高考物理专题-双星问题
物理双星问题三个公式
物理双星问题三个公式物理中的双星问题,可是个有趣又有点烧脑的知识点。
咱们今儿就来好好唠唠其中的三个关键公式。
先来说说双星系统的定义哈。
双星,简单说就是两颗恒星在彼此引力作用下,绕着共同的中心做圆周运动。
这就像两个人手拉手在转圈跳舞,彼此的引力就是那只拉住他们的“无形的手”。
咱们来看看第一个公式,线速度与半径的关系公式:$v_1r_1 =v_2r_2$ 。
这里的$v_1$、$v_2$ 分别是两颗星的线速度,$r_1$、$r_2$ 是它们各自做圆周运动的半径。
给您举个例子吧。
有一次我在公园里散步,看到两个小孩在玩那种用绳子拴着的小球甩圈游戏。
其中一个小孩力气大,甩动的速度快,绳子也长,就相当于线速度大、半径大;另一个小孩力气小,速度慢,绳子短,就类似线速度小、半径小。
但是不管怎样,他们转一圈所用的时间是一样的,这就和双星系统里线速度和半径的关系有点像。
再来说第二个公式,角速度相同公式:$\omega_1 = \omega_2$ 。
这个很好理解,双星就像在一个锅里搅和的两个勺子,它们转动的快慢是一样的。
记得有一次我在厨房搅拌鸡蛋,我用两根筷子,就像是双星一样,一起在蛋液里转动,它们的角速度肯定是相同的呀。
最后是第三个公式,向心力公式:$F = m\omega^2r$ 。
这个公式告诉我们,向心力的大小和质量、角速度以及半径都有关系。
就像我骑自行车,轮子的质量越大,我蹬得越快(角速度大),轮子的半径越大,我蹬起来就越费劲,需要的力就越大。
总之,这三个公式在双星问题中可是起着关键作用。
只要咱们理解透彻,再遇到双星相关的题目,那都不在话下。
您瞧,物理其实没那么可怕,只要多观察生活中的现象,很多抽象的知识就能变得清晰易懂。
希望您在学习物理的道路上越走越顺,加油!。
高考物理计算题复习《双星问题》(解析版)
《双星问题》一、计算题1.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。
天文学家观测河外星系人麦析伦云时,发现了双星系统,它由可见星A和不可见的暗星B构成,两星视为质点,不考虑其它星体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图所示。
引力常量为G,由观测能够得到可见星A的速率v和运行周期T。
可见星A所受暗星B的引力FA可等效为位于O点处质量为的星体可视为质点对它的引力,设A和B的质量分别为,,试求用、表示求暗星B的的质量与可见星A的速率v、运行周期T和质量之间的关系式。
要求等号左边只含有和,,等号右边为其它量2.众多的恒星组成不同层次的恒星系统,最简单的恒星系统是两颗互相绕转的双星,如下图所示,两星各以一定速率绕其连线上某一点匀速转动,这样才不至于因万有引力作用而吸引在一起,已知双星质量分别为、,它们间的距离始终为L,引力常数为G,求:双星旋转的中心O到的距离;双星的转动周期。
3.天文观测中发现宇宙中存在着“双星”,所谓双星,是两颗质量相近,分别为和的恒星,它们的距离为r,而r远远小于它们跟其它天体之间的距离,这样的双星将绕着它们的连线上的某点O作匀速圆周运动.求:这两颗星到O点的距离、各是多大双星的周期.4.现代观测表明,由于引力的作用,恒星有“聚焦”的特点,众多的恒星组成不同层次的恒星系统,最简单的恒星系统是两颗互相绕转的双星.它们以两者连线上的某点为圆心做匀速圆周运动,这样就不至于由于万有引力的作用而吸引在一起.如图所示,设某双星系统中的两星、的质量分别为m和2m,两星间距为L,在相互间万有引力的作用下,绕它们连线上的某点O转动.已知引力常量G,求:、两星之间的万有引力大小;星到O点的距离;它们运动的周期.5.黑洞是宇宙空间内存在的一种天体。
黑洞的引力很大,使得视界内的逃逸速度大于光速。
黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响,双星系统中两个星球A、B的质量都是m,A、B相距L,它们正围绕两者连线上某一点做匀速圆周运动。
双星问题物理高三练习题
双星问题物理高三练习题双星问题是物理学中的一个重要问题,涉及到天体运动以及引力的影响。
在高三物理练习中,通常会出现与双星问题相关的题目,下面将介绍一道双星问题的物理练习题。
题目:一个双星系统由两颗质量分别为m₁和m₂的恒星组成。
它们之间的距离为d,两个恒星之间的引力为F。
已知m₁ = 2m₂,F =4G(m₁m₂/d²)(其中G为引力常数)。
求解这个双星系统的动能与势能之比。
解析:根据题目给出的信息,我们首先要计算出这个双星系统的动能和势能。
根据物理学的知识,动能和势能分别可以表示为以下公式:动能(Kinetic Energy):KE = (1/2)mv²势能(Potential Energy):PE = -G(m₁m₂/d)首先计算动能。
由于题目中没有给出速度v的具体数值,我们可以假设两颗星体的速度相同,即v₁ = v₂ = v。
那么,m₁和m₂的动能可以表示为:KE₁ = (1/2)m₁v²KE₂ = (1/2)m₂v²由于m₁ = 2m₂,可以将上述公式代入,得到:KE₁ = (1/2)(2m₂)v² = m₂v²KE₂ = (1/2)m₂v²接下来计算势能。
根据题目给出的公式可以得出:PE = -G(m₁m₂/d) = -2G(m₂²/d)因此,这个双星系统的总势能为:PE = PE₁ + PE₂ = -2G(m₂²/d) - 2G(m₂²/d) = -4G(m₂²/d)接下来求解动能与势能之比。
动能与势能之比可以表示为:KE/PE = (m₂v²)/(-4G(m₂²/d))化简上述式子,得到:KE/PE = -d(v²/4Gm₂)由题目可知,v²/4Gm₂ = F/(4Gm₂) = m₁/d²代入上式,得到最终的结果:KE/PE = -d(m₁/d²)KE/PE = -m₁/d综上所述,这个双星系统的动能与势能之比为-m₁/d。
卫星变轨问题 双星模型-高考物理复习
①G2Rm22+GRM2m=ma 向 ②GLm2 2×cos 30°×2=ma 向
常见的 四星模型
①GLm2 2×cos 45°×2+ G2mL22=ma 向
②GLm2 2×cos 30°×2+GLmM2=ma 向
3
例5 如图所示,“食双星”是两颗相距为d的恒星A、B,只在相互引力
作用下绕连线上O点做匀速圆周运动,彼此掩食(像月亮挡住太阳)而造成
例6 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一 颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相 互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的 黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称为“潮汐瓦解事 件”.天鹅座X-1就是一个由黑洞和恒星组成的双星系统,它们以两者 连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短 时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是
A.34mv2+3G4mr地m C.58mv2+3G4mr地m
B.34mv2-3G4mr地m
√D.58mv2-3G4mr地m
当卫星在 r1=r 的圆轨道上运行时,有 Gmr地2m=mvr02,解 得在此圆轨道上运行时通过 A 点的速度为 v0= Gmr 地,
所以发动机在 A 点对卫星做的功为 W1=12mv2-21mv02=12mv2-Gm2r地m; 当卫星在 r2=2r 的圆轨道上运行时,有 Gm2地rm2=mv02′r 2,解得在此圆 轨道上运行时通过 B 点的速度为 v0′= G2mr地,
④两星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21.
⑤双星的运动周期 T=2π
L3 Gm1+m2.
(完整版)高考物理专题-双星问题
专题:“双星”及“三星”问题【前置性学习】1. 甲、乙两名溜冰运动员m 甲=70kg,m 乙=36 kg ,面对面拉着弹簧秤做圆周运动的溜冰表演(如图1),两人相距0.9 m ,弹簧秤的示数为21 N ,下列判断正确的是( )A .两人的线速度相同,约为1 m/sB .两人的角速度相同,为1 rad/sC .两人的运动半径相同,为0.45 mD .两人的运动半径不同,甲为0.6 m,乙为0.3 m ★学习目标 1. ★新知探究一、 “双星”问题:两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
1.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
2.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比。
3.要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角 速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1: 22121111121M M v G M M r Lr ω==M 2: 22122222222M M v G M M r Lr ω==在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
4.“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;周期相同:(参考同轴转动问题) T 1=T 2 角速度相同:(参考同轴转动问题)ω1 =ω2 向心力相同:Fn 1=Fn 2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)轨道半径之比与双星质量之比相反:(由向心力相同推导)r 1:r 2=m 2:m 1m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m 2:m 1线速度之比与质量比相反:(由半径之比推导) V 1:V 2=m 2:m 1V 1=ωr 1 V 2=ωr 2 V 1:V 2=r 1:r 2=m 2:m 1二、 “三星”问题 有两种情况:第一种三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R 的圆轨道上运行,周期相同;第二种三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的外接圆轨道运行,三星运行周期相同。
高一物理【双星问题】专题
高一物理【双星问题】专题1.双星模型宇宙中往往会有相距较近、质量相当的两颗星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计。
在这种情况下,它们将各自围绕它们连线上的某一固定点O 做同周期的匀速圆周运动。
这种结构叫作双星模型(如图所示)。
2.双星的特点(1)由于双星和该固定点O 总保持三点共线,所以在相同时间内转过的角度必然相等,即双星做匀速圆周运动的角速度必然相等,因此周期也必然相等。
(2)由于每颗星球的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,即m 1ω2r 1=m 2ω2r 2,又r 1+r 2=L (L 是双星间的距离),可得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,即固定点离质量大的星球较近。
(3)列式时需注意:万有引力定律表达式中的r 表示双星间的距离,该处按题意应该是L ,而向心力表达式中的r 表示它们各自做圆周运动的轨道半径。
宇宙中两颗相距较近的天体称为双星,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至于因相互之间的引力作用吸引到一起。
设两者相距为L ,质量分别为m 1和m 2。
(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比; (2)试写出它们角速度的表达式。
[解析] 双星之间相互作用的引力满足万有引力定律,即F =G m 1m 2L 2,双星依靠它们之间相互作用的引力提供向心力,又因为它们以二者连线上的某点为圆心,所以半径之和为L 且保持不变,运动中角速度不变,如图所示。
(1)分别对m 1、m 2应用牛顿第二定律列方程, 对m 1有G m 1m 2L 2=m 1ω2r 1①对m 2有G m 1m 2L 2=m 2ω2r 2②由①②得r 1r 2=m 2m 1;由线速度与角速度的关系v =ωr ,得v 1v 2=r 1r 2=m 2m 1。
(2)由①得r 1=Gm 2L 2ω2,由②得r 2=Gm 1L 2ω2,又L =r 1+r 2,联立以上三式得ω=G (m 1+m 2)L 3。
高中物理复习 双星问题,天体追击
一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
高考物理专项练习36 双星与多星问题
高考物理专项练习36 双星与多星问题1. “双星体系”由两颗相距较近的恒星组成,每个恒星的半径远小于两个星球之间的距离,而且双星系统一般远离其他天体.如图所示,相距为L 的A 、B 两恒星绕共同的圆心O 做圆周运动,A 、B 的质量分别为m 1、m 2,周期均为T .若有间距也为L 的双星C 、D ,C 、D 的质量分别为A 、B 的两倍,则( )A .A 、B 运动的轨道半径之比为m 1m 2 B .A 、B 运动的速率之比为m 1m 2C .C 运动的速率为A 的2倍D .C 、D 运动的周期均为22T 2. 太空中存在一些离其他恒星很远的、由三颗星体组成的三星系统,可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是直线三星系统——三颗星体始终在一条直线上;另一种是三角形三星系统——三颗星体位于等边三角形的三个顶点上.已知某直线三星系统A 每颗星体的质量均为m ,相邻两颗星中心间的距离都为R ;某三角形三星系统B 的每颗星体的质量恰好也均为m ,且三星系统A 外侧的两颗星体做匀速圆周运动的周期和三星系统B 每颗星体做匀速圆周运动的周期相等.引力常量为G ,则( )A .三星系统A 外侧两颗星体运动的线速度大小为v =Gm R B .三星系统A 外侧两颗星体运动的角速度大小为ω=12R 5Gm RC .三星系统B 的运动周期为T =4πR R 5GmD .三星系统B 任意两颗星体中心间的距离为L =3125R 3. 冥王星和其附近的星体卡戎的质量分别为M 、m (m <M ),两星相距L ,它们只在相互间的万有引力作用下,绕球心连线的某点O 做匀速圆周运动.冥王星与星体卡戎到O 点的距离分别为R 和r .则下列说法正确的是( )A .可由G Mm R2=MRω2计算冥王星做圆周运动的角速度 B .可由G Mm L 2=M v 2L 计算冥王星做圆周运动的线速度 C .可由G Mm L 2=mr (2πT )2计算星体卡戎做圆周运动的周期 D .冥王星与星体卡戎绕O 点做圆周运动的动量大小相等4. 2015年12月17日我国发射了“悟空”探测卫星,使人类对暗物质的研究又进了一步.宇宙空间中两颗质量相等的星球绕其连线中心转动时,理论计算的周期与实际观测周期不符,且T 理论T 观测=k (k >1);因此,科学家认为,在两星球之间存在暗物质.假设以两星球球心连线为直径的球体空间中均匀分布着暗物质,两星球的质量均为m ,那么,暗物质的质量为( )A.k 2-14mB.k 2-28m C .(k 2-1)m D .(2k 2-1)m5. 2016年2月11日,科学家宣布“激光干涉引力波天文台(LIGO)”探测到由两个黑洞合并产生的引力波信号,这是在爱因斯坦提出引力波概念100周年后,引力波被首次直接观测到.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统.如图(),黑洞A 、B 可视为质点,它们围绕连线上O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响.下列说法正确的是( )A .黑洞A 的向心力大于B 的向心力 B .黑洞A 的线速度大于B 的线速度C .黑洞A 的质量大于B 的质量D .两黑洞之间的距离越大,A 的周期越小6. 宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2(R 1+R 2)3GT 2 参考答案1. D [对于双星A 、B ,有G m 1m 2L 2=m 1(2πT )2r 1=m 2(2πT )2r 2,r 1+r 2=L ,得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,T =2πL L G (m 1+m 2),A 、B 运动的轨道半径之比为r 1r 2=m 2m 1,A 错误;由v =2πr T 得,A 、B 运动的速率之比为v 1v 2=r 1r 2=m 2m 1,B 错误;C 、D 运动的周期T ′=2πL L G (2m 1+2m 2)=22T ,D 正确;C 的轨道半径r 1′=2m 22m 1+2m 2L =r 1,C 运动的速率为v 1′=2πr 1′T ′=2v 1,C 错误.] 2. BCD [三星系统A 中,三颗星体位于同一直线上,两颗星体围绕中央星体在同一半径为R 的圆轨道上运行.其中外侧的一颗星体由中央星体和另一颗外侧星体的合万有引力提供向心力,有:G m 2R 2+G m 2(2R )2=m v 2R ,解得v = 5Gm 4R ,A 错误;三星系统A 中,周期T =2πR v =4πR R 5Gm ,则其角速度为ω=2πT =12R5Gm R ,B 正确;由于两种系统周期相等,则三星系统B 的运行周期为T =4πR R 5Gm,C 正确;三星系统B 中,三颗星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图所示,对某颗星体,由万有引力定律和牛顿第二定律得:2Gm 2L 2cos 30°=m L 2cos 30°·4π2T 2,解得L =3125R ,D 正确.] 3. CD [冥王星与星体卡戎之间的万有引力提供各自做圆周运动的向心力:可由G Mm (R +r )2=MRω2计算冥王星做圆周运动的角速度,故A 错误;同理,可由G Mm L 2=M v 2R计算冥王星做圆周运动的线速度,故B 错误;冥王星与其附近的星体卡戎可视为双星系统.所以冥王星和星体卡戎做圆周运动的周期是相等的,可由G Mm L 2=mr (2πT )2计算星体卡戎做圆周运动的周期,故C 正确;因G Mm (R +r )2=MRω2=mrω2,由于它们的角速度的大小是相等的,所以:MRω=mrω,又:v m =ωr ,v M =ωR ,p m =mv m ,p M =Mv M ,所以冥王星与星体卡戎绕O 点做圆周运动的动量大小相等,故D 正确.]4. A [两星球均绕它们的连线的中点做圆周运动,设它们之间的距离为L ,由万有引力提供向心力得:G m 2L 2=m 4π2T 理论2·L 2,解得:T 理论=πL 2L Gm .根据观测结果,星体的运动周期T 理论T 观测=k ,这种差异是由两星球之间均匀分布的暗物质引起的,均匀分布在两星球之间的暗物质对双星系统的作用与一质量等于暗物质的总质量m ′、位于中点O 处的质点的作用相同.则有:G m 2L 2+Gmm ′(L 2)2=m 4π2T 观测2 ·L 2,解得:T 观测=πL 2L G (m +4m ′),又T 理论T 观测=k ,所以:m ′=k 2-14m ,故A 正确,B 、C 、D 错误.] 5. B [两黑洞靠相互间的万有引力提供向心力,根据牛顿第三定律可知,A 对B 的作用力与B 对A 的作用力大小相等、方向相反,则黑洞A 的向心力等于B 的向心力,故A 错误;两黑洞靠相互间的万有引力提供向心力,具有相同的角速度,由题图可知A 的轨道半径比较大,根据v =ωr 可知,黑洞A 的线速度大于B 的线速度,故B 正确;由于m A ω2r A =m B ω2r B ,由于A 的轨道半径比较大,所以A 的质量小,故C 错误;两黑洞靠相互间的万有引力提供向心力,所以G m A m B L 2=m A 4π2T 2r A =m B 4π2T2r B ,又:r A +r B =L ,得r A =m B L m A +m B ,L 为二者之间的距离,所以得:G m A m B L 2=m A 4π2T 2·m B L m A +m B ,即:T 2=4π2L 3G (m A +m B ),则两黑洞之间的距离越小,A 的周期越小,故D 错误.]6. BC [设两星质量分别为m 1、m 2.对m 1有:G m 1m 2(R 1+R 2)2=m 1R 14π2 T 2,解得m 2=4π2R 1(R 1+R 2)2GT 2,同理可得m 1=4π2R 2(R 1+R 2)2GT 2,故两者质量不相等,故选项A 错误;将两者质量相加得m 1+m 2=4π2(R 1+R 2)3GT 2,则不可能其中一个的质量为4π2(R 1+R 2)3GT 2,故选项D 错误,选项B 正确;m 1∶m 2=R 2∶R 1,故选项C 正确.]。
双星问题高考总复习
G m1m2 2 2 m r m r2 1 1 2 (r1 r2 ) 2
m1
m2
r2
o
r1
m1
m2
近年来,天文学家们发现,大部分已 知恒星都存在于双星甚至多星系统中。 双星对于天体物理尤其重要,因为两 颗星的质量可从通过观测旋转轨道确 定。这样,很多独立星体的质量也可 以推算出来。 在银河系中,双星的数量非常多,估 计不少于单星。研究双星,不但对于 了解恒星形成和演化过程的多样性有 重要的意义,而且对于了解银河系的 形成和演化,也是一个不可缺少的方 面。
习题
习题
双星问题
高考一轮复习ຫໍສະໝຸດ 双星。确定双星的旋转中心:
来源:向心力由两子星间的万有引力提供,由力的作用是相互的,两星间向心力 大小一样,利用万有引力定律可求大小。
关系:绕着连线一点作圆周运动,T相等,因此线速度与两星间轨道半径R1, R2成正比。
特别注意:求两星间万有引力时,两星距离不能带成两星做圆周运动的轨道半径。 万有引力公式中的r表示的是星体的距离(这个距离不一定就是轨道半径)。
(01北京.08宁夏卷)两个星球组成双星,它们在相互之间的 万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。 现测得两星中心距离为R,其运动周期为T,求两星的总质量。 (引力常量为G)
习题
(06广东)宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系 统,通常可忽略其它星体对它们的引力作用。已观测到稳定的三星系统存在两种基 本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的 圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等 边三角形的圆形轨道运行。设每个星体的质量均为m。 ⑴试求第一种形式下,星体运动的线速度和周期。 ⑵假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
人教版物理高考复习:双星与天体追及相遇问题(共45张PPT)
1.双星问题求解思维引导
2020年人教版物理高考复习:双星与 天体追 及相遇 问题 (共45张PPT)高考复习课件高考复习P PT课件 高考专 题复习 训练课 件
7
2020年人教版物理高考复习:双星与 天体追 及相遇 问题 (共45张PPT)高考复习课件高考复习P PT课件 高考专 题复习 训练课 件
变式训练
1. 2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的 引力波。该双星系统以引力波的形式向外辐射能量,使得圆周运动的周期T极其缓慢地减小,双星的质量 m1与m2均不变,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈, 将两颗中子星都看做是质量均匀分布的球体,则下列关于该双星系统的说法正确的是( ) A.两颗中子星的自转角速度相同,在合并前约100 s时ω=24π rad/s B.合并过程中,双星间的万有引力逐渐增大 C.双星的线速度逐渐增大,在合并前约100 s时两颗星速率之和为9.6π×106 m/s D.合并过程中,双星系统的引力势能逐渐增大
率为 12 Hz,则公转角速度ω0=2πf=24π rad/s,而自转角速度由题中条件不能求得,A 错误;
设两颗星的轨道半径分别为
r1、r2,相距为
L,根据万有引力提供向心力可知:Gm1m2=m L2
1r
1ω2公,
GmL12m2=m2r2ω2公,又
r1+r2
=L,T=2π ,整理可得Gm1+m2=4π2L,解得
总结
2.对于天体追及问题的处理思路 (1)根据Gm1m2/r2=mrω2,可判断出谁的角速度大; (2)根据天体相距最近或最远时,满足的角度差关系进行求解.
高考专题10 双星及多星问题-高考物理一轮复习专题详解 Word版含解析
高考重点难点热点快速突破1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图3甲所示).②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).典例分析【例1】 (多选)(2017年昆明模拟)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2R 1+R 23GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2R 1+R 23GT 2【答案】 BC【例2】:2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105 m,太阳质量M=2×1030 kg,引力常量G=6.67×10-11N·m2/kg2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )A.102 Hz B.104 Hz C.106 Hz D.108 Hz【答案】 A【例3】:.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动.(1)计算出该双星系统的运动周期T;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.【答案】 (1)πL2L GM (2)3N -1M2πL3 【解析】 (1)双星均绕它们连线的中点做圆周运动,万有引力提供向心力,则G M 2L 2=M ⎝⎛⎭⎪⎫2πT 2·L 2,解得T =πL2L GM.【例4】:由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案 】 (1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm【解析】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a2(3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT)2R C ,可得T =πa 3Gm. 专题练习1:宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3GmR 3C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 【答案】 ABC【解析】由图可知,每颗星做匀速圆周运动的半径r =R2cos 30°=33R .由牛顿第二定律得Gm 2R 2·2cos 30°=m v 2r =mω2r =m 4π2T2r =ma ,可解得v =GmR,ω= 3GmR 3,T =2πR 33Gm ,a =3GmR2,故A 、B 、C 均正确,D 错误. 2.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G.关于宇宙四星系统,下列说法错误的是( )A . 四颗星围绕正方形对角线的交点做匀速圆周运动B . 四颗星的轨道半径均为C . 四颗星表面的重力加速度均为D . 四颗星的周期均为2πa【答案】B3.宇宙中存在一些离其他恒星较远,由质量相等的三个星体组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在的一种形式是三个星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图所示.设每个星体的质量均为m,相邻的两个星体之间的距离为L,引力常量为G,则( )A.该圆形轨道的半径为3 2 LB.每个星体的运行周期均为3πL3 2GmC.每个星体做圆周运动的线速度均为Gm LD.每个星体做圆周运动的加速度均与星体的质量无关【答案】:C4.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动,研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化,若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2B.n 3k T C.n 2kT D.n kT 【答案】:B【解析】:设m 1的轨道半径为r 1,m 2的轨道半径为r 2,由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同,两星之间的万有引力提供两星做圆周运动的向心力,即Gm 1m 2r 1+r 22=m 1r 1⎝⎛⎭⎪⎫2πT 2,Gm 1m 2r 1+r 22=m 2r 2⎝ ⎛⎭⎪⎫2πT 2,可得T =2πr 1+r 23G m 1+m 2,故当两恒星总质量变为原来的k倍,两星间距变为原来的n 倍时,圆周运动的周期变为n 3kT ,B 正确. 5.经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2.则可知( )A .m 1、m 2做圆周运动的角速度之比为2∶3B .m 1、m 2做圆周运动的线速度之比为3∶2C .m 1做圆周运动的半径为r 1=25LD .m 2做圆周运动的半径为r 2=25L【答案:】C6. (多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统P、Q绕其连线上的O点做匀速圆周运动,如图所示.若PO>OQ,则( )A.星球P的质量一定大于Q的质量B.星球P的线速度一定大于Q的线速度C.双星间距离一定,双星的质量越大,其转动周期越大D.双星的质量一定,双星之间的距离越大,其转动周期越大【答案】BD7. (多选)宇宙中两个相距较近的星球可以看成双星,它们只在相互间的万有引力作用下,绕两球心连线上的某一固定点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是( ) A.双星相互间的万有引力不变B.双星做圆周运动的角速度均增大C.双星做圆周运动的速度均减小D.双星做圆周运动的半径均增大【答案】CD【解析】双星间的距离在不断缓慢增加,由万有引力定律,F=G,知万有引力减小,A错误;根据万有引力提供向心力得G=m1r1ω2=m2r2ω2,可知m1r1=m2r2,知轨道半径比等于质量之反比,双星间的距离变大,则双星的轨道半径都变大,B 错误,D 正确;根据G=m 1v 1ω=m 2v 2ω,可得线速度减小,C 正确8. (多选)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.若某双星系统中两星做圆周运动的周期为T ,两星总质量为M ,两星之间的距离为r ,两星质量分别为m 1、m 2,做圆周运动的轨道半径分别为r 1、r 2,则下列关系式中正确的是( )A . M =B . r 1=rC . T =2πD . =【答案】AC【解析】由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:对m 1:=m 1ω2r 1① 对m 2:=m 2ω2r 2②;由①②式可得:m 1r 1=m 2r 2 ,即=,D 错误.r 1+r 2=r ,得:r 1=r =r ,B 错误.将ω=,r 1=r 代入①式,可得:=m 1·r,得:T =2π,M =,A 、C 正确.9.宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T 2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比T 1T 2.【答案】T 1T 2=6+634+2【解析】:对于第一种形式,一个星体在其它三个星体的万有引力作用下围绕正方形对角线的交点做匀速圆周运动,其轨道半径为:r1=22a.。
2024届高考物理微专题:双星或多星模型
微专题35双星或多星模型1.双星问题中各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω2r 1,Gm 1m 2L 2=m 2ω2r 2,其中r 1+r 2=L .2.“双星问题”的隐含条件是两者受到的向心力相等,周期相同,角速度相同;双星轨道半径与质量成反比.3.多星问题中,每颗星体做圆周运动所需的向心力由其他星体对该星的引力的合力提供,即F 合=m v 2r.1.(2023·广东深圳市调研)由于潮汐等因素影响,月球正以每年约3至5厘米的速度远离地球.如图所示,地球和月球可以看作双星系统,它们绕O 点做匀速圆周运动.多年以后,地球()A .与月球之间的万有引力变大B .绕O 点做圆周运动的周期不变C .绕O 点做圆周运动的角速度变小D .绕O 点做圆周运动的轨道半径变小答案C解析地球和月球间距离变大,两星的质量不变,由万有引力定律可知,地球与月球之间的万有引力变小,故A 错误;设地球与月球的质量分别为m 1和m 2,做圆周运动的半径分别为R 1和R 2,地球和月球间距离为L ,则有L =R 1+R 2,由万有引力提供向心力,根据牛顿第二定律有,Gm 1m 2L 2=m 1(2πT )2R 1=m 1ω2R 1,Gm 1m 2L 2=m 2(2πT )2R 2=m 2ω2R 2,联立可得G m 1+m 2 L 2=4π2L T 2=ω2L ,R 1=m 2Lm 1+m 2,地球和月球间距离增大,则地球绕O 点做圆周运动的周期T 变大,地球绕O 点做圆周运动的角速度变小,地球绕O 点做圆周运动的轨道半径变大,故B 、D 错误,C 正确.2.(多选)(2023·湖南衡阳市联考)科学家发现距离地球2764光年的宇宙空间存在适合生命居住的双星系统,这一发现为人类研究地外生命提供了新的思路和方向.假设宇宙中有一双星系统由质量分别为m 和M 的A 、B 两颗星体组成.这两颗星体绕它们连线上的O 点在二者万有引力作用下做匀速圆周运动,如图所示,A 、B 两颗星的距离为L ,引力常量为G ,则()A.因为OA>OB,所以m>MB.两恒星做圆周运动的周期为2πL3G M+mC.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,恒星A的周期缓慢增大D.若恒星A由于不断吸附宇宙中的尘埃而使得质量缓慢增大,其他量不变,则恒星A的轨道半径将缓慢减小答案BD解析设A、B两颗星体的轨道半径分别为R1、R2,双星之间的万有引力提供向心力,则有GmM L2=m 4π2T2R1,①GmML2=M 4π2T2R2,②两式联立得mR1=MR2,③OA>OB,即R1>R2,所以有m<M,A错误;联立①②得两颗星体的周期为T=2πL3G M+m ,若m缓慢增大,其他量不变,周期T变小,故B正确,C错误;由几何关系R1+R2=L,结合③式可得R1=MM+mL,若m缓慢增大,A的轨道半径将缓慢减小,D正确.3.(多选)(2023·甘肃天水市秦安县诊断测试)多国科学家联合宣布人类第一次直接探测到来自“双中子星”合并的引力波信号.假设双中子星在合并前,两中子星A、B的质量分别为m1、m2,两者之间的距离为L,如图所示.在双中子星互相绕行过程中两者质量不变,距离逐渐减小,则()A.A、B运动的轨道半径之比为m1m2B .A 、B 运动的速率之比为m 2m 1C .双中子星运动周期逐渐增大D .双中子星系统的引力势能逐渐减小答案BD解析双中子星的周期、角速度、向心力大小相同,根据Gm 1m 2L 2=m 1ω2R 1=m 2ω2R 2,可得R 1R 2=m 2m 1,故A 错误;双中子星的角速度相同,根据v =ωr ,可得v 1v 2=R 1R 2=m 2m 1,故B 正确;由Gm 1m 2L 2=m 1ω2R 1=m 2ω2R 2,R 1+R 2=L ,又角速度为ω=2πT,可得T =2πL 3G m 1+m 2,L 减小,则T减小,故C 错误;双中子星相互靠近过程中引力做正功,引力势能减小,故D 正确.4.(多选)(2023·新疆博乐市诊断)双星的运动是引力波的来源之一,假设宇宙中有一双星系统由P 、Q 两颗星体组成,这两颗星体绕它们连线上的某一点在二者之间万有引力作用下做匀速圆周运动,测得P 星的角速度为ω,P 、Q 两颗星体之间的距离为L ,Q 、P 两颗星体的轨道半径之差为Δr (P 星的质量大于Q 星的质量),引力常量为G ,则()A .P 、Q 两颗星体的向心力大小相等B .P 、Q 两颗星体的向心加速度大小相等C .P 、Q 两颗星体的线速度大小之差为ωΔrD .P 、Q 两颗星体的质量之比为L -Δr L +Δr答案AC解析P 、Q 两颗星体的向心力都等于两者之间的万有引力,因此P 、Q 两星体的向心力大小相等,故A 正确;两颗星体的质量不相等,根据F 向=ma 可知,两星体的向心加速度不相等,故B 错误;根据圆周运动公式v =ωr ,可知Δv =v P -v Q =ω(R P -R Q )=ωΔr ,故C 正确;对于两颗星体有F 向=m P ω2R P =m Q ω2R Q ,所以m P m Q =R QR P,又因为m P >m Q ,所以R P <R Q ,根据题意R Q -R P =Δr ,R P +R Q =L ,解得m P m Q =R Q R P =L +ΔrL -Δr,故D 错误.5.由三个星体构成的系统,叫作三星系统.有这样一种简单的三星系统,质量刚好都相同的三个星体甲、乙、丙在三者相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做周期相同的圆周运动.若三个星体的质量均为m ,三角形的边长为a ,引力常量为G ,则下列说法正确的是()A .三个星体做圆周运动的半径均为aB.三个星体做圆周运动的周期均为2πa a3GmC.三个星体做圆周运动的线速度大小均为3GmaD.三个星体做圆周运动的向心加速度大小均为3Gma2答案B解析质量相等的三星系统的位置关系构成一等边三角形,其中心O即为它们的共同圆心,由几何关系可知三个星体做圆周运动的半径r=33a,故选项A错误;每个星体受到的另外两星体的万有引力的合力提供向心力,其大小F=3·Gm2a2,则3Gm2a2=m4π2T2r,得T=2πa a3Gm,故选项B正确;v=2πrT得v=Gma,故选项C错误;向心加速度大小a n=Fm=3Gma2,故选项D错误.6.(2023·四川广安市二中模拟)2021年11月,中科院国家天文台发布了目前世界上最大时域多星光谱星表,为科学家研究宇宙中的多星系统提供了关键数据支持.已知宇宙中存在着由四颗星组成的孤立星系,一颗母星处在正三角形的中心,三角形的顶点各有一个质量相等的小星围绕母星做圆周运动,如图所示.如果两颗小星间的万有引力大小为F,母星与任意一颗小星间的万有引力大小为6F,则下列说法中正确的是()A.母星受到的合力大小为(33+3)FB.每颗小星受到的合力大小为(32+6)FC.母星的质量是每颗小星质量的3倍D.母星的质量是每颗小星质量的2倍答案D解析母星与任意一颗小星间的万有引力大小为6F,母星受到的三个万有引力大小相等,夹角均为120°,故根据合成可知,母星受到的合力为零,故A错误;根据受力分析可知,每颗小星受到其余两颗小星和一颗母星的引力,其合力指向母星以提供向心力,即每颗小星受到的万有引力为F′=6F+2F cos30°=(3+6)F,故B错误;假设每颗小星的质量为m,母星的质量为M,等边三角形的边长为a,则小星绕母星运动轨道半径为r=33a,根据万有引力定律,两颗小星间的万有引力为F=G mma2,母星与任意一颗小星间的万有引力为6F=GMmr2,解得母星的质量是每颗小星质量的2倍,故D正确,C错误.7.(多选)宇宙中存在一些离其他恒星较远的由四颗星体组成的四星系统.若某个四星系统中每个星体的质量均为m,半径均为R,忽略其他星体对它们的引力作用,忽略星体自转,则可能存在如下运动形式:四颗星体分别位于边长为L的正方形的四个顶点上(L远大于R),在相互之间的万有引力作用下,绕某一共同的圆心做角速度相同的圆周运动.已知引力常量为G,则关于此四星系统,下列说法正确的是()A.四颗星体做圆周运动的轨道半径均为L2B.四颗星体表面的重力加速度均为G mR2C.四颗星体做圆周运动的向心力大小为Gm2L2(22+1)D.四颗星体做圆周运动的角速度均为 4+2 Gm2L3答案BD解析任意一颗星体在其他三颗星体的万有引力的作用下,合力方向指向正方形对角线的交点,围绕正方形对角线的交点做匀速圆周运动,轨道半径均为r=22L,故A错误;星体表面的物体受到的万有引力等于它受到的重力,即G mm′R2m′g,解得g=GmR2,故B正确;由万有引力定律可得四颗星体做圆周运动的向心力大小为F n=Gm22L 2+2Gm2L2cos45°=Gm2 L2(12+2),故C错误;由牛顿第二定律得F n=Gm2L2(12+2)=mω2·22L,解得ω=4+2 Gm2L3,故D正确.。
2020年高考回归复习—力学选择之双星问题 含答案
高考回归复习—力学选择之双星问题1.如图所示,L为地月拉格朗日点,该点位于地球和月球连线的延长线上,处于此处的某卫星无需动力维持即可与月球一起同步绕地球做圆周运动.已知该卫星与月球的中心、地球中心的距离分别为r1、r2,月球公转周期为T,万有引力常量为G.则()A.该卫星的周期大于地球同步卫星的周期B.该卫星的加速度小于月球公转的加速度C.根据题述条件,不能求出月球的质量D.根据题述条件,可以求出地球的质量2.在宇宙中,当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统。
在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事件”。
天鹅座X—1就是这样一个由黑洞和恒星组成的双星系统,它们以两者连线上的某一点为圆心做匀速圆周运动,如图所示。
在刚开始吞噬的较短时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是()A.它们间的万有引力大小变大B.它们间的万有引力大小不变C.恒星做圆周运动的线速度变大D.恒星做圆周运动的角速度变大3.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统。
在浩瀚的银河系中,多数恒星都是双星系统。
设某双星系统P、Q绕其连线上的O,则()点做匀速圆周运动,如图所示。
若PO OQA .星球P 的质量一定大于Q 的质量B .星球P 的线速度一定大于Q 的线速度C .双星间距离一定,双星的质量越大,其转动周期越大D .双星的质量一定,双星之间的距离越大,其转动周期越大4.人类已经直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A .质量之积 B .质量之和 C .速率之和D .各自的自转角速度5.如图所示,双星系统由质量不相等的两颗恒星组成,质量分别是M 、m(M>m), 他们围绕共同的圆心O 做匀速圆周运动.从地球A 看过去,双星运动的平面与AO 垂直,AO 距离恒为L .观测发现质量较大的恒星M 做圆周运动的周期为T ,运动范围的最大张角为△θ(单位是弧度).已知引力常量为G ,△θ很小,可认为sin △θ= tan △θ= △θ,忽略其他星体对双星系统的作用力.则( )A .恒星m 2M T mπB .恒星m 的轨道半径大小为2ML m θ∆ C .恒星m 的线速度大小为ML mTπθ∆D .两颗恒星的质量m 和M 满足关系式()()323222L mGT m M πθ∆=+6.宇宙中组成双星系统的甲、乙两颗恒星的质量分别为m 、km ,甲绕两恒星连线上一点做圆周运动的半径为T ,根据宇宙大爆炸理论,两恒星间的距离会缓慢增大,若干年后,甲做圆周运动的半径增大为nr ,设甲、乙两恒星的质量保持不变,引力常量为G ,则若干年后说法正确的是( )A .恒星甲做圆周运动的向心力为22()km G nr B .恒星甲做圆周运动周期变大 C .恒星乙做圆周运动的半径为knrD .恒星乙做圆周运动的线速度为恒星甲做圆周运动线速度的1k倍 7.“食双星”是一种双星系统,两颗恒星互相绕行的轨道几乎在视线方向,这两颗恒星会交互通过对方,造成 双星系统的光度发生周期性的变化。
高考物理复习---卫星变轨问题 双星模型课时练习题(含答案)
√D.M一定,L越大,T越大
图3
1 2 3 4 5 6 7 8 9 10 11
解析 设双星质量分别为 mA、mB,轨道半径分别为 RA、RB,角速度相等,均为 ω,根据万有引力定律可 知:GmLAm2 B=mAω2RA,GmLAm2 B=mBω2RB,距离关系为: RA+RB=L,联立解得:mmAB=RRBA,因为 RA>RB,所以 A 的质量一定小于 B 的质量,故 A 错误; 根据线速度与角速度的关系有:vA=ωRA、vB=ωRB,因为角速度相等, 轨道半径RA>RB,所以A的线速度大于B的线速度,故B正确;
1 2 3 4 5 6 7 8 9 10 11
9.(多选)(2020·福建龙岩市检测)2019年人类天文史上首张黑洞图片正式公布.在
宇宙中当一颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系
统.在相互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小
的黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称之为“潮汐瓦解事
件”.天鹅座X-1就是一个由黑洞和恒星组成的双星系统,它们以两者连线上
的某一点为圆心做匀速圆周运动,如图6所示.在刚开始吞噬的较短时间内,恒
星和黑洞的距离不变,则在这段时间内,下列说法正确的是
√A.它们的万有引力大小变大
B.它们的万有引力大小不变
√C.恒星做圆周运动的轨道半径将变大,线速度也变大
D.恒星做圆周运动的轨道半径将变小,线速度也变小
1 2 3 4 5 6 7 8 9 10 11
又因为 T=2ωπ,联立可得 T=2π GLM3 ,所以 L 一定,M 越大,T 越小; M 一定,L 越大,T 越大,故 C 错误,D 正确.
1 2 3 4 5 6 7 8 9 10 11
晴暑市最量学校高考物理 拔高看题 双星问题
喷晶州喇遇市喊景学校 05高考考前拔高物理看题——双星问题1、冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的( )A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍答案 A2、我们的银河系的恒星中大约四分之一是双星。
某双星是由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。
由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G。
由此可求出S2的质量为()A. B.C.D.答案 B3、经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的大小远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1∶m2 =3∶2,则可知( )A.m1、m2做圆周运动的线速度之比为2∶3B.m1、m2做圆周运动的角速度之比为2∶3C.m1做圆周运动的半径为LD.m2做圆周运动的半径为L答案 AC4、宇宙中有一双星系统远离其他天体,各以一定的速率绕两星连线上的一点做圆周运动,两星与圆心的距离分别为R1和R2 且R1不等于R2,那么下列说法中正确的是:()A.这两颗星的质量必相等B.这两颗星的速率大小必相等C.这两颗星的周期必相同D.这两颗星的速率之比为答案 C5、经长期观测人们在宇宙中已经发现了“双星系统”。
“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为。
高中物理双星问题
“双星”问题的分析思路两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
一、要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1 和M 2,相距L,M 1 和M 2 的线速度分别为v1 和v2,角速度分别为ω1 和ω2,由万有引力定律和牛顿第二定律得:M 1:M 2:2M M v1 2 12G M M r21 1 1 1L r12M M v1 2 22G M M r2 2 2 22L r2ω1M 1 r1 r2M 2Lω2在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
【例题一】两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比。
B、它们做圆周运动的线速度之比与其质量成反比。
C、它们做圆周运动的半径与其质量成正比。
D、它们做圆周运动的半径与其质量成反比。
解析:两子星绕连线上的某点做圆周运动的周期相等,角速度也相等。
由v=r ω得线速度与两子星圆周运动的半径是成正比的。
因为两子星圆周运动的向心力由两子星间的万有引M M力提供,向心力大小相等,由 1 2 2G M r21 1LM M, 1 2 2G M r22 2L可知: 2 2M r M r ,1 12 2所以它们的轨道半径与它们的质量是成反比的。
高中物理双星四星问题和卫星变轨考点归纳
高中物理双星问题和卫星变轨考点归纳考点1:双星问题一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得: M 1: 22121111121M M v G M M r L r ω== M 2: 22122222222M M v G M M r L r ω== 在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
四、“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;角速度相同:(参考同轴转动问题)ω1 =ω2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m2:m 12 2线速度之比与质量比相反:(由半径之比推导)V 1=ωr 1 V 2=ωr 2V 1:V 2=r 1:r 2=m 2:m 1两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
考点2:卫星变轨一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:“双星”及“三星”问题【前置性学习】1. 甲、乙两名溜冰运动员m 甲=70kg,m 乙=36 kg ,面对面拉着弹簧秤做圆周运动的溜冰表演(如图1),两人相距0.9 m ,弹簧秤的示数为21 N ,下列判断正确的是( )A .两人的线速度相同,约为1 m/sB .两人的角速度相同,为1 rad/sC .两人的运动半径相同,为0.45 mD .两人的运动半径不同,甲为0.6 m,乙为0.3 m ★学习目标 1. ★新知探究一、 “双星”问题:两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
1.要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
2.要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比。
3.要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角 速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1: 22121111121M M v G M M r Lr ω==M 2: 22122222222M M v G M M r Lr ω==在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
4.“双星”问题的分析思路质量m 1,m 2;球心间距离L ;轨道半径 r 1 ,r 2 ;周期T 1,T 2 ;角速度ω1,ω2 线速度V 1 V 2;周期相同:(参考同轴转动问题) T 1=T 2 角速度相同:(参考同轴转动问题)ω1 =ω2 向心力相同:Fn 1=Fn 2(由于在双星运动问题中,忽略其他星体引力的情况下向心力由双星彼此间万有引力提供,可理解为一对作用力与反作用力)轨道半径之比与双星质量之比相反:(由向心力相同推导)r 1:r 2=m 2:m 1m 1ω2r 1=m 2ω2r 2m 1r 1=m 2r 2 r 1:r 2=m 2:m 1线速度之比与质量比相反:(由半径之比推导) V 1:V 2=m 2:m 1V 1=ωr 1 V 2=ωr 2 V 1:V 2=r 1:r 2=m 2:m 1二、 “三星”问题 有两种情况:第一种三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R 的圆轨道上运行,周期相同;第二种三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的外接圆轨道运行,三星运行周期相同。
★例题精析【例题1】在天体运动中,将两颗彼此相距较近的行星称为双星。
它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。
如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期; (3)双星的线速度。
分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。
但两者做匀速圆周运动的半径不相等。
M 1 M 2ω1 ω2L r 1r 2图1解:设行星转动的角速度为,周期为(1)如图,对星球,由向心力公式可得:同理对星球有:两式相除得:(即轨道半径与质量成反比)又因为所以,,(2)因为,所以(3)因为,所以说明:处理双星问题必须注意两点(1)两颗星球运行的角速度、周期相等;(2)轨道半径不等于引力距离(这一点务必理解)。
弄清每个表达式中各字母的含义,在示意图中相应位置标出相关量,可以最大限度减少错误。
【例题2】(01北京.08宁夏卷)两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
现测得两星中心距离为R,其运动周期为T,求两星的总质量。
(引力常量为G)【例题3】宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。
设三颗星质量相等,每个星体的质量均为m。
(1)试求第一种情况下,星体运动的线速度和周期(2)假设第二种情况下星体之间的距离为R,求星体运动的线速度和周期★自我测评1.两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比。
B 、它们做圆周运动的线速度之比与其质量成反比。
C 、它们做圆周运动的半径与其质量成正比。
D 、它们做圆周运动的半径与其质量成反比。
解析:两子星绕连线上的某点做圆周运动的周期相等,角速度也相等。
由v=r ω得线速度与两子星圆周运动的半径是成正比的。
因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由212112M M G M r L ω=,212222M M G M r Lω=可知:221122M r M r ωω=,所以它们的轨道半径与它们的质量是成反比的。
而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的。
正确答案为:BD 。
2.(2010·全国卷Ⅰ)如图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧.引力常数为G .(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024kg 和7.35×1022kg.求T 2与T 1两者平方之比.(结果保留3位小数)解析:(1)设两个星球A 和B 做匀速圆周运动的轨道半径分别为r 和R ,相互作用的引力大小为f ,运行周期为T .根据万有引力定律有f =GMmR +r2①由匀速圆周运动的规律得f =m (2πT)2r ②f =M (2πT)2R ③由题意有L =R +r ④ 联立①②③④式得T =2πL 3G M +m⑤(2)在地月系统中,由于地月系统旋转所围绕的中心O 不在地心,月球做圆周运动的周期可由⑤式得出T 1=2πL ′3G M ′+m ′⑥式中,M ′和m ′分别是地球与月球的质量,L ′是地心与月心之间的距离.若认为月球在地球的引力作用下绕地心做匀速圆周运动,则G M ′m ′L ′2=m ′(2πT 2)2L ′ ⑦ 式中,T 2为月球绕地心运动的周期.由⑦式得T 2=2πL ′3GM ′ ⑧ 由⑥⑧式得(T 2T 1)2=1+m ′M ′⑨ 代入题给数据得(T 2T 1)2=1.0123. 用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动。
(1)计算该双星系统的运动周期T 计算。
(2)若实验上观测到的运动周期为T 观测,且T 观测:T 计算=1:N (N>1),为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化模型,我们假定在这两个星体边线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
解析:(1)双星绕它们的连线中点做圆周运动,由万有引力提供向心力,根据万有引力和牛顿第二定律得:2222M M L G L ω=,而2T πω=。
解得:L 2L /GM T π计算=。
(2)因为1NT T T 观测计算计算=<,这个差异是以双星连线为直径的球体内均匀分布着的暗物质引起的,设这种暗物质质量为M ′,位于两星连线中点处的质点对双星的影响相同,这时双星做圆周运动的向心力由双星的万有引力和M ′对双星的万有引力提供,所以有:()22/222/2M L M MMGG L L ω=观测+,又2T πω=观测观测解得暗物质的质量为:/N 1/4M M =(-)而暗物质的体积为:34L V 32π=()所以暗物质的密度为:/3M 3(1)/(2)VN M L ρπ=-= 4.(2006天津理综卷第25题).神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。
天文学家观测河外星系大麦哲伦云时,发现了LMCX -3双星系统,它由可见星A 和不可见的暗星B 构成。
两星视为质点,不考虑其它天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图所示。
引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T 。
(1)可见星A 所受暗星B 的引力F A 可等效为位于O 点处质量为m ’的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m ’ 的表达式(用m 1、m 2表示);(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞。
若可见星A 的速率v =2.7×105m/s ,运行周期T =4.7π×104s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10-11N ·m 2/kg 2,m s =2.0×1030kg )【课后反思】_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。