探索两条直线平行的条件

合集下载

七年级下册数学第一课探索直线平行的条件

七年级下册数学第一课探索直线平行的条件

七年级下册数学第一课探索直线平行的条件1.直线平行是指两条直线永远不会相交。

Parallel lines refer to two lines that will never intersect.2.直线平行的条件是它们具有相同的斜率。

The condition for lines to be parallel is that they have the same slope.3.斜率是指直线上任意两点的纵坐标差与横坐标差的比值。

Slope refers to the ratio of the vertical difference to the horizontal difference between any two points on a line.4.如果两条直线的斜率相同,那么它们是平行的。

If two lines have the same slope, then they are parallel.5.两条直线的斜率相同但不相交,则它们平行。

Two lines with the same slope but do not intersect are parallel.6.另一种判断直线平行的方法是它们的斜率乘积为-1。

Another way to determine if lines are parallel is if the product of their slopes is -1.7.这个方法适用于垂直线。

This method applies to perpendicular lines.8.垂直线是指它们的斜率互为倒数的直线。

Perpendicular lines are lines with slopes that are reciprocal of each other.9.如果两条直线的斜率互为倒数,那么它们是垂直的。

If two lines have slopes that are reciprocal, then they are perpendicular.10.平行线和垂直线在几何图形中有着重要的应用。

10.2两条直线平行与垂直的条件

10.2两条直线平行与垂直的条件
(2)垂直于直线 2x y 3 0 .
10.2.2两条直线垂直的条件
如图,当 l1 l2 时,
(1)斜率均存在时:l1 : y k1x b1 ;l2 : y k2x b2
k1
tan1
BC AB
k2
tan2
tan(π 3 )
tan3
AB BC
所以 k1 k2 1.
(2)如直线 l1 的斜率不存在,即1 90 ,则直线 l2 的倾斜
(1)斜率存在时,l1 : y k1x b1 ;l2 : y k2 x b2( b1 b2 )
若 1
平行;
2
0 时,则k1
k2
0,直线
y b1 和直线 y b2
若 1 2 0 时,则 k1 k2 0 ,直线 y k1x b1 和直
线 y k2x b2 平行.
(2)斜率不存在时:l1 : x x1 ,l2 : x x2( x1 x2 ),
2.P(1,0) 是直线 l上一点,且平行于经过 A(3,5) 和 B(2, 7)两点
的直线,求直线 l 的方程.
3.直线 ax y 5 0 与直线 3x 2y c 0平行,判断 a, c
的取值.
10.2.2两条直线垂直的条件
如图:l1 l2他们的倾斜角之间满足 1 2 90 ,那么 他们的斜率之间又存在着什么样的关系呢?
解:(1)两条直线斜率都不存在,即两条直线都与 x 轴垂直,
所以 l1 / /l2 .
(2)l2 可化为y
以 l1 / /l2 .
3x 5,有 kl1
kl2
3
且 bl1
1 bl2
5,所
(3)kl1
2 3
kl2
2 3
,所以 l1与l2 相交

北师大版七年级下册数学教案设计:2.2探索直线平行的条件 第一课时

北师大版七年级下册数学教案设计:2.2探索直线平行的条件 第一课时

练习2 如图,∠1=∠2=55°, ∠3等于多少度?直线AB 、CD 平行吗?说明你的理由。

练习3 议一议
问题1:你还记得怎样用移动三角板的方法画两条平行线吗?你能用这种方法过已知直线AB 外一点P 画它的平行线吗?请说出其中的道理。

问题2:分别过点C 、D 画直线AB 的平行线EF 、GH , EF 与GH 有怎样的位置关系?
结论:过直线外一点有且只有一条直线与这条直线平行。

平行于同一条直线的两条直线互相平行。

因为a ∥b ,a ∥c ,根据平行于同一条直线的两条直线互相平行,所以b ∥c
加深学生对知识的理解
和巩固
学生思考,知识迁移
你有什么发现? 与同伴交流.
1 2 3
E F
G H B C
D A A B P
. 议一议 2
议一议1。

2、2探索直线平行的条件

2、2探索直线平行的条件

预习提纲:
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
问题3:什么叫两条直线平行?
问题4:如课本彩图,装修工人正在向墙上钉木条。

如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角是多少度时,才能使木条a 与木条b 平行?
问题:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。

问题5:1、图中的直线b 与直线c 不垂直,直线a 应满足什么条件才能与直线b 平行呢?请你利用教具亲自动手操作。

做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2, 固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a 与纸条b 的位置关系发生了什么变化?纸条a 何时与纸条b 平行?改变图中∠1的大小再试一试,与同学交流你的发现。

2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。

问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件 A B D
C O。

例谈证明两条直线平行的常用方法

例谈证明两条直线平行的常用方法

数学篇学思导引数、负数、非正数、非负数等.在求分式方程中参数的值时,若已知分式方程有解,同学们要注意如下两点:一是认真审读题目,弄清题设中解的情况,即明确该解是正数,还是负数等;二是参数的取值要使分式有意义,即分式方程的分母不能为零.例3若关于x 的分式方程x +a x -5+6a 5-x=4的解为正数,则a 的值满足().A.a <4B.a >-4C.a <4且a ≠1D.a >-4且a ≠-1分析:本题分式方程有根,求解时既要考虑根为正数的情形,又要考虑分式方程的分母不能为零.解:原方程同时乘以(x -5),可得(x +a )-6a =4(x -5),整理可得3x =20-5a ,解得x =20-5a 3.因为分式方程的解为正数,所以20-5a 3>0,即20-5a >0,解得a <4.又因为x -5≠0,所以x ≠5,即20-5a 3≠5,解得a ≠1.所以当a <4,且a ≠1时,原分式方程的解为正数,故正确答案为C 项.评注:求分式方程参数的取值范围,一般先去分母,化分式方程为整式方程;然后用含参数的代数式把分式方程的解表示出来,再由分式方程中解的条件(正数、负数等),将其转化为不等式问题.在这一过程中,同学们特别要注意分式方程有解的隐含条件:分母不能为零.总之,分式方程中参数的值或取值范围与分式方程的增根、无解、有解息息相关.在平时做题时,同学们要仔细审题,把握已知条件,尤其是隐含条件,并注意结合具体情况展开分类讨论,及时检验和修正,从而规避漏解、多解以及错解,提高解题的准确性.我们知道,在同一平面内不相交的两条直线叫做平行线.那么,如何证明两条直线平行呢?有关两条直线平行的证明方法有许多,笔者归纳了如下三种常用的证明方法,以期对同学们证题有所帮助.一、利用“平行线判定定理”平行线的判定定理是指两条直线被第三条直线所截,如果同位角、内错角相等,或同旁内角互补,那么这两条直线平行,简称为“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.”它是判定两直线平行的基本定理,也是证明两条直线平行最为常用的一种方法.例1如图1所示,在△MNP 中,∠MNP =90°,NQ 是MP 边上的中线,将△MNQ 沿MN 边所在的直线折叠,使得点Q恰好落在点R 处,从而得到四边形MPNR .求证:RN ∥MP .分析:要想证明RN ∥MP ,关键是确定第三条直线.观察图形,很容易看出,这两条直线是被MN 所截的,由题意易知NQ =MQ ,∠QMN =∠QNM ,∠RNM =∠QNM ,这样易推出∠QMN =∠RNM ,再由“内错角相等,两直线平行”进而得到RN ∥MP .证明:因为NQ 是MP 边上的中线,且∠MNP =90°,所以NQ =MQ ,∠QMN =∠QNM .例谈证明两条直线平行的常用方法江阴市夏港中学姚菁菁图127数学篇学思导引又因为△MNR由△MNQ沿MN边所在的直线折叠,所以∠RNM=∠QNM,∠QMN=∠RNM.所以RN∥MP.(内错角相等,两直线平行)评注:在证明两条直线平行时,同学们要注意借助平行线的判定定理,证明这两条直线被第三条直线所截成的同位角、内错角相等,或者同旁内角互补.二、利用“三角形或梯形的中位线定理”由三角形或梯形的中位线定理可知,三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半,梯形的中位线平行于两底,并且等于两底和的一半.因此,在证明两条直线平行时,若题目涉及中点,同学们要注意构造中位线,利用三角形或梯形的中位线定理进行求证.例2如图2所示,已知AM平分∠BAC,BM⊥AM,垂足为M,且BN=NC.求证:MN∥AC.分析:由题意可知,点N为边BC的中点,因此要证明MN与AC平行,可以从三角形中位线入手.不妨延长BM交AC于点P,这样只要证明M为边BP的中点,问题自然得证.证明:延长BM交AC于点P.因为AM平分∠BAC,所以∠BAM=∠CAM.因为BM⊥AM,所以∠AMB=∠AMP=90°.又因为AM为公共边,所以△AMB≌△AMP,所以BM=PM.因为BN=NC,所以MN为△BCP的中位线,所以MN∥PC,即MN∥AC.评注:三角形或梯形中位线定理反映了图形间线段的位置关系和数量关系.因此,当问题涉及三角形或梯形的中点时,同学们要注意考虑三角形或梯形的中位线,利用三角形或梯形的中位线定理来破解问题.三、利用“平行四边形对边平行”的性质对边平行且相等,是平行四边形的重要性质之一.因此,在证明两条直线平行时,若问题涉及平行四边形,同学们要注意结合已知条件,先证明这两条直线所在的四边形为平行四边形,再根据“平行四边形对边平行”这一性质判定这两条直线平行.例3如图3所示,已知BD平行四边形ABCD的一条对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AF∥EC.分析:本题涉及平行四边形,仔细观察图形,不难发现,要想证明AF∥EC,实际上只要证明四边形AECF为平行四边形即可.根据已知条件AE⊥BD,CF⊥BD,可以得到AE∥CF.然后由四边形ABCD为平行四边形,易知AB与DC是平行且相等的,进而推出∠ABE=∠ADF.再由∠AEB=∠CFD=90°,易知Rt△ABE与Rt△CDF为全等三角形,由此得到AE=CF,最后根据平行四边形的性质,确定四边形AECF为平行四边形,从而得出AF∥EC.证明:因为AE⊥BD,CF⊥BD,所以AE∥CF,且∠AEB=∠CFD=90°.因为四边形ABCD为平行四边形,所以AB∥DC,且AB=DC,∠ABE=∠CDF.由此可证Rt△ABE≌Rt△CDF.所以AE=CF,所以四边形AECF为平行四边形.所以AF∥EC(平行四边形对边互相平行).评注:平行四边形的两组对边是平行且相等的,利用这一性质既可以证明两直线平行,也可以证明两直线相等.总之,证明两条直线平行的方法多种多样,同学们在平时的学习中,既要注意夯实基础知识,掌握基本定理和推论,又要注意强化训练,结合具体问题,灵活选择恰当的证明方法,从而快速、准确、高效地解题.图2图328。

《探索直线平行的条件》教案

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 课程背景本节课旨在引导学生探索直线平行的条件,通过观察、思考、交流等活动,让学生理解直线平行的概念,掌握判断直线平行的方法,为后续学习几何知识打下基础。

1.2 教学目标1. 了解直线平行的概念;2. 掌握判断直线平行的方法;3. 培养观察、思考、交流能力。

1.3 教学重难点1. 直线平行的概念;2. 判断直线平行的方法。

第二章:直线平行的概念2.1 教学内容通过观察生活中实例,引导学生认识直线平行的概念,理解直线平行的特点。

2.2 教学方法采用直观演示、小组讨论的教学方法,让学生在观察、思考中掌握直线平行的概念。

2.3 教学步骤1. 展示生活中的实例,引导学生观察直线平行的特点;2. 引导学生思考直线平行的定义;3. 组织小组讨论,让学生交流直线平行的理解;4. 总结直线平行的概念及特点。

第三章:判断直线平行的方法3.1 教学内容本节课引导学生学习判断直线平行的方法,包括平行公理、平行线的性质等。

3.2 教学方法采用讲解、示范、练习的教学方法,让学生在理解判断直线平行的方法的基础上,能够独立进行判断。

3.3 教学步骤1. 讲解平行公理及其实际意义;2. 示范判断直线平行的方法;3. 组织学生进行练习,巩固判断方法;4. 引导学生总结判断直线平行的关键点。

第四章:直线平行的应用4.1 教学内容本节课让学生学会运用直线平行的知识解决实际问题,提高学生的应用能力。

4.2 教学方法采用案例分析、小组合作的方法,让学生在解决实际问题中,巩固直线平行的知识。

4.3 教学步骤1. 展示实际问题,引导学生运用直线平行的知识进行分析;2. 组织小组合作,让学生共同探讨解决问题的方法;3. 分析、评价小组成果,总结直线平行在实际问题中的应用;4. 进行课堂练习,巩固所学知识。

第五章:总结与拓展5.1 教学内容本节课对本节课内容进行总结,引导学生思考直线平行在几何学中的重要性,并进行拓展学习。

2.2探索两直线平行的条件(精讲)(学生版)

2.2探索两直线平行的条件(精讲)(学生版)

2.2探索两直线平行的条件“三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图.同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角..判定方法1:同位角相等,两直线平行.如图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)题型2:平行线的判定1(同位角相等)2.如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠3+∠5=180°.(用“>”,“<”或“=”填空)平行线的画法(【变式3-1】如图.直线a.点B.点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【变式3-2】如图,在方格纸上∶(1)已有的四条线段中,哪些是互相平行的?(2)过点M画AB的平行线(3)过点N画GH的平行线平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.题型5:内错角、同旁内角的概念及识别5.如图,下列两个角是内错角的是()A.∠1与∠2B.∠1与∠3C.∠1与∠4D.∠2与∠4【变式5-1】如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠5【变式5-2】如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有()A.2个B.3个C.4个D.5个判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)6.补全下面的证明过程,并在括号内填上适当的理由.【变式6-1】如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠2=∠4D.∠3=∠5判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)证明:∵“内错角”或“同旁内角”)【变式8-1】如图,(1)∠1和∠3是直线和被直线所截而成的角;(2)能用图中数字表示的∠3的同位角是;(3)图中与∠2是同旁内角的角有个.的位置关系,并说明理由.题型10:平行线的判定简单综合10.光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.试判断。

同位角相等两直线平行的条件-概述说明以及解释

同位角相等两直线平行的条件-概述说明以及解释

同位角相等两直线平行的条件-概述说明以及解释1.引言1.1 概述概述在几何学中,我们经常遇到两条直线之间的关系。

其中一种重要的关系是两条直线平行的情况。

而当两条直线平行时,它们之间的同位角具有一个特殊的性质,即同位角相等。

因此,研究同位角相等和直线平行之间的条件对于解决与直线相关的几何问题至关重要。

本文将探讨同位角的定义和性质,以及平行线的定义和性质。

进一步,我们将研究同位角相等的条件和直线平行的条件。

通过分析这些条件,我们可以更深入地理解直线之间的关系,并且能够在解题过程中运用这些条件。

首先,我们将介绍同位角的定义和性质。

同位角是指位于同一侧相交直线上两条直线所夹的角。

我们将讨论同位角的定义,并探究同位角的一些重要性质,例如同位角的和角、互补角和对顶角等。

这些性质有助于我们理解同位角的特点,并为后续讨论奠定基础。

接下来,我们将详细探讨平行线的定义和性质。

平行线是指在同一个平面上不相交的直线,它们在任意位置上的距离始终相等。

我们将探讨平行线的定义,并讨论平行线的一些重要性质,例如平行线的性质、平行线与转角的关系等。

这些性质将帮助我们更好地理解平行线的特点,并为进一步讨论提供所需的背景知识。

最后,我们将研究同位角相等的条件和直线平行的条件。

通过分析同位角相等的条件,我们可以确定两个直线平行的判定条件之一。

同时,我们还将讨论直线平行的条件,即确定直线是否平行所需满足的条件。

这些条件的理解和应用将有助于我们解决与直线平行和同位角相关的几何问题,以及在实际生活中应用几何知识时能够更准确地判断直线之间的关系。

通过本文的探讨,我们将能够更深入地理解同位角相等和直线平行的条件。

同时,我们还将学会如何应用这些条件解决与直线相关的几何问题。

这些知识将为我们在学习和应用几何学时提供有力的支持。

下一节将详细介绍同位角的定义和性质。

让我们一起深入研究吧!1.2文章结构1.2 文章结构本文主要围绕同位角相等和两条直线平行的条件展开讨论。

两条直线平行的条件平行线的特征

两条直线平行的条件平行线的特征

两条直线平行的条件平行线的特征主讲:方敏文一周强化一、一周知识概述1、两条直线平行的条件(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.上述方法可表述为:如图.(1)如果∠1=∠2,那么AB∥CD;(2)如果∠3=∠2,那么AB∥CD;(3)如果∠2+∠4=180°,那么AB∥CD.关键是-定要看清哪两条直线被哪-条直线所截形成的同位角或同旁内角或内错角相等或互补,才能正确判断是哪两条直线平行.2、平行线的特征(1)两条平行直线被第三条直线所截,同位角相等,简单地说成“两直线平行,同位角相等”.可表述为:如图,因为a∥b(已知),所以∠l=∠2(两直线平行,同位角相等).(2)两条平行直线被第三条直线所截,内错角相等,简单地说成“两直线平行,内错角相等”.可表述为:如图,因为a∥b(已知),所以∠2=∠3(两直线平行,内错角相等).(3)两条平行直线被第三条直线所截,同旁内角互补,简单地说成“两直线平行,同旁内角互补”.可表述为:如图,因为a∥b(已知),所以∠2+∠4=180°(两直线平行,同旁内角互补).注意:①只要两条直线被第三条直线所截,都存在这三类角,但同位角、内错角不-定相等,同旁内角也不-定互补;②同位角相等、内错角相等、同旁内角互补,都是平行线的特有性质,在使用时,切不可忽略前提条件“两直线平行”.当两直线不平行时,同位角与内错角就不相等,同旁内角也不互补.3、直线平行的条件与平行线的特征区分几何中,图形之间的“位置关系”-般都与某种“数量关系”有着内在联系,常有“位置关系”决定其“数量关系”,反之也可以由“数量关系”去确定“位置关系”.正确区分平行线的判定方法和平行线的特征是十分重要的.从表中可以看出,由角的相等或互补关系,得到两直线平行的结论是判定方法;而由两条直线平行,得到角相等或互补关系的结论是平行线的特征.二、典型例题剖析例1、如图,下列条件中,不能判断直线l 1∥l 2的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°分析:主要考查平行线的判定条件,在辨认三种角时,抓住截线是关键,即“先辨截线,再判位置”.当∠1=∠3时,由内错角相等,两直线平行可得l 1∥l 2;当∠4=∠5时,由同位角相等,两直线平行可得l 1∥l 2;当∠2+∠4=180°时,由同旁内角互补可得l 1∥l 2. 答案:B例2、如图,已知AC 平分∠DAB ,∠BAC =∠ACB ,那么AD 与BC 平行吗?请写出推理过程.分析:要判定AD与BC平行,应先观察AD与BC被哪条直线所截,然后设法由已知条件推出同位角或内错角相等,或同旁内角互补.本例把AB看作截线,不能得出结论,而把AC看作截线即可推出∠ACB=∠CAD,从而得出AD∥BC.(关键是要找准截线)解:∵AC平分∠DAB(已知),∴∠BAC=∠CAD(角平分线定义),∵∠BAC=∠ACB(已知),∴∠CAD=∠ACB(等量代换),∴AD∥BC(内错角相等,两直线平行).例3、如图,如果两个角满足某种关系,就可以判断AE∥BF.请你将这样的相关的角写出几组,并说明理由.分析:本题属于条件开放性问题,由于图形比较复杂,很容易找不全所有符合条件的答案.解题时要紧紧抓住判定两条直线平行的三种判定方法,以顶点为出发点来寻找符合条件的两个角.由以B为顶点的∠B,可以得到以下条件:∠B=∠7,∠B=∠6,∠B+∠BAE=180°;然后再找以C为顶点的角有∠1,∠3,∠BCE和∠ACF(∠2不能和其他角构成符合条件的-组角),可以得到以下条件:∠1=∠5,∠l+∠CAG=180°,∠3=∠E,∠BCE+∠E=180°,∠ACF=∠CAG,∠ACF+∠5=180°,由此可以得到符合条件的全部答案.解:满足条件的两个角有:(1)∠B=∠7(内错角相等,两直线平行);(2) ∠B=∠6(同位角相等,两直线平行);(3) ∠B+∠BAE=180°(同旁内角互补,两直线平行);(4) ∠1=∠5(内错角相等,两直线平行);(5) ∠1+∠CAG=180°(同旁内角互补,两直线平行);(6) ∠3=∠E(内错角相等,两直线平行);(7) ∠BCE+∠E=180°(同旁内角互补,两直线平行);(8) ∠ACF=∠CAG(内错角相等,两直线平行);(9) ∠ACF十∠5=180°(同旁内角互补,两直线平行).小结:以顶点为出发点,有规律、有顺序地寻找符合条件的两角,关键是要从简单情形入手,逐步过渡到复杂情形.例4、如图(1),线段AB//CD,点P是AB、CD间的-个点.(1)试判断∠A、∠C与∠APC的数量关系;(2)如果点P移动到线段AC的左侧,那么你发现的上述结论还成立吗?说明理由;(如图(2))(3)如果点P移到两平行线的同侧,那么你发现的上述结论还成立吗?说明理由.(如图(3))分析:图中虽然有平行线,但是缺少和两条平行线都相交的第三条直线,因此也就没有同位角、内错角的相等关系以及同旁内角的互补关系,如何构造出这三类角,充分利用平行线的性质是解决问题的关键,因此,需要构造满足平行线的性质的基本图形.解:(1) ∠A+∠C=∠APC.理由:如图(1),过P作直线PM∥AB.由AB//PM,得∠A=∠APM.由AB//CD,PM//AB,得CD//PM.于是∠C=∠CPM.而∠APC=∠CPM+∠APM,故∠APC=∠A+∠C;(2)不成立,∠BAP+∠PCD+∠APC=360°.理由:如图(2),过P作PM//AB,而AB∥CD,所以AB∥PM∥CD.所以∠1+∠BAP=180°,∠2+∠PCD=180°.所以∠1+∠BAP+∠2+∠PCD=180°×2=360°,即∠APC+∠BAP+∠PCD=360°;(3)不成立.∠APC=∠C-∠A.理由:如图(3),过P作PM∥AB,从而知PM∥AB∥CD,于是有∠MPA=∠A,∠MPC=∠C,而∠MPC=∠MPA+∠APC,故∠C=∠A+∠APC.即∠APC=∠C-∠A.小结:两条平行线中出现折线时,过折线的折点作平行线是解决问题的关键.。

苏科版七年级数学下册《7-1探索直线平行的条件(1)》优秀教学设计

苏科版七年级数学下册《7-1探索直线平行的条件(1)》优秀教学设计

苏科版七年级数学下册《7-1探索直线平行的条件(1)》优秀教学设计一. 教材分析《7-1探索直线平行的条件(1)》是苏科版七年级数学下册的一个重要章节。

本章节主要引导学生探索直线平行的条件,通过实验和证明,让学生了解和掌握平行线的性质。

教材中安排了丰富的例题和练习题,帮助学生巩固所学知识。

二. 学情分析七年级的学生已经掌握了基本的数学运算能力和一定的几何知识。

但是,对于直线平行的概念和性质,学生可能还比较陌生。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出直线平行的概念,并通过实验和证明让学生理解和掌握平行线的性质。

三. 教学目标1.让学生了解直线平行的概念,能够识别平行线。

2.引导学生通过实验和证明探索直线平行的条件。

3.培养学生运用几何知识解决实际问题的能力。

四. 教学重难点1.直线平行的概念和识别。

2.探索直线平行的条件,并能够运用到实际问题中。

五. 教学方法1.实验法:通过引导学生进行实验,让学生直观地了解直线平行的性质。

2.证明法:通过证明过程,让学生深入理解直线平行的条件。

3.实例教学法:通过实际问题,让学生运用所学知识解决问题。

六. 教学准备1.准备相关的实验器材,如直尺、三角板等。

2.准备一些实际的例子,用于引导学生理解和运用直线平行的知识。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生关注直线平行的现象,并提出问题:“什么是平行线?如何判断两条直线是否平行?”2.呈现(10分钟)介绍直线平行的概念,并展示一些平行线的图片,让学生识别。

同时,解释平行线的性质,如同位角相等、内错角相等等。

3.操练(15分钟)引导学生进行实验,观察和记录平行线的性质。

可以使用直尺和三角板搭建不同的图形,让学生通过观察和测量来验证平行线的性质。

4.巩固(10分钟)给出一些实际的例子,让学生运用所学知识解决问题。

可以通过小组合作的方式,让学生互相讨论和解答问题。

5.拓展(10分钟)引导学生进一步探索直线平行的条件,如通过给出两条直线的斜率,让学生判断它们是否平行。

苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2

苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2

苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2一. 教材分析《探索直线平行的条件》是苏科版数学七年级下册第七章第一节的内容。

本节课主要让学生通过探索,理解并掌握直线平行的条件。

学生在学习了直线、射线、线段的基础上,进一步探索直线平行的条件,有助于提高他们的空间想象能力和抽象思维能力。

教材通过实例引入,引导学生探究并发现直线平行的条件,然后通过练习巩固所学知识。

二. 学情分析七年级的学生已经学习了直线、射线、线段等基础知识,对图形的认识有一定的基础。

但是,他们对直线平行的条件的理解和应用还需要进一步的引导和培养。

此外,学生的空间想象能力和抽象思维能力有待提高,因此,在教学过程中,需要通过实例和操作活动,让学生在实践中理解和掌握直线平行的条件。

三. 教学目标1.理解直线平行的概念,掌握直线平行的条件。

2.能够运用直线平行的条件判断两直线是否平行。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.重点:直线平行的条件。

2.难点:直线平行的条件的运用和理解。

五. 教学方法1.实例引入:通过生活中的实例,引导学生关注直线平行的现象,激发学生的学习兴趣。

2.合作学习:分组讨论,让学生在合作中发现问题、解决问题,培养学生的团队协作能力。

3.操作活动:让学生动手操作,通过实践加深对直线平行条件的理解。

4.引导发现:教师引导学生发现直线平行的条件,培养学生的抽象思维能力。

六. 教学准备1.准备实例:收集生活中的直线平行的实例。

2.准备教学工具:黑板、粉笔、直尺、三角板等。

3.准备练习题:设计一些有关直线平行的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如自行车的车轮、铁轨等,引导学生关注直线平行的现象,激发学生的学习兴趣。

提问:你们在生活中还见过哪些直线平行的例子?2.呈现(10分钟)展示直线平行的图片,让学生观察并说出直线平行的特点。

教师引导学生用语言描述直线平行的条件。

两条直线平行的条件公式

两条直线平行的条件公式

两条直线平行的条件公式
在解析几何中,两条直线平行的条件可以表述为公式。

假设有两条直
线L1和L2,我们可以用以下三种条件之一来确定它们是否平行。

1.斜率相等:如果两条直线的斜率相等,则它们是平行线。

斜率可以
通过线的倾斜角度来衡量。

设直线L1的斜率为m1,直线L2的斜率为m2,则可以表示为:m1=m2、这意味着两条线在同一方向上的倾斜程度相同,
因此它们平行。

这是最常用的条件之一。

2.两条直线上有一个共同的点,并且它们的切线斜率相等:如果两条
直线上有一个共同的点,并且它们的切线斜率相等,则这两条直线是平行的。

假设直线L1通过点P(某1,y1),直线L2通过点Q(某2,y2),且它们
的切线斜率分别为m1和m2,则可以表示为:m1=m2、这意味着两条直线
在它们通过共同点的那一点的切线斜率相等,因此它们平行。

3.两条直线的法向量相等:如果两条直线的法向量相等,则它们是平
行的。

法向量是与直线垂直的向量,可以通过直线的一般方程来计算。


直线L1的一般方程为A某1+By1+C1=0,直线L2的一般方程为A某
2+By2+C2=0,则可以表示为:A1=A2,B1=B2,C1=C2、这意味着两条直线
的一般方程的系数相等,因此它们平行。

这些是两条直线平行的三个常见条件。

根据具体问题的要求,可以选
择其中之一来判断两条直线是否平行。

需要注意的是,这些条件适用于解
析几何中的笛卡尔坐标系统,其中直线可以用斜率或一般方程来表示。


其他几何系统中,可能有不同的条件用于判断直线的平行性。

俩直线平行和重合的条件

俩直线平行和重合的条件

俩直线平行和重合的条件
地址:
法定代表人:
联系电话:
地址:
法定代表人:
联系电话:
鉴于甲方与乙方就直线平行和重合的条件达成一致,特订立本协议书,具体条款如下:
一、协议的目的
确立俩直线平行和重合的准确定义;
确保双方在几何学中的共同理解和标准。

二、俩直线平行的条件
两条直线在同一平面内;
直线间的距离始终相等;
两条直线的斜率相等;
相互之间没有交点。

三、俩直线重合的条件
两条直线在同一平面内;
两条直线的每一点均重合;
两条直线完全相同。

四、双方的权利和义务
甲方有权依据本协议要求乙方在几何学问题中认可俩直线平行或重合的条件;
乙方有义务在相关几何学问题中,确保直线是否平行或重合的准确度。

五、争议解决
对于因本协议引起的争议,双方应友好协商解决;
如协商不成,提交有管辖权的法院解决。

六、协议的生效
本协议自双方签字盖章之日起生效;
本协议一式两份,甲乙双方各执一份。

签署人
甲方(盖章):____________________________
法定代表人(签字):____________________________
日期:____________________________
乙方(盖章):____________________________
法定代表人(签字):____________________________
日期:____________________________。

第8讲 探索直线平行的条件(解析版)

第8讲 探索直线平行的条件(解析版)

第8讲探索直线平行的条件【知识点拨】考点1:同位角、内错角、同旁内角的概念1. “三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1细节剖析⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.细节剖析(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.知识点2:同位角、内错角、同旁内角位置特征及形状特征细节剖析巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.平行线的判定知识点1:平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.细节剖析(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.考点2:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.细节剖析(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.考点3:直线平行的判定判定方法1:两直线平行,同位角相等,.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)细节剖析平行线的判定是由角相等或互补,得出平行,即由数推形.【考点精讲】考点1:同位角、内错角、同旁内角【例1】(2021春•西湖区期末)如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.【解答】解:①能与∠DEF构成内错角的角的个数有2个,即∠EF A和∠EDC,故正确;②能与∠EFB构成同位角的角的个数只有1个:即∠F AE,故正确;③能与∠C构成同旁内角的角的个数有5个:即∠CDE,∠B,∠CED,∠CEF,∠A,故错误;所以结论正确的是①②.故答案为:①②.【例2】(2021秋•南沙区期中)下列图中,∠1与∠2是同位角的是()A.B.C.D.【解答】解:选项A中的两个角是同旁内角,因此不符合题意;选项C中的两个角既不是同位角、也不是内错角、同旁内角,因此不符合题意;选项D不是两条直线被一条直线所截出现的角,不符合题意;只有选项B中的两个角符合同位角的意义,符合题意;故选:B.【变式训练1】(2021春•高州市期中)如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等于,∠3的同旁内角等于.【解答】解:如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于80°,∠3的内错角等于80°,∠3的同旁内角等于100°,故答案为:80°;80°;100°【变式训练2】(2021春•瑞安市期中)如图,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠5【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项不符合题意;B、∠1和∠3是同位角,不是同旁内角,故本选项不符合题意;C、∠1和∠4是内错角,不是同旁内角,故本选项不符合题意;D、∠1和∠5是同旁内角,故本选项符合题意;故选:D.【变式训练3】(2021春•滦南县期末)下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角【解答】解:A、应该是“若两条平行直线被第三条直线所截,则同旁内角互补”,故错误;B、相等的角不一定都是对顶角,如两直线平行,其中的同位角相等但不是对顶角,故错误;C、如果这两个角在公共边的同侧,则不是邻补角,故错误;D、正确.故选:D.【变式训练4】(2021春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对【解答】解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选:C.【变式训练5】(2021春•麻城市校级月考)如图,∠1和∠3是直线和被直线所截而成的角;图中与∠2是同旁内角的角有个.【解答】解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,故答案为:AB、AC、DE、内错,3.【变式训练6】(2021春•杭州期中)如图两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是【解答】解:如图,设∠1=x°,则∠3=2x°,∠2=4∠3=8x°,∵∠1+∠2=180°,∴x°+8x°=180°,解得:x=20,∴∠1=20°.故答案为:20°.考点2:平行线的判定【例1】(2021秋•双阳区期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.【例2】(2021春•江阴市期中)如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3 B.∠A+∠2=180°C.∠1=∠4 D.∠1=∠A【解答】解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.【变式训练1】(2021春•越秀区校级期中)如图,要得到AB∥CD的结论,则需要角相等的条件是(写出一个即可).【解答】解:要得到AB∥CD的结论,则需要角相等的条件是∠EDC=∠BCD(答案不唯一).故答案为:∠EDC=∠BCD(答案不唯一).【变式训练2】(2021秋•南关区期末)如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC【解答】解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.【变式训练3】(2021秋•郫都区期末)光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为.【解答】解:如图,∵AB∥CD,∴∠5=180°﹣∠2,∵AC∥BD,∴∠3=∠5,∵AE∥BF,∴∠1=∠6,∵EF∥AB,∴∠4=∠6,∴∠3﹣∠4=180°﹣∠2﹣∠1=180°﹣(∠1+∠2)=77°.故答案为:77°.【变式训练4】(2021秋•建平县期末)如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.【解答】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【变式训练5】(2021春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.【解答】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【变式训练6】(2021春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有.(填序号)【解答】解:①∵∠1=25.5°+∠ABC=55.5°=∠2=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤【课后巩固】一.选择题1.(2021秋•双阳区期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.2.(2021秋•南关区期末)如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC【解答】解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.3.(2021秋•雨花区期末)如图,点E在CB的延长线上,下列条件中,能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3C.∠A=∠ABE D.∠A+∠ABC=180°【解答】解:A.由∠1=∠4,不能判定AB∥CD,故本选项错误;B.由∠2=∠3,能判定AB∥CD,故本选项正确;C.由∠A=∠ABE,不能判定AB∥CD,故本选项错误;D.由∠A+∠ABC=180°,不能判定AB∥CD,故本选项错误.故选:B.4.(2021春•老城区校级月考)如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有()个.A.1个B.2个C.3个D.4个【解答】解:(1)∵∠3=∠4,∴BD∥AC;(2)∵∠1=∠2,∴AB∥CD;(3)∵∠A=∠DCE,∴AB∥CD;(4)∵∠D+∠ABD=180°,∴AB∥CD,故选:C.5.(2021秋•昌平区校级期末)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为()A.60°和135°B.45°、60°、105°和135°C.30°和45°D.以上都有可能【解答】解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.6.(2021春•兴国县期末)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个【解答】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.7.(2021春•织金县期末)如图,能够证明a∥b的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.8.(2021春•新泰市期末)如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABC+∠BCD=180°D.∠BAD+∠ABC=180°【解答】解:∵∠ABC+∠BCD=180°,∴AB∥CD.故选:C.9.(2021春•娄星区期末)如图,下列各选项不能得出AB∥CD的是()A.∠2=∠A B.∠3=∠BC.∠BCD+∠B=180°D.∠2=∠B【解答】解:∵∠2=∠A,∴AB∥CD,∵∠3=∠B,∴AB∥CD,∵∠BCD+∠B=180°,∴AB∥CD,故选:D.二.填空题10.(2021春•官渡区期末)如图,下列条件:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4;其中能判定AB∥CD的是①②(填序号).【解答】解:①∵∠1=∠2,∴AB∥CD;②∵∠BAD+∠ADC=180°,∴AB∥CD;③∵∠ABC=∠ADC,不能判定AB∥CD;④∵∠3=∠4,∴AD∥BC;故答案为:①②.11.(2021春•黄陵县期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB ∥CD,依据是内错角相等,两直线平行.【解答】解:如图所示:∵∠1=∠2=30°,∴AB∥CD(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.12.(2021•咸宁)如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.13.(2021春•常德期末)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠ABC+∠C=180°.其中,能推出AB∥CD的条件是①③④(填序号).【解答】解:①∵∠1=∠2,∴AB∥CD;②∵∠3=∠4,∴AD∥BC;③∵∠A=∠CDE,∴AB∥CD;④∵∠ABC+∠C=180°,∴AB∥CD.故答案为:①③④.14.(2021春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=30°或150°时,CD∥AB.【解答】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.15.(2021春•凌海市期末)如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有①③④.(填写所有满足条件的序号)【解答】解:①∵∠1=∠2,∴AB∥BC,根据内错角相等,两直线平行即可证得AB∥BC;②∠3=∠4,根据内错角相等,两直线平行即可证得BD∥AC,不能证AB∥CD;③∠A=∠DCE,根据同位角相等,两直线平行即可证得AB∥CD;④∠D+∠ABD=180°,根据同旁内角互补,两直线平行,即可证得AB∥CD.故答案为:①③④.16.(2021秋•胶州市期末)如图,∠C=120°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是∠BEC=60°(答案不唯一).【解答】解:因为∠C=120°,要使AB∥CD,则要∠BEC=180°﹣120°=60°(同旁内角互补两直线平行).故答案为:∠BEC=60°(答案不唯一).17.(2021秋•卧龙区期末)如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B 是同旁内角;④∠A与∠ACB不是同旁内角,其中正确的是①②③(只填序号).【解答】解:∠2与∠3是直线AB、直线BC,被直线CD所截的一对内错角,因此①符合题意;∠2与∠B是直线CD、直线BC,被直线AB所截的一对同位角,因此②符合题意;∠A与∠B是直线AC、直线BC,被直线AB所截的一对同旁内角,因此③符合题意,∠A与∠ACB是直线AB、直线BC,被直线AC所截的一对同旁内角,因此④不符合题意,故答案为:①②③.三.解答题18.(2021春•雨花区校级月考)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4(同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4(等量代换)所以AB∥DE(同位角相等,两直线平行)【解答】解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4 (同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4 (等量代换)所以AB∥DE(同位角相等,两直线平行)故答案为:180,邻补角的意义;已知;同角的补角相等;∠1=∠3;等量代换;同位角相等,两直线平行.19.(2021春•防城港期末)光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.【解答】解:(1)同位角:∠1与∠2,∠3与∠4,∠5与∠6(写两对即可);内错角:∠5与∠7;同旁内角:∠6与∠8;∠1与∠3;∠2与∠4(写一对即可);(2)∠2=∠1=64°,∠3=180°﹣∠1=116°,∠6=∠5=∠7=42°,∠8=180°﹣∠6=138°.20.(2021秋•官渡区校级月考)如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠ECG =90°﹣∠HAE.求证:BH∥CD.【解答】证明:过点E作EF∥BH,∴∠HAE=∠AEF,∵AE⊥CE,∴∠AEC=90°即∠AEF+∠CEF=90°,∴∠HAE+∠CEF=90°,∴∠CEF=90°﹣∠HAE,∵∠ECG=90°﹣∠HAE,∴∠CEF=∠ECG,∴EF∥CD,∵EF∥BH,∴BH∥CD.21.(2021春•三门峡期末)如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.试判断CD和AB 的位置关系,并说明理由.【解答】解:CD∥AB.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=∠ACE﹣∠ECG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG,即CD∥AB.22.(2021秋•达川区期末)小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是平行;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是垂直;如图③,M为边AC延长线上一点,则BD、MF的位置关系是垂直;(2)请就图①、图②、或图③中的一种情况,给出证明.我选图①来证明.【解答】解:(1)①BD∥FM;②BD⊥FM;③BD⊥FM;(2)选择①证明:∵∠A=90°,ME⊥BC,∴∠A=∠CEM,∴∠CME=∠ABC,∴∠ABC+∠AME=180°(三角形的内角和等于180°),∵BD平分∠ABC,MF平分∠AME,∴∠AMF+∠ABD=90°,∴∠AFM=∠ABD,∴BD∥FM(同位角相等,两直线平行).23.(2021春•岱岳区期末)如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD ∥CE.【解答】证明:∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).24.(2021春•西湖区校级月考)如图,已知∠C=60°,∠ADE=65°,∠CED比∠A的2倍大10°,请判断DE与BC的位置关系,并说明理由.【解答】解:DE∥BC,理由如下:设∠A为x°,所以∠CED为2x°+10°,∵∠CED=∠A+∠ADE,可得:2x°+10°=x°+65°,解得:x=55,∴∠DEC=2×55°+10°=120°,∵∠C=60°,∴∠C+∠CED=180°,∴DE∥BC25.(2021春•姜堰区期中)如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2.求证:DE∥BC.【解答】证明:∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠2=∠BCD,又∠1=∠2,∴∠1=∠BCD,∴DE∥BC.26.(2021春•鄄城县期末)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.【解答】证明:∵AE平分∠BAC,CE平分∠ACD,∴∠2=∠BAC,∠1=∠ACD.∵∠1+∠2=90°,∴∠BAC+∠ACD=180°,∴CD∥AB.27.(2021春•泰安期中)如图,直线a⊥b,垂足为O,△ABC与直线a、b分别交于点E、F,且∠C=90°,EG、FH分别平分∠MEC和∠NFC.(1)填空:∠OEC+∠OFC=180°;(2)求证:EG∥FH.【解答】解:(1)在四边形OECF中由∠C=90°,a⊥b,得∠OEC+∠OFC=180°,故答案为:180°;(2)证明:在四边形OECF中由∠C=90°,a⊥b,得∠OEC+∠OFC=180°,因为∠MEC=180°﹣∠OEC,∠NFC=180°﹣∠OFC,所以∠MEC+∠NFC=(180°﹣∠OEC)+(180°﹣∠OFC)=360°﹣(∠OEC+∠OFC)=360°﹣180°=180°,因EG,FH分别平分∠MEC和∠NFC,所以∠CEG=∠MEC,∠CFH=∠NFC,所以∠CEG+∠CFH=(∠MEC+∠NFC)=×180°=90°,过C点作CD∥EG,所以∠CEG=∠DCE,因为∠DCE+∠DCF=90°,∠CEG+∠CFH=90°,所以∠DCF=∠CFH,所以CD∥FH,又因为CD∥EG,所EG∥FH.。

线面平行证线线平行条件

线面平行证线线平行条件

线面平行证线线平行条件
线线平行是几何学中的基本概念之一,它指的是两条直线在同一平面内,且它们永远不会相交。

线线平行的条件有很多,其中一种是线面平行。

本文将详细介绍线面平行证线线平行条件。

线面平行是指一条直线与一个平面平行,也就是说,这条直线与平面上的所有直线都不会相交。

线面平行证线线平行的条件是:如果一条直线与一个平面平行,那么与这条直线垂直的平面与这个平面平行。

这个条件可以通过以下步骤来证明:
1. 假设有两条直线AB和CD,它们在同一平面内,且不相交。

2. 假设有一个平面P,它与直线AB平行。

3. 从直线CD上取一点E,然后通过E点作一条与平面P垂直的直线EF。

4. 由于EF与P垂直,所以EF与AB也垂直。

5. 由于AB与CD平行,所以EF与CD也平行。

6. 因此,EF与CD平行且与P垂直,这意味着EF与P的交线与CD平行。

7. 由于EF是任意取的,所以这个结论对于所有与P平行的直线都成立。

8. 因此,如果一条直线与一个平面平行,那么与这条直线垂直的平面与这个平面平行。

通过上述证明,我们可以得出结论:线面平行证线线平行条件成立。

这个条件在几何学中有着广泛的应用,例如在平面几何中,我们可以通过线面平行证明两条直线平行;在空间几何中,我们可以通过线面平行证明两个平面平行。

线面平行证线线平行条件是几何学中的基本概念之一,它可以帮助我们更好地理解和应用几何学知识。

在学习几何学时,我们应该注重理论的学习和实践的应用,以便更好地掌握这门学科。

证明平行的条件

证明平行的条件

证明平行的条件嘿,你们知道吗?我觉得证明平行可有意思啦!有一天呀,我在纸上画了两条线,就像两条长长的小蛇。

我就想,这两条线会不会是平行的呢?那怎么才能知道它们是不是平行呢?我去问了老师,老师告诉了我一些证明平行的条件哦。

比如说,如果两条线永远都不会相交,那它们很可能就是平行的。

就像马路上的两条白线,它们一直往前延伸,永远都不会碰到一起。

还有哦,如果有一条直线和另外两条直线都相交,形成的角是一样大的,那这两条直线也是平行的呢。

这就好像我们玩的跷跷板,两边的角度一样的时候,跷跷板就平衡啦,这两条直线也一样,角度一样就平行了。

我还想到了我搭的积木。

有时候我会把长条的积木摆得直直的,就像两条平行线。

它们不会歪来歪去,一直都是平行的。

还有我画的画里面,天空中的小鸟飞的路线,有时候也像是平行线呢。

它们朝着一个方向飞,不会交叉在一起。

老师还说,可以用三角板和直尺来帮忙证明平行。

把直尺放在纸上,然后用三角板靠着直尺,看看两条线和三角板形成的角度是不是一样。

如果一样,那这两条线就是平行的。

我觉得这个方法好神奇呀!就像我们玩的侦探游戏,用工具来找出线索。

我又想到了火车的轨道。

火车轨道就是两条平行的线呀,火车在上面跑,永远都不会交叉。

还有我们走的楼梯,每一级楼梯的边边也有点像平行线呢。

我现在知道了这么多证明平行的条件,以后看到两条线的时候,我就可以想一想它们是不是平行的啦。

我觉得学习这些知识真好玩,就像在玩一个有趣的游戏。

我要把这些知识告诉我的小伙伴们,让他们也一起玩这个证明平行的游戏。

你们也可以试试哦,看看身边有哪些东西是平行的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题
探索直线平行的条件(一)
教学目标
(一)知识与技能
1.掌握直线平行的条件:同位角相等.
2.会用三角板过已知直线外一点画这条直线的平行线.
(二)过程与方法
1.经历探索直线平行的条件的过程,掌握直线平行的条件,并能
解决一些问题.
2.会用三角尺过已知直线外一点画这条直线的平行线.
3.经历观察、操作、想象、推理、交流等活动,进一步发展空间
观念、推理能力和有条理表达的能力.
(三)情感、态度与价值观
1.在探索和交流的活动中,培养学生与人协作的习惯.
2.培养学生理论联系实际的观点.
教学重难点
(一)教学重点
在操作、观察的基础上总结出直线平行的条件.
(二)教学难点
同位角的概念.
前置
作业
学生课前准备直尺,一副三角板,三根小木条,两颗钉子。

引入
Ⅰ.创设现实情景,引入新课
[师]在日常生活中,人们经常用到平行线,那什么是平行线呢?
[生]在同一平面内,不相交的两条直线叫做平行线.
[师]好,在上册书中,我们简单了解了平行线,下面我们来复习回顾一下.(展示课件——实物展示平行)
判断正误:
1.两条直线不相交,就叫平行线.()
2.与一条直线平行的直线只有一条.()
3.如果直线a、b都和直线c平行,那么a、b就互相平行.()
[生甲]第1句话是错的.只有在同一平面内的两条不相交的直线才是平行线.
(也可举例:如异面直线.学生只要说清即可).
[生乙]第2句话是错的.因为一条直线的平行线有无数条,只有经过直线外一点,才有且只有一条直线与已知直线平行.
[生丙]第3句是对的,它是平行线的一个性质.
[师]同学们分析得很好.下面我们来看一个生活中的实例
如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
(同学们讨论)
[师]大家可以用课前裁好的线条在桌子上演示.
[生]木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.
[师]大家经过讨论,得到了:若木条b与墙壁边缘垂直时,只有木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.那么在同一平面内,两条直线除不相交外,还可能在什么情况下平行呢?这节课我们就来探索直线平行的条件.
新课讲授
[师]大家拿出准备好的纸条,按如下方法来做一做
如图(1)所示,三根木条相交成∠1,∠2,固定木条b、c,转动木条a.
(1)(2)(3)(4)
图2-11
如图(2),在木条a的转动过程中,观察∠2的变化以及它与∠1的大小关系,你发现木条a与木条b的位置关系发生了什么变化?木条a何时与木条b平行?
改变图(1)中∠1的大小,按照上面的方式再做一做.∠1与∠2的大小满足什么关系时,木条a与木条b平行?
[师]同学们先独立操作、观察,找出结论,然后前后四人讨论,得出结论.
(学生动手操作,然后交流,教师指导、巡视)
新课活动
[生甲]在转动木条a的过程中,看到∠1与∠2的大小关系为三种情况:大于、等于、小于;木条a与木条b的位置关系有两种情况:相交与平行;当∠1=∠2时,木条a与木条b平行.
[师]你们同意他的说法吗?
[生齐声]同意.
[师]好,这只是一种情况下得出的结论.如果改变∠1的大小,情况又如何呢?
[生乙]我们观察到的情况与甲同学说的一样.
[生丙]我注意到:只要∠2与∠1的大小相等,那么木条a、b就平行.
[师]是这样的吗?
[生齐声]是.
[师]好.由此可以看到:木条a、b的位置关系与∠1、∠2的大小关系密切相关,当∠1等于∠2时,木条a、b所在的直线就平行.那么∠1、∠2是什么样的角呢?
看图:
图2-12
直线AB、CD与直线l相交(或者说两条直线AB、CD被第三条直线l 所截),构成八个角.∠1与∠2这两个角分别在直线CD、AB的上方,并且都在直线l的右侧,像这样具有位置相同的一对角称为同位角(correspondingangles),∠3与∠4也是同位角.
辨别同位角时要注意位置上的两个“同”字,在第三条直线的同旁,被截两直线的同方向.
下面大家看这个图中,还有没有其他的同位角呢?
[生甲]∠5与∠6是同位角.这两个角在直线l的右侧,又在直线CD、AB的下方.
[生乙]∠7与∠8是同位角.这两个角分别在直线CD、AB的下方,并且在直线l的左侧.
[师]很好,大家了解了同位角后,想一想刚才我们得到的:“当∠1=∠2时,木条a、b所在的直线平行”这个结论应该怎么叙述?
[生]从图中可知:∠1与∠2是同位角.所以可以这样说:同位角相等,两条直线平行.
[师]好,这样我们就得到直线平行的条件:同位角相等.即:平行线的判定:
同位角相等,两直线平行.
用几何符号表示:∠1=∠2→a∥b
在上学期,我们学过了利用移动三角尺的方法来画平行线,那现在大家来分组讨论讨论.
怎样用移动三角尺的方法画两条平行线?你能用这种方法过已知直
线外一点画它的平行线吗?请说出其中的道理.(课件——画平行线)
(学生分组操作、讨论)
[生甲](学生一边操作,一边叙述).先画一条直线,用一个三角尺的一边与这条直线重合,然后把第二个三角尺紧靠第一个三角尺,第二个
三角尺不动,移动第一个三角尺,这样就可以画出与已知直线平行的直线.
用这种方法可以作:过已知直线外一点画它的平行线.
(图如下:AB∥CD,点P在CD上.)
图2-13
[生乙]画直线CD与AB平行的过程中,实际上使用了一个三角尺的一边和另一个三角尺的一个角.一个三角尺不动,在另一个三角尺平移的过程中,那个角的大小不变,而且从一个位置平移到另一个位置,两个位置上的那个角构成了同位角关系.“同位角相等,两直线平行.”
[师]同学们分析得很好.在画已知直线的平行线时,实际就用到了“同位角相等,两直线平行”这个直线平行的条件.(参看课件——同位角相等,两直线平行)
好,下面大家动手画一画:过直线外一点画这条直线的平行线.
(学生动手操作,教师指导)
[师]好,同学们画得很好.接下来我们做练习,以巩固本节所学内容.
小结提升
本节课我们主要探讨了直线平行的条件:“同位角相等,两直线平行”.还认识了同位角,并且会用三角尺过已知直线外一点作这条直线的平行线.
到现在为止,我们就有了几种判定两直线平行的方法:小组讨论交流,人人讨论,人人发言总结所学判定方法:
(1)定义(不常用)
(2)如果两条直线都与第三条直线平行,那么这两条直线互相平行.
(3)同位角相等,两直线平行.
课堂达标
已知如图2-16,直线AB、CD被MN所截,∠1=∠2,则直线AB与CD 的位置关系如何?还有没有其他的证明方法?
图2-16
[过程]让学生观察、思考、猜想、验证.培养学生初步的论证能力.假设AB与CD平行.则需要∠3=∠2,但∠1=∠3(对顶角相等)且∠1=∠2(已知),所以∠3=∠2.这样猜想得以论证.其他的论证方法与前面一样,只是找的同位角不一样.在讨论过程中,要让学生找到其他的三对同位角,并可验证.
[结果]AB


=






=


=

3
2
3
1
2
1
∥CD.
还有其他的证明方法.用另外三对同位角相等证出.下面给出其中的一种.
图2-17
如图2-17,∠1=∠2(已知)
∠1+∠5=180°,∠2+∠4=180°(平角定义) 所以:∠4=∠5(等角的补角相等)
因此:AB∥CD(同位角相等,两直线平行)
教后思考1.针对课上出现的学生存在的质疑,课后及时标注记录,下一节
课采取补救措施。

2.针对本节课重难点及易错点设计针对性问题,把所学知识点进
一步巩固提高。

相关文档
最新文档