线代 综合练习题 带答案

合集下载

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数--综合测试答案

线性代数--综合测试答案

一、单项选择题1、已知3阶行列式D第1行的元素依次为1,2,-1,它们的余子式依次为2,-2,1,则D=A.-5B.-3C.3D.5D2、A.第1行的3倍加到第2行B.第2行的3倍加到第1行C.第1列的3倍加到第2列D.第2列的3倍加到第1列正确答案:C3、A.1B.2C.3D.4正确答案:B4、A.-2B.-1C.0D.1A5、A.-3B.-2C.2D.3正确答案:B6、已知3×4矩阵A的行向量组线性无关,则r(A)A.1B.2C.3D.4正确答案:C7、A.-1B.-2/3C.2/3D.1正确答案:A8、A.0B.1C.2D.3C 9、A.-108B.-12C.12D.108正确答案:D10、A.0B.1C.2D.-1正确答案:B11、A.2B.4C.8D.12正确答案:C12、A.-7B.-4C.4B13、A.1B.2C.3D.4正确答案:B14、A.13B.6C.5D.-5正确答案:D15、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1,b=1正确答案:D16、A.-2C.1D.2A17、齐次线性方程组Ax=0仅有零解的充分必要条件是矩阵A的A.列向量组线性相关B.列向量组线性无关C.行向量组线性相关D.行向量组线性无关B18、设非齐次线性方程组Ax=b,其中A为m*n阶矩阵,r(A)=r,则A.当r=n时,Ax=b有惟一解B.当r<n时,ax=b有无穷多解< p="" style="box-sizing: border-box;">C.当r=m时,Ax=b有解D.当m=n时,Ax=b有惟一解C19、设2阶矩阵A满足|2E+3A|=0,|E-A|=0,则|A+E|=A.-3/2B.-2/3C.2/3D.3/2C20、A.相似但不合同B.合同但不相似C.合同且相似D.不合同也不相似C21、A.相似且合同B.相似但不合同C.不相似但合同D.不相似且不合同正确答案:A22、A.1B.2C.3D.4正确答案:D 23、A.10B.2C.-10D.-2正确答案:A24、A.27B.243C.216D.81C25、A.3B.6C.9D.12正确答案:D26、若A,B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=A.5B.4C.3D.2正确答案:C27、A.6B.-6C.24D.-24正确答案:D28、A.m-nB.-m-nC.m+nD.-(m+n)正确答案:B29、A.-32B.-2C.2D.32正确答案:A30、A.1/2B.2C.4D.8正确答案:C31、A.8B.-8C.32D.-32正确答案:C32、A.a=4,b=0,c=1,d=4B.a=0,b=4,c=1,d=4C.a=4,b=0,c=4,d=1D.a=0,b=4,c=4,d=1正确答案:A33、设A,B,C均为n阶方阵,AB=BA,BC=CB,则BAC=A.ACBB.CABC.CBAD.BCA正确答案:A34、A.A=EB.B=OC.A=BD.AB=BA正确答案:D35、A.4B.8C.12D.16正确答案:D36、A.-5B.-2C.2D.5正确答案:A37、A.1/nB.-1/nC.nD.-n正确答案:D 38、A.PAB.APC.QAD.AQ正确答案:B 39、A.(2,1,1)B.(0,-3,2)C.(1,1,0)D.(0,-1,0)B 40、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1/2,b=2正确答案:D41、A.2B.-2C.4D.-4正确答案:B 42、A.1B.2C.3D.4正确答案:C 43、A.4B.3C.2D.1A 44、A.1B.2C.3D.4正确答案:D 45、A.3B.2C.1D.0正确答案:B 46、A.-2B.2C.-1D.1正确答案:A47、A.4B.3C.2D.1正确答案:B48、设A为5阶方阵,且r(A)=2,则线性空间W={x|Ax=0}的维数是A.5B.4C.3D.2正确答案:C49、A.4B.3C.2D.1正确答案:C50、A.1B.2C.3D.4C。

《线性代数》综合练习题,附答案

《线性代数》综合练习题,附答案

《线性代数》综合练习题一、选择题1. 设A ,B 都是n 阶方阵,且AB=0,则必有( ).A.0=A 或0=BB.0=+B AC. 0||=A 或0||=BD. 0||||=+B A2. 设A ,B ,C 都是n 阶方阵,且ABC=E,其中E 为n 阶单位方阵,则必有( ).A. ACB=EB. BC A =EC. CBA=ED. BAC=E3. 设A ,B 都是n 阶方阵,且A 与B 等价,则( ).A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. 存在可逆矩阵P,使B AP P =-14. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=-1*)(A ( ). A.A A )det(1 B. 1)det(1-A A C.*)det(1A A D. A A *)det(1 5. 设方阵A 满足A 2-A -2E=0, 则必有( ).A.E A -=B. E A 2=C. A 可逆D. A 不可逆6. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=⋅|*|||A A ( ).A. 1B. n A ||C. 1||-n AD. 1||+n A7. 设A,B 为n 阶方阵,则必有( ).A. AB=BAB. │A+B│=│A│+│B│C. │A -B│=│A│-│B│D. │AB│=│A││B│8.设B A ,都是n 阶可逆矩阵,则下列结论不正确的是( ).A. B A +一定可逆B. AB 一定可逆C . 11--B A 一定可逆 D. TT B A 一定可逆.9.下列矩阵中,与矩阵⎪⎪⎭⎫ ⎝⎛1011可交换的是( ). A. ⎪⎪⎭⎫ ⎝⎛2011 B. ⎪⎪⎭⎫ ⎝⎛1111 C. ⎪⎪⎭⎫ ⎝⎛2032 D. ⎪⎪⎭⎫ ⎝⎛--121110.矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 为非奇异矩阵的充要条件是( ). A. 0=-bc ad B. 0=-cd abC. 0≠-bc adD. 0≠-cd ab11.设A 为n 阶方阵,k 为非零常数,则必有( ).A. ||||A kA =B. ||||A k kA =C. ||||1A k kA n -=D. ||||A k kA n =12.下列说法正确的是( ).A. 设A 为n 阶方阵,且A 2=A ,则A=E 或A=0.B. 设A,B,C 为n 阶方阵, AB=AC 且A≠0,则B=C.C. 设A ,B ,C 都是n 阶方阵,且AB=E ,CA=E ,则B=C.D. 设A 为n 阶方阵,且A 2=0,则A=0.13.矩阵⎪⎪⎭⎫ ⎝⎛5321的逆矩阵是( ). A. ⎪⎪⎭⎫ ⎝⎛--5321B. ⎪⎪⎭⎫ ⎝⎛--1325 C. ⎪⎪⎭⎫ ⎝⎛--5321 D. ⎪⎪⎭⎫ ⎝⎛--5231 14.设A 为3阶方阵,|A|=3,则|3A -1|= ( ).A. 1B. -1C. 9D. -915. 设C B A ,,都是n 阶可逆矩阵,则=-1)(ABC ( ). A. 111---C B A B. 111---A C BC. 111---B A CD. 111---A B C16. 设A 是一个3阶的反对称矩阵,则|A|= ( ).A. -1B. 0C. 1D. 无法确定17.设α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321a a a ,β],,[321b b b =,)3,2,1(0,0=≠≠i b a i i ,则方阵A=αβ的秩为( ).A. 0B. 1C. 2D. 318.如果向量组线性相关,那么( ).A. 这个向量组中至少有一个零向量.B. 这个向量组中至少有两个向量成比例.C. 这个向量组中至少有一个向量可以由其余向量线性表示.D. 这个向量组中所有向量都可以由其余向量线性表示.19.下列说法正确的是( ).A. 等价的向量组含有相同的向量个数.B. 如果向量组线性相关,那么这个向量组中至少有一个零向量.C. 如果向量组线性相关,那么这个向量组中至少有两个向量成比例.D. n 维单位向量组是线性无关的.20.设向量组α1],0,0,1[=α2],1,0,0[=则β=( )时,它是α1, α2的线性组合.A. ]2,1,0[B. ]0,2,1[C. ]2,0,1[D. ]0,1,2[21.向量组α1,α2,… ,αm 的秩不为0的充要条件是( ).A. 向量组α1,α2,… ,αm 中至少有一个非零向量.B. 向量组α1,α2,… ,αm 中至多有一个非零向量.C. 向量组α1,α2,… ,αm 中全部是非零向量.D. 向量组α1,α2,… ,αm 线性无关.22.设向量组α1,α2,… ,αm 的秩为)2(-≤m r r ,则下列说法错误的是( ).A. 向量组α1,α2,… ,αm 中至少有一个含r 个向量的部分组线性无关.B. 向量组α1,α2,… ,αm 中含r 个向量的部分组都线性无关.C. 向量组α1,α2,… ,αm 中含1+r 个向量的部分组都线性相关.D. 向量组α1,α2,… ,αm 中含2+r 个向量的部分组都线性相关.23.设α1,α2,α3为3阶方阵A 的列向量组,则α1,α2,α3线性无关的充要条件是( ).A. │A│0≠B. A 的秩3)(<A RC. 方阵A 不可逆D. 方阵A 是奇异的24. 下列说法错误的是( ).A.1+n 个n 维向量必相关.B. 等价的向量组有相同的秩.C. 任一n 维向量一定可由n 维单位向量组线性表示.D. 零向量不可以由n 维单位向量组线性表示.25. 若R (A )=2,则5元齐次线性方程组A x =0的基础解系中有( )个向量。

线性代数试题及其答案(综合测试题)

线性代数试题及其答案(综合测试题)

综合测试题线性代数(经管类)综合试题一(课程代码 4184)一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设D =111213212223313233a a a a a a a a a =M ≠0,则D 1=111112132121222331313233232323a a a a a a a a a a a a ------= ( ).A.-2MB.2MC.-6MD.6M2.设 A 、B 、C 为同阶方阵,若由AB = AC 必能推出 B = C ,则A 应满足 ( ).A. A ≠ OB. A = OC.|A |= 0D. |A |≠0 3.设A ,B 均为n 阶方阵,则 ( ).A.|A +AB |=0,则|A |=0或|E +B |=0B.(A +B )2=A 2+2AB +B 2C.当AB =O 时,有A =O 或B =OD.(AB )-1=B -1A -14.二阶矩阵A a b c d ⎛⎫= ⎪⎝⎭,|A |=1,则A -1= ( ). A. d b ca ⎛⎫⎪⎝⎭ B.d b c a -⎛⎫ ⎪-⎝⎭ C.a b c d -⎛⎫ ⎪-⎝⎭ D.a b c d ⎛⎫ ⎪⎝⎭5.设两个向量组s ,12,,ααα与t ,12,,βββ,则下列说法正确的是( ).A.若两向量组等价,则s = t .B.若两向量组等价,则r (s ,12,,ααα)= r (t ,12,,βββ)C.若s = t ,则两向量组等价.D.若r (s ,12,,ααα)= r (t ,12,,βββ),则两向量组等价.6.向量组s ,12,,ααα线性相关的充分必要条件是 ( ).A. s ,12,,ααα中至少有一个零向量B. s ,12,,ααα中至少有两个向量对应分量成比例C. s ,12,,ααα中至少有一个向量可由其余向量线性表示D. s α可由-1s ,12,,ααα线性表示7.设向量组12,,...,m ααα有两个极大无关组12,,...,i i ir ααα与12,,...,j j js ααα,则下列成立的是( ).A. r 与s 未必相等B. r + s = mC. r = sD. r + s > m8.对方程组Ax = b 与其导出组Ax = o ,下列命题正确的是( ).A. Ax = o 有解时,Ax = b 必有解.B. Ax = o 有无穷多解时,Ax = b 有无穷多解.C. Ax = b 无解时,Ax = o 也无解.D. Ax = b 有惟一解时,Ax = o 只有零解.9.设方程组12323122000x x x x kx x x +-=⎧⎪+=⎨⎪+=⎩有非零解,则k = ( ). A. 2 B. 3 C. -1 D. 1 10.n 阶对称矩阵A 正定的充分必要条件是( ).A. |A |>0B.存在n 阶方阵C 使A =C T CC.负惯性指标为零D.各阶顺序主子式均为正数 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数习题集带答案

线性代数习题集带答案

线性代数习题集带答案第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若573411111326478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3-(D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性方程组??=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++3333222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(111121111311117. n a b b b a a b b a a a b 321222 111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------= 110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x b a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明01 11333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ;12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-;2. )(233y x +-;3. 1,0,2-=x ;4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

大学课程《线性代数》综合练习题集及答案

大学课程《线性代数》综合练习题集及答案
02N不等价.03A D.03B 1.03C_n.
03D(1)R、;2,用3,>4)=2;向量组的一个极大无关组为、辽,、;4;
:'1 =2(、七亠'::4),■?23如
(2)R( :-1^-2, :-3, :-4, :-5) =3;向量组的一个极大无关组为:■1, :3 >5;
「2=「1:'5,「4 = :^':^':'5 ;
,其中k为任意常数.
当•=1时,有解,解为
(1)当“且•时,方程组有唯一解;
5
<0A
-1
+k
1
丿
当’=1时,其通解为
,其中k为任意实数;
当,二-4时,原方程组无解;
5
广1、
—4
04F (1) C 3, (CER);
7
/ >
2
-22
1
0
+k2
0
15
5
I2」
,(k1,k^R);
(2) k1
J2、
0
十k!
a =b =0时,r (A) =0;当a = b才0时,r( A) =1;
a-'b,且
a-'b,且
a亠(n -1) b =0时,r (A) =n -1;
a • (n _1) b =0时,r(A) =n.
05G
05H
* *
r[(A )]
05K
05M
05O
06A
n ,如果r(A)=n,
0,如果r(A)cn.
011
排列的逆序数为
k2;
当k为偶数时,
排列为偶排列,当k为奇数时,排列为奇排列.

(完整版)线性代数习题集带答案

(完整版)线性代数习题集带答案

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。

线性代数综合练习题10答案

线性代数综合练习题10答案

线性代数综合练习题(十)参考答案一、选择题1. A2. B3. C4. D5. D 二、填空题 1. 3- 2. ⎪⎪⎪⎭⎫⎝⎛10100010001 3. ⎪⎪⎪⎪⎭⎫ ⎝⎛105104103010210200101 4. 21-或 5. 321,,ααα 6. 04321=+++a a a a 7. 3 三、计算题1. 解:由B A E AB +=+2,得))(()(2E A E A E A B E A +-=-=-又01≠-=-E A ,所以⎪⎪⎪⎭⎫⎝⎛=+=201030102E A B 2. 解:⎪⎪⎪⎭⎫⎝⎛--==73130212111),,,(4321ααααA r →⎪⎪⎪⎭⎫⎝⎛-21010101001(1)因为3),,(321=αααr ,所以321,,ααα线性相关;(2)因为3),,,(),,(4321321==αααααααr r ,所以4α可由321,,ααα线性表示,且32142αααα+-=3. 解:方程组对应的齐次线性方程组的基础解系含134=-个解向量ξ,则所求方程组的通解为ξηk x +=1 其中k 为任意常数。

⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-=-+-=6543)(2)()(3213121ηηηηηηηξ,因此,方程组的通解为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=65435432k x 。

4. 解:A 的特征多项式)5()1(2λλλ++-=-E AA 的特征值为 121-==λλ,53-=λ,121-==λλ所对应的线性无关的特征向量为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=101,01121αα,正交单位化得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=21161,0112121p p ; 53-=λ所对应的线性无关的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=1113α,单位化得⎪⎪⎪⎭⎫⎝⎛=111313p ,令正交矩阵),,(321p p p P =,则⎪⎪⎪⎭⎫⎝⎛---=-5111AP P 。

经济数学基础线性代数部分综合练习及答案

经济数学基础线性代数部分综合练习及答案

经济数学基础线性代数部分综合练习及答案一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行.A .AB B .AB TC .A +BD .BA T2.设B A ,为同阶可逆矩阵,则下列等式成立的是(B )A . T T T )(B A AB =B .T T T )(A B AB =C .1T 11T )()(---=B A ABD .T 111T )()(---=B A AB3.以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠4.设A 是可逆矩阵,且A AB I +=,则A -=1( C ).A .B B .1+BC .I B +D .()I AB --15.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( D ). A .⎥⎦⎤⎢⎣⎡--6231 B .⎥⎦⎤⎢⎣⎡--6321 C .⎥⎦⎤⎢⎣⎡--5322 D .⎥⎦⎤⎢⎣⎡--5232 6.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =(C ). A .4 B .3C .2D .17.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为(A ).A .1B .2C .3D .48.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( A ). A . 无解 B . 只有0解 C . 有唯一解 D . 有无穷多解9.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( B )时线性方程组无解.A .0B .12C .1D .2 10. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( D ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()(11.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组(B ).A .有唯一解B .无解C .有非零解D .有无穷多解12.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C ).A .无解B .有非零解C .只有零解D .解不能确定二、填空题1.若矩阵A = []21-,B = []132-,则A T2.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T )(A I - 3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a A 是对称矩阵. 5.设B A ,均为n 阶矩阵,且)(B I -可逆,则矩阵X BX A =+的解X =. 应该填写:A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )=.应该填写:n7.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b .应该填写:无解8.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则λ9.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于10.O AX =中A 为53⨯矩阵,且该方程组有非0解,则)(A r11.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一其中43,x x 是自由未知量)12.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010*********t A ,则有唯一解.三、计算题1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012411210,求逆矩阵1-A . 解 因为(AI ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----21123124112 2.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,求逆矩阵1)(-+A I .解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 3.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 所以(BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--252231 4.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-1101 5.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201 所以 r (A ) = 2,r (A ) = 3.又因为r (A )≠r (A ),所以方程组无解.6.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量) 7.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 的一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→0000194101101 所以一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量) 8.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解.解 因为系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x x x (其中3x 是自由未知量) 9.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ有解?并求一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 所以当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕。

线性代数综合练习题参考答案

线性代数综合练习题参考答案

线性代数综合练习题(四)参考答案一、选择题1. B2. C3. A4. C5. B6. D 二、填空题1. ⎪⎪⎪⎭⎫ ⎝⎛-1515252510000 2. 9 3. 4 4. 1 5. 12+a 6. 20<<t三、计算题1. 解:由B X A =*得,AB X AA =*,即 AB X A =因为2-=A ,所以 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=00021152031000221X ⎪⎪⎪⎭⎫⎝⎛----=020111.2. 解:()54321,,,,ααααα=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=140113*********12211 −→−r⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000111001512012211−→−r⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000111001301001001 所以()3,,,,54321=αααααR ,321,,ααα是一个最大无关组,并且32143αααα-+=,325ααα+-=3. 解: )1)(54(5541112-+=---=λλλλD ,当0≠D ,即1≠λ且54-≠λ时,方程组有惟一解.当1=λ时,⎪⎪⎪⎭⎫ ⎝⎛----==155421111112),(βA B −→−r ⎪⎪⎪⎭⎫ ⎝⎛--000011101001 此时2)()(==B R A R ,方程组有无限多个解.,并且通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛110011321c x x x )(R c ∈, 当4-=λ时,⎪⎪⎪⎭⎫ ⎝⎛------==1554211112),(5454βA B −→−r ⎪⎪⎪⎭⎫ ⎝⎛----10001055455410此时3)(,2)(==B R A R ,方程组无解.4. 解:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=321321321320230002),,(),,(x x x x x x x x x f ,⎪⎪⎪⎭⎫⎝⎛=320230002A ,(1) )1)(5)(2(λλλλ---=-E A所以A 的特征值为21=λ,52=λ,13=λ,由0)2(=-X E A 得对应于21=λ的特征向量T)0,0,1(1=ξ, 由0)5(=-X E A 得对应于52=λ的特征向量T)1,1,0(2=ξ, 由0)(=-X E A 得对应于13=λ的特征向量T)1,1,0(1-=ξ,取11ξη=,2221ξη=,3321ξη=,令),,(321ηηη=P , 则得所求的正交变换PY X = 即 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321212121213210001y y y x x x 且 23222152y y y f ++=(2) 根据(1)知, ⎪⎪⎪⎭⎫ ⎝⎛==-1000500021AP P AP P T所以 T P P A 1010100050002⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛-=2121212100001⎪⎪⎪⎭⎫ ⎝⎛100500021010⎪⎪⎪⎪⎭⎫ ⎝⎛-212121210001⎪⎪⎪⎭⎫⎝⎛+--+=)15()15(0)15()15(02102110211021102110. 四、证明题1. 证:假设21P P +是A 的对应于λ的特征向量,则)()(2121P P P P A +=+λ因为222111,P AP P AP λλ==, 所以0)()(2211=-+-P P λλλλ, 由于21,P P 是对应于不同特征值的特征向量,所以它们线性无关,从而2121,0λλλλλλ==-=-,矛盾!2. 证:设⎪⎪⎪⎪⎪⎭⎫⎝⎛=-T n T T A 121ααα ,则A 是一个n n ⨯-)1(矩阵,因为121,,,-n ααα 线性相关,所以1)(-=n A R ,故n 元线性方程组0=AX 的解空间的维数为1.又21,ξξ是和121,,,-n ααα 均正交的,所以21,ξξ是0=AX 的解,因此21,ξξ必线性相关.。

浙江理工大学线性代数综合演习题8套另加参考答案

浙江理工大学线性代数综合演习题8套另加参考答案

线性代数综合练习题(一)一、单项选择题1. 对于n 阶可逆矩阵A ,B ,则下列等式中( )不成立. (A) ()111---⋅=B A AB (B) ())/1()/1(111---⋅=B A AB (C) ()111---⋅=B AAB (D) ()AB AB /11=-2. 若A 为n 阶矩阵,且03=A ,则矩阵=--1)(A E ( ).(A )2A A E +- (B )2A A E ++ (C )2A A E -+ (D )2A A E -- 3. 设A 是上(下)三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为( ). (A) 全都非负 (B ) 不全为零 (C )全不为零 (D )没有限制 4. 设 33)(⨯=ij a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a aa a a a a a a B ,⎪⎪⎪⎭⎫⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,那么( ).(A )B P AP =21 (B )B P AP =12 (C )B A P P =21 (D )B A P P =12 5. 若向量组m ααα,,,21 线性相关,则向量组内( )可由向量组其余向量线性表示. (A )至少有一个向量 (B )没有一个向量 (C )至多有一个向量 (D )任何一个向量6. 若⎪⎪⎪⎭⎫ ⎝⎛=210253143212A ,其秩=)(A R ( ).(A )1 (B )2 (C )3 (D )47. 若方程b AX =中,方程的个数小于未知量的个数,则有( ). (A )b AX =必有无穷多解 (A )0=AX 必有非零解 (C )0=AX 仅有零解 (D )0=AX 一定无解 8. 若A 为正交阵,则下列矩阵中不是正交阵的是( ). (A )1-A (B )A 2 (C )4A (D )TA 9. 若满足条件( ),则n 阶方阵A 与B 相似.(A )B A = (B ))()(B R A R = (C )A 与B 有相同特征多项式 (D )A 与B 有相同的特征值且n 个特征值各不相同 二、填空题1. 若向量组321,,ααα线性无关,则向量组321211,,αααααα+++是线性 .2. 设A 为4阶方阵,且3)(=A R ,*A 是A 的伴随阵,则0=*X A 的基础解系所含的解向量的个数是 .3. 设A 为n 阶正交阵,且0>A ,则=A .4. 设()2,1,11-=α,()5,,22k =α,()1,6,13-=α线性相关,则=k .5. 设⎪⎪⎪⎭⎫ ⎝⎛=300050004A ,则=--1)2(E A .6. 设三阶方阵A 有特征值4,5,6,则=A ,T A 的特征值为 ,1-A 的特征值为 .三、计算题1. 计算行列式ba bbbb b a b b b b b a b b b b ba ----+----+2. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=200012021A ,求10A .3. 设三阶方阵A 满足i i i A αα= )3,2,1(=i ,其中T )2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α,求A .4.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+1610522321321321x x x x x x x x x λλ (1)有惟一解;(2)无解; (3)有无穷多解,并求其通解.四、证明题1. 设A 为n 阶可逆阵,E A A =2.证明A 的伴随阵A A =*.2. 若A ,B 都是n 阶非零矩阵,且0=AB .证明A 和B 都是不可逆的.线性代数综合练习题(一)参考答案一、单项选择题1. B2. B3. C4. C5. A6. B7. B8. B9. D 二、填空题1. 无关;2. 3 ;3. 1 ;4. 3 ;5. ⎪⎪⎪⎭⎫ ⎝⎛10000003121; 6. 120 , 4,5,6 , 615141,, . 三、计算题1. 解:ba bbbb b a b b b b b a b b b b ba ----+----+aaa a a ab b b b a 000000-+=4000000000a aa ab b b a ==.2. 解:先求A 的特征值,λλλλ---=-20012021E A =)1)(3)(2(λλλ+---1,3,2321-===λλλ ,当21=λ时,由0)2(=-X E A 得,A 的对应于2的特征向量是⎪⎪⎪⎭⎫⎝⎛=1001ξ,当32=λ时,有0)3(=-X E A 得,A 的对应于3的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=0112ξ,当12-=λ时,有0)(=+X E A 得,A 的对应于1-的特征向量是⎪⎪⎪⎭⎫ ⎝⎛-=0113ξ,取⎪⎪⎪⎭⎫ ⎝⎛=1001η⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=01121,0112132ηη. .令()321,,ηηη=P ,则⎪⎪⎪⎭⎫ ⎝⎛-==-1321AP P AP P T,所以 T P P A 1010132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+--+=1010211021102110212000)13()13(0)13()13(. 3. 解:因为)3,2,1(==i i A i i αα,所以⎪⎪⎪⎭⎫⎝⎛=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-⎪⎪⎪⎭⎫⎝⎛=ααααααA .又),,(321ααα⎪⎪⎪⎭⎫⎝⎛---=212122221,所以1321),,(-ααα⎪⎪⎪⎭⎫ ⎝⎛---=21212222191, 故 =A ⎪⎪⎪⎭⎫ ⎝⎛---212122221⎪⎪⎪⎭⎫ ⎝⎛300020001⎪⎪⎪⎭⎫ ⎝⎛---21212222191⎪⎪⎪⎭⎫ ⎝⎛----=62225020731. 4. 解:)3)(5(61011211-+=---=λλλλD ,(1)当0≠D ,即5-≠λ且3≠λ时,方程组有惟一解.(2)当5-=λ时,⎪⎪⎪⎭⎫ ⎝⎛-----==1610155122151),(βA B −→−r ⎪⎪⎪⎭⎫ ⎝⎛---100013902151 此时3)(,2)(==B R A R ,方程组无解,(3)当3=λ时,⎪⎪⎪⎭⎫ ⎝⎛---==1610153122131),(βA B −→−r ⎪⎪⎪⎭⎫⎝⎛--00001001717571778 此时2)()(==B R A R ,方程组有无限多个解.,并且通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10757871717321c x x x )(R c ∈. 四、证明题1. 证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2. 证:假设A 可逆,即1-A 存在,以1-A 左乘0=AB 的两边得0=B ,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1-B 存在,以1-B 右乘0=AB 的两边得0=A ,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的.线性代数综合练习题(二)一、选择题1. 设21321,,,,ββααα是四维列向量,且m =1321,,,βααα,n =3221,,,αβαα,则=+21123,,,ββααα( )。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。

A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。

A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。

A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。

A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。

A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。

A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。

A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。

A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。

A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。

A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。

浙江理工大学线性代数综合练习题8套另加参考答案

浙江理工大学线性代数综合练习题8套另加参考答案

浙江理工大学线性代数综合练习题8套另加参考答案线性代数综合练习题(一)一、单项选择题1. 对于n 阶可逆矩阵A ,B ,则下列等式中()不成立. (A) ()111---?=B A AB (B) ())/1()/1(111---?=B A AB (C) ()111---?=B AAB (D) ()AB AB /11=-2. 若A 为n 阶矩阵,且03=A ,则矩阵=--1)(A E ().(A )2A A E +- (B )2A A E ++ (C )2A A E -+ (D )2A A E -- 3. 设A 是上(下)三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为(). (A) 全都非负(B )不全为零(C )全不为零(D )没有限制 4. 设 33)(?=ij a A ,+++=133312321131131211232221a a a a aa a a a a a a B ,=1000010101P ,=1010100012P ,那么().(A )B P AP =21 (B )B P AP =12 (C )B A P P =21 (D )B A P P =12 5. 若向量组m ααα,,,21 线性相关,则向量组内()可由向量组其余向量线性表示. (A )至少有一个向量(B )没有一个向量(C )至多有一个向量(D )任何一个向量6. 若=210253143212A ,其秩=)(A R ().(A )1 (B )2 (C )3 (D )47. 若方程b AX =中,方程的个数小于未知量的个数,则有(). (A )b AX =必有无穷多解(A )0=AX 必有非零解(C )0=AX 仅有零解(D )0=AX 一定无解 8. 若A 为正交阵,则下列矩阵中不是正交阵的是(). (A )1-A (B )A 2 (C )4A (D )TA 9. 若满足条件(),则n 阶方阵A 与B 相似.(A )B A = (B ))()(B R A R = (C )A 与B 有相同特征多项式(D )A 与B 有相同的特征值且n 个特征值各不相同二、填空题1. 若向量组321,,ααα线性无关,则向量组321211,,αααααα+++是线性 .2. 设A 为4阶方阵,且3)(=A R ,*A 是A 的伴随阵,则0=*X A 的基础解系所含的解向量的个数是 .3. 设A 为n 阶正交阵,且0>A ,则=A .4. 设()2,1,11-=α,()5,,22k =α,()1,6,13-=α线性相关,则=k .5. 设=300050004A ,则=--1)2(E A .6. 设三阶方阵A 有特征值4,5,6,则=A ,T A 的特征值为,1-A 的特征值为 .三、计算题1. 计算行列式ba bbbb b a b b b b b a b b b b ba ----+----+2. 已知矩阵=200012021A ,求10A .3. 设三阶方阵A 满足i i i A αα= )3,2,1(=i ,其中T )2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α,求A .4.λ取何值时,非齐次线性方程组=-+=+-=-+1610522321321321x x x x x x x x x λλ (1)有惟一解;(2)无解;(3)有无穷多解,并求其通解.四、证明题1. 设A 为n 阶可逆阵,E A A =2.证明A 的伴随阵A A =*.2. 若A ,B 都是n 阶非零矩阵,且0=AB .证明A 和B 都是不可逆的.线性代数综合练习题(一)参考答案一、单项选择题1. B2. B3. C4. C5. A6. B7. B8. B9. D 二、填空题1. 无关;2. 3 ;3. 1 ;4. 3 ;5.10000003121; 6. 120 , 4,5,6 , 615141,, . 三、计算题1. 解:ba bbbb b a b b b b b a b b b b ba ----+----+aaa a a ab b b b a 000000-+=4000000000a ab b b a ==.2. 解:先求A 的特征值,λλλλ---=-20012021E A =)1)(3)(2(λλλ+---1,3,2321-===λλλ ,当21=λ时,由0)2(=-X E A 得,A 的对应于2的特征向量是=1001ξ,当32=λ时,有0)3(=-X E A 得,A 的对应于3的特征向量是=0112ξ,当12-=λ时,有0)(=+X E A 得,A 的对应于1-的特征向量是-=0113ξ,取=1001η-=????? ??=01121,0112132ηη. .令()321,,ηηη=P ,则-==-1321AP P AP P T,所以 T P P A 1010132????? ??-=???+--+=10102110211021212000)13()13(0)13()13(. 3. 解:因为)3,2,1(==i i A i i αα,所以=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-=ααααααA .又),,(321ααα---=212122221,所以1321),,(-ααα---=21212222191,故 =A ????? ??---212122221????? ??300020001????? ??---21212222191----=62225020731. 4. 解:)3)(5(61011211-+=---=λλλλ(1)当0≠D ,即5-≠λ且3≠λ时,方程组有惟一解.(2)当5-=λ时,????? ??-----==1610155122151),(βA B ?→?r---100013902151 此时3)(,2)(==B R A R ,方程组无解,(3)当3=λ时,?---==1610153122131),(βA B ?→?r--00001001717571778 此时2)()(==B R A R ,方程组有无限多个解.,并且通解为-+????? ??-=????? ??10757871717321c x x x )(R c ∈. 四、证明题1. 证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2. 证:假设A 可逆,即1-A 存在,以1-A 左乘0=AB 的两边得0=B ,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1 -B 存在,以1-B 右乘0=AB 的两边得0=A ,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的.线性代数综合练习题(二)一、选择题1. 设21321,,,,ββααα是四维列向量,且m =1321,,,βααα,n =3221,,,αβαα,则=+21123,,,ββααα()。

线代综合题及答案1

线代综合题及答案1

线性代数综合 习题一一 选择题 ( 题4分, 共40分)1. 设行列式m a a a a =22211211,n a a a a =23211311,则行列式=−−232221131211a a a a a aA. n m +B. )(n m +−C. m n −D. n m −2. 行列式162021304−−−=D 中,元素3−的代数余子式为 A. -10 B. 2 C. 10 D. 以 均 对 3. 设A 为3 方 ,且行列式2=A ,则=−A 2( ) A. 16 B. 4− C. 4 D. 16− 4. 设B A ,均为n 方 ,则 列各式正确的是 A. BA AB = B. BA AB =C. B A B A +=+D. 111)(−−−+=+B A B A5. 矩=872113112A 右乘初等矩 010100001相当于进行( )的初等变换A. 第一行 第二行互换B. 第二行 第 行互换C. 第一列 第二列互换D. 第二列 第 列互换6. 设n 方 A B 相似,以 结论正确的是A . AB 有相同的特征向 . A B ≠ . A B 有相同的特征值 .A B 的特征值是实数7.设矩 A 的特征多项式为)3)(2)(1(+++=−λλλλE A , 则=A ( )A. -2B. 2 . 3 D. -68. 设矩 A 的秩是r , 则A . A 中没有等于零的1−r 子式 . A 中没有等于零的r 子式C. A 中至少有一个r 子式 等于零D. A 中有 等于零的1+r 子式9. 设 −=10211a A ,−=11031b B ,且TB A =,则( ) A. 2,1==b a B. 2,3==b a C. 0,3==b a D. 0,1=−=b a10. n 维向 12,,(3)s s n ααα≤≤⋯线性无关的充要条件是A. 12,,s ααα⋯均为非零向B. 12,,s ααα⋯中任何一个向 能由其余向 线性表示C. 12,,s ααα⋯中任何两个向 的分 成比例D.12,,s ααα⋯中有一部分线性无关二 填空题 ( 题4分, 共20分)1. 矩−0132−31= 2. =362596531113. 设A 是5 方 ,若()3R A =,则线性方程 0Ax =的基础解系所含向 的个数为4. 若向 =4321α 向−=302k β正交,则=k 5. 若二次型32212322213212222),,(x x x x x x x x x x f λ++++=是正定的,则实数λ的取值 范围是10分 计算四 行列式111011011011=D 的值 四 15分 解矩 方程:求X 满足2AX A X =+,其中423110123A = − . 五 15分 求矩−−=314020112A 的特征值和特征向线性代数综合 习题一答案一 选择题 ( 题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案DCDADCDCBB二 填空题 ( 题4分,共20分) 10分解: 从第2列开始,依次把 列加至 一列,得3110310130113111D =3分1101310111111= 5分11100011301010001−=− 8分111001013300111−=−=−− 10分四 10分解: 由 2AX A X =+得()A X E A =−2 3分 ()A E A X 12−−=∴5分=−121-01-13222E A 6分11223143(2)110153121164A E −−−− −=−=−− −−8分1386(2)296.2129X A E A −−−=−=−− −10分五 10分221314020112))((−+−=−−−−−=−λλλλλλE A 3分 得A 的特征值为2,1321==−=λλλ 6分(1) 11−=λ时,−→ −−=+000010101414030111E A 得基础解系 =1011α对应于11−=λ的全部特征向 为)0(111≠k k α8分 (2) 232==λλ时,−→ −−=−0000001141140001142E A 得基础解系=−=401,11022αα对应于232==λλ的全部特征向 为),(323322 同时为零k k k k αα+ 10分。

线性代数试题及答案65766

线性代数试题及答案65766

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式=m,=n,则行列式等于( )A。

m+n B. -(m+n)C。

n-m D. m-n2。

设矩阵A=,则A-1等于( )A. B。

C。

D.3.设矩阵A=,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A。

–6 B。

6C。

2 D。

–24.设A是方阵,如有矩阵关系式AB=AC,则必有( )A。

A =0 B. BC时A=0C。

A0时B=C D。

|A|0时B=C5。

已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A。

1 B. 2C。

3 D。

46。

设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B。

有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C。

有不全为0的数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs —βs)=0D。

有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。

设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。

至少有一个r阶子式不等于0 D。

所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A。

η1+η2是Ax=0的一个解 B.η1+η2是Ax=b的一个解C.η1—η2是Ax=0的一个解D.2η1—η2是Ax=b的一个解9。

设n阶方阵A不可逆,则必有()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数》综合练习一、选择题(每小题3分,共15分):<1>设A 是三阶矩阵,将A 的第一列与第二列交换得B ,再把B 的第二列加到第三列得C ,则满足AQ=C 的可逆矩阵Q 为( )。

(A )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010; (B )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010; (C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010; (D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110。

<2>设A 、B 为满足AB=0的任意两个非零矩阵,则必有( )。

(A )A 的列向量组线性相关,B 的行向量组线性相关;(B )A 的列向量组线性相关,B 的列向量组线性相关; (C )A 的行向量组线性相关,B 的行向量组线性相关; (D )A 的行向量组线性相关,B 的列向量组线性相关。

<3>下列向量集按R n 的加法和数乘构成R 上一个线性空间的是( )。

(A )R n 中,坐标满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,坐标是整数的所有向量;(C )R n 中,坐标满足x 1+x 2+…+x n =1的所有向量;(D )R n 中,坐标满足x 1=1,x 2,…, x n 可取任意实数的所有向量。

<4>设λ=2是非奇异矩阵A 的一个特征值,则矩阵(31A 2)-1有一个特征值等于( )。

(A )34; (B )43; (C )21; (D )41。

<5>任一个n 阶矩阵,都存在对角矩阵与它( )。

(A )合同; (B )相似; (C )等价; (D )以上都不对。

二、填空题(每小题3分,共15分) <1>设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100021012,矩阵B 满足:ABA *=2BA *+E ,其中A *为A 的伴随矩阵,E 是三阶单位矩阵,则|B|= 。

<2>已知线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+21232121a a ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛031321x x x 无解,则a = 。

<3>若A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-100021021b a 为正交矩阵,则a = ,b = 。

<4>设A 为n 阶矩阵,且|A|≠0,A *为A 的伴随矩阵,E 为n 阶单位矩阵。

若A 有特征值λ,则(A *)2+E 必有特征值 。

<5>若二次型f = 2x 12+x 22+x 32+2 x 1 x 2+t x 2 x 3是正定的,则t 的取值范围是 。

三、(15分)设有齐次线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++=++++0)4(44403)3(33022)2(20)1(4321432143214321x a x x x x x a x x x x x a x x x x x a试问a 取何值时,该方程组有非零解?并用一基础解系表示出全部的解。

四、(10分)设R 3的两组基为:T T T )1,1,0(,)0,1,1(,)1,0,1(321===ξξξ和T T T )1,2,1(,)2,1,1(,)1,1,1(321===ηηη,向量α=(2,3,3)T(1)求基321,,ξξξ到基321,,ηηη的过渡矩阵;(2)求α关于这两组基的坐标。

五、(15分)设三阶实对称矩阵A 的特征值为λ 1 = -2,λ 2 = 1(2重),α1=(1,1,1)T是属于λ1 = -2的特征向量。

试求:(1)属于λ 2 = 1(2重)的特征向量;(2)A 的伴随矩阵A *。

六、(10分)设二次型323121232221222x bx x x x ax x x x f +++++=通过正交变换⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y P x x x 化为:23222y y f +=,求a 、b 。

七、(10分)已知A ,B 为n 阶可逆方阵,且满足2A -1B=B-4E ,其中E 是n 阶单位矩阵,试证:A-2E 可逆。

并求出(A-2E )-1=?八、(10分)设A 为n 阶矩阵,且1,1)(2211=+⋯++-=nn A A A n A r ,其中ii A 是A 中元素ii a 的代数余子式(i =1,2,…,n )。

试证:A 的伴随矩阵A *的特征值是0和1,并说明各个特征值的重数。

《线性代数》综合练习参考答案一、选择题:<1>(D );<2>(A );<3>(A );<4>(B );<5>(C ); 二、填空题:<1>91;<2>-1;<3> ±21, 21;<4>1||2+⎪⎭⎫ ⎝⎛λA ;<5>-22<<t三、解:A=B a aa a a a aa a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++00400300211114444333322221111行 (1)当a =0时,r(A)=1<4,故齐次线性方程组有非零解,其同解方程组为:x 1+x 2+x 3+ x 4=0由此得一基础解系为:TT Ty y y )1,0,0,1()0,1,0,1()0,0,1,1(321-=-=-=, 故全部解为:332211y C y C y C X ++=(其中321,,C C C 为任意常数)……(7分)(2)当a ≠0时,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+→1004010********101004010300121111a aB 当a =-10时,r (A )=3<4,故齐次线性方程组也有非零解,其同解方程组为:⎪⎩⎪⎨⎧=+-=+-=+-040302413121x xx x x x ,解之,可得一个基础解系为:y=(1,2,3,4)T ,故全部解为:X=ky (其中k 为任意常数)……(15分)备注:此题也可另解 ∵|A|=(a +10)a 3∴当|A|=0时,即a =0或a =-10时,齐次线性方程组有无穷解。

四、解:(1)记B=(321,,ξξξ)=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110011,C=(321,,ηηη)=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121211111则有:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11211001021100121001121101211110111011 从而,由基321,,ξξξ到基321,,ηηη的过渡矩阵为:A=B -1C=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡112110210121………………………(5分) (2)设α关于基321,,ηηη的坐标为(321,,y y y ) 即:0332211=++ηηηy y y由此可得:⎪⎩⎪⎨⎧=++=++=++32322321321321y y y y y y y y y ,解之得:1,1,0321===y y y ,故α关于基321,,ηηη的坐标为(0,1,1),又∵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y A x x x =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡112110210121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211110 即α关于基321,,ξξξ的坐标为(1,1,2)…………………………(10分) 五、解:(1)设A 的属于特征值λ2=1(2重)的特征向量为(x 1,x 2,x 3)T , 则∵A 是实对称矩阵,∴(x 1,x 2,x 3)T 与α1正交,即有:(x 1,x 2,x 3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111=0, 也即:x 1+x 2+x 3=0, 解之:α2=(-1,1,0)Tα3=(-1,0,1)T∴A 的属于λ2=1的全部特征向量为:k 1α2+ k 2α3(k 1,k 2不同时为0)………………(5分)(2) ∵A *=|A|A -1∴A *的特征值为:|A|·(-21),|A|·1(2重) 又∵|A|=-2∴A *的特征值为:1,-2(2重)………………………………(10分)A *(α1,α2,α3)=(α1,α2,α3)⎪⎪⎪⎭⎫⎝⎛--221A *=(α1,α2,α3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--200020001(α1,α2,α3)-1 =1101011111200020001101011111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--323131313231313131200020001101011111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3333333333121112111120102122131 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---111111111……………………………………………(15分) 六、解:f 的正交变换前后的矩阵分别为:⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A 和⎪⎪⎪⎭⎫ ⎝⎛=200010000B于是,A 、B 相似,从而有相同的特征多项式即:|λE-A|=|λE-B|…………(5分)也即:λ3-3λ2+(2-a 2-b 2)λ+(a -b )2=λ3-3λ2+2λ,比较上式等号两边的λ各幂次项系数有:⎩⎨⎧=--=-220)(222b a b a ∴⎩⎨⎧==00b a ………………………………………………………(10分) 七、证明:∵2A -1B=B-4E左乘A ,得:2B=AB-4A …………………………………………(5分) 即:AB-2B-4A=0 ∴(A-2E )(B-4E )=8E 故A-2E 可逆,且(A-2E )-1=81(B-4E )……………………………………(10分)八、证明:∵r (A )=n-1∴r (A *)=1………………………………………………………(2分)又∵齐次线性方程组(0E-A *)X=0的基础解系含有n-1个线性无关的解向量, ∴0是A *的特征值,其重数不小于n-1…………………………………(5分) 另外,tr (A *)= A 11+A 22+…A nn=λ1+λ2+…λn-1+λn=1…………………………………………………………(8分)故有:1是A *的单特征值;0是A *的n-1重特征值。

………………………………………(10分)。

相关文档
最新文档