2015-2016学年天津市和平区高二(下)期中数学试卷(理科)

合集下载

第二讲 常用逻辑用语复习题(解析版)

第二讲 常用逻辑用语复习题(解析版)

第2讲常用逻辑用语复习题I本章知识思维导图 2 II典型例题 3题型一:充分条件、必要条件与充要条件的判断及应用 3题型二:全称量词命题与存在量词命题 4题型三:应用充分条件、必要条件、充要条件求参数值(范围) 6题型四:充要条件的证明或探求 9题型五:命题的否定 11题型六:与全称(存在)量词命题有关的参数问题 12 III模块三:数学思想方法 15①分类讨论思想 15②转化与化归思想 17③方程思想 181本章知识思维导图I23II 典型例题题型一:充分条件、必要条件与充要条件的判断及应用【例1】(天津市和平区2023-2024学年高二期末质量调查数学试卷)已知a ∈R ,则“1a≥1”是“0≤a ≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】不等式1a≥1⇔0<a ≤1,显然(0,1]Ü[0,1],所以“1a ≥1”是“0≤a ≤1”的充分不必要条件.故选:A【例2】(重庆市主城四区2023-2024学年高二期末高中学生学业质量调研测试数学试题)若xy ≠0,则“x +2y =0”是“x y +y x =-52”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】B【解析】当x +2y =0时,x y +y x =-2y y +y -2y =-2-12=-52,当x y +y x =-52时,即2x 2+5xy +2y 2=0,即x +2y 2x +y =0,则有x +2y =0或2x +y =0,故“x +2y =0”是“x y +y x =-52”的充分不必要条件.故选:B .【例3】(2024·江苏扬州·模拟预测)已知集合A =0,a 2 ,B =1,a +1,a -1 ,则“a =1”是“A ⊆B ”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】当a =1时,A ={0,1},B ={0,1,2},则A ⊆B ;反之,当A ⊆B 时,a +1=0或a -1=0,解得a =-1或a =1,若a =-1,A ={0,1},B ={0,1,-2},满足A ⊆B ,若a =1,显然满足A ⊆B ,因此a =-1或a =1,所以“a =1”是“A ⊆B ”的充分不必要条件.故选:B【例4】(2024·天津河北·二模)设x ∈R ,则“1<x <2”是“x -2 <1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由x-2<1可得-1<x-2<1,解得1<x<3,所以由1<x<2推得出x-2<1,故充分性成立;由x-2<1推不出1<x<2,故必要性不成立,所以“1<x<2”是“x-2<1”的充分不必要条件.故选:A【例5】(2024·高一·江苏连云港·开学考试)若不等式x <a的一个充分条件为0<x<1,则实数a的取值范围是()A.0,1B.0,1C.1,+∞D.1,+∞【答案】C【解析】由x <a,得到-a<x<a,又不等式x <a的一个充分条件为0<x<1,所以a≥1,故选:C.【例6】(2024·高一·江苏无锡·阶段练习)不等式x2-x-m>0在x∈R上恒成立的一个必要不充分条件是()A.m≤-14 B.m<-14 C.m<-12 D.-1<m<-12【答案】A【解析】不等式x2-x-m>0在R上恒成立,即一元二次方程x2-x-m=0在R上无实数解∴Δ=-12-4×-m<0,解得:m<-1 4,易见B选项是充要条件,不成立;A选项中,m<-14可推导m≤-14,且m≤-14不可推导m<-14,故m≤-14是m<-14的必要不充分条件,A正确;C选项中,m<-14不可推导出m<-12,C错误;D选项中,m<-14不可推导-1<m<-12,D错误,故选:A.题型二:全称量词命题与存在量词命题【例7】(2024·高一·河南安阳·阶段练习)下列命题是真命题的是()A.∀x∈R,x2=xB.∃x∈Q,x2=3C.∀x∈Z,|x|∈ND.∃x∈R,x2-2x+3=0【答案】C【解析】当x=-1时,x2≠x.故选项A判断错误;由x2=3可得,x=± 3.故选项B判断错误;∀x∈Z,|x|∈N.故选项C判断正确;由x2-2x+3>0,可得选项D判断错误.故选:C4【例8】(2024·高一·广东广州·阶段练习)下列命题中真命题的个数是()①∃x∈R,x2≤0;②至少有一个整数,它既不是合数,也不是素数;③∀x∈{x|x是无理数},x是无理数.A.0B.1C.2D.3【答案】D【解析】对于①,当x=0时,x2=0≤0,故①正确;对于②,由1是整数,且它既不是合数,也不是素数,故②正确;对于③,假设∀x∈{x|x是无理数},x是有理数,则可设x=pq,p,q∈Z,则x=p2q2,p2,q2∈Z,故x为有理数,而与题设矛盾,故③正确,故选:D.【例9】(2024·高一·北京通州·期中)给出下面四个命题:①∀x∈R,x +1≥1;②∀x∈R,x +x≥0;③∃x∈R,x2的个位数字等于3;④∃x∈R,x2-x+1=0.其中真命题的个数是()A.1B.2C.3D.4【答案】B【解析】对于①,因为x ≥0,所以∀x∈R,x +1≥1,所以①对;对于②,当x≥0时,x +x=2x≥0,当x<0时,x +x=0≥0,所以∀x∈R,x +x≥0成立,所以②对;对于③,设x=10a+b,b∈0,1,2,3,4,5,6,7,8,9,x2=1010a2+2ab+b2,x2的个位数字等于b2的个位数字,所以x2的个位数字都不等于3,所以③错;对于④,因数Δ=-12-4×1×1=-3<0,所以方程x2-x+1=0无实数解,所以④错.故选:B.【例10】(2024·高一·全国·课后作业)以下四个命题中,既是存在量词命题又是真命题的是A.锐角三角形的内角是锐角或钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使x2≤0【答案】B【解析】逐一考查所给的命题:A选项为全称量词命题,且所给的命题为假命题;B选项为存在量词命题,且所给的命题为真命题;C选项为全称量词命题,取x1=2+3,x2=2-3,则x1+x2=4为有理数,所给的命题为假命题;D选项为存在量词命题,若x<0,则x2>0,所给的命题为假命题.故选B.【例11】(2024·高一·湖南长沙·阶段练习)下列命题中,既是真命题又是全称量词命题的是()A.至少有一个x∈Z,使得x2<3成立B.菱形的两条对角线长度相等56C.∃x ∈R ,x 2=xD.对任意a ,b ∈R ,都有a 2+b 2≥2(a +b -1)【答案】D【解析】AC 为存在量词命题,BD 为全称量词命题,菱形的两条对角线长度不一定相等,B 选项错误,对任意a ,b ∈R ,都有a 2+b 2-2(a +b -1)=a 2-2a +1+b 2-2b +1=(a -1)2+(b -1)2≥0,即a 2+b 2≥2(a +b -1),D 选项正确.故选:D【例12】(2024·高一·河北·阶段练习)下列命题中,既是全称量词命题又是真命题的是()A.每一个命题都能判断真假B.存在一条直线与两条相交直线都平行C.对任意实数a ,b ,若a <b ,则a 2<b 2D.存在x ∈R ,使x 2-x +1=0【答案】A【解析】对于A ,“每一个命题都能判断真假”是全称量词命题,命题都能判断真假,A 是真命题,符合题意;对于B ,“存在一条直线与两条相交直线都平行”是存在量词命题,不符合题意;对于C ,该命题是全称量词命题,当a =-2,b =-1时,a 2>b 2,C 中命题是假命题,不符合题意;对于D ,该命题是存在量词命题,不符合题意,故选:A .题型三:应用充分条件、必要条件、充要条件求参数值(范围)【例13】(2024·高一·海南海口·阶段练习)若“|x |>2”是“x <a ”的必要不充分条件,则a 的最大值为.【答案】-2【解析】x >2,得x >2或x <-2,若“|x |>2”是“x <a ”的必要不充分条件,得x x <a Ü{x x >2 或x <-2},所以a ≤-2,即a 的最大值为-2.故答案为:-2【例14】(2024·高一·河北石家庄·阶段练习)已知p :4x -m ≤0,q :1≤3-x ≤4,若p 是q 的一个必要不充分条件,则实数m 的取值范围为.【答案】m ≥8【解析】由p :4x -m ≤0,q :1≤3-x ≤4,得p :x ≤m4,q :-1≤x ≤2,因为p 是q 的一个必要不充分条件,则p 不能推出q ,但q 能推出p ,则2≤m4,即m ≥8.故答案为:m ≥8【例15】(2024·高一·江西南昌·期末)在①A ∩B =B ;②“x ∈A ”是“x ∈B ”的必要条件;③B ∩∁R A =∅这三个条件中任选一个,补充到下面的问题中,并解答.间题:已知集合A ={x ∈R ∣(x -1)(x +2)>0},B ={x ∈R ∣y =x +a ,y ∈R }.(1)当a =1时,求A ∩∁R B ;(2)若,求实数a 的取值范围.【解析】(1)由不等式(x -1)(x +2)>0,解得x <-2或x >1,可得A ={x |x <-2或x >1},当a =1时,可得B ={x ∈R ∣y =x +1,y ∈R }={x |x ≥-1},7则∁R B ={x ∣x <-1},所以A ∩∁R B ={x ∣x <-2}.(2)由集合A ={x |x <-2或x >1}和B ={x |x ≥-a },若选择①:由A ∩B =B ,即B ⊆A ,可得-a >1,解得a <-1,所以实数a 的取值范围为(-∞,-1);若选择②:由“x ∈A ”是“x ∈B ”的必要条件,可得B ⊆A ,可得-a >1,解得a <-1,所以实数a 的取值范围为(-∞,-1);若选择③:由A ={x |x <-2或x >1},可得∁R A ={x |-2≤x ≤1},要使得B ∩∁R A =∅,则-a >1,解得a <-1,所以实数a 的取值范围为(-∞,-1).【例16】(2024·高一·山东菏泽·期中)设全集U =R ,集合A =x -2<x ≤3 ,B =x m -1≤x ≤2m .(1)若m =3,求集合∁U A ∩B ;(2)若“x ∈A ”是“x ∈B ”必要条件,求实数m 的取值范围.【解析】(1)当m =3时,B =x 2≤x ≤6 ,又∁U A =x x ≤-2 或x >3 ,所以∁U A ∩B =x 3<x ≤6 .(2)“x ∈A ”是“x ∈B ”必要条件,故B ⊆A .当B =∅时,m -1>2m ,所以m <-1,符合题意;当B ≠∅时,需满足m -1≤2m-2<m -12m ≤3,解得-1<m ≤32,综上所述,m 的取值范围为m <-1或-1<m ≤32.【例17】(2024·高一·福建莆田·期中)已知p :关于x 的方程x 2-2ax +a 2+a -1=0有实数根,q :2m -1≤a≤m +2.(1)若命题¬p 是真命题,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数m 的取值范围.【解析】(1)因为命题是¬p 真命题,则命题p 是假命题,即关于的方程x 2-2ax +a 2+a -1=0无实数根,因此,Δ=4a 2-4a 2+a -1 <0,解得a >1,所以实数的取值范围是1,+∞ ,(2)由(1)知,命题p 是真命题,即p :a ≤1,因为命题p 是q 的必要不充分条件,则a 2m -1≤a ≤m +2 Üa a ≤1 ,当2m -1>m +2即m >3时,a 2m -1≤a ≤m +2 =∅,满足题意,当2m -1≤m +2即m ≤3时,则m ≤3m +2≤1⇒m ≤-1,所以实数m 的取值范围是{m m ≤-1或m >3}.【例18】(2024·高一·河北保定·期中)已知集合A =x 2m -1≤x ≤m +1 ,B =x 12≤x <2 .(1)若m =12,求A ∩∁R B ;(2)若x ∈B 是x ∈A 的必要条件,求实数m 的取值范围.【解析】(1)由B=x12≤x<2,则∁R B={x|x<12或x≥2},若m=12,则A=x0≤x≤32,所以A∩∁R B=x0≤x<1 2.(2)若x∈B是x∈A的必要条件,则A⊆B.当2m-1>m+1时,即m>2时,A=∅,符合题意;当2m-1≤m+1时,即m≤2时,A≠∅,要满足A⊆B,可得12≤2m-1≤m+1<2,解得34≤m<1;综上,实数m的取值范围为34≤m<1或m>2.【例19】(2024·高一·湖北襄阳·期中)已知集合A=x|-2≤x≤5,B=x|m+1≤x≤2m-1.(1)若A∩B=∅,求实数m的取值范围;(2)若x∈A是x∈B的必要条件,且集合B不为空集,求实数m的取值范围.【解析】(1)当B=∅时,由m+1>2m-1,得m<2,符合题意;当B≠∅时,可得2m-1≥m+12m-1<-2或2m-1≥m+1m+1>5,解得m>4.综上,实数m的取值范围是{m|m<2或m>4}.(2)由题意可知B⊆A且B≠∅.可得2m-1≥m+1,m+1≥-2,2m-1≤5,解得2≤m≤3,综上,实数m的取值范围是{m|2≤m≤3}..【例20】(2024·高一·云南红河·阶段练习)已知命题p:方程x2+tx+t=0没有实数根,若p是真命题,实数t 的取值集合为A.(1)求实数t的取值集合A;(2)集合B=t1-a<t<2a-1,若t∈B是t∈A的必要条件,求a的取值范围.【解析】(1)若p是真命题,则t2-4t<0,解得0<t<4,所以A=t|0<t<4;(2)若t∈B是t∈A的必要条件,则A⊆B,又A=t|0<t<4,所以B≠∅,所以2a-1≥41-a≤02a-1>1-a,解得a≥52.【例21】(2024·高一·辽宁·阶段练习)已知集合A=x|-2≤x-1≤5,B=x|m+1≤x≤2m-1.(1)若A∩B=∅,求实数m的取值范围;(2)设p:x∈A;q:x∈B,若p是q的必要不充分条件,求实数m的取值范围.【解析】(1)因为A={x∣-2≤x-1≤5},所以A={x∣-1≤x≤6},又A∩B=∅,分类讨论如下:①当B=∅时,m+1>2m-1解得m<2;8②当B=∅时,m+1≤2m-1 m+1>6或m+1≤2m-12m-1<-1,解得m>5;综上所述:实数m的取值范围为{m∣m<2或m>5}.(2)因为p是q的必要不充分条件,所以B是A的真子集,①当B=Æ时,m+1>2m-1,解得m<2;②当B¹Æ时,m+1≤2m-1 m+1≥-12m-1≤6(等号不能同时成立),解得2≤m≤7 2;综上所述:实数m的取值范围为m∣m≤7 2.题型四:充要条件的证明或探求【例22】(2024·高二·全国·专题练习)已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,两方程的根都是整数的充要条件为.【答案】m=1【解析】因为mx2-4x+4=0是一元二次方程,所以m≠0.又另一方程为x2-4mx+4m2-4m-5=0,且两方程都要有实根,所以Δ1=16-16m≥0,Δ2=16m2-44m2-4m-5≥0,解得m∈-54,1.因为两方程的根都是整数,故其根的和与积也为整数,所以4m∈Z4m∈Z4m2-4m-5∈Z,所以m为4的约数.又m∈-54,1,所以m=-1或1.当m=-1时,第一个方程x2+4x-4=0的根为非整数;而当m=1时,两方程的根均为整数,所以两方程的根都是整数的充要条件是m=1.【例23】设n∈N+,一元二次方程x2-4x+n=0有整数根的充要条件是n=【答案】3或4【解析】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算.x=4±16-4n2=2±4-n,因为x是整数,即2±4-n为整数,所以4-n为整数,且n≤4,又因为n∈N+,取n=1,2,3,4,验证可知n=3,4符合题意;反之n=3,4时,可推出一元二次方程有整数根.【例24】(2024·高一·广东珠海·阶段练习)设a,b,c∈R,求证:关于x的方程ax2+bx+c=0有一个根为-1的充要条件是a-b+c=0.【解析】证明:①充分性:即证明关于x的方程ax2+bx+c=0的系数满足a-b+c=0⇒方程有一个根为-1;由a-b+c=0,得b=a+c,代入方程得ax2+a+cx+c=0,得ax+cx+1=0,所以,x=-1是方程ax2+bx+c=0的一个根.②必要性:即证明若x=-1是方程ax2+bx+c=0的根⇒a-b+c=0;910将x =-1代入方程ax 2+bx +c =0,即有a -b +c =0.综上由①②可知,故关于x 的方程ax 2+bx +c =0有一个根为-1的充要条件是a -b +c =0.【例25】(2024·高一·全国·专题练习)当m ,n ∈Z 时,定义运算⊗:当m ,n >0时,m ⊗n =m +n ;当m ,n <0时,m ⊗n =m ⋅n ;当m >0,n <0或m <0,n >0时,m ⊗n =m +n ;当m =0时,m ⊗n =n ;当n =0时,m ⊗n =m .(1)计算-2 ⊗-3 ⊗-7 ;(2)证明,“a =0,b =-2或a =-2,b =0”是“a ⊗b =-2”的充要条件.【解析】(1)-2 ⊗-3 ⊗-7 =6⊗-7 =6-7 =1.(2)先证充分性:当a =0,b =-2或a =-2,b =0时,则a ⊗b =-2,即a =0,b =-2或a =-2,b =0是a ⊗b =-2的充分条件;再证必要性:当a ⊗b =-2时,显然当ab >0时,a ⊗b >0,当ab <0时,a ⊗b ≥0,即ab >0与ab <0均不合题意,当a =0时,由a ⊗b =-2,则b =-2,当b =0时,由a ⊗b =-2,则a =-2,即“a =0,b =-2或a =-2,b =0”是“a ⊗b =-2”的必要条件,综上,命题得证.【例26】(2024·高一·江苏苏州·阶段练习)求证:方程mx 2-2x +3=0m ≠0 有两个同号且不相等的实根的充要条件是0<m <13.【解析】先证明充分性:若0<m <13,设方程的两个实根为x 1,x 2,则x 1+x 2=2m >0,x 1⋅x 2=3m>0,Δ=4-12m >0,故方程mx 2-2x +3=0(m ≠0)有两个同号且不相等的实根;再证明必要性:若方程mx 2-2x +3=0(m ≠0)有两个同号且不相等的实根,令y =mx 2-2x +3(m ≠0),当m >0时,其图象是开口方向朝上,且以x =1m为对称轴的抛物线若关于x 的方程mx 2-2x +3=0有两个同号且不相等的实根则必有两个不等的正根,则函数f (x )=mx 2-2x +3,有两个正零点,则2m >03m >0Δ=4-12m >0,解得0<m <13;当m <0时,其图象是开口方向朝下,且以x =1m为对称轴的抛物线若关于x 的方程mx 2-2x +3=0有两个同号且不相等的实根则必有两个不等的负根,则函数y =mx 2-2x +3,有两个负零点,则2m <03m >0Δ=4-12m >0,无解;故关于x 的方程mx 2-2x +3=0有两个同号且不相等的实根,则m 的取值范围是0<m <13;∴方程mx2-2x+3=0(m≠0)有两个同号且不相等的实根的充要条件是0<m<13.【例27】(2024·高一·湖北武汉·阶段练习)设a,b,c分别是三角形ABC的三条边长,且a≤b≤c,请利用边长a,b,c给出△ABC为锐角三角形的一个充要条件,并证明之.【解析】a2+b2>c2.证明如下:充分性:∵a2+b2>c2,∴ △ABC不是直角三角形,假设△ABC是钝角三角形,∵a≤b≤c,∴ ∠C最大,即∠B<90°,∠C>90°,过点A作BC的垂线,交BC的延长线于点D,由勾股定理,得c2=AD2+BD2=AD2+(CD+a)2=AD2+CD2+a2+2⋅CD⋅a=AC2+a2+2⋅CD⋅a=b2+a2+2⋅CD⋅a>a2+b2,与已知a2+b2>c2矛盾,∴△ABC为锐角三角形.必要性:∵△ABC为锐角三角形,∴∠B<90°,∠C<90°°,过点A作BC的垂线,垂足为D,由勾股定理知,得c2=AD2+BD2=AD2+(a-CD)2=AD2+CD2+a2-2⋅CD⋅a=b2+a2-2⋅CD⋅a<a2+b2.综上,△ABC为锐角三角形的一个充要条件为a2+b2>c2.题型五:命题的否定【例28】(2024·高一·云南昆明·期末)命题p:∀x∈Z,x2+x>0的否定是()A.∀x∈Z,x2+x≤0B.∃x0∈Z,x02+x0>0C.∀x∈Z,x2+x=0D.∃x0∈Z,x02+x0≤0【答案】D【解析】命题p:∀x∈Z,x2+x>0的否定是“∃x0∈Z,x20+x0≤0”.故选:D.【例29】(2024·高一·江苏·假期作业)命题“∃x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x>0B.∃x0∈R,2x0≥0C.∀x∈R,2x≤0D.∀x∈R,2x>0【答案】D【解析】命题“∃x 0∈R ,2x 0≤0”为存在量词命题,其否定为“∀x ∈R ,2x >0”.故选:D .【例30】(2024·高一·安徽马鞍山·阶段练习)命题“∃x ≤0,2x 2<5x -1”的否定是()A.∀x >0,2x 2<5x -1B.∃x >0,2x 2≥5x -1C.∀x ≤0,2x 2≥5x -1D.∃x ≤0,2x 2>5x -1【答案】C【解析】命题“∃x ≤0,2x 2<5x -1”的否定是“∀x ≤0,2x 2≥5x -1”.故选:C【例31】(2024·高一·四川成都·阶段练习)命题“∀x ∈0,1 ,x 3<x 2”的否定是()A.∀x ∈0,1 ,x 3>x 2B.∀x ∉0,1 ,x 3≥x 2C.∃x 0∈0,1 ,x 30≥x 20D.∃x 0∉0,1 ,x 30≥x 20【答案】C【解析】命题“∀x ∈0,1 ,x 3<x 2”的否定是∃x 0∈0,1 ,x 30≥x 20.故选:C .【例32】(2024·高三·湖北黄冈·期末)若p :所有实数的平方都是正数,则¬p 为()A.所有实数的平方都不是正数B.至少有一个实数的平方不是正数C.至少有一个实数的平方是正数D.有的实数的平方是正数【答案】B【解析】由全称量词命题的否定是存在量词命题可知,“所有实数的平方都是正数”的否定为:“至少有一个实数的平方不是正数”.故选:B题型六:与全称(存在)量词命题有关的参数问题【例33】(2024·高一·湖北·期中)已知集合A =x -2≤x ≤5 ,B =x m +1≤x ≤2m -1 .(1)若B ⊆A ,求实数m 的取值范围;(2)命题q :∃x ∈A ,x ∈B 是真命题,求实数m 的取值范围.【解析】(1)当B =∅时,m +1>2m -1,解得m <2;当B ≠∅时,m +1≤2m -1m +1≥-22m -1≤5,解得2≤m ≤3.综上,实数m 的取值范围为-∞,3(2)由题意A ∩B ≠∅,所以B ≠∅即m ≥2,此时m +1≥3.为使A ∩B ≠∅,需有m +1≤5,即m ≤4.故实数m 的取值范围为2,4【例34】(2024·高一·山东淄博·阶段练习)设全集U =R ,集合A =x 1≤x ≤5 ,集合B =x -1-2a ≤x ≤a -2 .(1)若A ∩B =A ,求实数a 的取值范围;(2)若命题“∀x ∈B ,则x ∈A ”是真命题,求实数a 的取值范围.【解析】(1)因为A ∩B =A ,所以A ⊆B ,所以a -2≥-1-2a a -2≥5-1-2a ≤1,即a ≥7,所以实数a 的取值范围是a |a ≥7 .(2)命题“∀x ∈B ,则x ∈A ”是真命题,所以B ⊆A .当B =∅时,-1-2a >a -2,解得a <13;当B ≠∅时,-1-2a ≥1a -2≤5-1-2a ≤a -2,解得a ≤-1a ≤7a ≥13,所以a ∈∅.综上所述,实数a 的取值范围是a a <13.【例35】(2024·高一·河北石家庄·阶段练习)已知集合A =x -2≤x ≤5 ,B =x m +1≤x ≤2m -1 .(1)若“命题p :∀x ∈B ,x ∈A ”是真命题,求m 的取值范围.(2)“命题q :∃x ∈A ,x ∈B ”是假命题,求m 的取值范围.【解析】(1)因为命题p :∀x ∈B ,x ∈A 是真命题,所以B ⊆A ,当B =∅时,m +1>2m -1,解得m <2,当B ≠∅时,则m +1≤2m -1m +1≥-22m -1≤5,解得2≤m ≤3,综上m 的取值范围为-∞,3 ;(2)因为“命题q :∃x ∈A ,x ∈B ”是假命题,所以A ∩B =∅,当B =∅时,m +1>2m -1,解得m <2,当B ≠∅时,则m +1≤2m -1m +1>5或m +1≤2m -12m -1<-2 ,解得m >4,综上m 的取值范围为-∞,2 ∪4,+∞ .【例36】(2024·高一·山东菏泽·阶段练习)已知命题p :∀x ∈R ,ax 2-4x -4≠0,若p 为假命题,求a 的取值范围.【解析】由题意p 为假命题,即∃x ∈R ,ax 2-4x -4=0,即方程ax 2-4x -4=0有解,(1)当a =0时,-4x -4=0有解x =-1成立;(2)当a ≠0时,Δ=16+16a ≥0,即a ≥-1且a ≠0;综上a ≥-1.【例37】(2024·高一·黑龙江牡丹江·阶段练习)已知集合A =x -2≤x ≤5 ,B =x m -1≤x ≤2m -3 .(1)若命题p :∀x ∈B ,x ∈A 是真命题,求实数m 的取值范围;(2)若命题q :∃x ∈A ,x ∈B 是真命题,求实数m 的取值范围.【解析】(1)因为命题p :∀x ∈B ,x ∈A 是真命题,所以B ⊆A .当B =∅时,满足B ⊆A ,此时m -1>2m -3,解得m <2;当B ≠∅时,由B ⊆A ,可得m -1≤2m -3m -1≥-22m -3≤5,解得2≤m ≤4.综上,实数m 的取值范围为(-∞,4].(2)因为q :∃x ∈A ,x ∈B 是真命题,所以A ∩B ≠∅,所以B ≠∅,则m -1≤2m -3即m ≥2,所以m -1≥1,要使A ∩B ≠∅,仍需满足m -1≤5,即m ≤6.综上,实数m 的取值范围为[2,6].【例38】(2024·高一·湖南长沙·阶段练习)已知集合A =x -3≤x <1 ,B =x 2m -1≤x ≤m +1 .(1)命题p :x ∈A ,命题q :x ∈B ,若p 是q 的必要不充分条件,求实数m 的取值范围.(2)命题“r :∃x ∈A ,使得x ∈B ”是真命题,求实数m 的取值范围.【解析】(1)①当B 为空集时,m +1<2m -1,即m >2,原命题成立;②当B 不是空集时,∵B 是A 的真子集,所以2m -1≥-3m +1<1m ≤2,解得-1≤m <0;综上①②,m 的取值范围为-1≤m <0或m >2.(2)∃x ∈A ,使得x ∈B ,∴B 为非空集合且A ∩B ≠∅,所以m +1≥2m -1,即m ≤2,当A ∩B =∅时2m -1≥1m ≤2 或m +1<-3m ≤2,所以1≤m ≤2或m <-4,∴m 的取值范围为[-4,1).【例39】(2024·高一·吉林长春·阶段练习)已知集合A ={x ∣2≤x ≤7},B ={x ∣-3m +4≤x ≤2m -1},且B ≠∅.(1)若q :“∃x ∈B ,x ∈A ”是真命题,求实数m 的取值范围.【解析】B ≠∅,则-3m +4≤2m -1,解得m ≥1,“∃x ∈B ,x ∈A ”是真命题,则A ∩B ≠∅,若A ∩B =∅,则2m -1<2或-3m +4>7,解得m <32,因为m ≥1,所以1≤m <32,所以当A ∩B ≠∅,m ≥32,综上所述m ≥32.III 数学思想方法①分类讨论思想【例40】(2024·高一·江苏南通·期中)已知集合A =x x 2-4= 0 ,B =x ax -2=0 ,若x ∈A 是x ∈B 的必要不充分条件,则实数a 的所有可能取值构成的集合为.【答案】-1,0,1【解析】依题意,A =x |x 2-4=0 =2,-2 ,若a =0,则B =∅,满足x ∈A 是x ∈B 的必要不充分条件.当a ≠0时,B =x x =2a,由于x ∈A 是x ∈B 的必要不充分条件,所以2a =2或2a=-2,解得a =1或a =-1,综上所述,a 的所有可能取值构成的集合为-1,0,1 .故答案为:-1,0,1【例41】(2024·高一·江西南昌·期中)已知集合A =x |x 2-ax -2a 2<0 ,集合B =x x -3 ≤1 .(1)若a =1,求∁R A ∪B ;(2)若“x ∈A ”是“x ∈B ”的必要不充分条件,求a 的取值范围.【解析】(1)A =x |x 2-ax -2a 2<0 ,可得x -2a x +a <0,当a =1时x -2 x +1 <0解得-1<x <2,则A =-1,2 ,可得∁R A =-∞,-1 ∪2,+∞ ,又B =x x -3 ≤1 ,x -3 ≤1可得-1≤x -3≤1,即2≤x ≤4,可得B =2,4 ,所以∁R A ∪B =-∞,-1 ∪2,+∞ ,(2)因为“x ∈A ”是“x ∈B ”的必要不充分条件所以B ⊂≠A ,集合A 中x -2a x +a <0,当a >0时解为-a <x <2a ,又B ÜA ,可得-a <22a >4 解得a >2,当a <0时解为2a <x <-a ,又B ÜA ,可得-a >42a <2解得a <-4,当a =0时无解,集合A 为空集,又B ÜA ,所以不合题意舍去,综上可得:a <-4或a >2.【例42】已知集合A ={x |a 2-1≤x ≤2a +6},B ={x |0≤x ≤4},全集U =R .(1)当a =1时,求A ∩(∁U B ):(2)若“x ∈B ”是“x ∈A ”的充分不必要条件,求实数a 的取值范围.【解析】(1)当a =1时,集合A ={x |0≤x ≤8},∁U B ={x |x <0或x >4},故A ∩(∁U B )={x |4<x ≤8};(2)由题知:B⊊A,即B⊆A且B≠A,当B⊆A时,a2-1≤0 2a+6≥4,解得-1≤a≤1;当B=A时,a2-1=0 2a+6=4,解得a=-1,由B≠A得,a≠-1,综上所述:实数a的取值范围为(-1,1].【例43】设集合A=x|x2+4x=0,B={x|x2+2(a+1)x+a2-1=0}.(1)若-1∈B,求a的值;(2)设条件p:x∈A,条件q:x∈B,若q是p的充分条件,求a的取值范围.【解析】(1)∵-1∈B,∴1-2a-2+a2-1=0,解得a=1±3;(2)∵A=0,-4,依题意B⊆A,①若B=∅,∴Δ=4(a+1)2-4(a2-1)<0,∴a<-1;②若B=0 或B=-4时,∴Δ=4(a+1)2-4(a2-1)=0,∴a=-1,此时B=0 ,B≠-4;③若B=0,-4Δ>00+(-4)=-2a-20×(-4)=a2-1,解得a=1,综上:a的取值范围是(-∞,-1]∪1 .【例44】已知集合A={x|a-1≤x≤2a+1},B={x|-2≤x≤4}.在①A∪B=B;②"x∈A”是“x∈B”的充分不必要条件;③A∩B=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.(1)当a=3时,求∁R(A∩B);(2)若,求实数a的取值范围.【解析】(1)当a=3时,A={x|2≤x≤7},而B={x|-2≤x≤4},所以A∩B={x|2≤x≤4},∁R(A∩B)={x|x<2或x>4}(2)选①,由A∪B=B可知:A⊆B,当A=∅时,则a-1>2a+1,即a<-2,满足A⊆B,则a<-2,当A≠∅时,a≥-2,由A⊆B得:a-1≥-2 2a+1≤4,解得-1≤a≤32,综上所述,实数a的取值范围为a<-2或-1≤a≤3 2选②,因“x∈A”是“x∈B”的充分不必要条件,则A⊊B,当A=∅时,则a-1>2a+1,即a<-2,满足A⊊B,则a<-2,当A≠∅时,a≥-2,由A⊊B得:a-1≥-2 2a+1≤4,且不能同时取等号,解得-1≤a≤32.综上所述,实数a的取值范围为a<-2或-1≤a≤3 2选③,当A=∅时,则a-1>2a+1,即a<-2,满足A∩B=∅,则a<-2,当A≠∅时,a≥-2由A∩B=∅得:2a+1<-2或a-1>4,解得a<-32或a>5,又a≥-2,所以-2≤a<-32或a>5.综上所述,实数a 的取值范围为a <-32或a >5②转化与化归思想【例45】(2024·高三·全国·竞赛)设a ,b ∈R ,集合A =a ,a 2+1 ,B =b ,b 2+1 .则“A =B ”是“a =b ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】因为A =a ,a 2+1 ,B =b ,b 2+1 ,当A =B 时,则有a =b a 2+1=b 2+1 ,或a =b 2+1a 2+1=b ,若a =ba 2+1=b 2+1,显然解得a =b ;若a =b 2+1a 2+1=b ,则b 2+1 2+1=b ,整理得b 2-b +1 b 2+b +2 =0,因为b 2-b +1=b -12 2+34>0,b 2+b +2=b +12 2+74>0,所以b 2-b +1 b 2+b +2 =0无解;综上,a =b ,即充分性成立;当a =b 时,显然A =B ,即必要性成立;所以“A =B ”是“a =b ”的充分必要条件.故选:C .【例46】(2024·高一·江西景德镇·期中)已知p :3x -1>512<x <8 ,q :x ≥3k +1或x ≤3k -3.(1)若p 是q 的充分不必要条件,求实数k 的取值范围;(2)若p 是¬q 的必要不充分条件,求实数k 的最大值.【解析】(1)∵p :3x -1>512<x <8 ,故p :2<x <8,又因为p 是q 的充分不必要条件,所以3k +1≤2或3k -3≥8,解得k ≤13或k ≥113,故实数k 的取值范围为k k ≤13 或k ≥113.(2)¬q :3k -3<x <3k +1,又p 是¬q 的必要不充分条件,因为3k -3<3k +1,所以¬q 对应的集合不是空集,所以3k -3≥23k +1≤8,解得53≤k ≤73,故实数k 的最大值为73.【例47】(2024·高一·全国·课后作业)已知M =x ,y y 2=2x ,N =x ,y x -a 2+y 2=9 ,求M ∩N ≠∅的充要条件.【解析】M ∩N ≠∅的充要条件是方程组y 2=2xx -a 2+y 2=9 至少有一组实数解,即方程x 2+21-a x +a 2-9=0至少有一个非负根,方程有根则Δ=41-a 2-4a 2-9 ≥0,解得a ≤5.上述方程有两个负根的充要条件是x 1+x 2<0且x 1x 2>0,即-21-a <0a 2-9>0 ,∴a <-3.于是这个方程至少有一个非负根的a 的取值范围是-3≤a ≤5.故M ∩N ≠∅的充要条件为-3≤a ≤5.③方程思想【例48】已知p :∀x ∈R ,m <x 2-1,q :∃x ∈R ,x 2+2x -m -1=0,若p ,q 都是真命题,求实数m 的取值范围.【解析】p :∀x ∈R ,m <x 2-1,若p 真,可得m <(x 2-1)min ,而y =x 2-1≥-1,x =0时,取得最小值-1,则m <-1;q :∃x ∈R ,x 2+2x -m -1=0,若q 真,可得Δ=4+4(m +1)≥0,解得m ≥-2.若p ,q 都是真命题,可得m <-1m ≥-2,则-2≤m <-1.故实数m 的取值范围是-2≤m <-1.【例49】已知,命题p :∀x ∈R ,2x +a +2≥0,命题q :∃x ∈-3,-12,x 2-a +1=0.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题q 为真命题,求实数a 的取值范围.【解析】(1)∵命题为真命题,即a ≥-2x -2,又-2x -2≤-2,∴实数a 的取值范围为a ≥-2;(2)∵命题q :∃x ∈-3,-12,x 2-a +1=0为真命题,即x 2-a +1=0亦即x 2+1=a 在-3,-12上有解,又当x ∈-3,-12 求得二次函数的范围54≤x 2+1≤10,即二次函数y =x 2+1最大值为10,最小值是54,∴实数a 的取值范围为:54,10 .【例50】已知m ∈Z ,关于x 的一元二次方程①mx 2-4x +4=0和②x 2-4mx +4m 2-4m -5=0,求方程①和②的根都是整数的充要条件.【解析】解∵mx 2-4x +4=0是一元二次方程,∴m ≠0.另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈-54,1.∵两根为整数,故和与积也为整数,∴4m∈Z4m∈Z4m2-4m-5∈Z,∴m为4的约数,∴m=-1或1,当m=-1时,第一个方程x2+4x-4=0的根为非整数,不符合题意;而当m=1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m=1.【例51】已知m∈R,命题p:存在x∈[0,1],不等式2x-2≥m2-3m成立,若p为真命题,求m的取值范围.【解析】∵存在x∈[0,1],不等式2x-2≥m2-3m成立,∴(2x-2)max≥m2-3m,又函数y=2x-2在x∈[0,1]时的最大值为0,即m2-3m≤0.解得0≤m≤3.因此,若p为真命题时,m的取值范围是0,3.。

2015-2016学年天津市和平区高二(下)期中数学试卷与解析word(文科)

2015-2016学年天津市和平区高二(下)期中数学试卷与解析word(文科)

2015-2016学年天津市和平区高二(下)期中数学试卷(文科)一、选择题:本大题共10小题,每小题4分,请将每小题给出的四个选项中你认为正确的选项的代号填在下列表格内1.(4分)要描述一个学校的组成情况,应选用()A.工序流程图B.组织结构图C.知识结构图D.程序框图2.(4分)在线性回归模型中,分别选择了4个不同的模型,它们的相关指数R2依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数R2为()A.0.95 B.0.81 C.0.74 D.0.363.(4分)若i为虚数单位,则等于()A.﹣i B.﹣i C.+i D.+i4.(4分)下面是一个2×2列联表则表中a、b处的值分别为()A.14,16 B.4,26 C.4,24 D.26,45.(4分)若a<0,﹣1<b<0,则下列不等式关系成立的是()A.ab2<ab<a B.a<ab<ab2C.ab2<a<ab D.a<ab2<ab6.(4分)设a=+,b=+,c=5,则a、b、c的大小关系为()A.c<b<a B.b<c<a C.c<a<b D.a<b<c7.(4分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=﹣2x+9.5 B.=2x﹣2.4 C.=0.4x+2.3 D.=﹣0.3x+4.48.(4分)阅读如图的程序框图,当该程序运行后,输出的S值是()A.35 B.63 C.84 D.1659.(4分)已知f(x)=|x﹣1|﹣|x|,设u=f(),v=f(u),s=f(v),则s的值为()A.B.C.D.010.(4分)设n∈N*,f(n)=1+++…+,计算得f(2)=,f(4)>2,f (8)>,f(16)>3,观察上述结果,可推测一般结论为()A.f(n)≥(n∈N*)B.f(2n)≥(n∈N*)C.f(2n)≥(n∈N*)D.f(2n)≥(n∈N*)二、填空题:本大题共5小题,每小题4分,共20分。

和平区高二数学下学期期末试卷 文(含解析)(2021年整理)

和平区高二数学下学期期末试卷 文(含解析)(2021年整理)

天津市和平区2016-2017学年高二数学下学期期末试卷文(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(天津市和平区2016-2017学年高二数学下学期期末试卷文(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为天津市和平区2016-2017学年高二数学下学期期末试卷文(含解析)的全部内容。

2016-2017学年天津市和平区高二(下)期末数学试卷(文科)一。

选择题1.设全集U=R,集合M={x||x﹣|},P={x|﹣1≤x≤4},则(∁U M)∩P等于()A.{x|﹣4≤x≤﹣2} B.{x|﹣1≤x≤3} C.{x|3<x≤4} D.{x|3≤x≤4}2.若复数(i是虚数单位),则=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.若函数y=f(x)定义在[﹣1,2]上,且满足f(﹣)<f(1),则f(x)在区间[﹣1,2]上是()A.增函数 B.减函数C.先减后增D.无法判断其单调性4.设命题甲:关于x的不等式x2+2ax+4≤0有解,命题乙:设函数f(x)=log a(x+a﹣2)在区间(1,+∞)上恒为正值,那么甲是乙的()A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.设a=log0.80.9,b=log1.10。

9,c=1。

10.9,则a,b,c的大小关系为( )A.b<a<c B.a<c<b C.a<b<c D.c<a<b6.已知函数y=f(x)在定义域[﹣2,4]上是单调减函数,且f(a+1)>f(2a),则a的取值范围是()A.1<a≤2 B.﹣1<a≤1 C.﹣3<a≤3 D.a<﹣7.设函数f(x)=,若f(﹣4)=2,f(﹣2)=﹣2,则关于x的方程f(x)=x的解的个数为( )A.1 B.2 C.3 D.48.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞]上单调递增,若实数a满足f(log2a)+f()≤2f(1),则a的取值范围是()A.[1,2]B.(0,] C.(0,2] D.[,2]二。

2023-2024学年天津市和平区耀华中学高一(上)期中数学试卷【答案版】

2023-2024学年天津市和平区耀华中学高一(上)期中数学试卷【答案版】

2023-2024学年天津市和平区耀华中学高一(上)期中数学试卷一、选择题(本题共有12个小题,每小题3分,请将正确答案填涂到答题卡相应位置上,答在试卷上的无效)1.设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )( ) A .{3}B .{1,6}C .{5,6}D .{1,3}2.集合A ={x |x <﹣1或x ≥1},B ={x |ax +2≤0},若B ⊆A ,则实数a 的取值范围是( ) A .[﹣2,2]B .[﹣2,2)C .(﹣∞,﹣2)∪[2,+∞)D .[﹣2,0)∪(0,2)3.命题“∃x >1,x 2﹣x >0”的否定是( ) A .∃x ≤1,x 2﹣x >0 B .∀x >1,x 2﹣x ≤0 C .∃x >1,x 2﹣x ≤0D .∀x ≤1,x 2﹣x >04.“n =1”是“幂函数f(x)=(n 2−3n +3)⋅x n2−3n在(0,+∞)上是减函数”的一个( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( ) A .c 2>cdB .a ﹣c <b ﹣dC .ac >bdD .c a −db>06.若关于x 的不等式k |x |>|x ﹣2|恰好有4个整数解,则实数k 的范围为( ) A .(0,25]B .(25,35]C .(35,23]D .(32,1]7.若不等式组{x 2−2x −3≤0x 2+4x −(1+a)≤0的解集不是空集,则实数a 的取值范围是( )A .[﹣5,+∞)B .[﹣4,+∞)C .(﹣∞,﹣4]D .(﹣∞,﹣5]8.设函数f(x)=x 3−1x 3,则f (x )是( ) A .奇函数,且在(0,+∞)单调递增 B .奇函数,且在(0,+∞)单调递减 C .偶函数,且在(0,+∞)单调递增D .偶函数,且在(0,+∞)单调递减9.已知偶函数f (x )在区间[0,+∞)单调递增,则满足f (2x ﹣1)<f (13)的x 取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)10.设a =(45)12,b =(54)15,c =(34)34,则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .a <c <bD .b <c <a11.已知函数f(x)={(a −3)x +2a ,x <1ax 2+(a +1)x ,x ≥1在R 上是单调的函数,则实数a 的取值范围是( )A .(−∞,−13]B .(3,4]C .(−∞,−13]∪(3,4]D .(−∞,−13)∪(3,4]12.设函数f(x)={1−ax ,x <a ,x 2−4x +3,x ≥a.若f (x )存在最小值,则a 的取值范围为( )A .[−√2,√2]B .[0,√2]C .[−√2,√2]∪(2,+∞)D .[0,√2]∪(2,+∞)二、填空题(本题共有8个小题,每题4分,请将答案填在答题卡相应位置上,答在试卷上的无效) 13.函数y =√16−x 2x的定义域是 .14.已知幂函数f (x )=x a 的图像过点(√2,2),则f (4)= . 15.函数y =x 4+2x +√x −1−2√2−x 的值域为 .16.已知函数y =f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 3+2x +1,则f (0)+f (﹣1)= . 17.已知函数y =f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 4﹣2x ,则函数f (x )在上(﹣∞,0)的解析式为 . 18.已知幂函数y =x m2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)﹣m<(3﹣2a )﹣m的取值范围为 .19.已知函数f(x)={3x ,x ≥3−x 2+6x ,x <3,则不等式f (x 2﹣2x )<f (3x ﹣4)的解集是 .20.设函数f(x)={−(x −a)2+a +52,x <1−12x +1,x ≥1,若f (1)是函数f (x )的最大值,则实数a 的取值范围为 .三、解答题(本题共有3个小题,总分32分,请将答案填在答题卡相应位置上,答在试卷上的无效) 21.(8分)计算: (1)(0.25)−2+823−(116)−0.75; (2)823×100−12×√(1681)−34×(14)−3;(3)(12)0+2−2×(214)−12−(0.01)0.5;(4)(279)0.5+0.1−2+(21027)−23−3π0+3748.22.(12分)(1)若不等式ax 2+(1﹣a )x +a ﹣2≥﹣2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1﹣a )x +a ﹣2<a ﹣1(a ∈R ). 23.(12分)已知函数f (x )=x 2+4ax +2a +6. (1)若f (x )的值域是[0,+∞),求a 的值;(2)若函数f (x )≥0恒成立,求g (a )=2﹣a |a ﹣1|的值域.2023-2024学年天津市和平区耀华中学高一(上)期中数学试卷参考答案与试题解析一、选择题(本题共有12个小题,每小题3分,请将正确答案填涂到答题卡相应位置上,答在试卷上的无效)1.设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )( ) A .{3}B .{1,6}C .{5,6}D .{1,3}解:∵∁U B ={1,5,6},A ={1,3,6},∴A ∩(∁U B )={1,6}. 故选:B .2.集合A ={x |x <﹣1或x ≥1},B ={x |ax +2≤0},若B ⊆A ,则实数a 的取值范围是( ) A .[﹣2,2]B .[﹣2,2)C .(﹣∞,﹣2)∪[2,+∞)D .[﹣2,0)∪(0,2)解:∵B ⊆A ,∴①当B =∅时,即ax +2≤0无解,此时a =0,满足题意; ②当B ≠∅时,即ax +2≤0有解,当a >0时,可得x ≤−2a,要使B ⊆A ,则需要{a >0−2a <−1,解得0<a <2.当a <0时,可得x ≥−2a,要使B ⊆A ,则需要{a <0−2a ≥1,解得﹣2≤a <0,综上,实数a 的取值范围是[﹣2,2). 故选:B .3.命题“∃x >1,x 2﹣x >0”的否定是( ) A .∃x ≤1,x 2﹣x >0 B .∀x >1,x 2﹣x ≤0 C .∃x >1,x 2﹣x ≤0D .∀x ≤1,x 2﹣x >0解:因为特称命题的否定是全称命题,所以,命题“∃x >1,x 2﹣x >0”的否定是:∀x >1,x 2﹣x ≤0. 故选:B .4.“n =1”是“幂函数f(x)=(n 2−3n +3)⋅x n2−3n在(0,+∞)上是减函数”的一个( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 解:若幂函数f(x)=(n 2−3n +3)⋅x n2−3n在(0,+∞)上是减函数,则{n 2−3n +3=1n 2−3n <0,解得n =1或n =2,故“n =1”是“幂函数f(x)=(n 2−3n +3)⋅x n 2−3n在(0,+∞)上是减函数”的一个充分不必要条件.故选:A .5.设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( ) A .c 2>cdB .a ﹣c <b ﹣dC .ac >bdD .c a −db>0解:选项A :因为0>c >d ,由不等式的性质,两边同乘负数,不等式变号,可得c 2<cd ,所以选项A 错误.选项B :取a =2,b =1,c =﹣1,d =﹣2,则a ﹣c =3,b ﹣d =3,此时a ﹣c =b ﹣d ,所以选项B 错误. 选项C :取a =2,b =1,c =﹣1,d =﹣2,则ac =﹣2,bd =﹣2,此时ac =bd ,所以选项C 错误. 选项D :因为a >b >0,0>c >d ,所以ad <bd <bc ,所以c a >d b ,即c a −db>0,所以选项D 正确.故选:D .6.若关于x 的不等式k |x |>|x ﹣2|恰好有4个整数解,则实数k 的范围为( ) A .(0,25]B .(25,35]C .(35,23]D .(32,1]解:∵k |x |>|x ﹣2|,∴k >0,∴两边同时平方得k 2x 2>(x ﹣2)2,即(1﹣k 2)x 2﹣4x +4<0, 要使关于x 的不等式k |x |>|x ﹣2|恰好有4个整数解, 又Δ=16﹣16(1﹣k 2)=16k 2>0,则1﹣k 2>0, ∴0<k 2<1,解得0<k <1,作出函数 y =k |x |与 y =﹣|x ﹣2|的图象,如图所示:∵0<k<1,∴x A>1,∴关于x的不等式k|x|﹣|x﹣2|>0恰好有4个整数解,分别为2,3,4,5,联立{y=kxy=x−2,解得x B=21−k∈(5,6],即5<21−k<6,解得35<k≤23,故实数k的取值范围是(35,23],故选:C.7.若不等式组{x 2−2x−3≤0x2+4x−(1+a)≤0的解集不是空集,则实数a的取值范围是()A.[﹣5,+∞)B.[﹣4,+∞)C.(﹣∞,﹣4]D.(﹣∞,﹣5]解:由x2﹣2x﹣3≤0⇒﹣1≤x≤3,若不等式组{x2−2x−3≤0x2+4x−(1+a)≤0的解集是空集,∴x2+4x﹣(1+a)>0在[﹣1,3]上恒成立,令f(x)=x2+4x﹣(1+a),则二次函数f(x)开口向上,且对称轴为直线x=﹣2,∴f(x)在[﹣1,3]上单调递增,∴要使f(x)>0在[﹣1,3]上恒成立,则f(﹣1)=﹣4﹣a>0,解得a<﹣4.故不等式组{x2−2x−3≤0x2+4x−(1+a)≤0的解集不是空集,实数a的取值范围是[﹣4,+∞).故选:B.8.设函数f(x)=x3−1x3,则f(x)是()A.奇函数,且在(0,+∞)单调递增B.奇函数,且在(0,+∞)单调递减C.偶函数,且在(0,+∞)单调递增D.偶函数,且在(0,+∞)单调递减解:函数的定义域为{x|x≠0},f(﹣x)=﹣x3+1x3=−(x3−1x3)=﹣f(x),则f(x)是奇函数,当x >0时,y =x 3和y =−1x 3是增函数,则f (x )在(0,+∞)上也是增函数, 故选:A .9.已知偶函数f (x )在区间[0,+∞)单调递增,则满足f (2x ﹣1)<f (13)的x 取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)解:∵f (x )是偶函数,∴f (x )=f (|x |), ∴不等式等价为f (|2x ﹣1|)<f(13),∵f (x )在区间[0,+∞)单调递增, ∴|2x −1|<13,解得13<x <23.故选:A .10.设a =(45)12,b =(54)15,c =(34)34,则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .a <c <bD .b <c <a解:0<2764<12<1625<1,y =x 14在(0,+∞)上单调递增, a =(45)12=(1625)14<1,b =(54)15>1,c =(34)34=(2764)14<1,故c =(2764)14<(1625)14=a . 综上,c <a <b . 故选:A .11.已知函数f(x)={(a −3)x +2a ,x <1ax 2+(a +1)x ,x ≥1在R 上是单调的函数,则实数a 的取值范围是( )A .(−∞,−13]B .(3,4]C .(−∞,−13]∪(3,4]D .(−∞,−13)∪(3,4]解:根据题意,分2种情况讨论:若函数f(x)={(a −3)x +2a ,x <1ax 2+(a +1)x ,x ≥1在R 上是单调递增函数,则有{ a −3>0a >0−a+12a≤1(a −3)+2a ≤a +(a +1),解可得3<a ≤4,若函数f(x)={(a −3)x +2a ,x <1ax 2+(a +1)x ,x ≥1在R 上是单调递减函数,则有{ a −3<0a <0−a+12a≤1(a −3)+2a ≥a +(a +1),无解;综合可得:3<a ≤4,即a 的取值范围为(3,4]. 故选:B .12.设函数f(x)={1−ax ,x <a ,x 2−4x +3,x ≥a.若f (x )存在最小值,则a 的取值范围为( )A .[−√2,√2]B .[0,√2]C .[−√2,√2]∪(2,+∞)D .[0,√2]∪(2,+∞)解:∵函数f(x)={1−ax ,x <a ,x 2−4x +3,x ≥a.,∴当a =0时,f (x )={1,x <0x 2−4x +3,x ≥0,∴f (x )min =f (2)=﹣1,故a =0符合题意;当a <0时,则x <a ,f (x )=1﹣ax 在(﹣∞,a )上单调递增,且当x →﹣∞,f (x )→﹣∞,故f (x )没有最小值;当a >0,则x <a ,f (x )=1﹣ax 在(﹣∞,a )上单调递减,f (x )>f (a )=1﹣a 2,x ≥a ,f (x )min ={−1,0<a <2a 2−4a +3,a ≥2,若f (x )存在最小值,则满足需{1−a 2≥−10<a <2或{1−a 2≥a 2−4a +3a ≥2,解得0<a ≤√2. 综上所述,实数a 的取值范围为[0,√2], 故选:B .二、填空题(本题共有8个小题,每题4分,请将答案填在答题卡相应位置上,答在试卷上的无效) 13.函数y =√16−x 2x的定义域是 [﹣4,0)∪(0,4] . 解:由函数y =√16−x 2x,可得{x ≠016−x 2≥0,求得﹣4≤x <0 或0<x ≤4,故答案为:[﹣4,0)∪(0,4].14.已知幂函数f (x )=x a 的图像过点(√2,2),则f (4)= 16 .解:∵幂函数f (x )=x a 的图像过点(√2,2), ∴f (√2)=(√2)a =2,解得a =2, ∴f (x )=x 2, ∴f (4)=16. 故答案为:16.15.函数y =x 4+2x +√x −1−2√2−x 的值域为 [1,21] . 解:由函数的解析式可得定义域满足{x −1≥02−x ≥0,解得1≤x ≤2,即函数的定义域为[1,2].由复合函数的单调性可知,函数y =x 4+2x +√x −1−2√2−x 在[1,2]上单调递增, 所以f (x )∈[f (1),f (2)],而f (1)=1+2+0﹣2√2−1=1,f (2)=24+2×2+√2−1−2×0=21. 即函数的值域为[1,21]. 故答案为:[1,21].16.已知函数y =f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 3+2x +1,则f (0)+f (﹣1)= ﹣4 .解:因为y =f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 3+2x +1, 所以f (1)=4,所以f (﹣1)=﹣f (1)=﹣4,f (0)=0, 则f (0)+f (﹣1)=0﹣4=﹣4. 故答案为:﹣4.17.已知函数y =f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 4﹣2x ,则函数f (x )在上(﹣∞,0)的解析式为 f (x )=﹣x 4﹣2x (x <0) . 解:根据题意,设x ∈(﹣∞,0),则﹣x ∈(0,+∞), 则f (﹣x )=(﹣x )4﹣2(﹣x )=x 4+2x ,又由f (x )为奇函数,则f (x )=﹣f (﹣x )=﹣x 4﹣2x . 故答案为:f (x )=﹣x 4﹣2x (x <0). 18.已知幂函数y =x m2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)﹣m<(3﹣2a )﹣m的取值范围为 {a |a <﹣1或23<a <32} .解:幂函数在(0,+∞)上单调递减,故m 2﹣2m ﹣3<0,解得﹣1<m <3, 又m ∈N *,故m =1或2,当m =1时,y =x ﹣4的图象关于y 轴对称,满足题意, 当m =2时,y =x﹣3的图象不关于y 轴对称,舍去,故m =1,不等式化为(a +1)﹣1<(3﹣2a )﹣1, 函数y =x﹣1在(﹣∞,0)和(0,+∞)上单调递减,故a +1>3﹣2a >0或0>a +1>3﹣2a 或a +1<0<3﹣2a ,解得a <﹣1或23<a <32.故答案为:{a |a <﹣1或23<a <32}.19.已知函数f(x)={3x ,x ≥3−x 2+6x ,x <3,则不等式f (x 2﹣2x )<f (3x ﹣4)的解集是 (1,4) .解:作出函数f(x)={3x ,x ≥3−x 2+6x ,x <3的图象如图,由图可知,函数f (x )在R 上为增函数,则由式f (x 2﹣2x )<f (3x ﹣4),得式x 2﹣2x <3x ﹣4,即x 2﹣5x +4<0,解得1<x <4. ∴不等式f (x 2﹣2x )<f (3x ﹣4)的解集是(1,4). 故答案为:(1,4).20.设函数f(x)={−(x −a)2+a +52,x <1−12x +1,x ≥1,若f (1)是函数f (x )的最大值,则实数a 的取值范围为(﹣∞,﹣2]∪[3+√132,+∞) . 解:当x ≥1时,f(x)=−12x +1在单调递减,当x <1时,f(x)=−(x −a)2+a +52在(﹣∞,a )上单调递增,在(a ,+∞)上单调递减,若a <1,x <1,f (x )在x =a 处取得最大值,要使f (1)是函数f (x )的最大值,所以a +52≤−12+1,解得a ≤﹣2,则a ≤﹣2, 若a ≥1,x <1,f (x )在x =1处取得最大值,要使f (1)是函数f (x )的最大值,所以−(1−a)2+a +52≤−12+1, 即a 2﹣3a ﹣1≥0,解得a ≥3+√132或a ≤3−√132,所以a ≥3+√132, 所以实数a 的取值范围为(−∞,−2]∪[3+√132,+∞).故答案为:(﹣∞,﹣2]∪[3+√132,+∞).三、解答题(本题共有3个小题,总分32分,请将答案填在答题卡相应位置上,答在试卷上的无效) 21.(8分)计算: (1)(0.25)−2+823−(116)−0.75; (2)823×100−12×√(1681)−34×(14)−3;(3)(12)0+2−2×(214)−12−(0.01)0.5;(4)(279)0.5+0.1−2+(21027)−23−3π0+3748.解:(1)(0.25)−2+823−(116)−0.75=16+4−8=12; (2)823×100−12×√(1681)−34×(14)−3=4×110×278×64=4325;(3)原式=1+14×(49)12−(1100)12=1+16−110=1615; (4)原式=(259)12+(110)−2+(6427)−23−3+3748=53+100+916−3+3748=100. 22.(12分)(1)若不等式ax 2+(1﹣a )x +a ﹣2≥﹣2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1﹣a )x +a ﹣2<a ﹣1(a ∈R ).解:(1)不等式ax 2+(1﹣a )x +a ﹣2≥﹣2即ax 2+(1﹣a )x +a ≥0对一切实数x 恒成立, 当a =0时,x ≥0,即不等式不恒成立;当a <0时,由二次函数y =ax 2+(1﹣a )x +a 的图象开口向下,不等式不恒成立; 当a >0时,只需Δ≤0,即(1﹣a )2﹣4a 2≤0,解得a ≥13.综上可得,a 的取值范围是[13,+∞):(2)关于x 的不等式ax 2+(1﹣a )x +a ﹣2<a ﹣1即为ax 2+(1﹣a )x ﹣1<0,第11页(共11页) 化为(x ﹣1)(ax +1)<0,当a =0时,x ﹣1<0,解得x <1;当a >0时,不等式化为(x ﹣1)(x +1a )<0,解得−1a<x <1; 当a =﹣1时,不等式化为(x ﹣1)2>0,解得x ≠1;当a <﹣1时,1>−1a ,不等式化为(x ﹣1)(x +1a )>0,解得x >1或x <−1a; 当﹣1<a <0时,1<−1a ,不等式化为(x ﹣1)(x +1a )>0,解得x <1或x >−1a. 综上可得,当a =0时,不等式的解集为{x |x <1};当a >0时,不等式的解集为{x |−1a<x <1}; 当a =﹣1时,不等式的解集为{x |x ≠1};当a <﹣1时,不等式的解集为{x |x >1或x <−1a}; 当﹣1<a <0时,不等式的解集为{x |x <1或x >−1a}. 23.(12分)已知函数f (x )=x 2+4ax +2a +6.(1)若f (x )的值域是[0,+∞),求a 的值;(2)若函数f (x )≥0恒成立,求g (a )=2﹣a |a ﹣1|的值域.解:(1)由于函数的值域为[0,+∞),则判别式Δ=16a 2﹣4(2a +6)=0,解得a =﹣1或a =32; (2)由于函数f (x )≥0恒成立,则Δ=16a 2﹣4(2a +6)≤0,解得﹣1≤a ≤32,则﹣2≤a ﹣1≤12, ∴f (a )=2﹣a |a ﹣1|={a 2−a +2,−1≤a ≤1−a 2+a +2,1<a ≤32, ①当﹣1≤a ≤1时,f (a )=(a −12)2+74,f (12)≤f (a )≤f (﹣1), ∴74≤f (a )≤4, ②1<a ≤32时,f (a )=(a −12)2+94−,f (32)≤f (a )<f (1), ∴54≤f (a )<2, 综上函数f (a )的值域为[54,4].。

天津市和平区高二下期中数学(文)试题及答案(新课标人教版)-精编

天津市和平区高二下期中数学(文)试题及答案(新课标人教版)-精编

天津市和平区2015—2016学年度第二学期 高二年级期中质量调查数学试题(文科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.要描述一个学校的组成情况,应选用A.工序流程图B. 组织结构图C. 知识结构图D.程序框图2.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R 依次为0.36,0.95,0.74,0.81,其中回归效果最好的模型的相关指数2R 为A. 0.95B. 0.81C. 0.74D.0.36 3.若iA.34 B. 32- C. 34+ D. 32+ 4.下面是一个22⨯列联表则表中,a b 处的值分别为A. 14,16B. 4,26C. 4,24D. 26,4 5.若0,10a b <-<<,则下列不等关系成立的是A.2ab ab a << B. 2a ab ab << C. 2ab a ab << D. 2a ab ab <<6.设5a b c ===,则,,c a b 的大小关系为A. c b a <<B. b c a <<C. c a b <<D. a b c <<7.已知变量x 与y 正相关,且由观测数据算得样本平均数3, 3.5x y ==,则由该数据算得的线性回归方程只可能是下列选项中的A. ˆ29.5y x =-+B. ˆ2 2.4y x =-C. ˆ0.4 2.3yx =+ D. ˆ0.3 4.4y x =-+ 8.阅读右边的程序框图,当该程序运行后,输出的S 的值是A. 35B. 63C. 84D. 165 9.已知()1f x x x =--,设()()5,,16u f v f u s f v ⎛⎫=== ⎪⎝⎭,则s 的值为A.38 B. 12 C. 14D. 0 10.设()111,1,23n N f n n *∈=++++计算得()()()()352,42,8,163,22f f f f =>>>,观察上述结果,可推测一般结论为A. ()()2log 22n f n n N *+≥∈ B. ()()222n f n n N *+≥∈ C. ()()222nn f n N *+>∈ D. ()()222n n f n N *+≥∈第Ⅱ卷(非选择题 共60分)二、填空题:本大题共5小题,每小题5分,共20分.11.已知i 为虚数单位,(),2a R ai i ∈-的实部与虚部互为相反数,则a 的值为 .12.用反证法证明命题“如果a b >>”时,假设的内容是 .13.在0H 成立的条件下,若()2 2.0720.15P K ≥=,则表示把结论“0H 成立”错判成“0H 不成立”的概率不会超过 .14.若12342358,,,,,35813a a a a ====则8a = . 15.已知函数()()21f x x k x k =+--的恰有一个零点在()2,3内,则实数k 的取值范围是 .三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知0a b >>,求证:2222 1.a b b a b a b -+<++17.(本小题满分8分) 计算下列各题:(1)1312222i i ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)()()21212i i i+-+18.(本小题满分8分)求证:()()sin 22cos sin sin .αβαβαβ+=++19.(本小题满分8分)(1)在下面给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程ˆˆˆybx a =+并在(1)的坐标系中画出回归直线.20.(本小题满分10分)D 为AB如图,在三棱锥S ABC -中,SD ⊥平面ABC ,的中点,E 为BC 的中点,.AC BC = (1)求证://AC 平面;SDE (2)求证:.AB SC ⊥。

天津市和平区高二下期中数学(理)试题及答案(新课标人教版)-精

天津市和平区高二下期中数学(理)试题及答案(新课标人教版)-精

天津市和平区2015—2016学年度第二学期高二年级期中质量调查数学试题(理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若iA. 344-B. 322-C. 344+D. 322+ 2. 若0,10a b <-<<,则下列不等关系成立的是A.2ab ab a <<B. 2a ab ab <<C. 2ab a ab <<D. 2a ab ab <<3.曲线324y x x =-+在点()1,3处的切线的倾斜角为 A.6π B. 4π C. 3π D. 23π4.设5a b c ===,则,,c a b 的大小关系为A. c b a <<B. b c a <<C. c a b <<D. a b c << 5.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为 A. 34 B. 3ln 22+ C. 5ln 22+ D. 3ln 2+ 6.若函数()331f x x ax =-+在区间()0,1内有极小值,则a 的取值范围是 A. ()0,1 B. (]0,1 C. [)0,1 D. []0,17.设函数()224ln f x x x x =--,则()f x 的单调递增区间为 A. ()0,+∞ B. ()1,0- C. ()2,+∞ D. ()()1,02,-+∞ 8.设函数()y f x =在定义域内可导,其图象如右图所示,则导函数()y f x '=的图象只可能是下列情形中的9. 设()111,1,23n N f n n *∈=++++计算得()()()()352,42,8,163,22f f f f =>>>观察上述结果,可推测一般结论为A. ()()2log 22n f n n N *+≥∈ B. ()()222n f n n N *+≥∈ C. ()()222n n f n N *+>∈ D. ()()222n n f n N *+≥∈ 10.若在区间1,22⎡⎤⎢⎥⎣⎦上,函数()2f x x px q =++与()3322x g x x =+在同一点处取得相同的最小值,则()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最大值是A. 3B. 4C. 134 D. 6第Ⅱ卷(非选择题 共60分)二、填空题:本大题共5小题,每小题5分,共20分.11.已知i 为虚数单位,(),2a R ai i ∈-的实部与虚部互为相反数,则a 的值为 .12.函数()ln xf x x =的单调递减区间是 .13.若12342358,,,,,35813a a a a ====则8a = .14.已知函数()()21f x x k x k =+--恰有一个零点在()2,3内,则实数k 的取值范围是 .15.若()329652f x x x x =-+-满足条件()f x m '≥恒成立,则m 的最大值是 .三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分6分)已知0a b >>,求证:2222 1.a bb a b a b -+<++17.(本小题满分8分)计算下列各题:(1)13122i ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)()()21212i i i +-+18.(本小题8分)已知函数()3 3.f x x x =-+(1)求()f x 在1x =处的切线方程;(2)求()f x 的单调递增区间.19. (本小题8分)用数学归纳法证明:()()()()11222221123411.2n n n n n n N --*+-+-++-=-⋅∈20.(本小题满分10分)已知()()32223.3f x x ax x a R =--∈ (1)若()f x 在区间()1,1-内为减函数,求实数a 的取值范围; (2)对于实数a 的不同取值,试讨论()y f x =在()1,1-内的极值点的个数.。

人教版高二(理科)第一学期期末考试数学试题-含答案

人教版高二(理科)第一学期期末考试数学试题-含答案

2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。

2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7A.2.sin60°的值等于()A.B.C.D.C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间C.7.计算﹣的结果为()A.1 B.x C.D.A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣aC.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CED.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.14.计算(+)(﹣)的结果等于2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)第11页(共11页)。

天津市和平区2024-2025学年九年级上学期期中考试数学试卷

天津市和平区2024-2025学年九年级上学期期中考试数学试卷

天津市和平区2024-2025学年九年级上学期期中考试数学试卷一、单选题1.中国代表队在第33届巴黎奥运会上取得了40金27银24铜的傲人成绩,并在多个项目上取得了突破,以下奥运比赛项目图标中,是中心对称图形的是()A .B .C .D .2.若1x =是方程210x mx ++=的一个解,则m 的值为()A .1B .2C .1-D .2-3.已知O 的半径为3,平面内有一个点P ,若点P 在O 外,则在OP 的长可能为()A .4B .3C .2D .14.风力发电机可以在风力作用下发电,如图的转子叶片图案绕中心旋转后能与原来的图案重合,则至少要旋转()度.A .60B .120C .180D .2705.若12,x x 是方程22231x x x -+=+的两个根,则()A .122x x +=B .121x x =+C .1212x x =-D .121x x =6.有一个人患了流感,经过两轮传染后共有121人患了流感,设每轮传染中平均一个人传染了x 个人,则下列结论不正确的是()A .第一轮后共有()1x +个人患了流感B .第二轮后又增加()1x x +个人患流感C .依题意可以列方程()11121x x x +++=D .按照这样的传染速度,经过三轮传染后共有1000人患流感7.将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为()A .()213y x =+-B .()=+-2y x 12C .()213y x =--D .()212y x =--8.如图,以40m/s 的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系2205h t t =-,下列说法正确的是()A .小球的飞行高度为15m 时,小球飞行的时间是1sB .小球从飞出到落地要用4sC .小球飞行3s 时飞行高度为15m ,并将继续上升D .小球的飞行高度可以达到25m9.在“探索二次函数()20y ax bx c a =++≠的系数a ,b ,c 与图象的关系”活动中,老师给出了坐标系中的四个点:()()()()01,21,41,32A B C D ,,,,.同学们分别画出了经过这四个点中的三个点的二次函数图象,并得到对应的函数表达式2y ax bx c =++,则a b c ++的最大值等于()A .5-B .23C .2D .510.如图,四边形ABCD 内接于O ,F 是AD 延长线上一点,以点C 为圆心,BC 长为半径作弧与AB 相交于点E ,分别以点B 和点E 为圆心,大于12BE 的长为半径作弧(弧所在圆的半径都相等),两弧相交于点M ,连接CM ,若25ECM ∠=︒,则CDF ∠的度数为()A .50︒B .65︒C .70︒D .75︒11.如图,已知ABC V 中,20CAB ∠=︒,30ABC ∠=︒,将ABC V 绕点A 逆时针旋转50°得到AB C ''△,以下结论中错误的是()A .CB BB '''⊥B .BC B C ''=C .AC C B ''D .ABB ACC ''∠=∠12.已知二次函数2y ax bx c =++(a ,b ,c 为常数,0,1a c ≠>)的图象与x 轴的一个交点坐标为()2,0-,对称轴为直线1x =.有下列结论:①<0a b c -+;②若点()()()1233,,2,,6,y y y -均在该二次函数图象上,则132y y y <<;③方程210ax bx c ++-=的两个实数根为12,x x ,且12x x <,则1224x x -<<<;④若m 为任意实数,则29am bm c a ++≤-.其中,正确结论的个数是()A .1B .2C .3D .4二、填空题13.点()5,1A 与点A '关于原点对称,则点A '的坐标是.14.已知抛物线()2211y x =++,图象的开口向,顶点坐标为,当x 时,y 随x 的增大而减小.15.关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的取值范围是.16.如图,AB 是O 的直径, BCCD DE ==,35COD ∠=︒,则AOE ∠=︒.17.如图,O 是等边ABC V 内一点,6,8,10OA OB OC ===,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',连接AO '.(I )线段AO '的长为;(II )BOC 的面积为.18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C ,D ,E 均在格点上,线段DE 与圆相交于点F .(I )线段DE 是将线段AB 绕点C 顺时针旋转(度)得到的;(II )请用无刻度...的直尺,在如图所示的网格中,在线段A 上画出点P ,使BP EF =,并简要说明点Р的位置是如何找到的(不要求证明).三、解答题19.解下列方程:(1)22x x =﹔(2)()2458x x x-=-20.用一条长40cm 的绳子围成一个矩形.(1)若围成的矩形面积为275cm ,求该矩形的长和宽.(2)能围成一个面积为2101cm 的矩形吗?若能,求出它的长和宽.若不能,请求出能围成矩形的最大面积.21.已知AB 是O 的直径,50CAB ∠=︒,E 是AB 上一点,延长CE 交O 于点D .(1)如图①,当点E 是弦CD 的中点时,求CDO ∠的大小;(2)如图②,当AC AE =时,求CDO ∠的大小.22.如图,四边形ABCD 内接于O ,BC 是O 的直径,OA CD ∥.(1)若65ABC ∠=︒,求BAD ∠的大小;(2)若1,4AB BC ==,求CD 的长.23.如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.24.已知ABC V ,90,3,4C BC AC ∠=︒==,将ABC V 绕点B 旋转得到A BC ''△,点A 的对应点为A ',点C 的对应点为C ',连接AA '.(1)如图,将ABC V 绕点B 逆时针旋转90︒,求AA '的长;(2)当点C '落直线AB 上时,求AA '的长;(3)连接C C ',直线C C '与直线AA '相交于点D ,在旋转过程中,线段C D '的最大值为_____(直接写出结果即可)﹒25.抛物线23y ax bx =++(a ,b 为常数,0a >)的顶点为()2,1P --,与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线上的点M 的横坐标为m (m 是常数).(1)求抛物线的解析式和点A 的坐标;(2)若直线()31x m m =-<<-与AC 相交于点N ,当2MN =时,求点M 的坐标;(3)若将点M 绕着原点O 顺时针旋转45︒得到点M ',点()D ,当ODM ' 面积最小时,求点M 的坐标.。

天津市和平区高二下期中数学(文)试题及答案(新课标人教版)-精选

天津市和平区高二下期中数学(文)试题及答案(新课标人教版)-精选

天津市和平区2015—2016学年度第二学期 高二年级期中质量调查数学试题(文科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.要描述一个学校的组成情况,应选用A.工序流程图B. 组织结构图C. 知识结构图D.程序框图2.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R 依次为0.36,0.95,0.74,0.81,其中回归效果最好的模型的相关指数2R 为A. 0.95B. 0.81C. 0.74D.0.36 3.若iA.34- B. 32- C. 34+ D. 32+ 4.下面是一个22⨯列联表则表中,a b 处的值分别为A. 14,16B. 4,26C. 4,24D. 26,4 5.若0,10a b <-<<,则下列不等关系成立的是A.2ab ab a << B. 2a ab ab << C. 2ab a ab << D. 2a ab ab <<6.设5a b c ===,则,,c a b 的大小关系为A. c b a <<B. b c a <<C. c a b <<D. a b c <<7.已知变量x 与y 正相关,且由观测数据算得样本平均数3, 3.5x y ==,则由该数据算得的线性回归方程只可能是下列选项中的A. ˆ29.5yx =-+ B. ˆ2 2.4y x =-C. ˆ0.4 2.3yx =+ D. ˆ0.3 4.4y x =-+ 8.阅读右边的程序框图,当该程序运行后,输出的S 的值是 A. 35 B. 63 C. 84 D. 165 9.已知()1f x x x =--,设()()5,,16u f v f u s f v ⎛⎫=== ⎪⎝⎭,则s 的值为A.38 B. 12 C. 14D. 010.设()111,1,23n N f n n *∈=++++计算得()()()()352,42,8,163,22f f f f =>>>,观察上述结果,可推测一般结论为 A. ()()2log 22n f n n N *+≥∈ B. ()()222n f n n N *+≥∈ C. ()()222nn f n N *+>∈ D. ()()222n n f n N *+≥∈第Ⅱ卷(非选择题 共60分)二、填空题:本大题共5小题,每小题5分,共20分.11.已知i 为虚数单位,(),2a R ai i ∈-的实部与虚部互为相反数,则a 的值为 .12.用反证法证明命题“如果a b >>”时,假设的内容是 .13.在0H 成立的条件下,若()2 2.0720.15P K ≥=,则表示把结论“0H 成立”错判成“0H 不成立”的概率不会超过 .14.若12342358,,,,,35813a a a a ====则8a = . 15.已知函数()()21f x x k x k =+--的恰有一个零点在()2,3内,则实数k 的取值范围是 .三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知0a b >>,求证:2222 1.a b b a b a b-+<++17.(本小题满分8分) 计算下列各题:(1)13122i ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)()()21212i i i+-+18.(本小题满分8分)求证:()()sin 22cos sin sin .αβαβαβ+=++19.(本小题满分8分)对某产品的产量与成本进行分析后,得到如下数据:(1)在下面给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程ˆˆˆybx a =+并在(1)的坐标系中画出回归直线.20.(本小题满分10分)D 为AB如图,在三棱锥S ABC -中,SD ⊥平面ABC ,的中点,E 为BC 的中点,.AC BC = (1)求证://AC 平面;SDE (2)求证:.AB SC ⊥。

2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案

2014-2015学年高二上学期期末考试数学(理)试题_Word版含答案

2016级高二期末考试试卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.i 为虚数单位,则2013i = ( )A .i -B .1-C .iD .1 2.若()e x f x x =,则(1)f '=( )A .0B .eC .2eD .2e3.已知双曲线2219x y m-=的一个焦点坐标是()5,0,则双曲线的渐近线方程是 ( )A .34y x =±B .43y x =±C.y x = D.y x = 4.下列叙述:①若两条直线平行,则它们的方向向量方向相同或相反;②若两个向量均为同一个平面的法向量,则以这两个向量为方向向量的直线一定平行; ③若一条直线的方向向量与某一个平面的法向量垂直,则该直线与这个平面平行. 其中正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个5.学校体育场南侧有4个大门,北侧有3个大门,西侧有2个大门,某学生到该体育场训练,但必须是从南或北门进入,从西门或北门出去,则他进出门的方案有( )A .7个B .12个C .24个D .35个 6.下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +>7.已知函数32()393f x x x x =--+,若函数()()g x f x m =-在[]2,5x ∈-上有3个零点,则m 的取值范围为( ) A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)8.抛物线22(0)y px p =>的焦点为F ,已知点,A B 为抛物线上的两个动点,且满足90AFB ∠=.过弦AB的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为ABC .1D二、 75分,共35分.9.204sin xdx π=⎰10.已知01a <<,复数z 的实部为a ,虚部为1,则复数z 对应的点Z 到原点距离的取值范围是 11.曲线C :ln xy x=在点(1,0)处的切线方程是 . 12.棱长均为3的三棱锥S ABC -,若空间一点P 满足(1)SP xSA ySB zSC x y z =++++=,则SP 的最小值为 .13.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼-15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是 .14.椭圆22:143x y C +=的左、右顶点分别为12A A 、,点P 在椭圆C 上,记直线2PA 的斜率为2k ,直线1PA 的斜率为1k ,则 1k ·2k = . 15.函数2()ln(1)f x x a x =++有两个不同的极值点12,x x ,且12x x <,则实数a 的范围是 三、解答题:本大题共6个小题,共75分,解答题写出文字说明、证明过程或演算步骤.16.(本小题满分12分) 设p :实数x 满足22430x ax a -+<, :q 实数x 满足31x -<. (1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围. 17.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直底面,90ACB ∠=︒,12AC BC CC ===. (1)求证:11AB BC ⊥;(2)求二面角111C AB A --的大小.18.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数). 19.(本小题满分13分)设数列{}n a 的前n 项和为n S (即123n n S a a a a =++++),且方程20n n x a x a --=有一根为n S -1,n =1,2,3…….(1)求12,a a ;(2)猜想数列{}n S 的通项公式,并用数学归纳法给出严格的证明.20.(本小题满分13分)已知椭圆C :22221x y a b +=(0)a b >>2.(1)求椭圆C 的方程;(2)过点M (0,13-)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以A B 为直径的圆恒过定点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 21.(本小题满分13分)已知),1ln()(+=x x f bx ax x g +=221)( (1)若0=a ,1=b 时,求证:0)()(≤-x g x f 对于),1(+∞-∈x 恒成立; (2)若2=b ,且)()1()(x g x f x h --=存在单调递减区间,求a 的取值范围;(3)利用(1)的结论证明:若y x <<0,则2ln )(ln ln yx y x y y x x ++>+.CCBBDADA 9.4 10.()1,2 11.1y x =- 12.6 13.24 14.-34 15.10,2⎛⎫⎪⎝⎭16.解:(1). 由22430x ax a -+<得(3)()0x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.……………2分由31x -<, 得131x -<-<, 得24x <<即q 为真时实数x 的取值范围是24x <<,……4分 若p q ∧为真,则p 真且q 真,所以实数x 的取值范围是23x <<.……6分(2) 由22430x ax a -+<得(3)()0x a x a --< p ⌝是q ⌝的充分不必要条件,即p ⌝⇒q ⌝,且q ⌝⇒/p ⌝, ……………8分设A ={|}x p ⌝,B ={|}x q ⌝,则AB ,又A ={|}x p ⌝={|3}x x a x a ≤≥或, B ={|}x q ⌝={x|x≥4或x≤2},……………10分 则02a <≤,且34a ≥所以实数a 的取值范围是423a ≤≤12分 17.解::方法一:(1)∵11,AC BC AC CC BCCC C ⊥⊥=且∴11AC C CBB ⊥平面,又111BC C CBB ⊂平面∴1111,,AC BC B C BC AC B C C ⊥⊥=且 ∴1111BC AB C AB AB C ⊥⊂平面,又平面 ∴11AB BC ⊥(2)取11A B 的中点为H ,在平面11A ABB 内过H 作1HQ AB ⊥于点Q ,连接1C Q 则111C H A ABB ⊥平面,∴11C H AB ⊥,而1C H HQ H =∴1111AB C HQ AB C Q ⊥∴⊥平面,∴1C QH ∠是二面角111C AB A --的平面角,又1162C H A AB HQ ==,在内,解得∴111tan 3,60C HC QH C QH HQ∠==∠=︒∴二面角111C AB A --为60°.18.解:(1)因为4x =时,21y =, 代入关系式()2462m y x x =+--,得16212m +=, 解得10m =.……………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--,……………5分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦……………………8分从而()()()()2'121122404310626f x x x x x x =-+=--<<.令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. …………………12分19.解:(1)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.……………3分当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝⎛⎭⎫a 2-122-a 2⎝⎛⎭⎫a 2-12-a 2=0,解得a 2=16.……5分 (2)由题设(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n ≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0.① 由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3…. ……………7分下面用数学归纳法证明这个结论. (ⅰ)n =1时已知结论成立.……………8分(ⅱ)假设n =k (k ≥1,k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k,……………10分 即S k +1=k +1k +2,故n =k +1时结论也成立.……………12分综上,由(ⅰ)(ⅱ)可知S n =nn +1对所有正整数n 都成立.……………13分1CA BC1A1B20.解:(1)设椭圆的焦距为2c,则由题设可知2221a c ca a cb ⎧-=⎪⎪=⎨⎪⎪=+⎩,解此方程组得a =1b =. 所以椭圆C 的方程是2212x y +=. ……………………5分 (2)解法一:假设存在点T (u, v ). 若直线l 的斜率存在,设其方程为13y kx =-, 将它代入椭圆方程,并整理,得22(189)12160k x kx +--=.设点A 、B 的坐标分别为1122(,),(,)A x y B x y ,则 12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为1122(,),(,)TA x u y v TB x u y v =--=--及112211,,33y kx y kx =-=-所以1212()()()()TA TB x u x u y v y v =--+--2221212121(1)()()339v k x x u k kv x x u v =+-+++++++222222(666)4(3325)62u v k ku u v v k +--+++-=+ …………………9分 当且仅当0TA TB =恒成立时,以AB 为直径的圆恒过定点T ,所以2222618180,0,33250.u v u u v v ⎧+-=⎪=⎨⎪++-=⎩解得0, 1.u v ==此时以AB 为直径的圆恒过定点T (0,1). …………………11分 当直线l 的斜率不存在,l 与y 轴重合,以AB 为直径的圆为221x y +=也过点T (0,1). 综上可知,在坐标平面上存在一个定点T (0,1),满足条件. …………………13分解法二:若直线l 与y 轴重合,则以AB 为直径的圆是22 1.x y +=若直线l 垂直于y 轴,则以AB 为直径的圆是22116().39x y ++=……………7分 由22221,116().39x y x y ⎧+=⎪⎨++=⎪⎩解得01x y =⎧⎨=⎩.由此可知所求点T 如果存在,只能是(0,1). ………………8分 事实上点T (0,1)就是所求的点. 证明如下:当直线l 的斜率不存在,即直线l 与y 轴重合时,以AB 为直径的圆为221x y +=,过点T (0,1);当直线l 的斜率存在,设直线方程为13y kx =-,代入椭圆方程,并整理,得22(189)12160.k x kx +--= 设点A 、B 的坐标为1122(,),(,)A x y B x y ,则12212212,18916.189k x x k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩…………………10分因为1122(,1),(,1)TA x y TB x y =-=-,21212121212416()1(1)()39TA TA x x y y y y k x x k x x =+-++=+-++222216161632160.189k k k k ---++==+所以TA TB ⊥,即以AB 为直径的圆恒过定点T (0,1).综上可知,在坐标平面上存在一个定点T (0,1)满足条件. …………………13分 21.解:(1)设x x x g x f x -+=-=)1ln()()()(ϕ,则.1111)('+-=-+=x x x x ϕ………………….2分当时,)(x 有最大值0 ∴0)(≤x 恒成立。

天津市和平区高二下期中数学(文)试题及答案(新课标人教版)-精校

天津市和平区高二下期中数学(文)试题及答案(新课标人教版)-精校

天津市和平区2015—2016学年度第二学期高二年级期中质量调查数学试题(文科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.要描述一个学校的组成情况,应选用A.工序流程图B. 组织结构图C. 知识结构图D.程序框图2.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R 依次为0.36,0.95,0.74,0.81,其中回归效果最好的模型的相关指数2R 为A. 0.95B. 0.81C. 0.74D.0.36 3.若iA.34- B. 32- C. 34+ D. 32+ 4.下面是一个22⨯列联表则表中,a b 处的值分别为A. 14,16B. 4,26C. 4,24D. 26,4 5.若0,10a b <-<<,则下列不等关系成立的是A.2ab ab a <<B. 2a ab ab <<C. 2ab a ab <<D. 2a ab ab <<6.设5a b c =+==,则,,c a b 的大小关系为A. c b a <<B. b c a <<C. c a b <<D. a b c <<7.已知变量x 与y 正相关,且由观测数据算得样本平均数3, 3.5x y ==,则由该数据算得的线性回归方程只可能是下列选项中的A. ˆ29.5y x =-+B. ˆ2 2.4y x =-C. ˆ0.4 2.3yx =+ D. ˆ0.3 4.4y x =-+ 8.阅读右边的程序框图,当该程序运行后,输出的S 的值是A. 35B. 63C. 84D. 165 9.已知()1f x x x =--,设()()5,,16u f v f u s f v ⎛⎫=== ⎪⎝⎭,则s 的值为A.38 B. 12 C. 14D. 0 10.设()111,1,23n N f n n *∈=++++计算得()()()()352,42,8,163,22f f f f =>>>,观察上述结果,可推测一般结论为A. ()()2log 22n f n n N *+≥∈ B. ()()222n f n n N *+≥∈ C. ()()222nn f n N *+>∈ D. ()()222n n f n N *+≥∈第Ⅱ卷(非选择题 共60分)二、填空题:本大题共5小题,每小题5分,共20分.11.已知i 为虚数单位,(),2a R ai i ∈-的实部与虚部互为相反数,则a 的值为 .12.用反证法证明命题“如果a b >>”时,假设的内容是 .13.在0H 成立的条件下,若(2 2.0720.15P K ≥=,则表示把结论“0H 成立”错判成“0H 不成立”的概率不会超过 .14.若12342358,,,,,35813a a a a ====则8a = . 15.已知函数()()21f x x k x k =+--的恰有一个零点在()2,3内,则实数k 的取值范围是 .三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分6分)已知0a b >>,求证:2222 1.a b b a b a b -+<++17.(本小题满分8分) 计算下列各题:(1)13122i ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)()()21212i i i+-+18.(本小题满分8分)求证:()()sin 22cos sin sin .αβαβαβ+=++19.(本小题满分8分)(1(2)求出y 关于x 的线性回归方程ˆˆˆybx a =+并在(1)的坐标系中画出回归直线.20.(本小题满分10分)D 为AB如图,在三棱锥S ABC -中,SD ⊥平面ABC ,的中点,E 为BC 的中点,.AC BC = (1)求证://AC 平面;SDE (2)求证:.AB SC ⊥。

天津市和平区高二下期中数学(理)试题及答案(新课标人教版)-超值

天津市和平区高二下期中数学(理)试题及答案(新课标人教版)-超值

天津市和平区2015—2016学年度第二学期高二年级期中质量调查数学试题(理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1若iA. 34B. 32-C. 34+D. 32+ 2. 若0,10a b <-<<,则下列不等关系成立的是A.2ab ab a <<B. 2a ab ab <<C. 2ab a ab <<D. 2a ab ab <<3.曲线324y x x =-+在点()1,3处的切线的倾斜角为 A.6π B. 4π C. 3π D. 23π4.设5a b c ===,则,,c a b 的大小关系为A. c b a <<B. b c a <<C. c a b <<D. a b c << 5.计算211x dx x ⎛⎫+ ⎪⎝⎭⎰的值为 A. 34 B. 3ln 22+ C. 5ln 22+ D. 3ln 2+ 6.若函数()331f x x ax =-+在区间()0,1内有极小值,则a 的取值范围是 A. ()0,1 B. (]0,1 C. [)0,1 D. []0,17.设函数()224ln f x x x x =--,则()f x 的单调递增区间为 A. ()0,+∞ B. ()1,0- C. ()2,+∞ D. ()()1,02,-+∞ 8.设函数()y f x =在定义域内可导,其图象如右图所示,则导函数()y f x '=的图象只可能是下列情形中的9. 设()111,1,23n N f n n *∈=++++计算得()()()()352,42,8,163,22f f f f =>>>观察上述结果,可推测一般结论为A. ()()2log 22n f n n N *+≥∈ B. ()()222n f n n N *+≥∈ C. ()()222n n f n N *+>∈ D. ()()222n n f n N *+≥∈ 10.若在区间1,22⎡⎤⎢⎥⎣⎦上,函数()2f x x px q =++与()3322x g x x =+在同一点处取得相同的最小值,则()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最大值是 A. 3 B. 4 C. 134 D. 6第Ⅱ卷(非选择题 共60分)二、填空题:本大题共5小题,每小题5分,共20分.11.已知i 为虚数单位,(),2a R ai i ∈-的实部与虚部互为相反数,则a 的值为 .12.函数()ln x f x x=的单调递减区间是 . 13.若12342358,,,,,35813a a a a ====则8a = . 14.已知函数()()21f x x k x k =+--恰有一个零点在()2,3内,则实数k 的取值范围是 . 15.若()329652f x x x x =-+-满足条件()f x m '≥恒成立,则m 的最大值是 .三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分6分)已知0a b >>,求证:2222 1.a b b a b a b -+<++17.(本小题满分8分)计算下列各题:(1)13122i ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)()()21212i i i +-+18.(本小题8分)已知函数()3 3.f x x x =-+(1)求()f x 在1x =处的切线方程;(2)求()f x 的单调递增区间.19. (本小题8分)用数学归纳法证明:()()()()11222221123411.2n n n n n n N --*+-+-++-=-⋅∈20.(本小题满分10分)已知()()32223.3f x x ax x a R =--∈(1)若()f x 在区间()1,1-内为减函数,求实数a 的取值范围;(2)对于实数a 的不同取值,试讨论()y f x =在()1,1-内的极值点的个数.。

人教A版高中数学选修一高二下学期第一阶段考试(期中)(文)试题.docx

人教A版高中数学选修一高二下学期第一阶段考试(期中)(文)试题.docx

2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是A.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函17(,),2ia bi ab R i i+=+∈-ab数3()f x x =的极值点.以上推理中A .大前提错误B .小前提错误C .推理形式错误D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )A.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为A.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2- C .至少有一个不大于2- D .至少有一个不小于2- 7.在一次实验中,测得的四组值分别为,,,,则与的线性 回归方程可能是( )A .B .C .D .(,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-8. 设0a >b >,则()211a ab a a b ++-的最小值是( ) A .1 B .2 C .3D .49.若1322i ω=-+,则等于421ωω++=( ) A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( ) A .16 B .8 C .4 D .非上述情况11.设,且,若,则必有( )A .B .C .D . 12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为A.(,0)-∞B.(0,)+∞C.4(,)-∞eD.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<,AD =,则∠CAD 的弧度数为 .15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____. 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R = .三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17. (本小题满分l0分)如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(Ⅰ)若11,32EC ED EB EA ==,求DCAB的值; (Ⅱ)若2EF FA FB =⋅,证明://EF CD .18.(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A 等(优秀),在[60,80)的学生可取得B 等(良好),在[40,60)的学生可取得C 等(合格),在不到40分的学生只能取得D 等(不合格),为研究这次考试成绩优秀是否与性别有关,现23按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀 数学成绩不优秀 合计男生 a=12 b= 女生 c= d=34 合计n=100附:.P (k 2≥k 0) 0.15 0.10 0.05 0.01k 0 2.0722.7063.841 6.63519.(本小题满分l2分)设函数()|21||4|f x x x =+--.(1)解不等式()0f x >;(2)若()3|4|f x x m +->对一切实数x 均成立,求m 的取值范围.20.(本小题满分l2分)设函数2()f x ax bx c =++且(1)2af =-,322.a c b >> (1)试用反证法证明:0a > (2)证明:33.4b a -<<-21.(本小题满分l2分)在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T ,求||||TM TN ⋅的取值范围.22.(本小题满分l2分)已知函数1()ln (0,)f x a x a a R x=+≠∈ (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间[1,]e 上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是 CA.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函 数3()f x x =的极值点.以上推理中 A A .大前提错误 B .小前提错误 C .推理形式错误 D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )CA.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )D17(,),2ia bi ab R i i+=+∈-abA .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为 BA.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )c A .都不大于2- B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-7.在一次实验中,测得的四组值分别为,,,,则与的线性回归方程可能是( )A .B .C .D .解析:A 线性回归直线一定过样本中心点,故选A .8. 设0a >b >,则()211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )49.若1322i ω=-+,则等于421ωω++=( )D A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( )B (,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-()2.5,3.5A .16B .8C .4D .非上述情况11.设,且,若,则必有( )AA .B .C .D .12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为 BA.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .2 AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,AD =,则∠CAD 的弧度数为 . 15.15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____.)2(116422≥=-x y x 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<23512π类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R= . 2222a b c ++三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分l0分)如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若,求的值;(Ⅱ)若EF 2=FA•FB,证明:EF∥CD.【解答】解:(Ⅰ)∵A,B ,C ,D 四点共圆, ∴∠ECD=∠EAB,∠EDC=∠B∴△EDC∽△EBA,可得,∴,即∴(Ⅱ)∵EF2=FA•FB,∴,又∵∠EFA=∠BFE,∴△FAE∽△FEB,可得∠FEA=∠EBF,又∵A,B,C,D四点共圆,∴∠EDC=∠EBF,∴∠FEA=∠EDC,∴EF∥CD.18(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀数学成绩不优秀合计男生a=12 b=女生c= d=34合计n=100附:.P(k2≥k0)0.15 0.10 0.05 0.01k0 2.072 2.706 3.841 6.635解:(Ⅰ)抽取的100名学生中,本次考试成绩不合格的有x人,根据题意得x=100×[1﹣10×(0.006+0.012×2+0.018+0.024+0.026)]=2.…(2分)据此估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数为(人).…(4分)(Ⅱ)根据已知条件得2×2列联表如下:数学成绩优秀数学成绩不优秀合计男生a=12 b=48 60女生c=6 d=34 40合计18 82 n=100 …(10分)∵,所以,没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.…(12分)19.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.【解答】解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣≤x≤4时,取等号,所以,f(x)+3|x﹣4|的最小值为9,故m<9.20.(本小题满分l2分)设函数f(x)=ax2+bx+c且f(1)=﹣,3a>2c>2b.(1)试用反证法证明:a>0(2)证明:﹣3<.【解答】证明:(1)假设a≤0,∵3a>2c>2b,∴3a≤0,2c<0<,2b<0,将上述不等式相加得3a+2c+2b<0,∵f(1)=﹣,∴3a+2c+2b=0,这与3a+2c+2b<0矛盾,∴假设不成立,∴a>0;(2)∵f(1)=a+b+c=﹣,∴c=﹣a﹣b∴3a>2c=﹣3a﹣2b,∴3a>﹣b,∵2c>2b,∴﹣3a>4b;∵a>0,∴﹣3<<﹣.21.(本小题满分l2分)在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【解答】解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].22.(本小题满分l2分)已知函数f(x)=+alnx(a≠0,a∈R)(Ⅰ)若a=1,求函数f(x)的极值和单调区间;(Ⅱ)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.【解答】解:(I)因为,(2分)当a=1,,令f'(x)=0,得x=1,(3分)又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:x (0,1) 1 (1,+∞)f'(x)﹣0 +f(x)↘极小值↗所以x=1时,f(x)的极小值为1.(5分)f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分)(II)因为,且a≠0,令f'(x)=0,得到,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.(7分)(1)当a<0时,f'(x)<0对x∈(0,+∞)成立,所以,f(x)在区间[1,e]上单调递减,故f(x)在区间[1,e]上的最小值为,由,得,即(9分)(2)当a>0时,①若,则f'(x)≤0对x∈[1,e]成立,所以f(x)在区间[1,e]上单调递减,所以,f(x)在区间[1,e]上的最小值为,显然,f(x)在区间[1,e]上的最小值小于0不成立(11分)②若,即1>时,则有xf'(x)﹣0 +f(x)↘极小值↗所以f(x)在区间[1,e]上的最小值为,由,得1﹣lna<0,解得a>e,即a∈(e,+∞)舍去;当0<<1,即a>1,即有f(x)在[1,e]递增,可得f(1)取得最小值,且为1,f(1)>0,不成立.综上,由(1)(2)可知a<﹣符合题意.(14分)…。

高二数学-2015-2016学年高二上学期期中数学试卷

高二数学-2015-2016学年高二上学期期中数学试卷

2015-2016学年高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.在直角坐标系中,直线y+1=0的倾斜角α的大小是__________弧度.2.若直线x+ay﹣2a﹣2=0与直线ax+y﹣a﹣1=0平行,则实数a=__________.3.双曲线2x2﹣y2=1的渐近线方程是__________.4.点(﹣2,t)在直线2x﹣3y+6=0的上方,则t的取值范围是__________.5.点A(4,5)关于直线l的对称点为B(﹣2,7),则l的方程为__________.6.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为__________.7.设x,y满足约束条件,则z=2x﹣y的最大值为__________.8.两圆x2+y2=9与x2+y2+8x﹣6y+25﹣r2=0(r>0)相交,则r的取值范围是__________.9.已知圆C1:(x+2)2+y2=1,圆C2:x2+y2﹣4x﹣77=0,动圆P与圆C1外切,与圆C2内切,则动圆圆心的轨迹方程是__________.10.直线Ax+By+C=0与⊙O:x2+y2=4相交于M,N两点,若C2=A2+B2,则(O为坐标原点)等于__________.11.设实数x、y满足,则z=|x+y+4|的取值范围为__________.12.已知动点A、B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是__________.13.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围为__________.14.如图,已知过椭圆(a>b>0)的左顶点A(﹣a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且,则椭圆的离心率为__________.二、解答题(本大题共有6个小题,共90分)15.(14分)已知y=2x是△ABC中∠C的内角平分线所在直线的方程,若A(﹣4,2),B(3,1).(1)求点A关于y=2x的对称点P的坐标;(2)求直线BC的方程;(3)判断△ABC的形状.16.(14分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x ﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.17.(14分)如图,已知椭圆C:+=1(a>b>0)的右焦点为F(c,0),下顶点为A (0,﹣b),直线AF与椭圆的右准线交于点B,若F恰好为线段AB的中点.(1)求椭圆C的离心率;(2)若直线AB与圆x2+y2=2相切,求椭圆C的方程.18.(16分)已知圆M:x2+(y﹣2)2=1,设点B,C是直线l:x﹣2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A.(1)若t=0,,求直线PA的方程;(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).19.(16分)已知以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(﹣2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P.(I)求圆A的方程;(Ⅱ)当时,求直线l的方程;(Ⅲ)是否为定值,如果是,求出定值;如果不是,请说明理由.20.(16分)如图,A,B是椭圆的左右顶点,M是椭圆上异于A,B的任意一点,若椭圆C的离心率为,且右准线l的方程为x=4.(1)求椭圆C的方程;(2)设直线AM交l于点P,以MP为直径的圆交直线MB于点Q,试证明:直线PQ与x轴的交点R为定点,并求出R点的坐标.2015-2016学年江苏省南通市天星湖中学高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.在直角坐标系中,直线y+1=0的倾斜角α的大小是0弧度.【考点】直线的图象特征与倾斜角、斜率的关系.【专题】作图题.【分析】因为对于平行于x轴的直线,规定其倾斜角为0弧度,所以直接可得结果.【解答】解:直线y+1=0可化为y=﹣1,图象是平行于x轴的直线,∴倾斜角α为0弧度.故答案为0【点评】本题主要考查倾斜角的概念,属于基础题.2.若直线x+ay﹣2a﹣2=0与直线ax+y﹣a﹣1=0平行,则实数a=1.【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】根据直线平行的条件,建立方程即可.【解答】解:若a=0,则两个直线方程为x=2和y=1.此时两直线不平行.若a≠0,若两直线平行,则,解得a=1或a=﹣1,当a=1时,两直线方程为x+y﹣4=0和x+y﹣2=0,满足两直线平行.当a=﹣1时,两直线方程为x﹣y=0和﹣x+y=0,不满足两直线平行.∴a=1.故答案为:a=1.【点评】本题主要考查直线的方程以及直线平行的等价条件,注意对a要进行讨论.3.双曲线2x2﹣y2=1的渐近线方程是.【考点】双曲线的简单性质.【专题】计算题.【分析】将双曲线化成标准方程,得到a、b的值,再由双曲线的渐近线方程是y=±x,即可得到所求渐近线方程.【解答】解:∵双曲线2x2﹣y2=1的标准方程为:∴,b2=1,可得a=,b=1又∵双曲线的渐近线方程是y=±x∴双曲线2x2﹣y2=1的渐近线方程是y=±x故答案为:y=±x【点评】本题给出双曲线方程,求双曲线的渐近线方程,着重考查了双曲线的简单几何性质,属于基础题.4.点(﹣2,t)在直线2x﹣3y+6=0的上方,则t的取值范围是t>.【考点】两条直线的交点坐标.【专题】计算题.【分析】点在直线上方,点的坐标代入方程,有﹣4﹣3t+6<0,求出t的取值范围.【解答】解:点(﹣2,t)在直线2x﹣3y+6=0的上方,则﹣4﹣3t+6<0 则t的取值范围是:t>故答案为:t>【点评】本题考查点与直线的位置关系,是基础题.5.点A(4,5)关于直线l的对称点为B(﹣2,7),则l的方程为3x﹣y+3=0.【考点】与直线关于点、直线对称的直线方程.【专题】计算题.【分析】先求出A、B的中点,再求AB的斜率,求出中垂线的斜率,然后用点斜式求出直线方程.【解答】解:对称轴是以两对称点为端点的线段的中垂线.A、B的中点坐标(1,6),AB的斜率为:中垂线的斜率为:3则l的方程为:y﹣6=3(x﹣1)即:3x﹣y+3=0故答案为:3x﹣y+3=0【点评】本题考查与直线关于点、直线对称的直线方程,考查计算能力,是基础题.6.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为4.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由椭圆+=1,可得a2=6,b2=2,可得c=,可得右焦点F(c,0).由抛物线y2=2px可得焦点.利用=c即可得出.【解答】解:由椭圆+=1,可得a2=6,b2=2,∴c==2,∴右焦点F(2,0).由抛物线y2=2px可得焦点.∴=2,解得p=4.故答案为:4.【点评】本题考查了椭圆与抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.7.设x,y满足约束条件,则z=2x﹣y的最大值为8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点A时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即A(5,2)将A的坐标代入目标函数z=2x﹣y,得z=2×5﹣2=8.即z=2x﹣y的最大值为8.故答案为:8【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.8.两圆x2+y2=9与x2+y2+8x﹣6y+25﹣r2=0(r>0)相交,则r的取值范围是2<r<8.【考点】圆与圆的位置关系及其判定.【专题】计算题.【分析】求出两个圆的圆心与半径,利用圆心距与半径和与差的关系,【解答】解:圆x2+y2=9的圆心(0,0),半径为3,圆x2+y2+8x﹣6y+25﹣r2=0(r>0)的圆心(﹣4,3),半径为:r,因为圆x2+y2=9与x2+y2+8x﹣6y+25﹣r2=0(r>0)相交,所以,解得2<r<8.故答案为:2<r<8.【点评】本题考查两个圆的位置关系,通过圆心距在半径差与半径和之间求解,也可以联立方程组,利用判别式解答.9.已知圆C1:(x+2)2+y2=1,圆C2:x2+y2﹣4x﹣77=0,动圆P与圆C1外切,与圆C2内切,则动圆圆心的轨迹方程是.【考点】轨迹方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】由两圆的方程分别找出圆心C1与C2的坐标,及两圆的半径r1与r2,设圆P的半径为r,根据圆P与C1外切,得到圆心距PC1等于两半径相加,即PC1=r+1,又圆P与C2内切,得到圆心距PC2等于两半径相减,即PC2=9﹣r,由PC1+PC2等于常数2a,C1C2等于常数2c,利用椭圆的基本性质求出b的值,可得出圆心P在焦点在x轴上,且长半轴为a,短半轴为b的椭圆上,根据a与b的值写出此椭圆方程即可.【解答】解:由圆C1:(x+2)2+y2=1,圆C2:(x﹣2)2+y2=81,得到C1(﹣2,0),半径r1=1,C2(2,0),半径r2=9,设圆P的半径为r,∵圆P与C1外切而又与C2内切,∴PC1=r+1,PC2=9﹣r,∴PC1+PC2=(r+1)+(9﹣r)=2a=10,又C1C2=2c=4,∴a=5,c=2,∴b=,∴圆心P在焦点在x轴上,且长半轴为10,短半轴为2的椭圆上,则圆心P的轨迹方程为:.故答案为:.【点评】此题考查了圆与圆的位置关系,椭圆的基本性质,以及动点的轨迹方程,两圆的位置关系由圆心角d与两圆半径R,r的关系来判断,当d<R﹣r时,两圆内含;当d=R﹣r 时,两圆内切;当R﹣r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离.10.直线Ax+By+C=0与⊙O:x2+y2=4相交于M,N两点,若C2=A2+B2,则(O为坐标原点)等于﹣2.【考点】平面向量数量积的运算;直线与圆的位置关系.【分析】设M(x1,y1),N(x2,y2).当B≠0时,直线方程与圆的方程联立并利用A2+B2=C2.可得根与系数的关系,利用=x1x2+y1y2即可得出.当B=0时,A≠0,C=±A,直线化为y=±x,联立,解得即可.【解答】解:设M(x1,y1),N(x2,y2).当B≠0时,联立,A2+B2=C2.化为C2x2+2ACx+C2﹣4B2=0,∴,.∵y1y2==.∴=x1x2+y1y2===﹣2.当B=0时,A≠0,C=±A,直线化为y=±x,联立,解得x=y=或﹣.此时=﹣2.综上可知:.故答案为﹣2.【点评】本题考查了直线与圆相交问题转化为方程联立得到根与系数的关系、数量积运算、分类讨论等基础知识与基本技能方法,属于中档题.11.设实数x、y满足,则z=|x+y+4|的取值范围为.【考点】简单线性规划.【专题】转化思想;数形结合法;不等式的解法及应用.【分析】根据题意,画出可行域,求出最优解,计算z=|x+y+4|的最小值与最大值即可.【解答】解:根据题意,实数x、y满足,画出可行域,如图所示;求出最优解,则当x=1,y=1时,z=|x+y+4|取得最小值z min=1+1+4=6,当x=5,y=2时,z=|x+y+4|取得最大值z max=5+2+4=11;∴z的取值范围是.故答案为:.【点评】本题考查了线性规划的应用问题,解题时应根据线性约束条件画出可行域,求出最优解,从而求出目标函数的取值范围,是基础题目.12.已知动点A、B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x,点N的坐标为(1,0),则三角形ABN的周长l的取值范围是().【考点】抛物线的简单性质;椭圆的简单性质.【专题】计算题.【分析】可考虑用抛物线的焦半径公式和椭圆的焦半径公式来做,先通过联立抛物线与椭圆方程,求出A,B点的横坐标范围,再利用焦半径公式转换为以B点的横坐标为参数的式子,再根据前面求出的B点横坐标方位计算即可.【解答】解:由得,抛物线y2=4x与椭圆在第一象限的交点横坐标为,设A(x1,y1),B(x2,y2),则0<x1<,<x2<2,由可得,三角形ABN的周长l=|AN|+|AB|+|BN|=x1++x2﹣x1+a﹣ex2=+a+x2=3+x2,∵,<x2<2,∴<3+x2<4故答案为()【点评】本题考查了抛物线与椭圆焦半径公式的应用,做题时要善于把未知转化为已知.13.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围为.【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆心与半径,则圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2等价为圆心到直线l:ax+by=0的距离d≤,从而求直线l的斜率的取值范围.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0可化为(x﹣2)2+(y﹣2)2=18,则圆心为(2,2),半径为3;则由圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则圆心到直线l:ax+by=0的距离d≤3﹣2=;即,则a2+b2+4ab≤0,若b=0,则a=0,故不成立,故b≠0,则上式可化为1+()2+4×≤0,由直线l的斜率k=﹣,则上式可化为k2﹣4k+1≤0,解得2﹣≤k≤2+,故答案为:【点评】本题考查了直线与圆上点的距离的应用以及直线斜率的求解,将圆x2+y2﹣4x﹣4y ﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2转化为圆心到直线l:ax+by=0的距离d≤是本题解答的关键,属于中档题.14.如图,已知过椭圆(a>b>0)的左顶点A(﹣a,0)作直线1交y轴于点P,交椭圆于点Q,若△AOP是等腰三角形,且,则椭圆的离心率为.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用等腰三角形的性质和向量相等运算即可得出点Q的坐标,再代入椭圆方程即可.【解答】解:∵△AOP是等腰三角形,A(﹣a,0)∴P(0,a).设Q(x0,y0),∵,∴(x0,y0﹣a)=2(﹣a﹣x0,﹣y0).∴,解得.代入椭圆方程得,化为.∴=.故答案为.【点评】熟练掌握等腰三角形的性质和向量相等运算、“代点法”等是解题的关键.二、解答题(本大题共有6个小题,共90分)15.(14分)已知y=2x是△ABC中∠C的内角平分线所在直线的方程,若A(﹣4,2),B(3,1).(1)求点A关于y=2x的对称点P的坐标;(2)求直线BC的方程;(3)判断△ABC的形状.【考点】与直线关于点、直线对称的直线方程;三角形的形状判断;直线的一般式方程.【专题】计算题;解三角形;直线与圆.【分析】(1)设P(m,n)根据轴对称的性质建立关于m、n的方程组,解之得m=4且n=﹣2,即可得到所求点P的坐标;(2)根据角的两边关于角平分线所在直线对称,得到P(4,﹣2)在BC上,用点斜式写出直线PB的方程,即得直线BC的方程;(3)则BC方程与AC方程联解得出C(2,4),从而得到AB、BC、AC的长度,算出|AB|2=|BC|2+|AC|2,从而得到△ABC为以∠C为直角的直角三角形.【解答】解:(1)设A关于y=2x的对称点为P(m,n).∴解之得,即点P的坐标为(4,﹣2).(2)∵P(4,﹣2)在BC上,∴BC的方程为y﹣1=﹣3(x﹣3),即3x+y﹣10=0.(3)由,解得∴C的坐标为(2,4).由,,,得|AB|2=|BC|2+|AC|2,∴△ABC为以∠C为直角的直角三角形.【点评】本题给出△ABC的顶点A、B的坐标,在给出角A平分线的基础之上求BC的方程,并判断三角形的形状,着重考查了两点的距离公式、直线与直线的位置关系和三角形形状的判断等知识,属于中档题.16.(14分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x ﹣3y﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【考点】直线的点斜式方程;两条直线的交点坐标;圆的标准方程.【专题】计算题.【分析】(1)由已知中AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,我们可以求出直线AD的斜率,结合点T(﹣1,1)在直线AD上,可得到AD边所在直线的点斜式方程,进而再化为一般式方程.(2)根据矩形的性质可得矩形ABCD外接圆圆心即为两条对角线交点M(2,0),根据(I)中直线AB,AD的直线方程求出A点坐标,进而根据AM长即为圆的半径,得到矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.【点评】本题考查的知识点是直线的点斜式方程,两条直线的交点坐标,圆的标准方程,其中(1)的关键是根据已知中AB边所在直线的方程及AD与AB垂直,求出直线AD的斜率,(2)的关键是求出A点坐标,进而求出圆的半径AM长.17.(14分)如图,已知椭圆C:+=1(a>b>0)的右焦点为F(c,0),下顶点为A (0,﹣b),直线AF与椭圆的右准线交于点B,若F恰好为线段AB的中点.(1)求椭圆C的离心率;(2)若直线AB与圆x2+y2=2相切,求椭圆C的方程.【考点】椭圆的简单性质;椭圆的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】(1)由B在右准线x=上,且F(c,0)恰好为线段AB的中点可求得2c=,从而可求得其斜率;(2)由(1)可知a=c,b=c,从而可设AB的方程为y=x﹣c,利用圆心O(0,0)点到直线y=x﹣c间的距离等于半径2即可求得c,从而使问题得到解决.【解答】解(1)因为B在右准线x=上,且F(c,0)恰好为线段AB的中点,所以2c=,…即=,所以椭圆的离心率e=.…(2)由(1)知a=c,b=c,所以直线AB的方程为y=x﹣c,即x﹣y﹣c=0,…因为直线AB与圆x2+y2=2相切,所以=,…解得c=2.所以a=2,b=2.所以椭圆C的方程为+=1.…【点评】本题考查椭圆的简单性质与椭圆的标准方程,考查化归思想与方程思想,求得椭圆的离心率是关键,属于中档题.18.(16分)已知圆M:x2+(y﹣2)2=1,设点B,C是直线l:x﹣2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),点P在线段BC上,过P点作圆M的切线PA,切点为A.(1)若t=0,,求直线PA的方程;(2)经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t).【考点】直线与圆的位置关系.【专题】计算题;压轴题.【分析】(1)由圆的方程找出圆心坐标与圆的半径,因为P在直线l上,所以设P的坐标为(a,2a),然后由M和P的坐标,利用两点间的距离公式表示出MP的长,根据列出关于a的方程,求出方程的解即可得到a的值,得到P的坐标,设过P点切线方程的斜率为k,根据P的坐标和斜率k写出切线的方程,根据直线与圆相切时圆心到直线的距离公式等于半径,利用点到直线的距离公式表示出圆心M到切线方程的距离d,让d等于圆的半径r,即可得到关于k的方程,求出方程的解即可得到k的值,写出直线PA的方程即可;(2)根据圆的切线垂直于过切点的半径得到AP垂直AM,所以三角形APM为直角三角形,所以外接圆圆心D为斜边PM的中点,根据M和设出的P的坐标利用中点坐标公式表示出D 的坐标,然后利用两点间的距离公式表示出OD的长,得到关于a的函数为开口向上的抛物线,分三种情况:大于抛物线顶点的横坐标,小于抛物线顶点的横坐标小于+2,和+2小于顶点的横坐标,利用二次函数的图象即可求出函数的最小值.线段DO长的最小值L(t)为一个分段函数,写出此分段函数的解析式即可.【解答】解:(1)由圆M:x2+(y﹣2)2=1,得到圆心M(0,2),半径r=1,设P(2a,a)(0≤a≤2).∵,∴.解得a=1或(舍去).∴P(2,1).由题意知切线PA的斜率存在,设斜率为k.所以直线PA的方程为y﹣1=k(x﹣2),即kx﹣y﹣2k+1=0.∵直线PA与圆M相切,∴,解得k=0或.∴直线PA的方程是y=1或4x+3y﹣11=0;(2)设∵PA与圆M相切于点A,∴PA⊥MA.∴经过A,P,M三点的圆的圆心D是线段MP的中点.∵M(0,2),∴D的坐标是.设DO2=f(a).∴.当,即时,;当,即时,;当,即时,则.【点评】此题考查学生掌握直线与圆相切是所满足的条件,灵活运用两点间的距离公式及点到直线的距离公式化简求值,灵活运用二次函数求最值的方法解决实际问题,是一道比较难的题.19.(16分)已知以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(﹣2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P.(I)求圆A的方程;(Ⅱ)当时,求直线l的方程;(Ⅲ)是否为定值,如果是,求出定值;如果不是,请说明理由.【考点】直线和圆的方程的应用;直线的一般式方程;圆的标准方程.【专题】计算题;证明题.【分析】(Ⅰ)设出圆A的半径,根据以点A(﹣1,2)为圆心的圆与直线l1:x+2y+7=0相切.点到直线的距离等于半径,我们可以求出圆的半径,进而得到圆的方程;(Ⅱ)根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,我们可以结合直线l 过点B(﹣2,0),求出直线的斜率,进而得到直线l的方程;(Ⅲ)由直线l过点B(﹣2,0),我们可分直线的斜率存在和不存在两种情况,分别讨论是否为定值,综合讨论结果,即可得到结论.【解答】解:(Ⅰ)设圆A的半径为R,由于圆A与直线l1:x+2y+7=0相切,∴….∴圆A的方程为(x+1)2+(y﹣2)2=20….(Ⅱ)①当直线l与x轴垂直时,易知x=﹣2符合题意…②当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx﹣y+2k=0,连接AQ,则AQ⊥MN∵,∴,…则由,得,∴直线l:3x﹣4y+6=0.故直线l的方程为x=﹣2或3x﹣4y+6=0…(Ⅲ)∵AQ⊥BP,∴…①当l与x轴垂直时,易得,则,又,∴…②当l的斜率存在时,设直线l的方程为y=k(x+2),则由,得P(,),则∴综上所述,是定值,且.…(14分)【点评】本题考查的知识点是直线和圆的方程的应用,直线的一般式方程,圆的标准方程,其中(I)的关键是求出圆的半径,(II)的关键是根据半弦长,弦心距,圆半径构成直角三角形,满足勾股定理,求出弦心距(即圆心到直线的距离),(III)中要注意讨论斜率不存在的情况,这也是解答直线过定点类问题的易忽略点.20.(16分)如图,A,B是椭圆的左右顶点,M是椭圆上异于A,B的任意一点,若椭圆C的离心率为,且右准线l的方程为x=4.(1)求椭圆C的方程;(2)设直线AM交l于点P,以MP为直径的圆交直线MB于点Q,试证明:直线PQ与x轴的交点R为定点,并求出R点的坐标.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(1)由椭圆C的离心率为,且右准线l的方程为x=4,联立方程组成方程组,即可求得椭圆C的方程;(2)设直线AM的方程,可得点P的坐标,根据MQ⊥PQ,可得k MQ•k PQ=﹣1,利用M在椭圆上,即可得直线PQ与x轴的交点R为定点.(1)解:由题意:,解得.∴椭圆C的方程为.…【解答】(2)证明:由(1)知,A(﹣2,0),B(2,0),设M(x0,y0),R(t,0),则直线AM的方程为,令x=4,得,即点P的坐标为,…由题意,MQ⊥PQ,∴k MQ•k PQ=﹣1,∴,即,…又,∴,∴,∴.∴直线PQ与x轴的交点R为定点.…(16分)【点评】本题考查椭圆的标准方程,考查直线过定点,考查学生分析解决问题的能力,属于中档题.。

XXX2015-2016学年高一数学上学期期中考试试卷

XXX2015-2016学年高一数学上学期期中考试试卷

XXX2015-2016学年高一数学上学期期中考试试卷XXX2015-2016学年高一上学期期中考试数学试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分。

考试时间为120分钟。

卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分。

1.如果A={x|x>−1},那么正确的结论是A.A⊆B。

{0}∈A C。

{0}∈C2.函数f(x)=2−2x,则f(1)=A。

0 B.−2 C.2/2 D.−2/23.设全集I={x|x∈Z−3<x<3},A={1,2},B={−2,−1,2},则A∪(I∩B)等于A。

{1} B。

{1,2} C。

{2} D。

{0,1,2}4.与函数y=10lg(x−1)的定义域相同的函数是A。

y=x−1 B。

y=x−1 C。

y=1/(x−1) D。

y=x−15.若函数f(x)=3+3x−x与g(x)=3−3^(−x)的定义域均为R,则A。

f(x)与g(x)均为偶函数 B。

f(x)为偶函数,g (x)为奇函数C。

f(x)与g(x)均为奇函数 D。

f(x)为奇函数,g (x)为偶函数6.设a=log_3(2),b=ln2,c=5,则A。

a<b<XXX<c<a C。

c<a<b D。

c<b<a7.设函数y=x和y=1/2,则y的交点为(x,y),则x所在的区间是A.(,1)B.(1,2)C.(2,3)D.(3,4)8.已知函数f(x)是R上的偶函数,当x≥1时f(x)=x−1,则f(x)<0的解集是A.(−1,∞)B.(−∞,1)C.(−1,1)D.(−∞,−1)∪(1,∞)9.某商店同时卖出两套西服,售价均为168元,以成本计算,一套盈利20%,另一套亏损20%,此时商店A.不亏不盈B.盈利37.2元C.盈利14元D.亏损14元10.设函数f(x)在R上是减函数,则A。

f(a)>f(2a)B。

2023-2024学年天津市和平区益中学校高二(上)期中数学试卷【答案版】

2023-2024学年天津市和平区益中学校高二(上)期中数学试卷【答案版】

2023-2024学年天津市和平区益中学校高二(上)期中数学试卷一、选择题(每题3分,共30分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14B .12C .2D .42.直线x +a 2y +6=0与直线(a ﹣2)x +3ay +2a =0平行,则实数a 的值为( ) A .3或﹣1B .0或﹣1C .﹣3或﹣1D .0或33.过点A (−√3,√2)与点B (−√2,√3)的直线的倾斜角为( ) A .45°B .135°C .45°或135°D .60°4.已知直线y =kx 与圆x 2+(y ﹣2)2=4相交于A ,B 两点,若|AB|=2√3,则k =( ) A .±√33B .±1C .±√3D .±25.若直线y =x +b 与曲线y =3−√4x −x 2有公共点,则b 的取值范围是( ) A .[1−2√2,1+2√2] B .[1−√2,3] C .[﹣1,1+2√2]D .[1−2√2,3]6.由直线y =x ﹣1上的一点向圆x 2+y 2﹣6x +8=0引切线,则切线长的最小值为( ) A .1B .√2C .√3D .27.椭圆x 2m 2+1+y 2m2=1(m >0)的焦点为F 1,F 2,上顶点为A ,若∠F 1AF 2=π3,则m =( )A .1B .√2C .√3D .28.椭圆x 24+y 2=1双曲线x 22−y 2=1有相同的焦点F 1、F 2,点P 是椭圆与双曲线的一个交点,则△PF 1F 2的面积是( ) A .4B .2C .1D .129.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y =0交椭圆E 于A ,B 两点,若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .(0,√32]B .(0,34]C .[√32,1)D .[34,1)10.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的中心为原点,焦点F 1,F 2均在x 轴上,C 的面积为2√3π,过点F 1的直线交C 于点A ,B ,且△ABF 2的周长为8,则C 的标准方程为( )A .x 24+y 2=1 B .x 23+y 24=1C .x 24+y 23=1 D .x 216+4y 23=1二、填空题(每题4分,共24分)11.已知直线l 1:y =﹣x +2a 与直线l 2:y =(a 2﹣2)x +2垂直,则a 的值为 . 12.已知双曲线x 2−y 2b2=1(b >0)的焦距为4,则b = 13.已知直线3x +4y ﹣10=0与圆C :x 2+y 2﹣2x +4y ﹣20=0相交于A 、B 两点,点P 在圆C 上,且到直线距离为1,这样的P 点有 个.14.已知圆 C :(x ﹣1)2+y 2=25与直线l :mx +y +m +2=0,当m = 时,圆C 被直线l 截得的弦长最短.15.已知直线y =kx +1与椭圆x 24+y 2=1相交于A ,B 两点,若AB 中点的横坐标为1,则k 的值为16.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰有6个不同的点使得△F 1F 2P 为等腰三角形,则椭圆的离心率e 的取值范围是 三、解答题(4道题,共46分)17.(10分)在直角△ABC 中,∠C 是直角,顶点A ,B 的坐标分别为(﹣4,4),(2,﹣4),圆E 是△ABC 的外接圆.(1)求圆E 的方程;(2)求过点M (4,10)且与圆E 相切的直线的方程.18.(12分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为√55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.19.(12分)如图所示的几何体中,四边形ABCD 为矩形,AF ⊥平面ABCD ,EF ∥AB ,AD =2,AB =AF =2EF =1,点P 为棱DF 的中点. (1)求证:BF ∥平面APC ;(2)求直线DE 与平面BCF 所成角的正弦值; (3)求平面ACP 与平面BCF 的夹角的余弦值.20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为(2,0),离心率为√32,直线y =x +m 与椭圆C 交于不同的两点A ,B . (1)求椭圆C 的方程;(2)求△OAB 面积的最大值,并求此时直线l 的方程.2023-2024学年天津市和平区益中学校高二(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.14B.12C.2D.4解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴√1m=2⇒m=14,故选:A.2.直线x+a2y+6=0与直线(a﹣2)x+3ay+2a=0平行,则实数a的值为()A.3或﹣1B.0或﹣1C.﹣3或﹣1D.0或3解:当a=0时,两直线的斜率都不存在,它们的方程分别是x=﹣6,x=0,显然两直线是平行的.当a≠0时,两直线的斜率都存在,故有斜率相等,∴−1a2=2−a3a,解得:a=﹣1,综上,a=0或﹣1,故选:B.3.过点A(−√3,√2)与点B(−√2,√3)的直线的倾斜角为()A.45°B.135°C.45°或135°D.60°解:过点A(−√3,√2)与点B(−√2,√3),k AB=√3−√2−2+3=1,∴过点A(−√3,√2)与点B(−√2,√3)的直线的倾斜角为45°,故选:A.4.已知直线y=kx与圆x2+(y﹣2)2=4相交于A,B两点,若|AB|=2√3,则k=()A.±√33B.±1C.±√3D.±2解:设圆心C(0,2)到直线l:y=kx的距离为d,则根据题意得d=√22−(√3)2=1,由点到直线的距离公式得1=2√k+1.解得k=±√3.故选:C.5.若直线y=x+b与曲线y=3−√4x−x2有公共点,则b的取值范围是()A.[1−2√2,1+2√2]B.[1−√2,3]C.[﹣1,1+2√2]D.[1−2√2,3]解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b距离等于2,即√2= 2解得b=1+2√2或b=1−2√2,因为是下半圆故可知b=1+2√2(舍),故b=1−2√2当直线过(0,3)时,解得b=3,故1−2√2≤b≤3,故选:D.6.由直线y=x﹣1上的一点向圆x2+y2﹣6x+8=0引切线,则切线长的最小值为()A.1B.√2C.√3D.2解:将圆方程化为标准方程得:(x﹣3)2+y2=1,得到圆心(3,0),半径r=1,∵圆心到直线的距离d=2=√2,∴切线长的最小值为:√d2−r2=√2−1=1.故选:A.7.椭圆x2m2+1+y2m2=1(m>0)的焦点为F1,F2,上顶点为A,若∠F1AF2=π3,则m=()A.1B.√2C.√3D.2解:由题意可得c=√m2+1−m2=1,b=m,又因为∠F1AF2=π3,可得∠F1AO=π6,可得tan ∠F 1AO =1m =√33,解得m =√3. 故选:C . 8.椭圆x 24+y 2=1双曲线x 22−y 2=1有相同的焦点F 1、F 2,点P 是椭圆与双曲线的一个交点,则△PF 1F 2的面积是( ) A .4B .2C .1D .12解:由{x 24+y 2=1x 22−y 2=1,解得{x 2=83y 2=13, 即|y P |=√33,且2c =2√4−1=2√3,故△PF 1F 2的面积S =12×2c ×|y P |=12×2√3×√33=1. 故选:C .9.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y =0交椭圆E 于A ,B 两点,若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .(0,√32]B .(0,34]C .[√32,1)D .[34,1)解:如图所示,设F ′为椭圆的左焦点,连接AF ′,BF ′,则四边形AFBF ′是平行四边形, ∴4=|AF |+|BF |=|AF ′|+|AF |=2a ,∴a =2.取M (0,b ),∵点M 到直线l 的距离不小于45,∴√32+42≥45,解得b ≥1.∴e =c a =√1−b 2a 2≤√1−122=√32.∴椭圆E 的离心率的取值范围是(0,√32].故选:A .10.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的中心为原点,焦点F 1,F 2均在x 轴上,C 的面积为2√3π,过点F 1的直线交C 于点A ,B ,且△ABF 2的周长为8,则C 的标准方程为( ) A .x 24+y 2=1 B .x 23+y 24=1C .x 24+y 23=1 D .x 216+4y 23=1解:由题意可得{abπ=2√3π,4a =8,,解得a =2,b =√3,因为椭圆的焦点在x 轴上,所以C 的标准方程为x 24+y 23=1.故选:C .二、填空题(每题4分,共24分)11.已知直线l 1:y =﹣x +2a 与直线l 2:y =(a 2﹣2)x +2垂直,则a 的值为 ±√3 . 解:因为直线l 1:y =﹣x +2a 与直线l 2:y =(a 2﹣2)x +2垂直, 所以﹣1×(a 2﹣2)=﹣1,解得a =±√3. 故答案为:±√3. 12.已知双曲线x 2−y 2b2=1(b >0)的焦距为4,则b = √3 . 解:∵双曲线x 2−y 2b2=1(b >0)的焦距为4, ∴1+b 2=(42)2=4,解得b =√3(b =−√3舍去).故答案为:√3.13.已知直线3x +4y ﹣10=0与圆C :x 2+y 2﹣2x +4y ﹣20=0相交于A 、B 两点,点P 在圆C 上,且到直线距离为1,这样的P 点有 4 个. 解:∵圆C :x 2+y 2﹣2x +4y ﹣20=0,∴圆C 的标准方程为:(x ﹣1)2+(y +2)2=25, ∴圆心C 为(1,﹣2),半径r =5, ∴圆心C 到直线3x +4y ﹣10=0的距离d =|3−8−10|5=3,又半径r =5, ∴将直线3x +4y ﹣10=0向两边平移1个单位长度都会与圆C 相交, 故圆E 上有4个点到直线3x +4y ﹣10=0的距离为1. 故答案为:4.14.已知圆 C :(x ﹣1)2+y 2=25与直线l :mx +y +m +2=0,当m = 1 时,圆C 被直线l 截得的弦长最短.解:根据题意,直线 l :mx +y +m +2=0,变形可得y +2=﹣m (x +1), 则直线经过定点(﹣1,﹣2),设该点为M ,分析可得:当CM 和直线l 垂直时,圆C 被直线l 截得的弦长最短, 此时有(﹣m )×K CM =﹣1, 即(﹣m )×−2−0−1−1=−1, 解可得m =1, 故答案为:115.已知直线y =kx +1与椭圆x 24+y 2=1相交于A ,B 两点,若AB 中点的横坐标为1,则k 的值为 −12 .解:设A (x 1,y 1),B (x 2,y 2),联立{y =kx +1x 24+y 2=1,可得(4k 2+1)x 2+8kx =0,又根据题意可得x 1+x 2=−8k4k 2+1=2,且Δ>0, 解得k =−12.故答案为:−12.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰有6个不同的点使得△F 1F 2P 为等腰三角形,则椭圆的离心率e 的取值范围是 (13,12)∪(12,1) .解:①当点P 与短轴的顶点重合时,△F 1F 2P 构成以F 1F 2为底边的等腰三角形, 此种情况有2个满足条件的等腰△F 1F 2P ; ②当△F 1F 2P 构成以F 1F 2为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足△F 1F 2P 为等腰三角形即可, 则|PF 1|=|F 1F 2|=2c 或|PF 2|=|F 1F 2|=2c ,当|PF 1|=2c 时,则有|PF 1|>|MF 1|(M 是椭圆在短轴上的上边的顶点),则|MF 1|=a , 因此2c >a ,即e =c a >12,则12<e <1,当|PF 2|=2c 时,则有{|PF 2|>|F 2Q||PF 1|<|MF 1|(Q 是椭圆在长轴上的右边的顶点),即{2c >a −c e <12,则13<e <12.综上所述,椭圆的离心率取值范围是(13,12)∪(12,1).故答案为:(13,12)∪(12,1).三、解答题(4道题,共46分)17.(10分)在直角△ABC中,∠C是直角,顶点A,B的坐标分别为(﹣4,4),(2,﹣4),圆E是△ABC 的外接圆.(1)求圆E的方程;(2)求过点M(4,10)且与圆E相切的直线的方程.解:(1)∵在直角△ABC中,∠C是直角,顶点A,B的坐标分别为(﹣4,4),(2,﹣4),∴AB是直径,则AB的中点(﹣1,0),即圆心E(﹣1,0),半径R=|BE|=√(−1−2)2+(−4)2=√9+16=√25=5,则圆E的方程为(x+1)2+y2=25.(2)∵(4+1)2+102=125>25,∴点M在圆外,当切线斜率不存在时,此时切线方程为x=4,到圆心的距离d=4﹣(﹣1)=5.此时满足直线和圆相切,当直线斜率存在时,设为k,则切线方程为y﹣10=k(x﹣4),即kx﹣y+10﹣4k=0,则圆心到直线的距离d=|−k+10−4k|√1+k =|10−5k|√1+k=5,即|2﹣k|=√1+k2,平方得4﹣4k+k2=1+k2,即4k=3,则k=34,此时切线方程为3x﹣4y+28=0,综上求过点M(4,10)且与圆E相切的直线的方程为3x﹣4y+28=0或x=4.18.(12分)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为√5 5.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.解:(Ⅰ)由题意可得2b=4,即b=2,e=ca=√55,a2﹣b2=c2,解得a=√5,c=1,可得椭圆方程为x25+y24=1;(Ⅱ)B(0,2),设PB的方程为y=kx+2,代入椭圆方程4x2+5y2=20,可得(4+5k2)x2+20kx=0,解得x=−20k4+5k2或x=0,即有P(−20k4+5k2,8−10k24+5k2),y=kx+2,令y=0,可得M(−2k,0),又N(0,﹣1),OP⊥MN,可得8−10k2−20k•1−2k=−1,解得k=±2√305,可得PB的斜率为±2√30 5.19.(12分)如图所示的几何体中,四边形ABCD为矩形,AF⊥平面ABCD,EF∥AB,AD=2,AB=AF =2EF=1,点P为棱DF的中点.(1)求证:BF∥平面APC;(2)求直线DE与平面BCF所成角的正弦值;(3)求平面ACP与平面BCF的夹角的余弦值.(1)证明:连接BD,交AC于O,连接OP,因为四边形ABCD为矩形,所以O为BD中点,因为点P为棱DF的中点,所以BF∥OP,因为OP⊂平面APC,BF⊄平面APC,所以BF∥平面APC.(2)解:因为四边形ABCD为矩形,AF⊥平面ABCD,所以AB、AD、AF两两垂直,建立如图所示的空间直角坐标系,D (0,2,0),E (12,0,1),B (1,0,0),F (0,0,1),C (1,2,0), BC →=(0,2,0),BF →=(﹣1,0,1),DE →=(12,﹣2,1), 令m →=(1,0,1),因为m →⋅BC →=0,m →⋅BF →=0,所以m →=(1,0,1)是平面BCF 的法向量,所以直线DE 与平面BCF 所成角的正弦值为|m →⋅DE →||m →|⋅|DE →|=32√2⋅√212=√4214. (3)解:因为P (0,1,12),再由(2)知AP →=(0,1,12),AC →=(1,2,0), 设平面ACP 的法向量为n →=(x ,y ,z ),{n →⋅AP →=y +12z =0n →⋅AC →=x +2y =0,令y =﹣1,n →=(2,﹣1,2), 因为平面ACP 与平面BCF 的夹角是锐角,所以平面ACP 与平面BCF 的夹角的余弦值为|m →⋅n →||m →|⋅|n →|=√2⋅3=2√23. 20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为(2,0),离心率为√32,直线y =x +m 与椭圆C 交于不同的两点A ,B .(1)求椭圆C 的方程;(2)求△OAB 面积的最大值,并求此时直线l 的方程.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为(2,0),离心率为√32, 则a =2,c a =√32,所以c =√3,故b2=a2﹣c2=1,所以椭圆C的方程为x24+y2=1;(2)设A(x1,y1),B(x2,y2),联立方程组{y=x+mx24+y2=1,可得5x2+8mx+4m2﹣4=0,则Δ=64m2﹣4×5×(4m2﹣4)>0,解得−√5<m<√5,且x1+x2=−8m5,x1x2=4m2−45,所以|AB|=√12+1⋅√(x1+x2)2−4x1x2=√2⋅√(−8m5)2−4⋅4m2−45=4√2⋅√5−m25,原点O到直线l:x﹣y+m=0的距离d=|m|√2,所以S△OAB=12⋅|AB|⋅d=12⋅4√2⋅√5−m25|m|√2=25⋅|m|⋅√5−m2≤25⋅|m|2+(√5−m2)22=1,当且仅当m2=52,即m=±√102时取等号,所以△OAB面积的最大值为1,此时直线l的方程为y=x±√102.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年天津市和平区高二(下)期中数学试卷(理科)一、选择题本大题共10小题,每小题4分,共40分。

1.(4分)若i为虚数单位,则等于()A.﹣i B.﹣i C.+i D.+i2.(4分)若a<0,﹣1<b<0,则下列不等式关系成立的是()A.ab2<ab<a B.a<ab<ab2C.ab2<a<ab D.a<ab2<ab3.(4分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°4.(4分)设a=+,b=+,c=5,则a、b、c的大小关系为()A.c<b<a B.b<c<a C.c<a<b D.a<b<c5.(4分)计算(x+)dx的值为()A.B.+ln2 C.+ln2 D.3+ln26.(4分)若函数f(x)=x3﹣3ax+1在区间(0,1)内有极小值,则a的取值范围是()A.(0,1) B.(0,1]C.[0,1) D.[0,1]7.(4分)若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为()A.(﹣1,0)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(0,+∞)8.(4分)设函数y=f(x)在定义域内可导,其图象如图所示,则导函数y=f′(x)的图象只可能是下列情形中的()A.B.C.D.9.(4分)设n∈N*,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结果,可推测一般结论为()A.f(n)≥(n∈N*)B.f(2n)≥(n∈N*)C.f(2n)≥(n∈N*)D.f(2n)≥(n∈N*)10.(4分)在x∈[,2]上,函数f(x)=x2+px+q与g(x)=+在同一点取得相同的最小值,那么f(x)在x∈[,2]上的最大值是()A.B.4 C.8 D.二、填空题本大题共5小题,每小题4分,共20分11.(4分)已知i为虚数单位,a∈R,(2﹣ai)i的实部与虚部互为相反数,则a 的值为.12.(4分)函数f(x)=的单调递减区间是.13.(4分)若a1=,a2=,a3=,a4=,…,则a8=.14.(4分)已知函数f(x)=x2+(1﹣k)x﹣k恰有一个零点在区间(2,3)内,则实数k的取值范围是15.(4分)若f(x)=x3﹣x2+6x﹣5满足条件f′(x)≥m恒成立,则m的最大值是.三、解答题:本大题共5小题,共40分16.(6分)已知a>b>0,求证:+<1.17.(8分)计算下列各题:(1)(﹣+i)•(+i);(2).18.(8分)已知函数f(x)=x3﹣x+3.(Ⅰ)求f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调递增区间.19.(8分)用数学归纳法证明:12﹣22+32﹣42+…+(﹣1)n﹣1n2=(﹣1)n﹣1.20.(10分)已知f(x)=x3﹣2ax2﹣3x(a∈R).(Ⅰ)若f(x)在区间(﹣1,1)内为减函数,求实数a的取值范围;(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(﹣1,1)内的极值点的个数.2015-2016学年天津市和平区高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题本大题共10小题,每小题4分,共40分。

1.(4分)若i为虚数单位,则等于()A.﹣i B.﹣i C.+i D.+i【解答】解:i为虚数单位,则===+i.故选:C.2.(4分)若a<0,﹣1<b<0,则下列不等式关系成立的是()A.ab2<ab<a B.a<ab<ab2C.ab2<a<ab D.a<ab2<ab【解答】解:∵a<0,﹣1<b<0,∴ab>0,ab2<0,0<b2<1,∴ab>ab2>a,故选:D.3.(4分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选:B.4.(4分)设a=+,b=+,c=5,则a、b、c的大小关系为()A.c<b<a B.b<c<a C.c<a<b D.a<b<c【解答】解:∵a2﹣b2=13+2﹣=2>0,a,b>0,∴a>b,∵b2﹣c2=﹣25=﹣>0,b,c>0,∴b>c.∴c<b<a,故选:A.5.(4分)计算(x+)dx的值为()A.B.+ln2 C.+ln2 D.3+ln2【解答】解:(x+)dx==2+ln2﹣=ln2+;故选:B.6.(4分)若函数f(x)=x3﹣3ax+1在区间(0,1)内有极小值,则a的取值范围是()A.(0,1) B.(0,1]C.[0,1) D.[0,1]【解答】解:∵f′(x)=3x2﹣3a=3(x2﹣a),在区间(0,1)内有极小值,令f′(x)>0,解得:1>x>,令f′(x)<0,解得:0<x<,∴函数f(x)在(0,)递减,在(,1)递增,∴f(x)=f(),极小值∵函数f(x)=x3﹣3ax+1在区间(0,1)内有极小值,∴0<<1,∴0<a<1,故选:A.7.(4分)若f(x)=x2﹣2x﹣4lnx,则f(x)的单调递增区间为()A.(﹣1,0)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(0,+∞)【解答】解:函数的定义域为(0,+∞)求导函数可得:f′(x)=2x﹣2﹣,令f′(x)>0,可得2x﹣2﹣>0,∴x2﹣x﹣2>0,∴x<﹣1或x>2∵x>0,∴x>2∴f(x)的单调递增区间为(2,+∞)故选:C.8.(4分)设函数y=f(x)在定义域内可导,其图象如图所示,则导函数y=f′(x)的图象只可能是下列情形中的()A.B.C.D.【解答】解:∵导数的正负确定了函数的单调性,∴从函数f(x)的图象可知,y=f(x)在(﹣∞,a),(b,+∞)上单调递增,在(a,b)上单调递减;a,b是函数y=f(x)的极值点;故当x∈(﹣∞,a),(b,+∞)时,y=f′(x)>0,当x∈(a,b)时,y=f′(x)<0,故选:C.9.(4分)设n∈N*,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结果,可推测一般结论为()A.f(n)≥(n∈N*)B.f(2n)≥(n∈N*)C.f(2n)≥(n∈N*)D.f(2n)≥(n∈N*)【解答】解:由题意f(2)==,f(22)>,f(23)>=,f(24)>3=…以此类推,可得f(2n)≥,(n∈N*)故选:D.10.(4分)在x∈[,2]上,函数f(x)=x2+px+q与g(x)=+在同一点取得相同的最小值,那么f(x)在x∈[,2]上的最大值是()A.B.4 C.8 D.【解答】解:∵在x∈[,2]上,g(x)=+≥2=3,当且仅当x=1时等号成立∴在x∈[,2]上,函数f(x)=x2+px+q在x=1时取到最小值3,∴解得p=﹣2,q=4∴f(x)=x2﹣2x+4=(x﹣1)2+4,∴当x=2时取到最大值4故选:B.二、填空题本大题共5小题,每小题4分,共20分11.(4分)已知i为虚数单位,a∈R,(2﹣ai)i的实部与虚部互为相反数,则a 的值为﹣2.【解答】解:i为虚数单位,a∈R,(2﹣ai)i的实部与虚部互为相反数,可得a=﹣2.故答案为:﹣2.12.(4分)函数f(x)=的单调递减区间是(e,+∞).【解答】解:f(x)的定义域为(0,+∞).∵f′(x)=,令f′(x)<0,可得1﹣lnx<0,解得x>e.所以函数的单调递减区间为(e,+∞).故答案为:(e,+∞).13.(4分)若a1=,a2=,a3=,a4=,…,则a8=.【解答】解:依题意,记b1=2,b2=3,且b n+2=b n+1+b n,则a n=,∵b5=b4+b3=8+5=13,b6=b5+b4=13+8=21,b7=b6+b5=21+13=34,b8=b7+b6=34+21=55,b9=b8+b7=55+34=89,∴a8==,故答案为:.14.(4分)已知函数f(x)=x2+(1﹣k)x﹣k恰有一个零点在区间(2,3)内,则实数k的取值范围是(2,3)【解答】解:∵函数f(x)=x2+(1﹣k)x﹣k恰有一个零点在区间(2,3)∴同时成立∴∴2<k<3故答案为:(2,3)15.(4分)若f(x)=x3﹣x2+6x﹣5满足条件f′(x)≥m恒成立,则m的最大值是﹣.【解答】解:∵f(x)=x3﹣x2+6x﹣5,∴f'(x)=3x2﹣9x+6=3(x2﹣3x)+6=3(x﹣)2﹣≥﹣,∴m≤﹣,故答案为﹣.三、解答题:本大题共5小题,共40分16.(6分)已知a>b>0,求证:+<1.【解答】证明:运用分析法证明.由a>b>0,要证+<1,只要证<1﹣=,即证(a﹣b)(a2+b2)<(a+b)(a2﹣b2),即为a3+ab2﹣ba2﹣b3<a3﹣ab2+ba2﹣b3,即有2ab2<2ba2,即b<a,显然成立.则有+<1成立.17.(8分)计算下列各题:(1)(﹣+i)•(+i);(2).【解答】解:(1)(﹣+i)•(+i)=﹣;(2)=.18.(8分)已知函数f(x)=x3﹣x+3.(Ⅰ)求f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调递增区间.【解答】解:(Ⅰ)∵f(x)=x3﹣1,∴f'(x)=3x2﹣1,在x=1处的切线斜率k=3•12﹣1=2,又∵f(1)=13﹣1+3=3,∴切线方程为y﹣3=2(x﹣1)化简得2x﹣y+1=0,(Ⅱ)∵f'(x)=3x2﹣1=3(x﹣)(x+),令f'(x)=0,解得x=,或x=﹣,当x∈(﹣∞,﹣)或x∈(,+∞)时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,﹣)和(,+∞).19.(8分)用数学归纳法证明:12﹣22+32﹣42+…+(﹣1)n﹣1n2=(﹣1)n﹣1.【解答】证明:(1)当n=1时,左边=1,右边=(﹣1)0=1,故:左边=右边,∴当n=1时,等式成立;(3分)(2)假设n=k时,等式成立,即12﹣22+32﹣42+…+(﹣1)k﹣1•k2=(﹣1)k﹣1•.(6分)那么12﹣22+32﹣42+…+(﹣1)k﹣1•k2+(﹣1)k•(k+1)2=(﹣1)k﹣1•+(﹣1)k•(k+1)2=(﹣1)k(﹣k+2k+2)=(﹣1)(k+1)﹣1即当n=k+1时,等式也成立.(10分)都成立.(12分)根据(1)和(2)可知等式对任何n∈N+20.(10分)已知f(x)=x3﹣2ax2﹣3x(a∈R).(Ⅰ)若f(x)在区间(﹣1,1)内为减函数,求实数a的取值范围;(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(﹣1,1)内的极值点的个数.【解答】解:(Ⅰ)对函数g(x)求导得,f'(x)=2x2﹣4ax﹣3,∵f(x)在区间(﹣1,1)内为减函数,∴f'(x)≤0在x∈(﹣1,1)上恒成立,结合二次函数的图象和性质,问题等价为:,即,解得﹣≤a ≤,∴实数a的取值范围为[﹣,],(Ⅱ)当a <﹣时,f′(﹣1)=4a﹣1<0,f′(1)=﹣4a﹣1>0∴f(x)在(﹣1,1)内有且只有一个极小值点,当a >时,f′(﹣1)=4a﹣1>0,f′(1)=﹣4a﹣1<0,∴f(x)在(﹣1,1)内有且只有一个极大值点,当﹣≤a ≤时,由(Ⅰ)可知在区间(﹣1,1)上为减函数,∴f(x)在区间(﹣1,1)内没有极值点.综上可知,当a <﹣或a >时,函数在区间(﹣1,1)内的极值点个数为1;当﹣≤a ≤时,在区间(﹣1,1)内的极值点个数为0.。

相关文档
最新文档