PD最小.【课后巩固】一、选择题1.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线2.下列叙述不正确的是()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线3.下列有关作图的叙述中正确的是()A.延长射线OAB.延长直线ABC.画直线AB=3 cmD.以上都不对4.在碧波荡漾的湖面上,有三只美丽的天鹅正在水中嬉戏,这三只天鹅可以确定的直线有()A.3条B.0条或1条C.1条或3条D.0条5.平面上不重合的两个点确定一条直线,不同的三个点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.9二、填空题6.如图,线段AB上有C,D两点,则图中共有线段条,分别是___________________.7.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.三、解答题8.在如图的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试写出来.9.如图,已知平面内有四个点A,B,C,D,根据下列语句画图:(1)画直线AB;(2)画射线DC;(3)直线AD,BC相交于点E;(4)连接AC,BD相交于点F.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”应写在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2 017”在哪条射线上?第2课时比较线段的长短【课前预习】1.在数学中,我们常限定用和作图,这就是尺规作图.2.比较线段的长短的方法:(1)直接观察法;(2);(3).3.把一条线段分成的两条线段的点叫做线段的中点.4.线段的性质:两点的所有连线中,线段.简单说成:两点之间,线段.连接两点间的线段的长度,叫做这两点的.【当堂演练】1.如图,小张和小李同时以相同的速度从A村庄到B村庄办事,不过小张是从A村庄直接到B村庄,小李则从A村庄经过C村庄到B村庄,则()A.小张先到B.小李先到C.他们同时到D.不能确定谁先到2.如图,下列各式中错误的是()A.AB=AD+DBB.CB=AB-ACC.CB-DB=CDD.CB-DB=AC3.A,B,C三点在同一条直线上,M,N分别为AB,BC的中点,且AB=60,BC=40,则MN的长为()A.30B.30或10C.50D.50或104.两根木条,一根长6 cm,一根长8 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是cm.5.某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,停靠点的位置应设在区.6.如图,已知线段a,b,用圆规和直尺作线段,使它等于2a-2b.7.已知A,B,C三点在同一直线上,若线段AB=60,其中点为M;线段BC=20,其中点为N,求MN的长.【课后巩固】一、选择题1.如图,若B 是AC 的中点,C 是AD 的中点,则下列说法错误的是( )A.AB =BCB.AC =CDC.AB =12CDD.AB =13AD2.已知线段AB ,延长AB 到C ,使BC =2AB ,又延长BA 到D ,使DA =12AB ,那么( )A.BD =34BCB.DC =52ABC.DA =12BCD.BD =43AB3.如图,一根长12 cm 的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度,能量出的长度有( )A.7个B.6个C.5个D.4个 二、填空题4.如图,点C 分AB 为2∶3,点D 分AB 为1∶4,若AB 为5 cm ,则AC = cm ,BD = cm ,CD = cm.5.已知线段AB =8 cm ,C 是AB 上任意一点,其中M 是BC 的中点,N 是AC 的中点,则AN +BM = cm.6.在数轴上,点A 表示-16,线段AB 在数轴上,点B 表示数 时,使得线段AB =2 017.三、解答题7.当一条铁路铺设到崇山峻岭之中,往往是开凿隧道,而不是从山的旁边绕过去,你知道这是什么原因吗?请你用所学的数学知识解释一下.8.如图,已知线段a ,b ,c ,用圆规和直尺作线段,使它等于2a +b -c.9.如图,已知线段AB=8 cm,延长AB到点C,使AC=15 cm,D是AB的中点,E是AC 的中点,求DE.10.已知:A,B,C三点在同一直线上,点M,N分别是线段AC,BC的中点.(1)如图,点C是线段AB上一点,①当AC=8 cm,CB=6 cm时,则线段MN的长度为cm;②当AB=a cm时,求线段MN的长度,并用一句简洁的话描述你的发现;(2)若C为线段AB延长线上的一点,则第(1)题第②小题中的结论是否仍然成立?请你画出图形,并说明理由.。

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》 含答案

2020年秋人教版七年级上册同步练习:4.2《直线、射线、线段》  含答案

2020年人教版七年级上册同步练习:4.2《直线、射线、线段》一.选择题1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短2.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短3.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行4.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE5.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个6.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条7.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个8.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.109.如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.射线OB和射线AB是同一条射线D.点A在线段OB上10.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种11.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC 的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题13.把一段弯曲的河流改直,可以缩短航程,其理由是.14.如图,是从甲地到乙地的四条道路,其中最短的路线是,理由是.15.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.16.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)18.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三.解答题20.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.21.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.22.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.24.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.25.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM ﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.参考答案一.选择题1.解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.2.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.3.解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.4.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.5.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.6.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.7.解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.8.解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.9.解:A、点O不在射线AB上,点O在射线BA上,故此选项错误;B、点B是线段AB的一个端点,故此选项错误;C、射线OB和射线AB不是同一条射线,故此选项错误;D、点A在线段OB上,故此选项正确.故选:D.10.解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.11.解:如图1,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB+BN=4+1=5cm;如图2,由M是AB的中点,N是BC的中点,得MB=AB=4cm,BN=BC=1cm,由线段的和差,得MN=MB﹣BN=4﹣1=3cm;故选:B.12.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题13.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.14.解:由图可得,最短的路线为从甲经A到乙,因为两点之间,线段最短.故答案为:从甲经A到乙,两点之间,线段最短.15.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.16.解:线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.17.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.18.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=2(cm),综上所述,AC和BC中点间的距离为4cm或2cm.故答案为:4cm或2cm.19.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.三.解答题20.解:(1)如图所示:;(2)如图所示,(3)如图所示,.21.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.22.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.23.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.24.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.25.解:(1)根据C、D的运动速度知:BD=2PC ∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD﹣PD=(CD﹣PD)=CP =②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.。

人教版七级上《4.2直线、射线、线段》同步练习含解析

人教版七级上《4.2直线、射线、线段》同步练习含解析

人教版数学七年级上册第4章 4.2直线、射线与线段同步练习一、单选题(共10题;共20201、线段AB=5cm,BC=2cm,则线段AC的长度是( )A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是( )A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出( )A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是( )A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=( )A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是( )A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为( )A、4B、5C、6D、78、下列说法中正确的是( )A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有( )A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是( )A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题(共5题;共11分)11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB,AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题(共1题;共5分)16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C ①画直线AB ②画射线BC③画线段AC.四、解答题(共5题;共25分)17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.2020知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.答案解析部分一、单选题1、【答案】C【考点】两点间的距离【解析】【解答】解:如图(一)所示,当点C在线段AB外时,AC=AB+BC=5+2=7cm;如图(二)所示,当点C在线段AB内时,AC=AB﹣BC=5﹣2=3cm.故选C【分析】根据题意画出图形,由于点C与线段AB的位置不能确定,所以应分点C在AB外和在AB之间两种情况进行讨论.2、【答案】D【考点】直线、射线、线段【解析】【解答】解:当另一条直线与两条相交直线交于同一点时,交点个数为1;当另一条直线与两条相交直线中的一条平行时,交点个数为2;当另一条直线分别与两条相交直线相交时,交点个数为3;故它们的交点个数为1或2或3.故选D.【分析】本题中直线的位置关系不明确,应分情况讨论,包括两条相交直线是否是另一条直线平行、相交或交于同一点.3、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,最多可画6条直线.,故选D.【分析】画出图形即可确定最多能画的直线的条数.4、【答案】D【考点】直线、射线、线段【解析】【解答】解:AC=BC,AC= AB,AC=2CB都不能说明点A、B、C三点共线,由AB=2AC=2CB可知A、B、C三点共线,且AC=BC,所以,点C是AB中点.故选D.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.5、【答案】A【考点】直线、射线、线段【解析】【解答】解:交点个数最多时, = =6,最少有0个.所以b=6,a=0,所以a+b=6.故选:A.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.6、【答案】D【考点】直线、射线、线段【解析】【解答】解:以O为端点的射线有2条,以A为端点的射线有3条,以B为端点的射线有3条,共有2+3+3=8条.故选D.【分析】根据射线的定义,分别数出以O、A、B为端点的射线的条数,再相加即可解得.7、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图所示:平面上有四个点最少画1条直线,最多画6条直线.故a=1,b=6.则a+b=1+6=7.故选:D.【分析】当四点在一条直线上时,可画1条,当任意三点不在同一条直线上时可画出6条直线,1+6=7.8、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.9、【答案】B【考点】直线、射线、线段,角的概念,角平分线的定义【解析】【解答】解:①平角就是一条直线,错误;②直线比射线线长,错误;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个,正确;④连接两点的线段叫两点之间的距离,错误;⑤两条射线组成的图形叫做角,错误;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,错误;其中正确的有1个.故选:B.【分析】分别利用直线、射线、线段的定义以及角的概念和角平分线的定义分析得出即可.10、【答案】C【考点】直线、射线、线段,点到直线的距离,三角形三边关系【解析】【解答】解:A. 射线AB和射线BA表示不同的射线,故A不符合题意;B. PQ⊥AB时,线段PQ的长度就是点P到直线m的距离,故B不符合题意;C. 连接AP,BP,则AP+BP>AB,故C符合题意;D. Q在A的右边时,不满足AQ=AB-BQ或AQ=AB+BQ,故D不符合题意;故选:C.【分析】二、填空题11、【答案】2020【考点】直线、射线、线段【解析】【解答】解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;∴有10种不同的票价;∵有多少种车票是要考虑顺序的,∴需准备2020票,故答案为:2020【分析】先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.12、【答案】2;1;0【考点】直线、射线、线段【解析】【解答】解:根据线段、射线、直线的定义即可得出: 线段有2个端点,射线有1个端点,直线有0个端点.故答案为:2,1,0.【分析】根据线段、射线、直线的定义即可得出其顶点的个数,此题得解.13、【答案】6;5【考点】直线、射线、线段【解析】【解答】解:图中线段有:ED、EC、EB、DC、DB、CB共6条,射线有:ED、EB、CD、CB、BE共5条,故答案为:6,5.【分析】根据直线、射线、线段的概念进行判断即可.14、【答案】BC;CD;AD;BC【考点】直线、射线、线段【解析】【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC;CD;AD;BC【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.15、【答案】10【考点】直线、射线、线段【解析】【解答】解:根据题意得: =10,则共有10种不同票价,故答案为:10【分析】根据在一条直线上n个点连为条线段规律,计算即可得到结果.三、作图题16、【答案】解:如图所示: .【考点】直线、射线、线段【解析】【分析】根据直线、射线、线段的定义画出即可.四、解答题17、【答案】解:∵AB=10cm,BC=4cm,点C在直线AB上,∴点C在线段AB上或在线段AB的延长线上.①当点C在线段AB上时,如图①,则有AC=AB﹣BC=10﹣4=6.∵点D是线段AC的中点,∴DC= AC=3,∴DB=DC+BC=3+4=7;②当点C在线段AB的延长线上时,如图②,则有AC=AB+BC=10+4=14.∵点D是线段AC的中点,∴DC= AC=7,∴DB=DC﹣BC=7﹣4=3.综上所述:线段BD的长度为7cm或3cm.【考点】两点间的距离【解析】【分析】由于AB>BC,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC与BC的和或差,就可解决问题.18、【答案】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE= AB=x,CF= CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x= ,∴AD=AB+BC+CD=2x+3x+4x=9x= cm【考点】两点间的距离【解析】【分析】根据题意可设AB=2x,然后根据图形列出方程即可求出AD的长度.19、【答案】解:由线段的和差,得DB=AB﹣AD=2cm,由线段中点的性质,得BC=2BD=4cm.【考点】两点间的距离【解析】【分析】根据线段的和差,可得DB的长,根据线段中点的性质,可得答案.2020答案】解:设AC=2x,CD=3x,DB=4x,∴AB=AC+CD+DB=9x,∵AB的中点为M,∴MB= AB=4.5x,∵N是DB的中点,∴NB= DB=2x,∴MB﹣NB=MN,∴4.5x﹣2x=5,∴2.5x=5,∴x=2,∴AB=9x=18cm【考点】两点间的距离【解析】【分析】根据AC:CD:DB=2:3:4,可设AC=2x,然后根据条件列出方程即可求出AB的长度.21、【答案】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=2+4=6cm,∵M是线段AC中点,∴AM= AC=3cm,∴BM=AM﹣AB=3﹣2=1cm.故BM长度是1cm.【考点】两点间的距离【解析】【分析】先根据AB=2cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC中点求出AM,再由BM=AM﹣AB即可得出结论.。

人教版数学七年级上册《4.2 直线、射线、线段》练习

人教版数学七年级上册《4.2 直线、射线、线段》练习

故答案为:=.
18.【答案】4; 【解析】解:如图折成 3 折,有两个拐点,而不是折叠三次, 故能得到 4 条绳子.
19.【答案】7cm; 【解析】解:∵D 是 BC 的中点,BC=6cm, ∴CD=3cm, ∴AD=AC+CD=7cm. 故答案为:7cm.
20.【答案】解:∵N 是 BP 中点,M 是 AB 中点 ∴PB=2NB=2×14=28cm ∴AP=AB-BP=80-28=52cm.; 【解析】N 为 PB 的中点,则有 PB=2NB,故 AP=AB-BP 可求.
1 2 CB=0.5cm. 故选 A.
14.【答案】C; 【解析】解:∵BC=2AB,AD=3AB ∴DC=AD+AB+BC=3AB+AB+2AB=6AB, 故选 C.
15.【答案】6;5; 【解析】解:线段:OA、OB、AB、OC、AC、BC 共 6 条, 射线:以 O 为端点的有 2 条, 以 A、B、C 为端点的射线分别有 1 条, 所以,共有射线 2+1+1+1=5 条. 故答案为:6;5.
为( )
A. 4,2
B. 10,10
C. 10,2
D. 10,5
12.如果线段 AB=5cm,BC=3cm,那么 A、C 两点间的距离是( )
A. 8cm
B. 2cm
C. 4cm
D. 不能确定
13.如图,线段 AB 长 4cm,C 为 AB 上一点,M 为 AC 中点,N 为 BC 中点,已知
AM=1.5cm,则 CN 的长为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨

人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)

人教版数学七年级上册:4.2 直线、射线、线段  同步练习(附答案)

4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。

新人教版七年级数学上册第四章4.2直线、射线、线段同步练习

新人教版七年级数学上册第四章4.2直线、射线、线段同步练习

新人教版七年级数学上册第四章 4.2 直线、射线、线段同步练习一、选择题1.以下说法错误的选项是()A.平面内过一点有且只有一条直线与已知直线垂直B.两点之间的全部连线中,线段最短C. 经过两点有且只有一条直线D.过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分红()部分A.3B.6C.7D.9 3.假如 A BC 三点在同向来线上,且线段AB=4CM, BC=2CM,那么 AC两点之间的距离为()A .2CM B. 6CM C .2 或 6CM D.没法确立4.以下说法正确的选项是()A.延伸直线AB到 C; B .延伸射线OA到 C;C.平角是一条直线;D.延伸线段AB到 C 5.假如你想将一根细木条固定在墙上,起码需要几个钉子()A.一个B.两个C.三个D.无数个6.点 P 在线段 EF 上,现有四个等式①11P是 EF中PE=PF;②PE= EF; ③EF=2PE;④ 2PE=EF;此中能表示点22点的有()A.4个B.3个 C .2个 D .1个7. 如下图,从 A 地抵达 B 地,最短的路线是().A. A→C→E→B B .A→F→E→B C.A→D→E→ B D .A→ C→G→E→B8.如右图所示,B、C 是线段 AD上随意两点,M是 AB 的中点, N 是 CD中点,若MN=a, BC=b,则线段 AD的长是()A .2( a- b)B.2a -b C.a + b D.a -b9.在直线l上按序取A、 B、C三点,使得 AB=5 ㎝, BC=3㎝,假如 O是线段 AC的中点,那么线段OB的长A.2㎝B.㎝C.㎝D.1㎝10.假如 AB=8, AC=5, BC=3,则()A.点 C 在线段 AB 上B.点B在线段AB的延伸线上C.点 C 在直线 AB 外D.点C可能在直线AB 上,也可能在直线AB 外二、填空题1.若线段AB=a, C是线段 AB上的随意一点,M、N 分别是 AC和 CB的中点,则 MN=_______.2.经过1点可作________条直线;假如有 3 个点,经过此中随意两点作直线,能够作______条直线;经过四点最多能确立条直线。

2019—2020年人教版七年级数学上册第四章4.2直线、射线、线段中考试题汇编含精讲解析(同步试卷).docx

2019—2020年人教版七年级数学上册第四章4.2直线、射线、线段中考试题汇编含精讲解析(同步试卷).docx

人教版七年级数学上册第四章4.24.2 直线、射线、线段中考试题汇编含精讲解析一.选择题(共13小题)1.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边4.(2014•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1﹣x2|+|y1﹣y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖5.(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm6.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或67.(2013•台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|8.(2012•永州)永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置9.(2012•葫芦岛)如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm10.(2011•乌兰察布模拟)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.11.(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条12.(2010•普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm13.(2009•潍坊)某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A.A点处B.线段AB的中点处C.线段AB上,距A点米处D.线段AB上,距A点400米处二.填空题(共10小题)14.(2014•佛山)如图,线段的长度大约是厘米(精确到0.1厘米).15.(2013•德州)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因.16.(2012•随州)平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.17.(2012•菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm.18.(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.19.(2011•佛山)已知线段AB=6,若C为AB中点,则AC= .20.(2011•娄底)如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= .21.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.22.(2010•河源)平面内不过同一点的n条直线两两相交,它们的交点个数记作a n,并且规定a1=0.那么:①a2= ;②a3﹣a2= ;③a n﹣a n﹣1= .(n≥2,用含n的代数式表示).23.(2010•厦门)已知点C是线段AB的中点,AB=2,则BC= .三.解答题(共3小题)24.(2011•呼伦贝尔)根据题意,解答问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.25.(2007•贵阳)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?26.(2004•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.参考答案与试题解析一.选择题(共13小题)1.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B考点:线段的性质:两点之间线段最短.分析:根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.解答:解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.点评:此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.4.(2014•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1﹣x2|+|y1﹣y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖考点:线段的性质:两点之间线段最短;坐标与图形性质.专题:新定义.分析:根据点的坐标的特征,|AB|、|x1﹣x2|、|y1﹣y2|三者正好构成直角三角形,然后利用两点之间线段最短解答.解答:解:当两点不与坐标轴平行时,∵|AB|、|x1﹣x2|、|y1﹣y2|的长度是以|AB|为斜边的直角三角形,∴|AB|<‖AB‖.当两点与坐标轴平行时,∴|AB|=‖AB‖.故选:C.点评:本题考查两点之间线段最短的性质,坐标与图形性质,理解平面直角坐标系的特征,判断出三角形的三边关系是解题的关键.5.(2014•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.6cm考点:两点间的距离.分析:由AB=10cm,BC=4cm,可求出AC=AB﹣BC=6cm,再由点D是AC的中点,则可求得AD 的长.解答:解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC的中点,∴AD=AC=3cm,答:AD的长为3cm.故选:B.点评:本题考查了两点间的距离,利用线段差及中点性质是解题的关键.6.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.7.(2013•台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?()A.|c|=|b| B.|c|=|b| C.|c|=|b| D.|c|=|b|考点:两点间的距离;数轴.分析:根据题意作出图象,根据AC:CB=1:3,可得|c|=,又根据|a|=|b|,即可得出|c|=|b|.解答:解:∵C在AB上,AC:CB=1:3,∴|c|=,又∵|a|=|b|,∴|c|=|b|.故选A.点评:本题考查了两点间的距离,属于基础题,根据AC:CB=1:3结合图形得出|c|=是解答本题的关键.8.(2012•永州)永州境内的潇水河畔有朝阳岩、柳子庙和迴龙塔等三个名胜古迹(如图所示).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么,旅游车等候这三位游客的最佳地点应在()A.朝阳岩B.柳子庙C.迴龙塔D.朝阳岩和迴龙塔这段路程的中间位置考点:直线、射线、线段.专题:压轴题.分析:设朝阳岩距离柳子庙的路程为5,柳子庙距离迴龙塔的路程为8,则迴龙塔距离朝阳岩的路程为13,然后对四个答案进行比较即可.解答:解:设朝阳岩距离柳子庙的路程为5,柳子庙距离迴龙塔的路程为8,则迴龙塔距离朝阳岩的路程为13,A、当旅游车停在朝阳岩时,总路程为5+13=18;B、当旅游车停在柳子庙时,总路程为5+8=13;C、当旅游车停在迴龙塔时,总路程为13+8=21;D、当旅游车停在朝阳岩和迴龙塔这段路程的中间时,总路程大于13.故路程最短的是旅游车停在柳子庙时,故选:B.点评:本题考查了直线、射线及线段的有关知识,用特殊值的方法比较容易说出来.9.(2012•葫芦岛)如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是()A.2 cm B.3 cm C.4 cm D.6 cm考点:两点间的距离.分析:由图形可知AC=AB﹣BC,依此求出AC的长,再根据中点的定义可得MC的长.解答:解:由图形可知AC=AB﹣BC=8﹣2=6cm,∵M是线段AC的中点,∴MC=AC=3cm.故MC的长为3cm.故选B.点评:考查了两点间的距离的计算;求出与所求线段相关的线段AC的长是解决本题的突破点.10.(2011•乌兰察布模拟)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.11.(2010•柳州)如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条考点:直线、射线、线段.分析:写出所有的线段,然后再计算条数.解答:解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.点评:记住线段是直线上两点及其之间的部分是解题的关键.12.(2010•普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm考点:比较线段的长短.专题:计算题.分析:由已知条件可知,DC=DB﹣CB,又因为D是AC的中点,则DC=AD,故AC=2DC.解答:解:∵D是AC的中点,∴AC=2DC,∵CB=4cm,DB=7cm∴CD=BD﹣CB=3cm∴AC=6cm故选:B.点评:结合图形解题直观形象,从图中很容易能看出各线段之间的关系.利用中点性质转化线段之间的倍数关系是解题的关键.13.(2009•潍坊)某班50名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()A.A点处B.线段AB的中点处C.线段AB上,距A点米处D.线段AB上,距A点400米处考点:比较线段的长短.专题:应用题.分析:设A处学生走的路程,表示出B处学生走的路程,然后列式计算所有同学走的路程之和.解答:解:设A处的同学走x米,那么B处的同学走(1000﹣x)米,所有同学走的路程总和:L=30x+20(1000﹣x)=10x+20000此时0≤x≤1000,要使L最小,必须x=0,此时L最小值为20000;所以选A点处.故选A.点评:此题主要考查一次函数在实际生活中的意义,学生在学这一部分时一定要联系实际,不能死学.二.填空题(共10小题)14.(2014•佛山)如图,线段的长度大约是 2.3(或2.4)厘米(精确到0.1厘米).考点:比较线段的长短.分析:根据对线段长度的估算,可得答案.解答:解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).点评:本题考查了比较线段的长短,对线段的估算是解题关键.15.(2013•德州)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.16.(2012•随州)平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为 6 .考点:直线、射线、线段.专题:压轴题;规律型.分析:根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可.解答:解:∵平面内不同的两点确定1条直线,;平面内不同的三点最多确定3条直线,即=3;平面内不同的四点确定6条直线,即=6,∴平面内不同的n点确定(n≥2)条直线,∴平面内的不同n个点最多可确定15条直线时,=15,解得n=﹣5(舍去)或n=6.故答案为:6.点评:本题考查的是直线、射线、线段,是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入15即可求出n的值.17.(2012•菏泽)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= 5或11 cm.考点:两点间的距离.专题:分类讨论.分析:点C可能在线段AB上,也可能在AB的延长线上.因此分类讨论计算.解答:解:根据题意,点C可能在线段AB上,也可能在AB的延长线上.若点C在线段AB上,则AC=AB﹣BC=8﹣3=5(cm);若点C在AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为:5或11.点评:此题考查求两点间的距离,运用了分类讨论的思想,容易掉解.18.(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是两点之间线段最短.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.19.(2011•佛山)已知线段AB=6,若C为AB中点,则AC= 3 .考点:两点间的距离.专题:应用题.分析:由题意可知,线段AB=6,C为AB中点,所以,AC=BC,即AC=3;解答:解:如图,线段AB=6,C为AB中点,∴AC=BC,∴AC=3.故答案为:3.点评:本题考查了两点间的距离,牢记两点间的中点到两端点的距离相等.20.(2011•娄底)如图,点C是线段AB上的点,点D是线段BC的中点,若AB=12,AC=8,则CD= 2 .考点:两点间的距离.分析:根据AB=12,AC=8,求出BC的长,再根据点D是线段BC的中点,得出CD=BD即可得出答案.解答:解:∵AB=12,AC=8,∴BC=4,∵点C是线段AB上的点,点D是线段BC的中点,∴CD=BD=2,故答案为:2.点评:此题主要考查了两点距离求法,根据已知求出BC=4是解决问题的关键.21.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073 个点.考点:直线、射线、线段.专题:规律型.分析:根据题意分析,找出规律解题即可.解答:解:第一次:2010+(2010﹣1)=2×2010﹣1,第二次:2×2010﹣1+2×2010﹣1﹣1=4×2010﹣3,第三次:4×2010﹣3+4×2010﹣3﹣1=8×2010﹣7.∴经过3次这样的操作后,直线上共有8×2010﹣7=16073个点.故答案为:16073.点评:此题为规律型题.解题的关键是找对规律.22.(2010•河源)平面内不过同一点的n条直线两两相交,它们的交点个数记作a n,并且规定a1=0.那么:①a2= 1 ;②a3﹣a2= 2 ;③a n﹣a n﹣1= n﹣1 .(n≥2,用含n的代数式表示).考点:直线、射线、线段.专题:规律型.分析:n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.解答:解:①a2==1;②∵a3=3,a2=1∴a3﹣a2=3﹣1=2;③a n﹣a n﹣1=﹣(n﹣1)(n﹣2)=(n﹣1)(n﹣n+2)=n﹣1.点评:此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊项一般猜想的方法.23.(2010•厦门)已知点C是线段AB的中点,AB=2,则BC= 1 .考点:比较线段的长短.专题:计算题.分析:根据中点把线段分成两条相等的线段解答.解答:解:根据题意,BC=AB=1.点评:本题根据线段的中点的定义求解.三.解答题(共3小题)24.(2011•呼伦贝尔)根据题意,解答问题:(1)如图①,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图②,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.考点:两点间的距离;勾股定理.专题:计算题;压轴题;数形结合.分析:(1)根据已知条件求出A、B两点的坐标,再根据公式计算即可解答.(2)根据公式直接代入数据计算即可解答.解答:解:(1)根据题意得:A(0,4),B(﹣2,0)…(分)在Rt△AOB中,根据勾股定理:…(3分)(2)过M点作x轴的垂线MF,过N作y轴的垂线NE,MF,NE交于点D…(4分)根据题意:MD=4﹣(﹣1)=5,ND=3﹣(﹣2)=5…(5分)则:MN=…(6分)点评:本题考查了两点间的距离公式,属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.25.(2007•贵阳)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线OE 上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?考点:直线、射线、线段.专题:规律型.分析:先由具体数字入手,找出规律,再利用规律解题.解答:解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.点评:本题体现了由“特殊到一般再到特殊”的思维过程,有利于培养同学们的探究意识.26.(2004•烟台)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.考点:比较线段的长短.专题:应用题.分析:(1)分n为偶数时,n为奇数时两种情况讨论P应设的位置.(2)根据绝对值的几何意义,找到1和617正中间的点,即可求出|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.解答:解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.点评:本题需要运用分类讨论思想,主要考查了学生的观察、实验和猜想、归纳能力,掌握从特殊到一般猜想的方法.。

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A,B,C在同一条直线上,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点()A.20个B.10个C.7个D.5个5.下列说法错误的是()A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C 是AB 的中点,D 是BC 的中点,则下列等式不成立的是( ,A . CD,AD -ACB . CD,21AB,BDC . CD,41ABD . CD=31AB 8.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:,两点之间的所有连线中,线段最短;,在数轴上与表示﹣1的点距离是3的点表示的数是2,,连接两点的线段叫做两点间的距离;,射线AB和射线BA是同一条射线;,若AC=BC,则点C是线段AB的中点;,一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个二、填空题12.点C在线段AB上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

人教版数学七年级上册 4.2 直线、射线、线段 同步练习

人教版数学七年级上册 4.2 直线、射线、线段 同步练习

4.2 直线、射线、线段一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列说法正确的是( )A. 延长直线ABB. 延长射线ABC. 反向延长射线ABD. 延长线段AB到点C,使AC=BC2.关于如图所示图形所表示的含义,下列说法中,正确的是.( )A. 延长射线ABB. 延长线段ABC. 反向延长线段ABD. 反向延长射线AB3.邱老师在教室后面墙的黑板上张贴学生优秀作品时,想要在黑板上画出一条笔直的参照线,由于尺子不够长,邱老师想出了一个办法如图,这种画法的数学依据是( )A. 两点之间,线段最短B. 两点确定一条直线C. 线段的中点的定义D. 两点的距离的定义4.下列各图分别是直线AB,线段MN,射线DC,其中所给的两条线有交点的是( )A. B.C. D.5.A、B、C三点在同一条直线上,如果线段AB=5cm,BC=3cm,那么A、C两点的距离为( )A. 8cmB. 2cmC. 2cm或8cmD. 以上均不正确6.如图,下列语句: ①直线l经过C、D两点; ②点C、D在直线l上; ③直线l是由C、D两点确定的; ④l是一条直线,C、D是任意两点.其中正确的有( )A. 4个B. 3个C. 2个D. 1个7.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为( )A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm8.如图所示,线段AB=DE,点C为线段AE的中点,下列式子不正确的是( )A. BC=CDB. CD=12AE−ABC. CD=AD−CED. CD=DE9.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A. 2cmB. 4cmC. 2cm或22cmD. 2cm或20cm10.如图,有下列结论: ①以点C为端点的射线共有4条; ②射线BD和射线DB是同一条射线; ③直线BC和直线BD是同一条直线; ④射线AB,AC,AD的端点相同,其中正确的结论是( )A. ② ④B. ③ ④C. ② ③D. ① ③11.如图所示,B在线段AC上,且BC=3AB,D是线段AB的中点,E是BC的三等分点,则下列结论:①EC=13AE;②DE=5BD;③BE=12(AE+BC);④AE=65(BC−AD),其中正确结论的有( )A. ①②B. ①②④C. ②③④D. ①②③④12.下列数学语言,不正确的是( )A. 画直线MN,在直线MN上任取一点PB. 以点M为端点画射线MAC. 直线a,b相交于点mD. 延长线段MN到点P,使NP=MN二、填空题(本大题共4小题,共12.0分)13.如图,小明从家里A到学校B有 ①, ②, ③三条路线可走,小明一般都是走 ②号路线,用几何知识解释其道理是.14.已知点A、B、C在同一条直线上,且线段AB=5,BC=4,则A、C两点间的距离是______.15.如图,图中有条直线,有条射线,条线段,这此线段分别是.16.如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=____.三、解答题(本大题共4小题,共32.0分。

2022-2023学年人教版七年级数学上册《4-2直线、射线、线段》同步作业题(附答案)

2022-2023学年人教版七年级数学上册《4-2直线、射线、线段》同步作业题(附答案)

2022-2023学年人教版七年级数学上册《4.2直线、射线、线段》同步作业题(附答案)一.填空题1.如图,辰辰同学根据图形写出了四个结论:①图中有两条直线;②图中有5条线段;③射线AC和射线AD是同一条射线;④直线BD经过点C.其中结论正确..的结论是.2.建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳子,沿这根绳子可以砌出直的墙.这样做蕴含的数学道理是.3.往返于甲、乙两地的火车,途中停靠五个站,则最多要准备种车票.4.如图所示,图中共有条直线,条射线,条线段.5.如图,将原来弯曲的A、B两地间的河道改直后大大缩短了河道的长度,这一做法的主要依据是.6.下列生产和生活现象:①把弯曲的公路改直,就能缩短路程;②用两个钉子就可以把木条固定在墙上;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用“两点确定一条直线”来解释的现象有.(填序号)7.下列生产现象中,不可以用“两点确定一条直线”来解释的有.①固定一根木条至少需要两个钉子;②经过刨平的木板上的两个点可以弹出一条墨线;③建筑工人通过在两个钉子之间拉一条绳子砌墙;④把弯曲的公路改直就可以缩短路程.8.已知线段AB=24cm,点D是线段AB的中点,直线AB上有一点C,且CD=3BC,则线段CD=cm.二.解答题9.如图,已知线段AB=12cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.10.如图所示,BC=6cm,BD=7cm,D是AC的中点,求AB的长.11.如图,延长线段AB到C,使BC=4AB,点D是线段BC的中点,如果CD=4cm.(1)求AC的长度;(2)若点E是线段AC的中点,求ED的长度.12.(1)如图①,线段AB=20cm,点C为线段AB的中点,求线段AC的长;(2)如图②,在(1)的条件下,点M、N分别是AC、BC的中点,求线段MN的长.13.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.14.如图,点A,C,E,B,D在同一条直线上,且AB=CD,点E是线段AD的中点.(1)点E是线段BC的中点吗?说明理由;(2)若AB=11,CE=3,求线段AD的长.15.如图,已知线段AB.(1)延长线段BA到点C,使AC=2AB;(2)图中,设D是AB的中点,E是BC的中点,若线段AB=2cm,求DE长(请填充).∵AB=2,AC=2AB,∴AC=4,BC=,又∵,∴,∵D为AB中点,∴BD=,∴ED=.16.如图,已知线段AB=23,BC=15,点M是AC的中点.(1)求线段AM的长;(2)在CB上取一点N,使得CN:NB=1:2,求线段MN的长.17.线段AD上有两点B,C,满足AC=0.2AD,AB=3AC.若AB+AC+AD=50cm,线段BC的长为多少?18.如图,点C在线段AB上,AC<CB,点D、E分别是AB和CB的中点,AC=10cm,EB=8cm.(1)求线段CD,DE,AB的长;(2)是否存在点M,使它到A,C两点的距离之和等于8cm,为什么?(3)是否存在点M,使它到A,C两点的距离之和大于10cm?如果点M存在,点M的位置应该在哪里?为什么?这样的点M有多少个?19.如图,点C在线段AB上,点M是AC的中点,AB=15,BC=11.(1)求线段AM的长;(2)在线段BC上取一点N,使得CN:NB=5:6,求线段MN的长.20.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且,求线段AE的长.21.如图是一种盛装葡萄酒的瓶子,已量得瓶塞AB与标签CD的高度之比为2:3,且标签底部DE=AB,C是BD的中点,又量得AE=330mm,求标签CD的高度.22.如图,P是线段AB上一点,AB=18cm,C,D两动点分别从点P,B同时出发沿射线BA向左运动,到达点A处即停止运动.(1)若点C,D的速度分别是1cm/s,2cm/s.①当动点C,D运动了2s,且点D仍在线段PB上时,AC+PD=cm;②若点C到达AP中点时,点D也刚好到达BP的中点,则AP:PB=;(2)若动点C,D的速度分别是1cm/s,3cm/s,点C,D在运动时,总有PD=3AC,求AP的长度.23.如图,点O是线段AB上一点,点C,D分别是线段OA,OB的中点.(1)若线段CD=6,求线段AB的长;(2)若题中的“点O是线段AB上一点”改为“点O是线段BA延长线上一点”,其他条件不变,请你画出图形,若AB=8,求CD的长.24.如图,C是线段AB上一点,线段AB=25cm,,D是AC的中点,E是AB的中点.(1)求线段CE的长;(2)求线段DE的长.25.如图,C是线段AB上一点,AB=12cm,AC=4cm,P、Q两点分别从A、C出发以1cm/s、2cm/s的速度沿直线AB向右运动,运动的时间为ts.(1)当t=1s时,CP=cm,QB=cm;(2)当运动时间为多少时,PQ为AB的一半?(3)当运动时间为多少时,BQ=AP?参考答案一.填空题1.解:图中有两条直线:直线BD,直线BC;图中有6条线段,线段AB,线段BC,线段BD,线段AC,线段CD,线段AD;射线AC和射线AD,端点,方向都相同,是同一条射线;直线BD不经过点C.故答案为:①,③.2.解:建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳子,沿这根绳子可以砌出直的墙.这样做蕴含的数学道理是两点确定一条直线.故答案为:两点确定一条直线.3.解:如图,图形中共有线段6+5+4+3+2+1=21条,所以最多需要准备21×2=42种车票,故答案为:42.4.解如图所示,图中共有1条直线,8条射线,6条线段.故答案为:1,8,6.5.解:因为两点之间线段最短,把弯曲的河道改直,能够缩短河道的长度.故答案为:两点之间,线段最短.6.解:①把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故此项不符合;②用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故此项符合;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故此项符合;④从A地到B地架设电线,总是尽可能沿着线段AB架设.是利用了“两点之间,线段最短”,故此项不符合.故答案为:②③.7.解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释,故本选项不符合题意.②经过刨平的木板上的两个点可以弹出一条墨线,可以用基本事实“两点确定一条直线”来解释,故本选项不符合题意.③建筑工人通过在两个钉子之间拉一条绳子砌墙,可以用基本事实“两点确定一条直线”来解释,故本选项不符合题意.④把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间,线段最短”来解释,不能用基本事实“两点确定一条直线”来解释,故本选项符合题意.故答案为:④.8.解:∵AB=24cm,点D是线段AB的中点,∴BD=12cm,设BC=xcm,则CD=3BC=3xcm,当C点在B、D之间时,DC=BD﹣BC,即3x=12﹣x,解得x=3,∴CD=9(cm);当C点在DB的延长线上时,DC=DB+BC,即3x=12+x,解得x=6,∴CD=18(cm);故答案为:9或18.二.解答题9.解:(1)∵AB=12cm,CD=2cm,AC=4cm,∴BD=AB﹣CD﹣AC=6cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=BD=3cm,∴EF=CE+CD+DF=7cm;故答案为:7;(2)不改变,理由:∵AB=12cm,CD=2cm,∴AC+BD=AB﹣CD=10cm,∵E、F分别是AC、BD的中点,∴CE=AC,DF=BD,∴CE+DF=AC+BD=5cm,∴EF=CE+CD+DF=7cm.10.解:∵BC=6cm,BD=7cm,∴CD=BD﹣BC=1(cm),∵点D是AC的中点,∴AD=CD=1cm,∴AB=AD+BD=1+7=8(cm).即AB的长是8cm.11.解:(1)因为点D为线段BC的中点,CD=4cm,所以BC=2CD=8cm,因为BC=4AB=8cm,所以AB=2cm,所以AC=AB+BC=10cm,即AC的长度为10cm.(2)因为E是AC中点,所以EC=AC=5cm,所以ED=EC﹣DC=5﹣4=1cm,即ED的长度是1cm.12.解:(1)∵线段AB=20cm,点C为线段AB的中点,∴AC=AB==10(cm).(2)∵M、N分别是线段AC、BC的中点,∴MC=AC,CN=BC,∵线段AB=20cm,∴MN=MC+CN=(AC+BC)=AB=10(cm).13.解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.14.解:(1)点E是线段BC的中点.理由如下:∵AB=CD,∴AB﹣BC=CD﹣BC,∴AC=BD,∵E是线段AD的中点,∴AE=ED,∴AE﹣AC=ED﹣BD,即CE=BE,∴点E是线段BC的中点;(2)∵CE=3,∴CE=BE=3,∵AB=11,∴AE=AB﹣BE=8,∵点E是线段AD的中点,∴AD=2AE=16.15.解:(1)如图所示,;(2)∵AB=2,∴AC=2AB=4,∴BC=AC+AB=4+2=6,∵E是BC的中点,∴BE=BC=3,∵D是AB的中点,∴BD=AB=1,∴DE=BE﹣BD=3﹣1=2,故答案为:6,E是BC的中点,1,2.16.解:(1)线段AB=23,BC=15,∴AC=AB﹣BC=23﹣15=8.又∵点M是AC的中点.∴AM=AC=×8=4,即线段AM的长度是4.(2)∵BC=15,CN:NB=1:2,∴CN=BC=×15=5.又∵点M是AC的中点,AC=8,∴MC=AC=4,∴MN=MC+NC=4+5=9,即MN的长度是9.17.解:∵AC=0.2AD,AB=3AC,∴设AC=xcm,则AB=3xcm,AD=5xcm,BC=2xcm,∵AB+AC+AD=50,∴3x+x+5x=50,解得x=,∴BC=2×=(cm).18.解:(1)∵点E是CB的中点,EB=8cm,∴CE=BE=8cm,∴BC=CE+BE=8+8=16(cm),∵AC=10cm,∴AB=26cm,∵点D是AB的中点,∴AD=BD=13cm,∴CD=AD﹣AC=13﹣10=3(cm),DE=BD﹣BE=13﹣8=5(cm);(2)不存在,∵两点之间线段最短,∴点A、C之间的最短距离为10cm,故不存在点M,使它到A,C两点的距离之和等于8cm;(3)存在,∵两点之间线段最短,∴线段AB外任何一点到A,C两点的距离之和都大于10cm,这样的点有无数个.19.解:(1)∵点C在线段AB上,AB=15,BC=11,∴AC=AB﹣BC=15﹣11=4,∵点M是AC的中点,∴AM=AC=4=2.(2)∵M是AC的中点,∴MC=AC=2,∵点N在线段BC上,BC=11,∴CN+NB=BC=11,又∵CN:NB=5:6,∴CN=BC=11=5,∴MN=MC+CN=2+5=7.20.解:(1)∵点C是线段AB的中点,AB=8cm,∴BC=AB=4cm,∴CD=BC﹣BD=4﹣3=1(cm);(2)①当点E在点B的右侧时,如图:∵BD=3cm,BE=BD,∴BE=1cm,∴AE=AB+BE=8+1=9(cm);②当点E在点B的左侧时,如图:∵BD=3cm,BE=BD,∴BE=1cm,∴AE=AB﹣BE=8﹣1=7(cm);综上,AE的长为9cm或7cm.21.解:设DE的长为xmm,∵DE=AB,得AB=2DE=2xmm,由AB:CD=2:3,AB=2xmm,得CD=3xmm,∵C是BD的中点,∴BC=CD=3xmm,∵AE=330mm,∴AB+BC+CD+DE=2x+3x+3x+x=330,∴x=,∴标签CD的高度为110mm.22.解:(1)①由题意得:BD=2×2=4(cm),PC=1×2=2(cm).∴AC+PD=AB﹣PC﹣BD=18﹣2﹣4=12(cm).故答案为:12.②∵点C到达AP中点时,点D也刚好到达BP的中点,设运动时间为t,则:AP=2PC=2t,BP=2BD=4t,∴AP:PB=2t:4t=1:2.故答案为:1:2.(2)设运动时间为t,则PC=t,BD=3t,∴BD=3PC,∵PD=3AC.∴PB=PD+BD=3PC+3AC=3(PC+AC)=3AP.∴AP=AB=(cm).23.解:(1)∵点C为OA中点,∴OC=OA,∵点D为OB中点,∴OD=OB,∴CD=OC+OD=OA+OB=AB,又∵CD=6,∴AB=12;(2)如图所示:∵点C为OA中点,∴OC=OA,∵点D为OB中点,∴OD=OB,∴CD=OD﹣OC=OB﹣OA=AB,又∵AB=8,∴CD=4.24.解:(1)∵AB=25cm,BC=AC,∴BC=AB=×25=10(cm),∵E是AB的中点,∴BE=AB=12.5cm,∴EC=12.5﹣10=2.5(cm);(2)由(1)得,AC=AB﹣CB=25﹣10=15(cm),∵点D、E分别是AC、AB的中点,∴AE=AB==12.5(cm),AD=AC==7.5(cm),∴DE=AE﹣AD=12.5﹣7.5=5(cm).25.解:(1)∵AB=12cm,AC=4cm,∴CB=12﹣4=8cm,当t=1s时,CP=4﹣1×1=3(cm),QB=8﹣2×1=6(cm).故答案为:3,6;(2)t秒后,AP=t,AQ=4+2t,∴(4+2t)﹣t=12,解得t=2,答:当运动时间为2s时,PQ为AB的一半;(3)ts后,AP=t,BQ=|8﹣2t|,∴t=|8﹣2t|,解得t=8或,答:当运动时间为8s或s时,BQ=AP.。

人教版数学七年级上册 第4章 4.2直---4.3同步练习题含答案

人教版数学七年级上册 第4章 4.2直---4.3同步练习题含答案

4.2直线、射线、线段一.选择题1.如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()A.3B.3.5C.4.5D.42.已知线段AB,在AB的延长线上取一点C,使BC=2AB,若AC=9cm,则线段AB的长度为()A.4.5cm B.4cm C.3cm D.2cm3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm4.已知线段AB=6cm,点C在直线AB上,且线段AC=1cm,则线段BC的长为()A.5cm B.7cm C.5cm或7cm D.以上均不对5.如图,下列说法错误的是()A.直线AC与射线BD相交于点AB.BC是线段C.直线AC经过点AD.点D在直线AB上6.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短7.已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④8.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间9.判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④两点之间,线段最短.正确的有几个()A.1B.2C.3D.410.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.直线比曲线短B.两点之间,线段最短C.两点确定一条直线D.垂线段最短二.填空题11.点M是线段AB上一点,且AM:MB=2:3,MB比AM长2cm,则AB长为.12.把一根木条钉在墙上使其固定,至少需要个钉子,其理由是.13.如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF 长为cm.14.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为.15.已知A、B、C三站在一条东西走向的马路边,小马现在A站,小虎现在B站,两人分别从A、B两站同时出发,约定在C站会面商议事宜.若小马的行驶速度是小虎的行驶速度的,两人同时到达C站,且A、B两站之间的距离为8km,求C站与A、B两站之间的距离之和是.三.解答题16.如图,点C是线段AB上一点,点M、N、P分别是线段AC、BC、AB的中点,AC=3cm,CP=1cm,求:(1)线段AM的长;(2)线段PN的长.17.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.18.已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.19.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长.解:设AC=3x,则CD=4x,DB=,∵AB=AC+CD+DB=60∴AB=(用含x的代数式表示)=60.∴x=.∵点K是线段CD的中点.∴KD==.∴KB=KD+DB=.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6,∴BC=AB﹣AC=10﹣6=4.故选:D.2.【解答】解:如图,∵BC=2AB、AC=9cm,∴AB=AC=3cm,故选:C.3.【解答】解:∵AB=10cm、M为AB的中点,∴AM=MB=AB=5cm,又∵NB=MB,∴NB=2.5cm,则MN=MB+BN=5+2.5=7.5(cm),故选:A.4.【解答】解:①点C在A、B中间时,BC=AB﹣AC=6﹣1=5(cm).②点C在点A的左边时,BC=AB+AC=6+1=7(cm).∴线段BC的长为5cm或7cm.故选:C.5.【解答】解:A、直线AC与射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.故选:D.6.【解答】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.7.【解答】解:∵点C在线段AB上,∴当①AC=AB或②AC=CB或③AB=2AC时,点C是线段AB中点;当④AC+CB=AB时,点C不一定是线段AB中点;故选:C.8.【解答】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<300),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.9.【解答】解:①一根拉紧的细线就是直线,说法错误;②点A一定在直线AB上,说法正确;③过三点可以画三条直线,说法错误;④两点之间,线段最短,说法正确;正确的说法有2个,故选:B.10.【解答】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是:两点确定一条直线.故选:C.二.填空题(共5小题)11.【解答】解:设AM=2xcm,MB=3xcm,则AB=5xcm,∵MB比AM长2cm,∴BM﹣AM=3x﹣2x=x=2(cm),∴AB长为5x=10(cm),故答案为:10cm.12.【解答】解:∵两点确定一条直线,∴将一根细木条固定在墙上时,我们至少需要两个钉子.13.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.14.【解答】解:∵准星与目标是两点,∴利用的数学知识是:两点确定一条直线.故答案是:两点确定一条直线.15.【解答】解:相同的时间内,小马行驶路程是小虎行驶路程的,设小马行驶路程为3x,即AC=3x,小虎行驶路程为5x,即BC=5x,(1)当C在线段AB反向延长线上时(如图1)AC+AB=BC,则3x+8=5x,解得x=4,∴AC=12,BC=20;∴C站与A、B两站之间的距离之和是32;(2)当C在线段AB上时(上图2),AC=3,BC=5;∴C站与A、B两站之间的距离之和是8;(3)当C在线段AB的延长线上时,可知不符合实际情况,不可能.故答案为:32或8.三.解答题(共4小题)16.【解答】解:(1)∵M为AC中点,∴AM=AC=cm;(2)∵AP=AC+CP,CP=1cm,∴AP=4cm,∵P为AB的中点,∴线段AB=2AP=8 cm,∵CB=AB﹣AC,AC=3cm,∴线段CB=5cm,∵N为CB的中点,∴CN=BC=cm,∴PN=CN﹣CP=cm,答:(1)线段AM的长为cm,(2)线段PN的长为cm.17.【解答】解:(1)∵M是线段AP的中点,MP=4cm,∴AP=2MP=2×4=8(cm),又∵点P是线段AB的中点,∴AB=2AP=2×8=16(cm).(2)∵点M是线段AP的中点,点N是线段PB的中点,∴MP=AP,PN=PB,∴MN=MP+PN=AP+PB=(AP+PB)=AB,∵AB=12cm,∴MN=12÷2=6(cm).18.【解答】解:如图所示:19.【解答】解:设AC=3x,则CD=4x,DB=5x,∵AB=AC+CD+DB=60∴AB=3x+4x+5x(用含x的代数式表示)=60.∴x=5.∵点K是线段CD的中点.∴KD=CD=10.∴KB=KD+DB=35.故答案为:5x;3x+4x+5x;5;CD,10;35.4.3 《角》一.选择题1.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定3.下列说法正确的是()A.一个角的补角必是钝角B.两个锐角一定互为余角C.直角没有补角D.钝角没有余角4.若∠A与∠B互为补角,则∠A+∠B=()A.60°B.90°C.120°D.180°5.25°的补角是()A.155°B.145°C.55°D.65°6.下列四个角中,有可能与70°角互补的角是()A.B.C.D.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°9.如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°10.若α=27°25',则α的余角等于()A.62°25'B.62°35'C.152°25'D.152°35'二.填空题11.如图,点O在直线AB上,OC是∠AOD的平分线.若∠BOD=50°,则∠AOC的度数为.12.已知∠AOB=40°,OC是∠AOB的平分线,则∠AOC等于.13.钟表上显示的时间是12:30,此时时针与分针的夹角是.14.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.15.如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有对.三.解答题(共3小题)16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.一个锐角的补角比它的余角的4倍小30°,求这个锐角的度数.18.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,若∠BOE=21°,求∠AOE及∠COD的度数.参考答案一.选择题1.解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.2.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.解:A.一个钝角的补角为锐角,故原说法错误;B.两个锐角的和为90°时,这两个角一定互余,故原说法错误;C.直角的补角依然是直角,故原说法错误;D.和为90°的两个角互余,所以钝角没有余角,故原选项正确.故选:D.4.解:∵∠A与∠B互为补角,∴∠A+∠B=180°.故选:D.5.解:25°的补角是:180°﹣25°=155°.故选:A.6.解:根据互补的性质得,70°角的补角为:180°﹣70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选:D.7.解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.9.解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130°.故选:C.10.解:α的余角=90°﹣α=90°﹣27°25'=62°35'.故选:B.二.填空题11.解:∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=50°,∴∠AOD=180°﹣∠BOD=180°﹣50°=130°,∵OC是∠AOD的平分线,∴∠AOC=∠AOD=×130°=65°,故答案为:65°.12.解:∵OC是∠AOB的平分线,∠AOB=40°,∴∠AOC=∠AOB=×40°=20°,故答案为:20°.13.解:12:30时,时针与分针相距5.5份,夹角为30°×5.5=165°,故选:165°.14.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.15.解:∵∠BOC=90°,∴∠AOC=∠BOC=90°,∴∠AOC与∠BOC互为补角;∵∠BOD+∠AOD=180°,∴∠AOD与∠BOD互为补角;∵∠COD=45°,∴∠BOD=45°,∴∠AOD与∠COD互为补角;∴图中互为补角的角共有3对,故答案为:3.三.解答题(共3小题)16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:设这个锐角为x度,得:180﹣x=4(90﹣x)﹣30,解得x=50.答:这个锐角的度数为50°.18.解:∵∠BOE=21°,∴∠AOE=180°﹣∠BOE=159°,∵射线OE平分∠BOC,∴∠BOC=2∠BOE=42°,∴∠AOC=180°﹣∠BOC=138°,∵OD平分∠AOC,∴∠COD=AOC=69°.。

新人教版七年级数学上册第4章第2节 直线、射线、线段同步练习题

新人教版七年级数学上册第4章第2节 直线、射线、线段同步练习题

七年级数学(人教版上)同步练习第四章第二节直线、射线、线段一. 教学内容:平面图形(一)二. 学习目的:1. 通过实例了解点线面体的几何特征,感受它们之间的关系2. 了解直线、射线、线段的概念、表示方法及画法;3. 掌握点与直线的位置关系;掌握直线公理;4. 了解直线、射线、线段之间的关系;5. 理解线段的和、差及线段的中点等概念,会比较线段的大小;6. 理解两点间的距离的概念,会度量两点间的距离。

三. 技能要求:1. 会比较线段的大小,理解线段的和差与线段中点等概念。

2. 会用直尺、圆规、刻度尺等工具画线段,画线段的和差、线段的中点。

3. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语言,能用这些语言准确,整洁地画出图形。

认识学过的图形,会用语言描述这些简单的几何图形。

【教学过程】一. 重要数学思想1. 数形结合的思想。

建立位置关系与数量关系的联系,即由形的背景建立数量关系,和由数量关系研究位置关系的思想。

2. 方程的思想。

本章中一些角与线段的计算问题要通过设元,列方程解出未知数来解决。

通过这种训练初步形成方程的思想。

3. 分类及分类讨论的思想。

通过本章中一些命题确定的题设条件产生的不唯一结论的讨论,初步形成分类讨论的思想。

二. 重要数学能力1. 培养几何术语的表达能力。

本章是平面几何的第一章,要学习许多几何术语的表达,如“有且只有”、“经过”、“无限延长”等,掌握它们需要有一个过程。

因此,要了解它们的含义,逐步培养表达能力。

2. 图形的观察记忆等能力,观察图形的特征。

并在一些稍复杂的图形中分辨出几何概念定义的基本图形。

三. 知识点讲解1. 体、面、线、点(1)只考虑物体的形状,大小和位置的物体叫做几何体。

体是由面围成的,面与面相交于线,线与线相交于点。

对于面、线、点应认识到它们是不定义的原始概念,只给一个形象上的、描述性的认识。

(2)面有平面和曲面。

如桌面可以想象为一个平面。

皮球的表面可以想象为一个曲面。

2020年七年级数学上册4.2直线、射线、线段同步练习(新版)新人教版

2020年七年级数学上册4.2直线、射线、线段同步练习(新版)新人教版

4.2 直线、射线、线段同步练习一、选择题1.下列说法中正确的个数有两点之间的所有连线中,线段最短;过一点有且只有一条直线与已知直线垂直;平行于同一直线的两条直线互相平行;直线外一点到这条直线的垂线段叫做点到直线的距离.A. 4个B. 3个C. 2个D. 1个2.如图,下列语句错误的是A. 射线CA和CD不是同一条射线B.C. 射线AC和AB是同一条射线D. 直线BC和BD是不同的直线3.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm4.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种5.如图,点A,点B,点C在直线l上,则直线,线段,射线的条数分别为A. 3,3,3B. 1,2,3C. 1,3,6D. 3,2,66.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有;;;.A. 1个B. 2个C. 3个D. 4个7.如图,从A到B有多条道路,人们往往走中间的直路,这是因为A. 两点之间,线段最短B. 两点的距离的概念C. 两点确定一条直线D. 它最直8.在线段AB上取一点C,使,再在AB的延长线上取一点D,使,则BC是AD的A. B. C. D.9.如图的四个图形和每一个图形相应的一句描述,其中所有图形都是画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点其中正确的语句的个数有A. 0个B. 1个C. 2个D. 3个10.按语句“画出线段PQ的延长线”画图正确的是A. B. C. D.二、填空题11.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画______ 条直线.12.两条直线相交有1个交点,三条直线两两相交有3个交点,四条直线两两相交有6个交点,n条直线两两相交有______ 个交点.13.一条直线上顺次有A、C、B三点,线段AB的中点为P,线段BC的中点为Q,若,,则线段PQ的长为______cm.14.如图,点C把AB分为2:3两段,点D分AB为1:4两段,若,则 ______ cm, ______cm.15.已知点M是AB的中点,点C在直线AB上.若点C在线段AB的延长线上,,,则线段MC的长度为______;若,,且,则线段MC的长度为______用含a,b的代数式表示三、计算题16.已知:如图,点C是线段AB上一点,且是AB的中点,E是CB的中点,,求:的长;求AD:CB.17.已知,如图,点C在线段AB上,且,,点M、N分别是AC、BC的中点.求线段MN的长度;在中,如果,,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.18.已知:数轴上两点表示的有理数为a、b,且.、B各表示哪一个有理数?点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式的值;小蚂蚁甲以1个单位长度秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?【答案】1. C2. D3. C4. D5. C6. A7. A8. C9. B10. A11. 1条或4条或6条12.13. 214. 5;2515. 6;或16. 解:设,,,,是CB的中点,,是AB的中点,,故DE,解可得:.故AB的长为18;由得:,,故AD:.17. 解:,,点M、N分别是AC、BC的中点,,,;理由是:,,点M、N分别是AC、BC的中点,,,.18. 解:根据题意得,,,.答:点A表示的数为1;点B表示的数为;当点C在点B的左边时,,解得;当点C在点A的右边时,,解得;原式当,,时,原式;当,,时,原式;设小蚂蚁乙收到信号后经过t秒和小蚂蚁甲相遇,根据题意得:,,,.答:点D表示的有理数是,小蚂蚁甲共用去7秒.。

数学人教版七年级上册4.2直线、射线、线段同步练习

数学人教版七年级上册4.2直线、射线、线段同步练习

4.2 直线、射线、线段同步练习一、选择题1.以下说法中正确的个数有 ()①两点之间的全部连线中,线段最短;①过一点有且只有一条直线与已知直线垂直;①平行于同向来线的两条直线相互平行;①直线外一点到这条直线的垂线段叫做点到直线的距离.A.4个B.3个C.2个D.1个2.如图,以下语句错误的选项是 ()A. 射线 CA 和 CD 不是同一条射线B. ①①= ①①+ ①①+①①C. 射线 AC 和 AB 是同一条射线D. 直线 BC 和 BD 是不同的直线3.已知线段 AB,C 是直线 AB 上的一点,①①= 8,①①= 4,点M 是线段 AC 的中点,则线段AM 的长为 ()A. 2cmB. 4cmC. 2cm 或 6cmD. 4cm 或 6cm4.一辆客车来回于 A,B 两地之间,半途有三个停靠站,那么在A、B 两地之间最多需要印制不一样的车票有()A.10种B.15种C.18种D.20种5.如图,点A,点B,点C在直线l上,则直第1页/共8页线,线段,射线的条数分别为()A. 3,3,3B. 1,2,3C. 1,3,6D. 3,2,66.已知点 A、B、P 在一条直线上,则以下等式中,能判断点 P是线段 AB 的中点的个数有 ()①①①= ①①;①①①= 12①①;①①= 2①①;①①①+ ①①= ①①.A.1个B.2个C.3个D.4个7.如图,从 A 到 B 有多条道路,人们常常走中间的直路,这是由于 ()A.两点之间,线段最短B.两点的距离的观点C.两点确立一条直线D.它最直8.在线段 AB 上取一点 C,使①①= 13①①,再在 AB 的延伸线上取一点 D,使①①=1①①,则 BC 是 AD 的()4A. 1B. 2C. 1D.3323 29.如图的四个图形和每一个图形相应的一句描绘,此中全部图形都是画在同一个平面上.①线段 AB 与射线 MN 不订交;①点 C 在线段 AB 上;①直线 a和直线 b 不订交;①延伸射线 AB,则会经过点①.此中正确的语句的个数有 ()A.0个B.1个C.2个D.3个10. 按语句“画出线段 PQ 的延伸线”绘图正确的选项是 ()A. B. C. D.二、填空题11.已知平面内有 A、B、C、D 四点,过此中的两点画一条直线,一共能够画 ______ 条直线.12.两条直线订交有 1 个交点,三条直线两两订交有 3 个交点,四条直线两两订交有6 个交点,n 条直线两两订交有______ 个交点.13.一条直线上按序有A、C、B 三点,线段AB 的中点为P,线段BC 的中点为 Q,若①①= 10①①,①①= 6①①,则线段 PQ 的长为 ______cm.14.如图,点 C 把 AB 分为 2:3 两段,点 D分 AB 为 1:4 两段,若①①= 5①①,则①①= ______ cm,①①= ______ cm.15.已知点 M 是 AB 的中点,点 C 在直线 AB 上.(1) 若点 C 在线段 AB 的延伸线上,①①= 7,①①= 5,则线段MC 的长度为 ______;第3页/共8页(2)若①①= ①,①①= ①,且① < ①,则线段 MC 的长度为______. (用含 a,b 的代数式表示 )三、计算题16.已知:如图,点 C 是线段 AB 上一点,且 3①①= 2①①.①是 AB的中点, E 是 CB 的中点,①①= 6,求:(1)①①的长;(2)求 AD:CB.17.已知,如图,点 C 在线段 AB 上,且①①= 6①①,①①= 14①①,点 M、N 分别是 AC、BC 的中点.(1)求线段 MN 的长度;(2)在( 1)中,假如①①= ①①①,①①= ①①①,其余条件不变,你能猜想出 MN 的长度吗?请说出你发现的结论,并说明原因.18.已知:数轴上①. ①两点表示的有理数为 a、b,且( ①- 1)2 + |①+ 2|=0.(1)①、B 各表示哪一个有理数?(2)点 C 在数轴上表示的数是 c,且与 A、B 两点的距离和为 11,求多项式①( ①①+ 3) - |①2 - 3( ①-19①2)|的值;(3)小蚂蚁甲以 1 个单位长度 / 秒的速度从点 B 出发向其左侧 6 个单位长度处的一颗饭粒爬去, 3 秒后位于点 A 的小蚂蚁乙收到它的信号,以 2 个单位长度 / 秒的速度也快速爬向饭粒,小蚂蚁甲抵达后背着饭粒立刻返回,与小蚂蚁乙在数轴上 D 点相遇,则点 D 表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?第5页/共8页【答案】1. C2. D3. C8. C9. B10. A11. 1条或 4条或 6条12.①(①- 1)213.214.5;2515.6;12 (①- ①)或12 (①+)16.解: ( 1) 设①①= ①,∵3①①= 2①①,∴①①= 23①①= 23①,①①= ①①- ①①= ①-23①= 13①,∵①是 CB 的中点,∴①①= 1①①= 1①,26∵①是 AB 的中点,∴①①= 12①= ①2,故 DE= ①①- ①①= ①2 - ①6 = 6,解可得:①=18.故AB 的长为18;( 2)由( 1)得:①①= 12①①= 9,①①= 13①①= 6,故 AD:①①= 32.17.解: ( 1) ∵①①= 6①①,①①= 14①①,点 M、N 分别是 AC、BC 的中点,∴①①=3①①,①①= 7①①,∴①①= ①①+ ①①= 10①①;( 2)① = 1 ( ①+ ①) ①①.原因是:2∵①①= ①①①,①①= ①①①,点 M、N 分别是 AC、BC 的中点,∴①①= 12①①①,①①= 12①①①,∴①①= ①①+ ①①= 1 ( ①+ ①) ①.218.解: ( 1) 依据题意得①- 1 = 0,①+ 2 = 0,∴①= 1,① = - 2.答:点 A 表示的数为 1;点 B 表示的数为 - 2;( 2)①当点 C 在点 B 的左侧时,1-①+ (- 2-①) = 11,解得①= - 6;①当点 C 在点 A 的右侧时,①- 1+ ①- (- 2) = 11,解得①= 5;原式 = ①①①+ 3①- |①2 - 3①+ 1①2|3= ①①①+ 3①- | 43①2 - 3①|当①= 1,① = - 2,① = - 6时,原式= 1×(- 2)×(- 6)+ 3- |4×(- 6)2- 3×1|3= 12+ 3- 45=-30;当①= 1,① = - 2,① = 5时,原式= 1×(- 2) ×5+ 3- |4× 2×5 - 3 1|3第7页/共8页=- 1123;( 3)设小蚂蚁乙收到信号后经过t 秒和小蚂蚁甲相遇,依据题意得:①+ 2①= 1- (- 2) - (- 6) + (6- 1×3),∴①= 4,∴1- 2×4 = - 7,3+ 4 = 7.答:点 D 表示的有理数是 - 7,小蚂蚁甲共用去7 秒.。

七年级数学上册4-2直线、射线、线段基础课时同步练习题(含答案)

七年级数学上册4-2直线、射线、线段基础课时同步练习题(含答案)

七年级数学上册4-2直线、射线、线段基础课时同步练习题(含答案)1、如图,对于直线AB,线段CD,射线EF,其中能相交的图是().A.B.C.D.2、根据“反向延长线段CD”这句话,下图表示正确的是().A.B.C.D.3、轩轩同学带领自己的学习小组成员预习了“线段,射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是().A. 直线MN与直线NM是同一条直线B. 射线PM与射线MN是同一条射线C. 射线PM与射线PN是同一条射线D. 线段MN与线段NM是同一条线段4、下列语句准确规范的是().A. 延长射线ABB. 两点之间直线最短C. 线段AB和线段BA是同一条线段D. 构成角的两边是两条线段5、如图,已知三点A,B,C,按下列语句画出图形:①画直线AB;②画射线BC;③连接AC.6、如图所示,图中直线共有条,射线共有条,线段共有条.7、如图,点A、B、C在一直线上,则图中共有射线().A. 1条B. 2条C. 4条D. 6条8、在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A. 1枚B. 2枚C. 3枚D. 任意枚9、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是().A. 两点确定一条直线B. 两点之间,线段最短C. 两点之间,直线最短D. 线段比直线短10、点C在线段AB上,下列条件中不能确定点C是线段AB中点的是().A. AC=BCB. AC+BC=ABC. AB=2ACABD. BC=1211、根据直线、射线、线段各自的性质,如下图所示,能够相交的是().A.B.C.D.12、下列说法中不正确的是().A. 图①中直线l经过点AB. 图②中直线a,b相交于点AC. 图③中点C在线段AB上D. 图④中射线CD与AB有公共点13、下列各种图形中,可以比较大小的是()A. 两条射线B. 两条直线C. 直线与射线D. 两条线段14、按语句“画出线段PQ的延长线”画图正确的是().A.B.C.D.15、读句画图:如图,A、B、C在同一平面内.(1)过点A和点C画直线;(2)画射线CB;(3)连接AB.16、如图,线段AD上有两点B、C,则图中共有线段().A. 三条B. 四条C. 五条D. 六条17、如图,点A,B,C,D,E,F在同一条直线上,则图中线段和射线的条数分别为().A. 10,10B. 12,15C. 15,12D. 15,1518、把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是().A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 两点之间直线最短19、如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是().A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短20、下列说法正确的是()A. 两点之间的连线中,直线最短B. 若P是线段AB的中点,则AP=BPC. 若AP=BP,则P是线段AB的中点D. 射线是直线长度的一半1 、【答案】 B;【解析】 A选项 : 直线AB与线段CD不能相交,故本选项错误;B选项 : 直线AB与射线EF能够相交,故本选项正确;C选项 : 射线EF与线段CD不能相交,故本选项错误;D选项 : 直线AB与射线EF不能相交,故本选项错误.2 、【答案】 A;【解析】3 、【答案】 B;【解析】 A选项 : 直线没有端点和方向,直线MN与直线NM是同一条直线,正确.B选项 : 射线PM是以P为端点,向右延伸的射线;射线MN是以M为端点,向右延伸的射线;射线PM与射线MN端点不同,不是一条射线,不正确.C选项 : 射线PM和PN均为以P为端点,向右延伸的射线,是同一条射线,正确.D选项 : 线段MN与线段NM均以M,N两点为端点的线段,是同一条线段,正确.4 、【答案】 C;【解析】 A选项 : 射线AB不能延长,只能是反向延长射线AB,故A错误;B选项 : 直线没有长度,两点之间线段最短,故B错误;C选项 : 线段AB和线段BA是同一条线段,故C正确;D选项 : 构成角的两边是两条射线,不是两条线段,故D错误.5 、【答案】画图见解析.;【解析】如图所示,直线AB:连接AB并两端延长,射线BC:连接BC并延长,过C点的直线,连接AC.6 、【答案】1;6;3;【解析】观察图形可,图中直线有1条,射线有6条,线段有3条.故答案为:1;6;3.7 、【答案】 D;【解析】根据射线的定义,这条直线上的每个点可以有两条射线,故图中共有射线6条.8 、【答案】 B;【解析】∵两点确定一条直线,∴至少需要2枚钉子.9 、【答案】 B;【解析】如果把原来弯曲的河道改直,那么河道长度的变化是变短,数学原理是两点之间线段最短.故选B.10 、【答案】 B;【解析】 A选项 : AC=BC,则点C是线段AB的中点,故不符合题意.B选项 : AC+BC=AB,则C可以是线段AB上任意一点,故符合题意.C选项 : AB=2AC,则点C是线段AB的中点,故不符合题意.AB,则点C是线段AB的中点,故不符合题意.D选项 : BC=1211 、【答案】 B;【解析】由直线、射线、线段各自的性质知B图会相交.12 、【答案】 C;【解析】 A选项 : 由图可知,点A在直线l上,即直线l经过点A.故A选项说法正确;B选项 : 由图可知,直线a、b相交,交点为点A.故B选项说法正确;C选项 : 由图可知,点C在线段AB外.故C选项说法错误;D选项 : 由图可知,射线CD与线段AB相交,即有公共点.故D选项说法正确.13 、【答案】 D;【解析】解:A.射线没有长度,无法比较大小,故此选项错误;B.直线没有长度,无法比较大小,故此选项错误;C.直线与射线没有长度,无法比较大小,故此选项错误;D.两条线段可以比较大小.故选:D.14 、【答案】 A;【解析】 A选项 : 图形和语言符合,故本选项正确;B选项 : 不是表示线段PQ的延长线,故本选项错误;C选项 : 不是表示线段PQ的延长线,故本选项错误;D选项 : 不是表示线段PQ的延长线,故本选项错误.15 、【答案】画图见解析.;【解析】.16 、【答案】 D;【解析】由题图可知,线段有:AB,BC,CD,AC,BD,AD,一共6条.故选D.17 、【答案】 C;【解析】图中线段有15条:线段AB、线段AC、线段AD、线段AE、线段AF、线段BC、线段BD、线段BE.线段BF.线段CD、线段CE、线段CF、线段DE,线段DF、线EF;以每个点为端点的射线有2条,共6个点,故射线有12条.18 、【答案】 B;【解析】两枚钉子固定木条,即两点确定一条直线.19 、【答案】 D;【解析】由于两点之间线段最短,∴剩下纸片的周长比原纸片的周长小,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.20 、【答案】 B;【解析】A错误,直线长度无法测量;B正确,中点的定义;C错误,P有可能不在线段上;D错误,直线和射线的长度无法测量,无法比较第11页,共11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独一无二,天下无双
2
无双辅导中心内部教参
B O 1 2 A 3 4 5 6
-6 -5 -4 -3 -2 -1 0
(1)数轴是什么图形? (2)数轴在原点 O 左边的部分(包括原点)是什么图形?怎样表示? (3)射线 OB 上的点表示什么数?端点表示什么数? 5 (4)数轴上表示不小于- ,且不大于 3 的部分是什么图形?怎样表示? 2
M N
(2)刻度尺画法:①用刻度尺分别量出线段 a、b、c 的长度.②计算 a+b-c 的值.③
独一无二,天下无双
4
无双辅导中心内部教参
用刻度尺直接画一条线段等于 a+b-c. 18、解:如图所示:
E A B C
(1)因为 AE=AB=5cm,BC=2AB=10cm,所以线段 CE 的长为 20cm; 3 (2)AC=15cm,线段 AC 是线段 CE 的 ; (3)BC=10cm,线段 CE 是线段 BC 的 2 倍. 4 19、解:由于点 C 与 A、B 两点的位置关系不确定,所以要进行分类讨论,然后再求解. (1)当点 C 在线段 AB 的外部时,如图所示,
*13、如下图,AC=CD=DE=EB,图中和线段 AD 长度相等的线段是__________,以 D•为中点的线段是__________.
A C D E B
**14、画线段 AB=50mm,在线段 AB 上取一点 C,使得 5AC=2AB,在 AB 的延长线上 取一点 D,使得 AB=10BD,那么 CD=__________mm. 三、解答题. 15、根据下列语句画出图形: (1)直线 l 经过 A、B、C 三点,点 C 在点 A 与点 B 之间; (2)两条直线 m 与 n 相交于点 P; (3)线段 a、b 相交于点 O,与线段 c 分别交于点 P、Q. 16、探索规律: (1)若直线 l 上有 2 个点,则射线有_____条,线段有______条; (2)若直线 l 上有 3 个点,则射线有_____条,线段有______条; (3)若直线 l 上有 4 个点,则射线有_____条,线段有______条; (4)若直线 l 上有 n 个点,则射线有_____条,线段有______条. 17、如下图,已知线段 a、b、c,画一条线段,使它等于 a+b-c(•用尺规和刻度尺两种 方法) .
R C E P O B D
11、如下图所示,图中共有__________条线段,它们是__________;共有__________条射
独一无二,天下无双
Байду номын сангаас
1
无双辅导中心内部教参
线,它们是__________.
D A B C F
12、如下图,把河道由弯曲改直,根据__________说明这样做能缩短航道.
-2=3(cm) . 20、解: (1)直线(2)射线;射线 OB(3)非正数;0(4)线段;线段 AB.
独一无二,天下无双
5
a b c
*18、先画线段 AB=5cm,延长 AB 至 C,使 BC=2AB,反向延长 AB 至 E,使 AE=AB, 再计算: (1)线段 CE 的长; (2)线段 AC 是线段 CE 的几分之几? (3)线段 CE 是线段 BC 的几倍? **19、 已知线段 AB=10cm, 直线 AB 上有一点 C, 且 BC=2cm, 点 D 是线段 AB 的中点, 求线段 DC 的长. 5 **20、已知数轴的原点为 O,如图所示,若点 A 表示 3,点 B 表示- ,问: 2
D B C 1 1 因为点 D 是线段 AB 的中点,所以 BD= AB= ×10=5(cm) .所以 DC=DB+BC=5 2 2 A
+2=7(cm) . (2)当点 C 在线段 AB 的内部时,如图所示,
D C B 1 1 因为点 D 是线段 AB 的中点,所以 BD= AB= ×10=5(cm) .所以 DC=DB-BC=5 2 2 A
A C D B
**8、线段 AB=1996cm,P、Q 是线段 AB 上的两个点,线段 AQ=1200cm,线段 BP= 1050cm,则线段 PQ=( ) A. 254cm B. 150cm C. 127cm D. 871cm
二、填空题. 9、在墙上钉一根木条需__________个钉子,其根据是__________. 10、如下图所示,直线__________和直线__________相交于点 P;直线 AB 和直线 EF•相 交于点__________;点 R 是直线__________和直线__________的交点. A F
独一无二,天下无双
3
无双辅导中心内部教参
一、选择题: 1、B 2、D 3、D 4、B 解析:过不在同一条直线上的三点可以画三条直线,过在同一条直线上的三点只 能画一条直线. 5、C 解析:当点 C 在线段 AB 上时,AC=AB-BC=2cm;当点 C 不在线段 AB 上时, AC=AB+BC=10cm. 6、C 解析:①不正确,因为点 A、B、M 可能不在同一条直线上;②③④正确. 1 1 1 1 7、D 解析:选项 D 不正确,CD= BC= × AB= AB. 2 2 2 4 8、A 解析:PQ=AQ-AP=AQ-(AB-BP)=AQ-AB+BP=1200-1996+1050= 254cm. 二、填空题: 9、两 两点确定一条直线 10、AB CD;O;CD EF 11、3,AB、BC、AC;6,AD、AF、BD、BF、CD、CF 12、两点之间线段最短 13、CE、DB,CE、AB 14、35 解析:因为 AB=50mm,所以 2AB=100mm,所以 AC=20mm,所以 CB=AB 1 -AC=30mm.因为 AB=10BD,所以 BD= AB=5mm,所以 CD=CB+BD=30+5=35 10 (mm) . 三、解答题: 15、解: (1)如图所示:
A C B l
(2)如图所示:
m P n
(3)如图所示:
P a O b c Q
16、解: (1)4 1; (2)6 3; (3)8 6; (4)2n
1 n(n-1) . 2
17、解: (1)尺规画法:①用直尺画一条直线 MN,用圆规在 MN 上截取线段 AB=a.② 以 B 为端点在射线 BN 上截取线段 BC=b. ③以 C 为端点在射线 CM 上截取线段 CD=c. 则 线段 AD=a+b-c. A D B C
无双辅导中心内部教参
七年级数学
直线、射线、线段 同步练习
独一无二,天下无双
无双辅导中心内部教参
初一数学人教新课标版第四章第 2 节直线、射线、线段同步练习 (答题时间:60 分钟)
一、选择题. 1、下面几种表示直线的写法中,错误的是( ) A. 直线 a B. 直线 Ma C. 直线 MN D. 直线 MO 2、下列作图语句中正确的是( ) A. 画直线 AB=2cm B. 画射线 OC=3cm C. 在射线 OC 上,截取射线 CD=2cm D. 延长线段 AB 到 C,使得 BC=AB 3、比较线段 a 和 b 的长短,其结果一定是( ) A. a=b B. a>b C. a<b D. a>b 或 a=b 或 a<b 4、下列说法错误的是( ) A. 过一点可以作无数条直线 B. 过已知三点可以画一条直线 C. 一条直线通过无数个点 D. 两点确定一条直线 *5、如果线段 AB=6cm,BC=4cm,则线段 AC 的长度是( ) A. 2cm B. 10cm C. 2cm 或 10cm D. 无法确定 *6、下列四种说法:①因为 AM=MB,所以 M 是 AB 中点;②在线段 AM•的延长线上 取一点 B,如果 AB=2AM,那么 M 是 AB 的中点;③因为 M 是 AB 的中点,所以 AM= 1 MB= AB;④因为 A、M、B 在同一条直线上,且 AM=BM,所以 M 是 AB 的中点.其中 2 正确的是( ) A. ①③④ B. ④ C. ②③④ D. ③④ **7、如图所示,C 是线段 AB 的中点,D 是线段 BC 的中点,则下列关系式中不正确的 是( ) A. CD=AC-BD B. CD=AD-BC 1 1 C. CD= AB-BD D. CD= AB 2 3
相关文档
最新文档