附录A 截面的几何性质
截面的几何性质面积矩惯性矩惯性积平行移轴公式
注意平方问题
第十六次课结束处
§A-3 惯性矩和惯性积的平行移轴公式
一、平行移轴公式
O
z
Iz=∫ A y2dA =∫ A(a+yC)2dA =∫ Aa2dA + 2a∫ A yCdA +∫ A yC2dA
y
C
dA
a zc
yc
∫ A yCdA 对形心轴的面积矩=0
b zc z
∫ A yC2dA 对形心轴的惯性矩
y yc
故 Iz=∫ A a2dA + IzC
同理
Iy=∫ A b2dA + IyC Iyz=∫ A abdA + IyCzC
二、组合截面惯性矩的计算式
Iy=∫ A z2dA
=∫ A1z2dA +… +∫ Anz2dA
n
= ∑ Iyi
i=1
同理
n
Iz = ∑ Izi
i=1
n
Iyz = ∑ Iyzi
i=1
例5 图示矩形中,挖去两个直径为d 的圆形,求余 下图形对z轴的惯性矩。
b/2 b/2
z
Iz
1 12
bh3
5 d 4
32
y
例6 由两个20a号槽钢截面图形组成的组合平面图形,设 a =100mm,设求此组合平面图形对y,z两根对称轴的惯性矩。
a
z0
z
zC
y
yC
A=28.83×102mm2, Iyc=128×104mm4 Izc=1780.4×104mm4 ,z0=20.1mm
附录A 截面的几何性质
§A-1 截面的面积矩和形心位置
一、面积矩的定义
Sy=∫ zdA A
附录 截面几何性质(1)
代入公式
xdA
ydA
xC
A
A
,
yC
A
A
,可得到截面的形心坐标与静矩间的
关系为
Sx AyC , S y AxC
若已知截面的静矩,则可由上式确定截面形心的位置;反之,
若已知截面形心位置,则可由上式求得截面的静矩。
由上式可以看出,若截面对某轴(例如x轴)的静矩为零 (Sx=0),则该轴一定通过此截面的形心(yC=0)。通过截面形心 的轴称为截面的形心轴。反之,截面对其形心轴的静矩一定为零。
截面形心C的坐标为
xC
A1xC1 A2 xC2 A1 A2
105000 175- 22500 105000-22500
300
mm
140.9mm
yC
A1 yC1 A2 yC2 A1 A2
105000 150- 22500 105000-22500
200
mm
136.4mm
目录
附录Ⅰ 截面的几何性质\静矩与形心 解法二。
将截面看作由大矩形减去三角 形组成的组合截面,被减去部分的 面积应取负值,这种方法称为负面 积法。矩形和三角形的面积及形心 C1、C2的坐标分别为
矩形 A1=105000mm2, xC1=175mm, yC1=150mm
三角形 A2=-22500mm2, xC2=300mm, yC2=200mm
分别用Sx和Sy表示,即
Sx
A ydA , Sy
xdA
A
目录
附录Ⅰ 截面的几何性质\静矩与形心
由定义知,静矩与所选坐标轴的位置有关,同一截面对不同坐 标轴有不同的静矩。静矩是一个代数量,其值可为正、为负、或为 零。静矩的单位为mm3或m3。
附录Ⅰ-常见截面的几何性质
取微面积dA=dzdy,则:Izy 0;
例5-3 圆形截面对其形心轴的惯性矩。 解:取yoz坐标系。取微面积dA=2zdy,则:
由 Iz 对 A y 2 称 dIy A 性 R IR z2 y : 2 6D 44R ;2 由 y 几 2 d 何 y 关 R 4 4 系 2= : 6 D y24 ;4 z2,
当Sz=0或Sy=0时,必有yc=0或zc=0,可知截面对某轴的
静矩为零时,该轴必通过截面形心;反之,若某轴通过形心,
Байду номын сангаас
则截面对该轴的静矩为零。
返回 下一张 上一张 小结
二、形心公式:
yc
SAz ;zc
Sy A
.
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
n
Sz Ai yci; i1
z2dA;
A
圆形截面:Iy
Iz
D4 ;
64
几何关系: IP A2 d A A (y 2 z 2 ) d A I Z Iy .
四、惯性积:
Izy
zydA;
A
五、平行移轴公式:
Iz1za2A; y1 y b2A; Iz1y1 Izyab;A
特点:①两个形心主惯性矩是截面对过形心所有各轴的惯性矩 中的极大值和极小值;
②有一根对称轴的截面,形心主轴是对称轴和与之垂直 的形心轴;
③有两根对称轴的截面,形心主轴是两根对称轴; ④无对称轴的截面,由转轴公式求对形心的惯性积为零 的 o 角,即 形心主惯性轴。
第五节 组合截面惯性矩的计算 工程中常遇到组合截面。计算其形心主惯性矩时,应先确定形 心位置、形心主轴,再求形心主惯性矩。
材料力学 截面的几何性质
1、矩形截面 h
Iz
y2dA
A
2 h
y 2bdy
h
2
dy y
b y 3 2 1 bh3 3 h 12
2
同理
Iy
z2dA 1
A
12
hb3
b h z
y
26
2、实心圆截面
y
已知
IP
A2dA
D 4 32
D
z
则 I P A2 d A A y 2 d A A z 2 d I A z I y
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z
y
o
A dA
z
y
惯性积
定义
Iyz
yzdA
A
z y
A dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
4.3 形心主惯性轴和形心主惯性矩
若主惯性轴通过形心,则该轴称为形心主惯性轴(principal centroidal axis)。
图形对形心主惯性轴的惯性矩称为形心主惯性矩。 由于图形对于对称轴的惯性积等于零,而对称轴又过形心,所以,图形 的对称轴就是形心主惯性轴。
形心主惯性轴的特点可归纳为以下几点: ⑴形心主惯性轴是通过形心,由角定向的一对互 相垂直的坐标轴。
32
32
圆环形对y(或z)轴的惯性矩为
IyIz1 2Ip6 D4414
由于y轴为对称轴,故
Iyz 0
z
y
d D
附录1-截面的几何性质 杨大方
Ix
C
2 πd 4 2d πd 2 2d πd I x 128 3π 8 3π 8
2
2
材 料 力 学 Ⅰ 电 子 教 案
附录Ⅰ 截面的几何性质
然后再利用平行移轴公式求半圆形对x轴的惯性矩:
I x2 I x C
2d πd 2 a 3π 8
I p dA ( x y )dA
2 2 2 A A
O 二、惯性矩: 是面积与它到轴的距离的平方之积。
A A
x 2dA y 2dA I x I y
图形对x轴的惯性矩: 图形对y轴的惯性矩:
11
I x y 2 dA
A
量钢:L4
I y x 2 dA
tg2 0 2I xCyC I xC I yC
⑥求形心主惯性矩
31
I xC0 I xC I yC I xC I yC 2 2 ( ) I xCyC 2 2 I yC0
材 料 力 学 Ⅰ 电 子 教 案
附录Ⅰ 截面的几何性质
例3 在矩形内挖去一与上边内切的圆,求图形的形心主轴。(b=1.5d)
附录Ⅰ 截面的几何性质
材 料 力 学 Ⅰ 电 子 教 案
附录Ⅰ 截面的几何性质
Ⅰ-3 惯性矩和惯性积的平行移轴公式·
一、平行移轴定理: 以形心为原点,建立与原坐标轴平行 的坐标轴如图
y
y
yC x dA xC C b y x
xa xC yb yC
I x y 2 dA
A
a
( yC b) 2 dA
2
2 πd 4 2d 2 πd 2 2d πd 2 a 8 3π 8 128 3π
截面的几何性质
图形对于 z 轴的静矩
附录 截面的几何性质 /一 静矩、形心及相互关系 y y
z zC
计算
dA
y
C A
z
yC
O
O
z
分力之矩之和
S y zdA
A
合力之矩
S y AzC
S z AyC
S z ydA
A
附录 截面的几何性质 /一 静矩、形心及相互关系
静矩与形心坐标之间的关系
S y zdA
i 1 n
例I-3 求图示T形截面的形心位置
解:把T形截面看做由①、②两 yC 个矩形截面组成。
100
C1 ①
z
20
A1 20 100 2000mm
2
C
yC1 10mm
A2 20 140 2800mm2
yC 2 90mm
yC
②
C2
140
y
Ay A
i i
Ci
A1 yC1 A2 yC 2 A1 A2
例题 矩形截面惯性矩的计算
b
I z y dA h y bdy
2
2
A
2
y b 3
同理:
3
h 2 h 2
bh 12
3
h
o
z
y
3 b 2 b 2
z 2 2 I y z dA b z hdz h 2 3 A
b 2
hb3 12
dy
h 2
y
附录 截面的几何性质/二 惯性矩、惯性积、极惯性矩与惯性半径
zc
h/2 z h/2 z1
dy y O
bh 3 2 h2 y 2bdy I z y dA A 12 2
截面的几何性质
b2
A
上式称为计算惯性矩的平行移轴公式。这个公式表明 :截面对任意一个轴的惯性矩,等于截面对与该轴平行的 形心轴的惯性矩加上截面的面积与两轴距离的乘积。
工程力学与建筑结构
1.4 组合截面的惯性矩
在计算组合截面对某座标轴的惯性矩时,根据定义, 可分别计算各组成部分对该轴的惯性矩,然后再相加,即 :
工程力学与建筑结构
工程力学与建筑结构
截面的几何性质
在工程中研究构件的受力和变形时,经常会遇到一些 和构件的横截面形状、尺寸有关的几何量,这些几何量通 称为截面的几何性质。 1.1 截面的静矩和形心 1. 截面的静矩
如图所示的平面图形代表一个任意截面,其面积为A 。在图形平面内选坐标系Oyz,在坐标为(y, z)处取微面积 dA ,则以下两个积分分别被定义为平面图形A 对于z轴和y 轴的静矩。
I z iz2 A
Iy
i
2 y
A
于是得到:
iz
Iz A
iy
IyБайду номын сангаасA
通常把iz和iy分别称为平面图形对z轴和y轴的惯性半径 (或回转半径)。
工程力学与建筑结构
1.3平称移轴公式 同一截面对于不同坐标轴的惯性矩不相同, 但它们
之间都存在着一定的关系。
I z I zc a 2 A
Iy
I yc
Ai
i 1
工程力学与建筑结构
1.2 截面的惯性矩 1. 惯性矩的计算公式
任意一个构件的横截面如图所示,其面积A 对于z轴和 y轴的惯性矩定义为 :
I z
A
y 2dA
I y
z 2dA
A
常用截面的惯性矩可查阅工程设计手册。
工程力学与建筑结构
材料力学第四章截面的几何性质
在材料力学中,剪切中心是剪切应力作用下截面 发生剪切变形的点。通过计算截面的形心,可以 近似确定剪切中心的位置。
确定截面的质心
质心是截面质量的中心点,通过计算截面的形心, 可以近似确定质心的位置,这对于动力学分析和 稳定性分析非常重要。
03 主轴和主惯性矩
主轴的定义与计算
主轴
截面上的各点处到截面形心距离最大的方向。
预测物体的变形和破坏
通过分析截面的几何性质,可以预测 物体在不同受力条件下的变形和破坏 行为,为工程实践提供指导。
02 截面的面积和形心
截面面积的定义与计算
截面面积的定义
截面面积是指通过截面边界轮廓 线围成的区域面积。
截面面积的计算
可以通过测量截面轮廓线的长度 ,然后使用公式计算面积。对于 不规则形状,可以使用微元法或 积分法计算。
截面几何性质的应用前景
随着科技的发展和工程需求的提高,截面几何性质在材料力学中的重要性将更加凸 显,其在航空航天、交通运输、建筑等领域的应用将更加广泛。
随着新型材料的不断涌现,截面几何性质的研究将有助于深入了解这些材料的力学 行为,为新型材料的优化和应用提供理论支持。
随着数值模拟和计算机技术的发展,截面几何性质的研究将更加精确和深入,有助 于提高工程结构的分析和设计水平。
在实际工程中,主轴和主惯性矩也是 进行有限元分析时的重要输入参数, 用于模拟结构的力学行为并优化设计。
在结构设计时,根据主轴和主惯性矩 可以合理地选择材料的类型和截面的 形状,以提高结构的刚度和稳定性。
04 极惯性矩和惯性积
极惯性矩的定义与计算
极惯性矩
截面对任意直径的极惯性矩等于截面 面积与该直径的平方的乘积。
截面是确定物体受力分布和变形程度 的关键因素,通过研究截面的几何性 质,可以深入了解物体的力学性能, 为工程设计和安全评估提供依据。
材料力学 截面的几何性质
O1 O 2
O
x
O3
x 1
C
课堂练习
I.
&
任意图形,若对某一对正交坐标轴的惯性积为零, 则这一对坐标轴一定是该图形的( )。
B
A. 形心轴; B. 主轴 C. 主形心轴 D. 对称轴 在图示开口薄壁截面图形中,当( 为一对主轴。
y
)时,y-z轴始终保持
A. y轴不动,x轴平移; B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
y b C 1x C 2x O a x
æ 1 öæ 2 ö æ 1 öæ h ö = ç bh ÷ç h ÷ + ç ah ÷ç ÷ è 2 øè 3 ø è 2 øè 3 ø
h 2 = (a + 2 b ) 6
形心位置
h
x = 0
h 2 (a + 2 b ) h a + 2 b S x y = = பைடு நூலகம்· = 6 A h 3 a + b (a + b ) 2
主惯性矩:
图形对主轴的惯性矩,称主惯性矩
形心主轴:
过形心的主轴称为形心主轴
形心主矩:
图形对形心主轴的惯性矩称为形心主矩
课堂练习
I.
&
在下列关于平面图形的结论中,(
)是错误的。
A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴必为对称轴。 在平面图形的几何性质中,(
y
dA y
ü2、惯性矩和极惯矩永远为正,
惯性积可能为正、为负、为零。
x 1
ü3、任何平面图形对于通过其形
材料力学 附录 截面的几何性质
(Properties of Plane Areas) 三、组合截面的静矩和形心 (The first moments ¢roid of a composite area)
由几个简单图形组成的截面称为组合截面.
截面各组成部分对于某一轴的静矩之代数和,等于该截 面对于同一轴的静矩.
(Properties of Plane Areas)
§1-1 截面的静矩和形心 (The first moment of the area & centroid of
an area)
一、静矩(The first moment of the area )
截面对 y , z 轴的静矩为
z
S y
zdA
A
Sz
ydA
A
dA z
静矩可正,可负,也可能等于零.
1
矩形 2
A2 10 80 800mm2
y2
10
80 2
50mm
z2 5mm
所以 y A1 y1 A2 y2 23mm A1 A2
z A1z1 A2z2 38mm A1 A2
y1
z1
2 z2
10
O y2
y
90
(Properties of Plane Areas)
方法2 用负面积法求解,图形分割及坐标如图(b)
yC , zC ̄ 过截面的形心 C 且与 y, z轴平行
的坐标轴(形心轴)
z
Iy , Iz , Iyz — 截面对 y, z 轴的惯性矩和惯性积.
zC
IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩
n
Ai zi
z
材料力学附录(截面特性)
设
、
为形心坐标,则根据合力之矩定理
(A-2) 或
页码,3/14
(A-3)
这就是图形形心坐标与静矩之间的关系。 根据上述定义可以看出: 1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。对某些坐标轴静矩为 正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。
2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的
,
(A-12) (A-13)
式中,D为圆环外径;d为内径。 4.根据惯性矩的定义式(A-6)、(A-7),注意微面积的取法(图A-3所示),不难求得矩形对于平 行其边界的轴的惯性矩:
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,6/14
(A-18)
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,8/14
此即关于图形对于平行轴惯性矩与惯性积之间关系的移轴定理。其中,式(A-18)表明: 1.图形对任意轴的惯性矩,等于图形对于与该轴平行的形心轴的惯性矩,加上图形面积与两平 行轴间距离平方的乘积。
之间的关系。
根据转轴时的坐标变换:
于是有
file://D:\收藏\专业相关\附录A平面图形的几何性质.htm
2005-8-23
附录A平面图形的几何性质
页码,9/14
将积分记号内各项展开,得
改写后,得
(A-19)
上述式(A-19)和(A-20)即为转轴时惯性矩与惯性积之间的关系。
(A-20)
若将上述
41-截面的几何参数解析
yC
i1 2
Ai
i1
0 2 7 0 1 0 3 5 0 1 0 3 1 5 0 1 0 3
将组合图形分解为若干简单图形,并确定组合图形的形心位 置。
以形心为坐标原点,设Oyz坐标系,y、z 轴 一般与简单图 形的形心主轴平行。确定简 单图形对自身形心轴的惯性矩,利 用移轴 定理(必要时用转轴定理)确定各个简单 图形对y、z轴 的惯性矩和惯性积,相加(空洞时则减)后便得到整个图形的 Iy、Iz 和Iyz。
A
例1:试求匀质槽形钢板的
形心。
y
A
y
y
解:由对称性可知 xc 0
o
A 1 A 2 1 3 0 0 3c 02 m 0y1=y2=15cm
A3102020c0m 2 y35cm
3
yc
i1
3
A
i y ci Ai
3001522005=12.5cm 3002200
i1
30cm
10cm x
(2)负面积法 解:由对称性可知
❖3、截面对形心轴的静矩为零
❖4、若截面对某轴的静矩为零,则该轴必为形心轴
例3 求图示阴影部分的面积对y轴的静矩。
h
2
a
y
h 2
b
解: S y
b(ha) 2
(
h 2
2
a)
a
b h2
a2
2 4
§4.2 惯性矩、极惯性矩、惯性积
一、极惯性矩:是面积对极点的二次矩。
y
I
2dA
A
——图形对 O 点的极惯性矩
I I b2A
y1
yc
I I a2A
z1
zc
材料力学参考答案三版单辉祖北航教材
由图可知, 及 的形心位置(竖向)依次为
由
可得 的形心位置为
曲边三角形截面对 轴的惯性矩为
于是得
A-9试计算图示截面对水平形心轴z的惯性矩。
题A-9图
(a)解:1.确定形心位置(到顶边之距为 )
2.计算惯性矩
(b)解:根据教材附录 第4行的公式,可直接计算惯性矩,
(c)解:1.确定形心位置(到大圆水平直径之距为 )
根据转轴公式,
将相关表达式代入上式,得
A-12图示矩形截面,试确定A点的主轴方位及截面对该主轴的惯性矩。
题A-12图
解:坐标取如图A-12,并设边长 , ,于是有
图A-12
依据主轴方位与主惯性矩公式,得
A-13试求图示各截面的主形心轴位置及主形心惯性矩。
题A-13图
(a)解:坐标示如图A-13a, 为截面形心。
图A-13a
由
得
最后得到
(b)解:坐标示如图A-13b,有
图A-13b
由
得
从而得
于是得
图A-2b
且 在 与 之间变化,而
由此可得
A-4试计算图示截面对水平形心轴z的惯性矩。
题A-4图
解:显然,
A-5试计算图a所示正六边形截面对水平形心轴z的惯性矩。
题A-5图
解:由图b可以看出,
所以,ADB对z轴的惯性矩为
中部矩形截面对z轴的的惯性矩为
于是得整个六边形截面对z轴的惯性矩为
A-6试计算图示截面对水平形心轴z的惯性矩。
结果为负值,表示形心 在大圆水平直径上方。
2.计算惯性矩
A-10试证明下列截面的形心轴均为主形心轴,且截面对这些主形心轴的惯性矩均相同。
材料力学 截面性质
(Ai 和xi , yi分别为第i个简单图形的面积及其形心坐标)
5. 组合截面的形心坐标公式
n
将 S y Ai xi i1
n
S x Ai yi i1
代入 S y A x Sx A y
解得组合截面的形心坐标公式为:
n
Ai xi
x
i 1 n
Ai
i 1
n
Ai yi
y
i 1 n
Ai
i 1
(注:被“减去”部分图形的面积应代入负值)
例 试计算图示三角形截面对x轴的静矩。
y
dy
h
b(y)
y
O
b
x
解:取平行于x轴的狭长条,易求 b( y) b (h y)
因此 d A b (h y) d y
ห้องสมุดไป่ตู้
h
所以对x轴的静矩为
h hb
bh2
S x
y d A (h y)y d y
A
0h
6
2
4
I2 xc yc
x
I x1 A y12 d A
y
Ix1
cos2
y2 d A sin2
A
x2 d A
A
2sin cos A xy d A
I x cos2 I y sin2 2I xy sin cos
利用二倍角函数代入上式,得转轴公式 :
I x1
Ix
2
Iy
Ix
Iy 2
cos2
I xy sin 2
n
Ix
i1
I
xi
n
Iy
i1
I
yi
n
I xy I i1 xyi
材料力学-截面几何特性
I 0 xC 2 yC 2
IxC IxC1 A1 yc21 IxC2 A2 yc22 1104 mm4 1200mm2 (15mm)2 28.58mm4 700mm2 (25mm)2 100.33mm4
64
9 /2
Ix2 Ix2C A2 (a xc2 )2 28mm 4 (80mm )2 (100 17)2 8 3467mm4
组合截面对x轴的惯性矩为
I x I x1 2I x2 5333mm4 23467mm4 12270mm4
§I-4 惯性矩和惯性积的转轴公式 ·截面 的主惯性轴和主惯性矩
A
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
I xC 2bSxC b2 A
Ix IxC 2bSxC b2 A
因为C为形心
SxC AyC 0
y
yC
x
dA
a
r
bC y
xC
x
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA I p I pC (a2 b2 ) A
C1
80
x
图(b)
x
xi
Ai
x 1
A1x
2
A2
A
A1A2
409600 45 7700 19.7mm 9600 7700
y
yi Ai
y 1
A1
y
2
A2
A
A1 A2
609600 65 7700 39.7mm 9600 7700
材料力学 附录Ⅰ截面的几何性质
材料力学附录Ⅰ截面的几何性质随着材料科学的不断发展,材料力学成为研究材料内部结构和力学行为的重要学科之一。
在材料力学中,研究截面的几何性质是必不可少的一部分。
本文将着重介绍截面几何性质的相关知识,探讨其在材料力学中的应用。
一、截面的定义截面是指在任意平面上与某个物体相交的部分,一般用于描述杆件、梁、板等结构物体的断面形态。
材料力学中,截面的几何参数是研究杆件、梁、板等结构物体受力行为的重要基础。
二、常见截面形状和特征常见的截面形状包括矩形、圆形、三角形、梯形、T形等。
其几何参数如截面面积、惯性矩、位置矩、受压、受弯等,均是描述结构物体受力行为的重要指标。
对于矩形截面来说,其惯性矩最大的方向是短边方向,即截面中心距离短边较远的一侧。
圆形截面的惯性矩与位置矩均与截面对称轴有关。
对于三角形截面来说,其惯性矩与位置矩也是与截面对称轴有关的,而梯形截面和T形截面的惯性矩和位置矩则需要具体计算得出。
三、截面的常见计算公式在计算截面的几何性质时,需要用到一些公式。
以下是一些常见的公式:1、截面面积截面面积是截面内部曲线及其间距离所组成的面积。
不同截面形状的截面面积计算公式如下:矩形截面:A = bh圆形截面:A = πr²三角形截面:A = 1/2bh梯形截面:A = 1/2(a+b)hT形截面:A = (bh₁+ (b₂-h₂)h₂/2)2、截面惯性矩截面惯性矩是描述结构物体受弯作用时截面抵抗弯曲的能力的重要参数,其计算公式如下:Ixx = ∫(y²)dAIyy = ∫(x²)dA其中,x,y分别表示离截面中心最远的两侧点的坐标,dA表示一个面积微元。
3、位置矩位置矩是描述结构物体受纵向荷载作用时截面的抵抗能力的参数,其计算公式如下:Qx = ∫(y)dAQy = ∫(x)dA其中,x,y分别表示离截面中心最远的两侧点的坐标,dA表示一个面积微元。
四、截面几何性质在材料力学中的应用截面几何性质在材料力学中具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y z O
1.
Iy,Iz 恒为正;
2. 若z⊥y,极惯性 矩 Ip= Iy +Iz 。
惯性半径: iy iz
Iy A
,
2 I y Ai y
Iz , A
I z Aiz2
y
dA
惯性积: I yz A yz dA
z
A
惯性积可正,可负也可 为零。 如有一根坐标轴是截 面的对称轴,则截面对这对 轴的惯性积必为零。
I z'
I y Iz
I y' z'
2 2 I y Iz sin 2 I yz cos 2 2
I y' I z' I y I z I p
I y Iz
cos 2 I yz sin 2
以逆时针方向旋转为正 。
§附A- 5、主轴和主惯性矩
设yo,zo——主轴,令αo为主轴与原坐标轴的夹角
A
i 1 n
100 20 150 140 20 70 103.3mm 100 20 140 20
i
140
zc
Az
i 1 n
i ci
Ai 1ຫໍສະໝຸດ 50mmiO
20
§附A- 2、截面的惯性矩和惯性积
y
惯性矩:I y A z dA
2
z
dA
A
I z A y dA
Ⅰ
20
zc C
zc
140
O
z
20
例 图示的矩形中,挖去两个直径为d的圆形,求 余下部分(阴影部分)图形对z轴的惯性矩。
解
此截面对z轴的惯性矩为
bh I z矩 12 I z I z矩 2I z圆
2 4 d d d 5 d I z圆 I zc a 2 A 64 2 4 64 4 2
§附A-1、截面的面积矩和形心 一、截面的面积矩
y
S y A zdA
dA
z
y
A
S z A ydA
z
O
同一截面对于不同的坐标轴有不同的面积矩;
面积矩可正,可负也可为零。
二、截面的形心
y
形心:yc
zc z
dA
A
ydA
C A
zc
A A zdA A
Sz A Sy A
3
bh3 5 d 4 bh3 5 d 4 Iz 2 12 64 12 32
例 由两个20a号槽钢截面组成的组合截面如图 (a) 所示。设a=100mm,试求此组合截面对y,z两根 对称轴的惯性矩。
解:由附录一可查得图(b) 所示一个20a号槽钢截面的 几何性质:
A 28.83 102 mm 2 I yc 128 104 mm 4 I zc 1780.4 104 mm 4 z0 20.1mm
——平行移轴公式。
组合截面的惯性矩和惯性积
I y I y i I yci bi Ai
2 i 1 i 1 n n
I z I z i I zci a 2 Ai i
i 1 i 1 n n
n
n
I yz I yi z i I yci zci ai bi Ai
i 1 n i
n
ci
A
i 1
i
zc
Az
i 1 n
n
i ci
A
i 1
i
例1:求图示T字形截面的形心位置。
y 100 yc C1 C C2 Ⅱ z O 20 20
Ⅰ
zc
zc
140
yc
解:取yoz坐标系。
y 100
Ⅰ
zc
C1 C C2 Ⅱ yc
20
yc
Ay
i 1 n
n
i ci
d4
32
φ
y dy
z
y
§附A- 3、平行移轴公式
O a y zc z
心坐标轴,y∥yc, z∥zc 。则:
I y ( zc b) 2 dA
A
yc、zc为一对形
C b
z y yc zc
yc
dA
I yc b2 A
同理 I z I zc a 2 A I yz I yc zc abA
i 1 i 1
例4:求图示T字形截面的形心主惯性矩。
y Ⅰ 100 yc C1 b1 b2 zc 140 yc
20
zc C C2
Ⅱ O
z 20
解:
y 100 yc C1 b1 b2 C2 Ⅱ yc
20 1003 140 203 I yc 17.6 105 mm4 12 12 100 203 2 I zc 100 20 150 103.3 12 20 1403 2 20 140 103.3 70 12 121.07 105 mm4
§附A- 4、惯性矩和惯性积的转轴公式 y ' y cos z sin z` z ' z cos y sin
O α α
y`
y
zI ' y
2
A
z '2 dA I y Iz 2 cos 2 I yz sin 2
dA
I y Iz
z z`
y y`
因此,组合截面 Iz=2Izc=2×1780.4×104mm4=3560.8×104mm4 2 a I y 2 I yc z0 A 2
2 4 4 100mm 2 2 2 128 10 mm 20.1mm 28.83 10 mm 3089.4 104 mm4 2
I y0z0
I y Iz 2
sin 2αo I yz cos 2αo 0
tan 2 o
2 I yz I y Iz
αo也是惯性矩为极值时的轴
与原坐标轴的夹角。
I y Iz 2 Iy 0 I max I y I z 2 ( ) I yz Iz 0 I min 2 2
.如果截面没有对称轴,形心主轴如何确定?
1、确定形心位置; 2、过形心取一对正交轴y,z,利用平行移轴公 式计算截面对这对轴的惯性矩Iy,Iz和惯性积Iyz.
3、利用公式 tan 2o
4、利用公式
2I yz I y Iz
计算主轴位置。
Iy 0 I max I y I z I y I z 2 2 ( ) I yz Iz 0 I min 2 2
计算主惯性矩。
y
yc
z
S z yc A S y zc A
O
如果截面对某一轴的面积矩等于零,则该轴必过 截面的形心;反之,截面对于通过形心的轴的面 积矩等于零。
三、组合截面的面积矩和形心
面 积 矩 : S y Ai zci
i 1 n n
S z Ai yci
i 1
形心: yc
Ay
4.如果截面没有对称轴,形心主轴如何确 定?
例2:计算矩形对y轴和z轴的惯性矩。
b/2 b/2
h/2
y dy z
hb 3 Iy 12 bh3 Iz 12
O h/2
dz z
y
例3:计算圆形对其直径轴Y和Z的惯性 矩。设圆的直径为d。
d
I y Iz
d4
64
I p I y Iz
y
z O
当Iy0z0=0时,称y0、z0——主惯性轴(主轴)。
当主轴通过截面形心时, yc、zc——形心主轴。 Iyc、Izc— —形心主惯性矩。
1.如果截面有一根对称轴,则该轴与之正 交的形心轴即为形心主轴;
2.如果截面有两根对称轴,则该对对称轴 即为形心主轴;
3.如果截面有两根以上的对称轴(如圆, 正方形等),则任一对正交的形心轴即为 形心主轴,且截面对任一形心主轴的惯性 矩均相等。