平面直角坐标系培优

合集下载

第5章 平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优

第5章 平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优

第5章平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)一.选择题(共10小题)1.(2023•盐城)在平面直角坐标系中,点A(1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)3.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)5.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限7.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是( )A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)9.(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)10.(2017•南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,)B.(4,3)C.(5,)D.(5,3)二.填空题(共10小题)11.(2023•宿迁)平面直角坐标系中,点A(2,3)关于x轴的对称的点的坐标是 .12.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D 的坐标可以表示为 .13.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为 .14.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是 .15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 .16.(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 .17.(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是 .18.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 .19.(2018•南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( , ).20.(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( , ).第5章平面直角坐标系(中考经典常考题)-江苏省2023-2024学年上学期八年级数学单元培优专题练习(苏科版)参考答案与试题解析一.选择题(共10小题)1.(2023•盐城)在平面直角坐标系中,点A(1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:∵点A(1,2)的横坐标和纵坐标均为正数,∴点A(1,2)在第一象限.故选:A.2.(2023•常州)在平面直角坐标系中,若点P的坐标为(2,1),则点P关于y轴对称的点的坐标为( )A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)【答案】C【解答】解:点P的坐标是(2,1),则点P关于y轴对称的点的坐标是(﹣2,1),故选:C.3.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.4.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【答案】D【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.5.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【答案】C【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵x2+2>0,∴点P(x2+2,﹣3)所在的象限是第四象限.故选:D.7.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.8.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y 轴的距离为4,则点M的坐标是( )A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【答案】C【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.9.(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解答】解:点P(1,﹣2)关于x轴的对称点的坐标是(1,2),故选:A.10.(2017•南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,)B.(4,3)C.(5,)D.(5,3)【答案】A【解答】解:如图,设△ABC的外心E(4,t),则CE=5﹣t,EM=t﹣2,∵EC=AE,∴5﹣t=,解得t=,可得结论.故选:A.二.填空题(共10小题)11.(2023•宿迁)平面直角坐标系中,点A(2,3)关于x轴的对称的点的坐标是 (2,﹣3) .【答案】见试题解答内容【解答】解:点A(2,3)关于x轴的对称点的坐标是(2,﹣3),故答案为:(2,﹣3).12.(2023•连云港)画一条水平数轴,以原点O为圆心,过数轴上的每一刻度点画同心圆,过原点O按逆时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D 的坐标可以表示为 (3,150°) .【答案】(3,150°).【解答】解:∵点D与圆心的距离为3,射线OD与x轴正方向之间的夹角为150°,∴点D的坐标为(3,150°).故答案为:(3,150°).13.(2021•扬州)在平面直角坐标系中,若点P(1﹣m,5﹣2m)在第二象限,则整数m的值为 2 .【答案】见试题解答内容【解答】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.14.(2021•南京)如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是 6 .【答案】6.【解答】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD∥OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为 (3,240°) .【答案】见试题解答内容【解答】解:如图所示:点C的坐标表示为(3,240°).故答案为:(3,240°).16.(2018•常州)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是 (﹣2,﹣1) .【答案】见试题解答内容【解答】解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).17.(2016•淮安)点A(3,﹣2)关于x轴对称的点的坐标是 (3,2) .【答案】见试题解答内容【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).18.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是 (5,1) .【答案】见试题解答内容【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).19.(2018•南京)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是( 1 , ﹣2 ).【答案】见试题解答内容【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.20.(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是( ﹣2 , 3 ).【答案】见试题解答内容【解答】解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.。

苏科版八年级上学期数学5.2平面直角坐标系(1) 培优训练卷(有答案)

苏科版八年级上学期数学5.2平面直角坐标系(1) 培优训练卷(有答案)

2020-2021学年苏科版八年级上学期数学5.2平面直角坐标系(1) 培优训练卷一、选择题1、在平面直角坐标系中,点P(-2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2、点在直角坐标系的y 轴上,则P 点坐标为 A. B. C. D.3、已知点M 到x 轴的距离为3,到y 轴的距离为2,且在第三象限.则M 点的坐标为( )A .(3,2)B .(2,3)C .(﹣3,﹣2)D .(﹣2,﹣3)4、过点(-4,3)且平行于y 轴的直线上的点( )A .横坐标都是3B .纵坐标都是3C .横坐标都是-4D .纵坐标都是-45、若点P(1-2m ,m)的横坐标与纵坐标互为相反数,则点P 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限6、若点A(-2,n)在x 轴上,则点B(n -1,n +1)在( )A .第一象限B .第二象限C .第三象限D .第四象限7、如果点B 与点C 的横坐标相同,纵坐标不同,则直线BC 与x 轴的关系为( )A .平行B .垂直C .相交D .以上均不对8、在平面直角坐标系中,点B(-5,-3)到y 轴的距离为( )A .5B .-5C .3D .-39、横坐标与纵坐标互为相反数的点在( )A .第二象限的角平分线上B .第四象限的角平分线上C .原点D .前三种情况都有可能 10、若,则在A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题11、如图,在平面直角坐标系中,点O 是原点,点A 在x 轴上,点B 在y 轴上,点O 的坐标是 ,点A 的坐标是 ,点B 的坐标是 .12、在平面直角坐标系中,已知线段AB=3,且AB ∥x 轴,且点A 的坐标是(1,2),则点B 的坐标是13、若点(5-a ,a -3)在第一、三象限的角平分线上,则a =___14、在平面直角坐标系中,点P (a 2﹣1,a ﹣1)是y 轴上的点,则a 的取值是 .15、已知点B(3a +5,-6a -2)在第二、四象限两坐标轴夹角的平分线上,则a 2-|a|=______16、已知点在第二象限,则m 的取值范围是_____17、若点在y 轴上,则点A 到原点的距离为______个单位长度.18、如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0),将线段O 0M 绕原点O 逆时针方向旋转45°,再将其延长至点1M ,使得1M 0M ⊥O 0M ,得到线段O 1M ;又将线段O 1M 绕原点O 逆时针方向旋转45°,再将其延长至点2M ,使得2M 1M ⊥O 1M ,得到线段O 2M ;如此下去, 得到线段O 3M ,O 4M ,O 5M ,….根据以上规律,请直接写出线段O 200M 的长度为_____三、解答题19、已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?20、已知平面直角坐标系中,点P的坐标为当m为何值时,点P到x轴的距离为1?当m为何值时,点P到y轴的距离为2?点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.21、在同一直角坐标系中分别描出点、、,再用线段将这三点首尾顺次连接起来,求的面积与周长.22、先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离.2020-2021学年苏科版八年级上学期数学5.2平面直角坐标系(1)培优训练卷(答案)一、选择题1、在平面直角坐标系中,点P(-2,-3)所在的象限是( C)A.第一象限B.第二象限C.第三象限D.第四象限2、点在直角坐标系的y轴上,则P点坐标为DA. B. C. D.3、已知点M到x轴的距离为3,到y轴的距离为2,且在第三象限.则M点的坐标为()A.(3,2) B.(2,3) C.(﹣3,﹣2) D.(﹣2,﹣3)【解答】解:∵点M到x轴的距离为3,∴纵坐标的长度为3,∵到y轴的距离为2,∴横坐标的长度为2,∵点M在第三象限,∴点M的坐标为(﹣2,﹣3).故选D.4、过点(-4,3)且平行于y轴的直线上的点( C)A.横坐标都是3 B.纵坐标都是3 C.横坐标都是-4 D.纵坐标都是-45、若点P(1-2m,m)的横坐标与纵坐标互为相反数,则点P一定在( B)A.第一象限B.第二象限C.第三象限D.第四象限6、若点A(-2,n)在x轴上,则点B(n-1,n+1)在( B)A.第一象限B.第二象限C.第三象限D.第四象限7、如果点B与点C的横坐标相同,纵坐标不同,则直线BC与x轴的关系为(B)A.平行 B.垂直 C.相交 D.以上均不对8、在平面直角坐标系中,点B(-5,-3)到y轴的距离为( A)A.5B.-5C.3D.-39、横坐标与纵坐标互为相反数的点在()A.第二象限的角平分线上B.第四象限的角平分线上C.原点D.前三种情况都有可能【解答】解:横坐标与纵坐标互为相反数的点的坐标有三种情况:(1)第二象限的角平分线上,x<0,y>0;(2)第四象限的角平分线上,x>0,y<0;(3)原点,x=0,y=0.故符合题意的点在第二或四象限的角平分线上,过原点,故选D.10、若,则在DA. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题11、如图,在平面直角坐标系中,点O是原点,点A在x轴上,点B在y轴上,点O的坐标是,点A的坐标是,点B的坐标是.答案:(0,0),(2,0),(0,4)12、在平面直角坐标系中,已知线段AB=3,且AB∥x轴,且点A的坐标是(1,2),则点B的坐标是【解答】解:∵AB∥x轴,∴点B的纵坐标为2.∵AB=3,∴点B的横坐标为1+3=4或1﹣3=﹣2.∴点B的坐标为(﹣2,2)或(4,2).故答案为:(﹣2,2)或(4,2).13、若点(5-a,a-3)在第一、三象限的角平分线上,则a=_4__14、在平面直角坐标系中,点P(a2﹣1,a﹣1)是y轴上的点,则a的取值是.【解答】解:由点P(a2﹣1,a﹣1)是y轴上的点,得a2﹣1=0,解得a=±1,故答案为:±1.15、已知点B(3a+5,-6a-2)在第二、四象限两坐标轴夹角的平分线上,则a2-|a|=___0___16、已知点在第二象限,则m的取值范围是_____17、若点在y轴上,则点A到原点的距离为__ 5 ____个单位长度.18、如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0),将线段O 0M 绕原点O 逆时针方向旋转45°,再将其延长至点1M ,使得1M 0M ⊥O 0M ,得到线段O 1M ;又将线段O 1M 绕原点O 逆时针方向旋转45°,再将其延长至点2M ,使得2M 1M ⊥O 1M ,得到线段O 2M ;如此下去, 得到线段O 3M ,O 4M ,O 5M ,….根据以上规律,请直接写出线段O 200M 的长度为__2100___三、解答题19、已知平面直角坐标系中有一点M (m ﹣1,2m+3)(1)当m 为何值时,点M 到x 轴的距离为1?(2)当m 为何值时,点M 到y 轴的距离为2?【解答】解:(1)∵|2m+3|=1,2m+3=1或2m+3=﹣1,∴m=﹣1或m=﹣2;(2)∵|m ﹣1|=2,m ﹣1=2或m ﹣1=﹣2, ∴m=3或m=﹣1.20、已知平面直角坐标系中,点P 的坐标为当m 为何值时,点P 到x 轴的距离为1?当m 为何值时,点P 到y 轴的距离为2?点P 可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m 的值;若不可能,请说明理由. 解:点P 到x 轴的距离为1, ,点P 到y 轴的距离为2,点P 可能在第一象限坐标轴夹角的平分线上点P 在第一象限 ,不合题意点P 不可能在第一象限坐标轴夹角的平分线上.21、在同一直角坐标系中分别描出点、、,再用线段将这三点首尾顺次连接起来, 求的面积与周长. 解:利用勾股定理得:, ,, 周长为; 面积.22、先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=(x2-x1)2+(y2-y1)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离.解:(1)A,B两点间的距离为(-3-2)2+(-8-4)2=13.(2)A,B两点间的距离为|5-(-1)|=6.。

西安一中七年级数学下册第七章【平面直角坐标系】阶段练习(培优)

西安一中七年级数学下册第七章【平面直角坐标系】阶段练习(培优)

一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)5.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-6.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)7.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).23.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( ) A .(-3,6) B .(-6,3) C .(3,-6) D .(8,-3) 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 4.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7)7.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,8.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)10.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)11.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .886二、填空题12.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.13.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.14.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .15.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 16.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.18.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.19.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.20.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.21.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.三、解答题22.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示) (2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OAB S =?若存在,求出点B 的坐标;若不存在说明理由. 23.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标24.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A 1B 1C 1,若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P 1的坐标是 . (3)在x 轴上存在一点D ,使△DB 1C 1的面积等于3,求满足条件的点D 的坐标. 25.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.一、选择题1.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-2.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或33.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)4.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 5.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4-6.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,7.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上9.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1)10.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).13.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 16.写一个第三象限的点坐标,这个点坐标是_______________.17.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __18.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______19.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.20.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).23.若点(1m -,32m -)在第二象限内,求m 的取值范围24.在平面直角坐标系中,有 A (-2,a +1), B (a -1,4), C (b - 2,b )三点. (1)当 AB// x 轴时,求 A 、 B 两点间的距离;(2)当CD ⊥ x 轴于点 D ,且CD = 1时,求点C 的坐标.25.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()6,6-,()3,0-,()0,3.(1)画出三角形ABC ,并求它的面积.(2)在三角形ABC 中,点C 经过平移后的对应点为()5,4C ',将三角形ABC 做同样的平移得到三角形A B C ''',画出平移后的三角形A B C ''',并写出点A ',B '的坐标.。

平面直角坐标系培优专题精编版

平面直角坐标系培优专题精编版

y x1234–1–2–3–4–5–1–2–3–412345A F B C DE O 平面直角坐标系一、基本知识过关测试1.有顺序的两个数a 与b 组成的_________叫_________,记为________.6排7号可表示为______________;则(8,9)表示的意义是______________.2.在平面内画两条互相________,________重合的数轴就组成了_____________,此时坐标平面被两条坐标轴分为第_____象限、第_____象限、第______象限、第______象限;_______上的点不属于任何象限.①如图,分别写出下列各点坐标,A ______、B ______、C _______、D _______、E _______、F _______、O ________. ②在平面直角坐标系中描出下列个点,G (3,-4),H (-3,4),M (4,0),N (0,-1). 3.(1)设P (x ,y )在第一象限,且|x |=1,|y |=2,则P 点的坐标为_________. (2)点B (-1,m 2+1)在第______象限.(3)已知点C (m ,n ),且mn >0,m +n <0,则C 在第______象限. (4)点D (2m ,m -4)在第四象限,则偶数m =_______.(5)平面直角坐标系内,点A (n ,1-n )一定不在第________象限.4.点A (m +4,m -1)在x 轴上,则m =________;点B (m +1,3m +4)在y 轴上,则B 点坐标__________.5.①已知A 点坐标(-4,2),则A 点横坐标为________,纵坐标为_______,点A 到x 轴的距离为______,到y 轴的距离为________.②点P (x ,y )到x 轴,y 轴的距离分别为5和4,那么点P 的坐标是___________. ③N (a ,b )到x 轴的距离为___________,到y 轴的距离为___________.④已知点P (2-a ,3a +6)到两坐标轴的距离相等,则P 点坐标为___________. 6.已知点A (a ,3)和点B (-2,b ).①若A 、B 关于x 轴对称,则a =______,b =_______; ②若A 、B 关于y 轴对称,则a =______,b =_______; ③若A 、B 关于原点对称,则a =______,b =_______.7.△A 1B 1C 1是由△ABC 平移后得到的,已知△ABC 的边上任一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-2),已知A (-1,2),B (-4,5),C (-3,0),则A 1、B 1、C 1的坐标分别为________,_________,__________,△A 1B 1C 1是由△ABC 先向_____移______个单位长度,再向______移______个单位长度而得到的.8.①已知点M (x ,y ),N (-2,3),且MN ∥x 轴,则x =_______,y =______;已知点A (x ,2),B (-3,y ),若AB ∥y 轴,则x =______,y =_______.②若|x |=|y |,则P (x ,y )在_________上;若P (x -3,2x )在第二象限的夹角平分线上,则P 点坐标为____________.9.已知点A (-1,-1),B (-1,4),C (4,4),若ABCD 是正方形,则顶点D 的坐标是______. 10.如图,有一只蜗牛从直角坐标系的原点O 向y 轴正方向出发,它前进1cm ,右转90°,再前进1cm 后,左转90°,再前进1cm 后,右转90°,…当它走到点P (n ,n )时,左边碰到障碍物,就直行1cm ,再右转90°,前进1cm ,再左转90°,前进1cm ,…,最后回到了x 轴上,则蜗牛所走过的路程S 为________厘米.E C B DAA (1,2)C (1,1)B (-1,-1)11.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0),观察每次变换后的三角形有何变化,找出规律,再将△OA 3B 3变换成△OA 4B 4,则A 4,B 4的坐标分别是_______________.12.已知点A (-5,0),B (3,0),在y 轴上有一点C ,满足S △ABC =16,则点C 的坐标是___________,在坐标平面上满足S △ABC =16的点C 有_________个. 二、综合、提高、创新【例1】如图是某市的部分景点图,每个方格边长为一个单位长度,取北为y 轴的正方向,若以A :科技大学为坐标原点,则各景点的坐标为,B :大成殿(2,3),C :中心广场(5,4),D :钟楼(______),E :碑林(______).若记C :中心广场的坐标为(0,0),则各景点的坐标为A :科技大学(-5,-4),B :大成殿(-3,-1),D :钟楼(_______),E :碑林(______).【例2】如图,是传说中的藏宝岛图,藏宝人生前用直角坐标系的方法画出了这幅图.现今的寻宝人没有原来的地图,但知道在该图上有三块大石头A (1,2),B (-1,-1),C (1,1),而藏宝地的坐标是(4,-1),试设法在地图上找到藏宝地点.【例3】(1)如图1,△A 1B 1C 1是由△ABC 平移后得到的,已知A (0,0),B (3,-1),C (-1,-4)且B 1(-2,1),试写出△ABC 变换为△A 1B 1C 1的一种平移方案,写出点A 1,C 1的坐标.(2)如图2,△A 1B 1C 1是由△ABC 经过变换后得到的图形,试写出其变换的过程及在这些变换过程中点B ,C 对应的坐标.图1B 1C 1A 1BCA Oxy1234–1–2–3–4–5–1–2–3–4–512345图2A 1C 1B 1ABCyxO123451234–1–2–3–4–5–1–2–3–4–5【例4】(1)如图,在一单位为1cm的方格纸上,依图所示的规律,设定点A1,A2,A3,A4,……A n,连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为100cm2时,n=_______.(2)将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x,y),且x,y均为整数,如数5对应的坐标为(-1,-1),试探求数2012对应的坐标.【例5】(1)如下图,求面积①A(2,0),B(0,1),C(0,4).②A(0,2),B(-2,0),C(2,-1),D(34,0).yxO ABCDBOE CxyAS△ABC=_____________ S△ABC=_____________③A(1,4),B(3,-1),C(-4,-2).④A(-14,0),B(-11,6),C(-1,8),O(0,0).OxyBCAOACBxyS△ABC=_____________ S OABC=_____________(2)在平面直角坐标系中,A点坐标为(3-2,0),C点坐标为(-3-2,0),B 点在y轴上,且S△ABC=3,则B点的坐标是____________,在坐标平面上能满足S△ABC=3的点C有___________个.B O AC lx yx y C ED B O A O B (1,3)A (2,-1)C (-4,-2)xy y xBAO C【例6】已知:如图A (-4,0)、C (3,27),直线AC 交y 轴于点B . (1)求△AOC 的面积;(2)求点B 的坐标;(3)在平面直角坐标系内是否存在一点P (m ,1),使△ABP =S △AOC ,若存在试求出m 的值,若不存在试说明理由.三、反馈练习 (一)填空1.若点C (x ,y )满足x +y <0,xy >0,则点C 在第_____象限.2.若点A (a ,b )在第三象限,则点Q (-a +1,3b -5)在第______象限. 3.已知点P (a ,-2),Q (3,b )且PQ ∥y 轴,则a =______,b ≠_______. 4.已知A (x +1,2),B (-3,2y -1)关于y 轴对称,则x =_________. 5.(1)点M (3,0)到点N (-2,0)的距离是___________.(2)点C 在y 轴上,到坐标原点的距离为5个单位长度,则C 点坐标为_________. (3)点D 在y 轴左侧,它到x 轴距离为2个单位长度,到y 轴距离为1个单位长度,则D 点坐标为__________.6.在长方形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标是_________,S 长方形ABCD 为_______个单位面积.7.如图,一个机器人从O 点出发,向正东方走3m 到达A 1点,再向正北方向走6m 到达A 2点,再向正西方向走9m 到达A 3点,再向正南方向走12m 到达A 4点,再向正东方向走15m 到达A 5点.按如此规律走下去,相对于点O ,机器人走到A 6点的坐标为_______.8.如图一个粒子在第二象限移动,在第一分钟内它从原点运动到(-1,0),而后它接着按着图所示在与x 轴、y 轴平行的方向来回运动且每分钟移动1个单位长度,那么在2012分钟时,则这个粒子所处的位置的坐标为_____________. (二)解答9.如图,△ABC 是一个三角形,A (-4,0),B (2,0),把△ABC 沿AC 边平移,使A 点平移到C 点,△ABC 变换为△DCE ,已知C (0,3.5),请写出D 、E 的坐标,并用坐标说出平移的过程.10.如图所示,已知△ABC 的三个顶点的坐标分别为A (2,-1)、B (1,3)、C (-4,-2),求出△ABC 的面积.11.如图,A (1,0),B (3,0),C (0,3),D (2,-1).(1)试在y 轴上找一点P ,使三角形ADP 的面积与三角形ABC 的面积相等;(2)如果第二象限内有一点Q (a ,1),使S △QAC =S △ABC ,求Q 点坐标.※12.在平面直角坐标系中,已知O使原点,四边形ABCD是长方形,A,B,C的坐标分别使A(-2,-2),B(-2,-3),C(4,3).(1)求D点坐标;(2)将长方形ABCD以每秒1个单位长度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标各多少?请将(1)(2)中的答案直接填入下表中:点D A1B1C1D1坐标(3)以(2)中方式平移长方形ABCD,几秒钟后三角形OBD的面积等于长方形ABCD的面积.。

莆田市第一中学七年级数学下册第七单元《平面直角坐标系》(培优提高)

莆田市第一中学七年级数学下册第七单元《平面直角坐标系》(培优提高)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 3.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 4.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( ) A .-9B .9C .-3D .3 5.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>b B .0<a ,0>b C .0>a ,0<b D .0<a ,0<b 6.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)7.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 8.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 9.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .210.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 11.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 12.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 13.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 14.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A 的面积是( )A .210112mB .2505mC .220092mD .2504m 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.17.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 18.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.19.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.20.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 21.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .22.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.23.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.24.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B(m ,3),C (n ,-5),则AD BC =______.三、解答题27.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少. 28.如图,己知()(),2,53,3A C -,将三角形ABC 向右平移3个的单位长度,再向下平移4个单位长度,得到对应的三角形111A B C .(1)画出三角形111A B C ;(2)直接写出点111A B C 的坐标;(3)求三角形111A B C 的面积.29.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.30.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.。

七年级数学下册第七章【平面直角坐标系】经典测试题(培优专题)

七年级数学下册第七章【平面直角坐标系】经典测试题(培优专题)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .2D .16二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 17.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 19.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题22.已知:△A 1B 1C 1三个顶点的坐标分别为A 1(﹣3,4),B 1(﹣1,3),C 1(1,6),把△A 1B 1C 1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC ,且点A 1的对应点为A ,点B 1的对应点为B ,点C 1的对应点为C .(1)在坐标系中画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求点P 的坐标.23.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.24.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.''',若B的对应点B'的25.ABC在如图所示的平面直角坐标系中,将其平移得到A B C坐标为(1,1).''';(1)在图中画出A B C(2)此次平移可以看作将ABC向________平移________个单位长度,再向________平''';移________个单位长度,得A B C'''的面积并写出做题步骤.(3)求A B C一、选择题1.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-55.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 6.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.如图,已知每个小正方形的边长均为1的网格中有一个三角形.()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.24.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.25.如图,将△ABC 向右平移4个单位长度,再向下平移2个单位长度,得到△A′B′C′. (1)请画出平移后的图形△A ′B ′C ′.(2)写出△A ′B 'C '各顶点的坐标.(3)求出△A ′B ′C ′的面积.一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)5.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置6.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 10.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .1611.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 14.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.15.如图点A、B 的坐标分别为(1,2)、(3,0),将△AOB 沿x 轴向右平移,得到△CDE.已知点D 在的点B 左侧,且DB=1,则点C 的坐标为____ .16.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA=2PB,则点P的坐标为_____.17.已知两点A(-2,m),B(n,-4),若AB//y轴,且AB=5,则m=_______;n=_______________.18.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0)…,按这样的规律,则点A2020的坐标为______.19.如图,已知点A的坐标为(−2,2),点C的坐标为(2,1),则点B的坐标是____.20.若点M(a-2,a+3)在y轴上,则点N(a+2,a-3)在第________象限.21.已知P(a,b),且ab<0,则点P在第_________象限.三、解答题22.如图,△ABC在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.23.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC 先向右平移3个单位长度,再向下平移2个单位长度,得到△A 'B 'C '.请画出△A 'B 'C '并写出A ',B ′,C '的坐标;(2)在△ABC 内有一点P (a ,b ),请写出按(1)中平移后的对应点P ″的坐标. 24.对于平面直角坐标系 xOy 中的点P (a ,b ),若点P ' 的坐标为,b a ka b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠),则称点P '为点P 的“k 之雅礼点”.例如:P (1,4)的“2之雅礼点”为41,2142P ⎛⎫'+⨯+ ⎪⎝⎭,即P '(3,6). (1)①点P (-1,-3)的“3之雅礼点”P '的坐标为____________; ②若点P 的“k 之雅礼点”P '的坐标为(2,2),请写出一个符合条件的点P 的坐标____________; (2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P '点,且OPP '△为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的方程2kx mx mn +=+有无数个解,求m n 、的值. 25.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.。

人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)

人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)

人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。

【数学】人教版七年级数学下册第7章《平面直角坐标系》培优试题(2)

【数学】人教版七年级数学下册第7章《平面直角坐标系》培优试题(2)

人教版七年级数学下册第7章《平面直角坐标系》培优试题(2) 一.选择题(共10小题)1.如图所示,横坐标是正数,纵坐标是负数的点是( )A .A 点B .B 点C .C 点D .D 点2.若x 轴上的点P 到y 轴的距离为3,则点P 为( ) A .(3,0) B .(3,0)或(3,0)- C .(0,3)D .(0,3)或(0,3)-3.若0ab >,则(,)P a b 在( ) A .第一象限 B .第一或第三象限 C .第二或第四象限D .以上都不对 4.点(1,3)M m m ++在x 轴上,则M 点坐标为( ) A .(0,4)-B .(4,0)C .(2,0)-D .(0,2)-5.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保特不变,则所得图形在原图形基础上( ) A .向左平移了3个单位 B .向下平移了3个单位 C .向上平移了3个单位D .向右平移了3个单位6.如图,是象棋盘的一部分.若“帅”位于点(1,2)-上,“相”位于点(3,2)-上,则“炮”位于点( )上.A.(1,1)-D.(2,2)--C.(2,1)-B.(1,2)7.将以A(-2,7),B(-2,2)为端点的线段AB向右平移2个单位得线段A B,11以下点在线段A B上的是()11A.(0,3)B.(-2,1)C.(0,8)D.(-2,0)8.点(0,2)A在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限9.将点(3,2)B-A-先向右平移3个单位,再向下平移5个单位,得到A'、将点(3,6)先向下平移5个单位,再向右平移3个单位,得到B',则A'与B'相距() A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度10.已知点(,)A m n在第二象限,则点(||,)B m n-在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共8小题)11.已知2|2|(1)0-++=,则点(,)x yP x y在第个象限,坐标为.12.点(3,5)P--到x轴距离为,到y轴距离为.13.在平面直角坐标系中,将点(1,4)P-向右平移2个单位长度后,再向下平移3个单位长度,得到点P,则点1P的坐标为.114.李明的座位在第5 排第4 列,简记为(5,4),张扬的座位在第3 排第2 列,简记为(3,2),若周伟的座位在李明的前面相距 2 排,同时在他的右边相距2 列,则周伟的座位可简记为.15.如图,在三角形ABC中,(0,4)C,且三角形ABC面积为10,则B点A,(3,0)坐标为.16.点(21,3)-+在第一、三象限角平分线上,则x的值为,P点坐标P x x为.17.在平面直角坐标系中,点A的坐标为(1,3)-,线段//AB=,则点AB x轴,且4 B的坐标为.18.在平面直角坐标系中,若点(1,)M x人教版七年级下册数学第七章平面直角坐标系单元试题一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系中,点P(-3,-8)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图是象棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ( )A.(-1,1) B.(-1,2)C.(-2,1) D.(-2,2)3.已知x轴上的点P到y轴的距离为3,则点P的坐标为( )A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为( )A.(0,-2) B.(2,0) C.(0,2) D.(0,-4)5.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向6.平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比( )A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位C.形状不变,向上平移了3个单位D.三角形被纵向拉伸为原来的3倍7.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.(2,3) B.(-2,-3)C.(-3,2) D.(3,-2)8.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0 B.y>0 C.y≤0D.y≥09.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.线段AB两端点坐标分别为A(-1,4),B(-4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1,B1的坐标分别为( )A.A1(-5,0),B1(-8,-3) B.A1(3,7), B1(0,5)C.A1(-5,4),B1(-8,1) D.A1(3,4), B1(0,1)二、填空题(共5小题,每小题4分,共20分)11.点P(a,b)在第四象限,则点Q(b,-a)在第象限.12.把点A(-4,6)先向左平移2个单位,再向下平移4个单位,此时的位置是.13.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.14.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度,MN中点的坐标为.15.观察图象,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).三、解答题(共5小题,每小题10分,共50分)16.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?17.在平面直角坐标系中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?18.如图,梯形A′B′C′D′可以由梯形ABCD经过怎样的平移得到?对应点的坐标有什么变化?19.如图,一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A 4点,再向正东方向走15米到达A 5点,按如此规律走下去,建立适当的坐标系,当机器人走到A 6点时,求A 6点的坐标.人教版七年级数学下册第8章《二元一次方程组》培优试题(2) 一.填空题(共8小题,每小题3分,共24分)1.已知二元一次方程2350x y --=的一组解为x ay b =⎧⎨=⎩,则643b a -+= .2.已知39x y -=,请用含x 的代数式表示y ,则y = .3.若实数x ,y 满足条件23x y +=,试写出一个x 和一个y 使它们满足这个条件,此时x = ;y = . 4.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay -=⎧⎨+=⎩的解,则a b -= . 5.甲、乙两人同时解关于x 、y 的方程组321,ax y x by -=⎧⎨+=⎩但是甲看错了a ,求得解为11x y =⎧⎨=-⎩,乙看错了b ,求得解为14x y =-⎧⎨=-⎩,则a b += . 6.若54413,27319,3218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则51x y z ---的立方根是 .7.若37a x y -与2a b x y +是同类项,则b = . 8.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,⋯,若21010b b a a+=⨯符合前面式子的规律,则a b += .二.选择题(共10小题,每小题3分,共30分)9.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =-D .2018m =-,4n =10.下列4组数值,哪个是二元一次方程235x y +=的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩11.下列方程组中不是二元一次方程组的是( ) A .23x y =⎧⎨=⎩B .12x y x y +=⎧⎨-=⎩C .51x y xy +=⎧⎨=⎩D .21y xx y =⎧⎨-=⎩12.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知222,44,x y a x y a +=⎧⎨-=-⎩且320x y -=,则a 的值为( )A .2B .0C .4-D .514.已知实数x ,y ,z 满足7422x y z x y z ++=⎧⎨+-=⎩,则代数式3()1x z -+的值是( )A .2-B .4-C .5-D .6-15.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .15 B .15-人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

七下培优训练三平面直角坐标系综合问题压轴题

七下培优训练三平面直角坐标系综合问题压轴题

培优训练三:平面直角坐标系(压轴题)一、坐标及面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积及△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标; (4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACPABCSS=; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCSS=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B . (1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50,若能,求出P 点坐标,若不能,说明理由. 【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ;(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24.(1)线段BC 的长为 ,点A 的坐标为 ;A(-2,0)B(0,-3)yx(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF⊥AE 点F ,试给出∠ECF 及∠DAH之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 及直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠及BNO ∠之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形. (1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 及△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2B 的对应点C ,D 连结AC ,BD .(1)求点C ,D 的坐标及四边形ABDC (2)在y 轴上是否存在一点P ,连结PA ,点,求出点P (3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC 的顶点A (—2,0(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,若存在,请求出点D (3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标及几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,S △ABC =14.(1)求C 点坐标(2)作DE⊥DC,交y 轴于E 点,EF 为∠AED FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC,且PM⊥EM,PN⊥x 轴于N 点,PQ 平分∠APN,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

平面直角坐标系培优训练题(精品)

平面直角坐标系培优训练题(精品)

平面直角坐标系培优训练题一、坐标在平面直角坐标系中的性质1.若a 为整数,且点(39,210)M a a --在第四象限内,则21a +的值为( ) . 2、在平面坐标系中,若点(1,3)M 与点(,3)N x 之间的距离是5,则x 的值是___ . 3.平面直角坐标系中的点1(2,)2P m m -关于x 轴的对称点在第四象限内,则m 的取值范围为 ______ .4、已知点M(-2,b)在第三象限,那么点N(b, 2 )在5、若点P (a ,b )在第四象限,则点M (b-a ,a-b )在 。

6、已知点P (a,b ),且ab >0,a +b <0,则点P 在7、若点P (x ,y )的坐标满足xy=0(x ≠y),则点P 在 ( )A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上8、点P (m +3, m +1)在x 轴上,则m = ,点P 坐标为 。

9、已知点P(m ,2m -1)在y 轴上,则P 点的坐标是 。

10、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( ) 11、已知点P (x ,y )在第四象限,且│x│=3,│y│=5,则点P 的坐标是( )12、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( )二、平面直角坐标系中坐标的对称性13.(1)若(,8)P a 和(7,)Q b 关于y 轴对称,则2010()a b + =______.14.已知(2+3,2)A a b -和(8,32)B a b +关于x 轴对称,那么a b +=______ . 15、点A (1-a ,5),B (3,b )关于原点对称,则a+b=_______.三、坐标的平移16.如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(7,4)--,白棋④的坐标为(6,8)--,那么,黑棋的坐标应该分别是______ .17.如图,在直角坐标系中,已知点(3,0)A -,(0,4)B 且5AB =,对OAB ∆连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为______ .18.以平行四边形的顶点A 为原点、直线AD 为x 轴建立直角坐标系,已知B 、D 两点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( ).A.(3,3)B.(5,3)C.(3,5)D.(5,5)19、将点A (-4,2)向上平移3个单位长度得到的点B 的坐标是( ) 20、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (-4,–1)的对应点D 的坐标为( ) 四、利用坐标求面积 21.如图,在平面直角坐标系中,四边形各顶点的坐标分别为:(00),(70),(95),(27)A BCD ,,,,.(1)求此四边形的面积(2)在坐标轴上,你能否找到一点P ,使50PBC S ∆=?若能,求出点P 的坐标;若不能,请说明理由._ 17 _ 16图②图①22.如果四边形ABCD 顶点的坐标依次为 (12)(25)(73)(51)A B C D ,、,、,、,, 那么四边形ABCD 的面积为______ .23、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.五、动点问题24.(1)如图①,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008,,,...,P P P P 的位置, 求点2008P 的横坐标.(2)如图②,在平面直角坐标系中,一颗棋子从P 点处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.① 在图中画出点M 、N ,并写出点M 、N 的坐标.② 求经过第2008次跳动之后,棋子落点与点P 的距离.25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示. (1)填写下列各点的坐标:1(_,_)A ;3(_,_)A ;12(_,_)A . (2)写出点4n A 的坐标(n 是正整数).(3)指出蚂蚁从点100A 到点101A 的移动方向.26.如图,已知(20)(22)A B --,、,,线段AB 交y 轴于点C . (1)求点C 的坐标.(2)若(60)D ,,动点P 从点D 开始在x 轴上以每秒3个单位向左运动,同时,动点Q 从点C 开始在y 轴上以每秒1个单位向下运动.问经过多少秒,APC AOQ S S ∆∆= ?_ 12 _ 11 _ 8_7 _4_3_。

《易错题》初中七年级数学下册第七单元《平面直角坐标系》习题(专题培优)

《易错题》初中七年级数学下册第七单元《平面直角坐标系》习题(专题培优)

一、选择题1.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 4.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 5.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 7.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 9.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2)B .(0,4)C .(3,1)D .(﹣3,1) 12.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2)B .(3,0)C .(0,3)D .(﹣2,0) 13.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 14.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题16.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 17.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.18.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.19.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.20.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.21.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.22.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.23.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.24.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.25.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____26.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .三、解答题27.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移4个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标;(3)求△ABC 的面积.28.已知点P(m +2,3),Q(−5,n−1),根据以下条件确定m 、n 的值(1)P 、Q 两点在第一、三象限的角平分线上;(2)PQ ∥x 轴,且P 点与Q 点的距离为3.29.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.30.如图,∠ABC 在建立了平面直角坐标系的方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出三角形ABC 各顶点的坐标;(2)直接写出三角形ABC 的面积;(3)把三角形ABC 平移得到A B C '''∆,点B 经过平移后对应点为()6,5B ',请在图中画出A B C '''∆.。

10平面直角坐标系-坐标应用题培优题和课后练习

10平面直角坐标系-坐标应用题培优题和课后练习

平面直角坐标系【坐标应用题】【培优练习】1.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)顺次连接(1)中的所有点,得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);(3)指出(1)中关于点P成中心对称的点_________ .2.中国象棋棋盘中隐藏着直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图中“马”所在的位置可以直接走到B,A等处.(1)若“马”的位置在点C,为了到达点D,请按“马”走的规则,在图上用虚线画出一种你认为合理的行走路线;(2)如果图中“马”位于(1,﹣2)上,试写出A、B、C、D四点的坐标.3.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.4.如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B记为:A⇒B(+1,+4),从B到A记为:B⇒A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A⇒C(_________ ,_________ ),B⇒C(_________ ,_________ ),C⇒_________ (﹣3,﹣4);(2)若贝贝的行走路线为A⇒B⇒C⇒D,请计算贝贝走过的路程;(3)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点;(4)在(3)中贝贝若每走1m需消耗1.5焦耳的能量,则贝贝寻找妮妮过程中共需消耗多少焦耳的能量?5.如图,点A用(3,1)表示,点B用(8,5)表示.若用(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.6.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.7.小华去某地考察环境污染问题,并且事先知道下面的信息:(1)“悠悠日用化工品厂A”在他所在地的北偏东30度的方向,距离此处3千米;(2)“佳味调味品厂B”在他现在所在地的北偏西45度的方向,距离此处2.4千米;(3)“幸福水库C”在他现在所在地的南偏东27度的方向,距离此处1.5千米的地方.根据这些信息,请建立直角坐标系,帮助小华完成这张表示各处位置的简图.8.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向西走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.9.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.10.在下图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?11.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A坐标为(9,0),请你直接在图中画出该坐标系,并写出其余5点的坐标.12.徐浩同学准备把如图所示的一张“探宝路线图”通过电话告诉李林同学,请你帮助设计一种把“探宝路线图”清楚告诉对方的方法.13.下图描述了A、B…等11位同学每天课余时间安排;请仔细观察,并回答以下问题:(1)_________ 的娱乐时间和学习时间是相等的.(2)_________ 用于学习的时间相同,都是_________ 刻钟;_________ 用于学习的时间也相同,都是_________ 刻钟.(3)_________ 的学习时间比娱乐时间多;_________ 的学习时间比娱乐时间少.(4)从图中看,A、B、C、D、E、G这六位同学的课余时间安排有什么共同点?14.在某河流的北岸有A、B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A、B两村的位置,写出其坐标.(2)近几年,由于乱砍滥伐,生态环境受到破坏,A、B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置在图中标出水泵站的位置,并求出所用水管的长度.15.读一读,想一想,做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.16.国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大的多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图a是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.(1)在如图b的小方格棋盘中有一个“皇后Q”,她所在的位置可用“(2,3)”来表示,则:①“皇后Q”所在的位置“(2,3)”的意义是_________ ;②写出棋盘中不能被该“皇后Q”所控制的四个位置_________ ;(2)如图c也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互相不受对方控制(在图c中的某四个小方格中标出字母Q即可).17.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图中,过A(﹣2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取_________ ,纵坐标是_________ .直线AB与y轴_________ ,垂足的坐标是_________ ;直线AB与x轴_________ ,AB与x轴的距离是_________ .(2)在图中,过A(﹣2,3)、C(﹣2,﹣3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是_________ ,纵坐标可以是_________ .直线AC与x轴_________ ,垂足的坐标是_________ ;直线AC与y轴_________ ,AC与y轴的距离是_________ .(3)在图中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P (x,y)的横坐标与纵坐标_________ ,并且直线OE _________ ∠xOy.【课后作业】1.图中标明了李明同学家附近的一些地方。

平面直角坐标系培优

平面直角坐标系培优

平面直角坐标系专题一、本章基本知识归类 已知N (a ,b )为平面内一点, ①试讨论N 在平面内的位置;②N 到x 轴的距离为 ,到y 轴的距离为 ; ③当 时,N 在第一、三象限的角平分线上; 当 时,N 在第二、四象限的角平分线上。

2、已知M (1,-2),N (a ,b )①若MN ∥x 轴,则a ,b 应满足的条件为 ; ②若MN ∥y 轴,则a ,b 应满足的条件为 ; ③若MN ⊥x 轴,且MN=2,则N 点坐标为 ;④若M 点向左平移3个单位,再向下平移4个单位,得到点N ,则a= ,b= .二、重点题型研究【例1】在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是?【变式训练】1、在平面直角坐标系中,点(-1,m 2+1)一定在第几象限?2、如果a -b <0,且ab <0,那么点(a ,b)在第几象限?3、如果点P(m ,1-2m)在第四象限,那么m 的取值范围是多少?【例2】点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是____________________.【变式训练】变式1. 已知点P ()82,2+-a a 到x 轴、y 轴的距离相等,求点P 的坐标.变式2.如果点M (m +3,2m +4)在y 轴上,那么点M 的坐标是_________.变式3.点P (m+3,m+1)在x 轴上,则P 点坐标为________.【例3】若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( )【变式训练】1、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.2.已知:P (4x ,x ﹣3)在平面直角坐标系中.若点P 在第四象限,且到两坐标轴的距离之和为9,求x 的值.【例4】已知点)5,114(2-+-n m m M ,则点M 在平面直角坐标系中的什么位置?变式1:若点M (1+a ,2b -1)在第二象限,则点N(a -1,1-2b )在第 象限;变式2.点Q (3-a ,5-a )在第二象限,则25104422+-++-a a a a = ;变式3.若点P (2a +4,3-a )关于y 的对称点在第三象限,求a 的取值范围为 ;【例5】方程组⎩⎨⎧=+=-32y mx y x 的解在平面直角坐标系中对应的点在第一象限内,求m 的取值范围变式1.已知点M (a 、b )在第四象限,且a 、b 是二元一次方程组⎩⎨⎧-=-=+3267134y x y x 的解,求点M 关于坐标原点的对称点'M 的坐标。

平面直角坐标系培优提高卷(含答案)

平面直角坐标系培优提高卷(含答案)

平面直角坐标系培优提高一、选择题。

1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k (X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是( )A . ﹣(2m ﹣3)B . ﹣(2m ﹣2)C . ﹣(2m ﹣1)D . ﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7 、8 、7、8 、8、9二、填空题。

平面直角坐标系培优专题

平面直角坐标系培优专题

y x1234–1–2–3–4–5–1–2–3–412345A F B C DE O 平面直角坐标系一、基本知识过关测试1.有顺序的两个数a 与b 组成的_________叫_________,记为________.6排7号可表示为______________;则(8,9)表示的意义是______________.2.在平面内画两条互相________,________重合的数轴就组成了_____________,此时坐标平面被两条坐标轴分为第_____象限、第_____象限、第______象限、第______象限;_______上的点不属于任何象限.①如图,分别写出下列各点坐标,A ______、B ______、C _______、D _______、E _______、F _______、O ________. ②在平面直角坐标系中描出下列个点,G (3,-4),H (-3,4),M (4,0),N (0,-1). 3.(1)设P (x ,y )在第一象限,且|x |=1,|y |=2,则P 点的坐标为_________. (2)点B (-1,m 2+1)在第______象限.(3)已知点C (m ,n ),且mn >0,m +n <0,则C 在第______象限. (4)点D (2m ,m -4)在第四象限,则偶数m =_______.(5)平面直角坐标系内,点A (n ,1-n )一定不在第________象限.4.点A (m +4,m -1)在x 轴上,则m =________;点B (m +1,3m +4)在y 轴上,则B 点坐标__________.5.①已知A 点坐标(-4,2),则A 点横坐标为________,纵坐标为_______,点A 到x 轴的距离为______,到y 轴的距离为________.②点P (x ,y )到x 轴,y 轴的距离分别为5和4,那么点P 的坐标是___________. ③N (a ,b )到x 轴的距离为___________,到y 轴的距离为___________.④已知点P (2-a ,3a +6)到两坐标轴的距离相等,则P 点坐标为___________. 6.已知点A (a ,3)和点B (-2,b ).①若A 、B 关于x 轴对称,则a =______,b =_______; ②若A 、B 关于y 轴对称,则a =______,b =_______; ③若A 、B 关于原点对称,则a =______,b =_______.7.△A 1B 1C 1是由△ABC 平移后得到的,已知△ABC 的边上任一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-2),已知A (-1,2),B (-4,5),C (-3,0),则A 1、B 1、C 1的坐标分别为________,_________,__________,△A 1B 1C 1是由△ABC 先向_____移______个单位长度,再向______移______个单位长度而得到的.8.①已知点M (x ,y ),N (-2,3),且MN ∥x 轴,则x =_______,y =______;已知点A (x ,2),B (-3,y ),若AB ∥y 轴,则x =______,y =_______.②若|x |=|y |,则P (x ,y )在_________上;若P (x -3,2x )在第二象限的夹角平分线上,则P 点坐标为____________.9.已知点A (-1,-1),B (-1,4),C (4,4),若ABCD 是正方形,则顶点D 的坐标是______. 10.如图,有一只蜗牛从直角坐标系的原点O 向y 轴正方向出发,它前进1cm ,右转90°,再前进1cm 后,左转90°,再前进1cm 后,右转90°,…当它走到点P (n ,n )时,左边碰到障碍物,就直行1cm ,再右转90°,前进1cm ,再左转90°,前进1cm ,…,最后回到了x 轴上,则蜗牛所走过的路程S 为________厘米.E C B DAA (1,2)C (1,1)B (-1,-1)11.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0),观察每次变换后的三角形有何变化,找出规律,再将△OA 3B 3变换成△OA 4B 4,则A 4,B 4的坐标分别是_______________.12.已知点A (-5,0),B (3,0),在y 轴上有一点C ,满足S △ABC =16,则点C 的坐标是___________,在坐标平面上满足S △ABC =16的点C 有_________个. 二、综合、提高、创新【例1】如图是某市的部分景点图,每个方格边长为一个单位长度,取北为y 轴的正方向,若以A :科技大学为坐标原点,则各景点的坐标为,B :大成殿(2,3),C :中心广场(5,4),D :钟楼(______),E :碑林(______).若记C :中心广场的坐标为(0,0),则各景点的坐标为A :科技大学(-5,-4),B :大成殿(-3,-1),D :钟楼(_______),E :碑林(______).【例2】如图,是传说中的藏宝岛图,藏宝人生前用直角坐标系的方法画出了这幅图.现今的寻宝人没有原来的地图,但知道在该图上有三块大石头A (1,2),B (-1,-1),C (1,1),而藏宝地的坐标是(4,-1),试设法在地图上找到藏宝地点.【例3】(1)如图1,△A 1B 1C 1是由△ABC 平移后得到的,已知A (0,0),B (3,-1),C (-1,-4)且B 1(-2,1),试写出△ABC 变换为△A 1B 1C 1的一种平移方案,写出点A 1,C 1的坐标.(2)如图2,△A 1B 1C 1是由△ABC 经过变换后得到的图形,试写出其变换的过程及在这些变换过程中点B ,C 对应的坐标.图1B 1C 1A 1BCA Oxy1234–1–2–3–4–5–1–2–3–4–512345图2A 1C 1B 1ABCyxO123451234–1–2–3–4–5–1–2–3–4–5【例4】(1)如图,在一单位为1cm的方格纸上,依图所示的规律,设定点A1,A2,A3,A4,……A n,连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为100cm2时,n=_______.(2)将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x,y),且x,y均为整数,如数5对应的坐标为(-1,-1),试探求数2012对应的坐标.【例5】(1)如下图,求面积①A(2,0),B(0,1),C(0,4).②A(0,2),B(-2,0),C(2,-1),D(34,0).yxO ABCDBOE CxyAS△ABC=_____________ S△ABC=_____________③A(1,4),B(3,-1),C(-4,-2).④A(-14,0),B(-11,6),C(-1,8),O(0,0).OxyBCAOACBxyS△ABC=_____________ S OABC=_____________(2)在平面直角坐标系中,A点坐标为(3-2,0),C点坐标为(-3-2,0),B 点在y轴上,且S△ABC=3,则B点的坐标是____________,在坐标平面上能满足S△ABC=3的点C有___________个.BO A Cl xyx y C ED B O A O B (1,3)A (2,-1)C (-4,-2)xy y xBADOC 【例6】已知:如图A (-4,0)、C (3,27),直线AC 交y 轴于点B .(1)求△AOC 的面积; (2)求点B 的坐标;(3)在平面直角坐标系内是否存在一点P (m ,1),使△ABP =S △AOC ,若存在试求出m 的值,若不存在试说明理由.三、反馈练习 (一)填空1.若点C (x ,y )满足x +y <0,xy >0,则点C 在第_____象限.2.若点A (a ,b )在第三象限,则点Q (-a +1,3b -5)在第______象限. 3.已知点P (a ,-2),Q (3,b )且PQ ∥y 轴,则a =______,b ≠_______. 4.已知A (x +1,2),B (-3,2y -1)关于y 轴对称,则x =_________. 5.(1)点M (3,0)到点N (-2,0)的距离是___________.(2)点C 在y 轴上,到坐标原点的距离为5个单位长度,则C 点坐标为_________. (3)点D 在y 轴左侧,它到x 轴距离为2个单位长度,到y 轴距离为1个单位长度,则D 点坐标为__________.6.在长方形ABCD 中,A (-4,1),B (0,1),C (0,3),则D 点的坐标是_________,S 长方形ABCD 为_______个单位面积.7.如图,一个机器人从O 点出发,向正东方走3m 到达A 1点,再向正北方向走6m 到达A 2点,再向正西方向走9m 到达A 3点,再向正南方向走12m 到达A 4点,再向正东方向走15m 到达A 5点.按如此规律走下去,相对于点O ,机器人走到A 6点的坐标为_______.8.如图一个粒子在第二象限移动,在第一分钟内它从原点运动到(-1,0),而后它接着按着图所示在与x 轴、y 轴平行的方向来回运动且每分钟移动1个单位长度,那么在2012分钟时,则这个粒子所处的位置的坐标为_____________. (二)解答9.如图,△ABC 是一个三角形,A (-4,0),B (2,0),把△ABC 沿AC 边平移,使A 点平移到C 点,△ABC 变换为△DCE ,已知C (0,3.5),请写出D 、E 的坐标,并用坐标说出平移的过程.10.如图所示,已知△ABC 的三个顶点的坐标分别为A (2,-1)、B (1,3)、C (-4,-2),求出△ABC 的面积.11.如图,A (1,0),B (3,0),C (0,3),D (2,-1).(1)试在y 轴上找一点P ,使三角形ADP 的面积与三角形ABC 的面积相等;(2)如果第二象限内有一点Q (a ,1),使S △QAC =S △ABC ,求Q 点坐标.※12.在平面直角坐标系中,已知O使原点,四边形ABCD是长方形,A,B,C的坐标分别使A(-2,-2),B(-2,-3),C(4,3).(1)求D点坐标;(2)将长方形ABCD以每秒1个单位长度水平向右平移,2秒钟后所得的四边形A1B1C1D1四个顶点的坐标各多少?请将(1)(2)中的答案直接填入下表中:点D A1B1C1D1坐标(3)以(2)中方式平移长方形ABCD,几秒钟后三角形OBD的面积等于长方形ABCD的面积.。

平面直角坐标系培优

平面直角坐标系培优

平面直角坐标系培优、单选题1.在平面直角坐标系中,点P(-5,0)在( )A.第二象限B.x轴上C.第四象限D.y轴上2.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2)B.(-4,2)C.(-2,4)D.(2,-4)3.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)4.在下列点中,与点A(,2,,4)的连线平行于y轴的是( )A.(2,,4)B.(4,,2)C.(,2,4)D.(,4,2)5.若a>0,b<-2,则点(a,b+2)应在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系xoy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,,点A2的伴随点为A3,,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2020的坐标为()A.(-3,3)B.(-2,-2)C.(3,-1)D.(2,4)7.一个质点在第一象限及x轴、y轴上运动在第一秒时,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位长度,那么第2008秒时该质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16)D.(16,44)8.在平面直角坐标系中,若点P(a-3,a+1)在第二象限,则a的取值范围为()A.-1<a<3B.a>3C.a<-1D.a>-19.已知点()3,2M -与点()',M x y 在同一条平行于x 轴的直线上,且点'M 到y 轴的距离等于4,那么点'M 的坐标是( )A .()4,2或()4,2-B .()4,2-或()4,2--C .()4,2-或()5,2--D .()4,2-或()1,2--10.如图,平面直角坐标系中,一蚂蚁从A 点出发,沿着A →B →C →D →A …循环爬行,其中A 点的坐标为(2,﹣2),B 点的坐标为(﹣2,﹣2),C 点的坐标为(﹣2,6),D 点的坐标为(2,6),当蚂蚁爬了2018个单位时,蚂蚁所处位置的坐标为( )A .(﹣2,0)B .(4,﹣2)C .(﹣2,4)D .(0,﹣2)二、填空题11.在平面直角坐标系中,孔明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位长度;当n 被3除,余数为1时,则向右走1个单位长度;当n 被3除,余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是 .12.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是_______,点P 2014的坐标是_______.13.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.14.已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a=_____________. 15.已知点(1,2)A m +-和点(3,1)B m -,若直线//AB x 轴,则m 的值为________.16.对于平面直角坐标系 xOy 中的点 P(a ,b) ,若点 P ' 的坐标为(a + kb , ka + b) (其中k 为常数,且k ≠ 0) ,则称点 P ' 为点 P 的“ k 属派生点”,例如: P(1, 4) 的“2 属派生点”为P '(1+ 2 ⨯ 4, 2⨯1+ 4). 即 P '(9,6) 若点 P 在 x 轴的正半轴上,点 P 的“ k 属派生点”为 P '点,且线段 PP ' 的长度为线段OP 长度的 3 倍,则k 的值_____.17.在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点一共有_____个.17题 20题18.若点P (21x -,32x +)是x 轴上的点,则x =__________;若点P (21x -,32x +)是y 轴上的点,则x =__________19.若点P(a ,b)在第二象限,则点Q(-a ,b+1)在第________象限.20.如图所示,一个动点在第一象限内及x 轴,y 轴上运动,在第1分钟,它从原点运动到(1,0),第2分钟,从(1,0)运动到(1,1),然后它接着按图中箭头所示在与x 轴,y 轴平行的方向来回运动,且每分钟运动1个单位长度.当动点所在位置的坐标是(5,5)时,所经过的时间是______分钟,在第1002分钟后,这个动点所在的位置的坐标是______.三、解答题21.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图).他把图形与x 轴正半轴的交点依次记作1(1,0)A ,2(5),0A ,…,n A ,图形与y 轴正半轴的交点依次记作()0,2B ,()20,6B ,…,n B ,图形与x 轴负半轴的交点依次记作()13,0C -,2()–7,0C ,…,n C ,图形与y 轴负半轴的交点依次记作14(0,)D -,28(0,)D -,…,n D ,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:3A __________,3B __________,3C __________,3D __________. (2)请分别写出下列点的坐标:n A __________,n B __________,n C __________,n D __________. (3)请求出四边形5555A B C D 的面积.22.设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点3,0()(允许重复过此点)处,则质点不同的运动方案共有多少种?23.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 20b -=,()1则C 点的坐标为______,A 点的坐标为______,()2已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ SS =?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.24.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S =ah .例如:三点坐标分别为A ,1,2,,B ,-3,1,,C ,2,-2),则“水平底”a =5,“铅垂高”h =4,“矩面积”S =ah =20.根据所给定义解决下列问题:,1)若已知点D ,1,2,,E ,-2,1,,F ,0,6),则这3点的“矩面积”=_____.,2)若D ,1,2,,E ,-2,1,,F ,0,t )三点的“矩面积”为18,求点F 的坐标;25.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.26.请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.27.如图所示,在象棋盘上建立平面直角坐标系,使使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.27题28题29题28.如图,网格中每个小正方形的边长为1,点C(0,1),点B(-1,3).(1)利用网格画出直角坐标系(要求标出x轴,y轴和原点),则点A的坐标为_________;(2)以△ABC为基本图形,利用旋转设计一个图案,说明你的创意为__________________.29.这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示校门、图书馆、教学楼、旗杆和实验楼的位置.30.在平面直角坐标系中.(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围。

本溪市七年级数学下册第七章【平面直角坐标系】测试(课后培优)

本溪市七年级数学下册第七章【平面直角坐标系】测试(课后培优)

一、选择题1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )A .D7,E6B .D6,E7C .E7,D6D .E6,D72.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,13.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 4.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 5.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°6.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)8.若实数a ,b 30b -=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为()A.9 B.12 C.6 D.110.如图是医院、公园和超市的平面示意图,超市B在医院O的南偏东25︒的方向上,且到AOB=︒,则公园A在医院医院的距离为300m,公园A到医院O的距离为400m.若∠90O的()A.北偏东75︒方向上B.北偏东65︒方向上C.北偏东55︒方向上D.北偏西65°方向上11.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4…,这样依次得到点A1,A2,A3,…,A n,若点A1的坐标为(3,1),则点A2019的坐标为()A.(0,﹣2)B.(0,4)C.(3,1)D.(﹣3,1)二、填空题12.在平面直角坐标系内,把点A(5,-2)向右平移3个单位,再向下平移2个单位,得到的点B的坐标为______.13.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.14.已知两点A(-2,m),B(n,-4),若AB//y轴,且AB=5,则m=_______;n=_______________.15.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.16.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.17.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 18.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限19.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______20.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P的坐标;4,0,其它条件不变,如图②,求出所有符合条件(2)若将(1)中的点M的坐标改为()的点P的坐标.5,0,其它条件不变,如图③,请直接写出符合条(3)若将(1)中的点M的坐标改为()件的等腰三角形有几个(不必求出点P的坐标).23.已知:△A1B1C1三个顶点的坐标分别为A1(﹣3,4),B1(﹣1,3),C1(1,6),把△A1B1C1先向右平移3个单位长度,再向下平移3个单位长度后得到△ABC,且点A1的对应点为A,点B1的对应点为B,点C1的对应点为C.(1)在坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在y轴上,且△APB与△ABC的面积相等,求点P的坐标.2,5,并写出儿童公园,医院,水果24.请在图中建立平面直角坐标系,使学校的坐标是()店,宠物店,汽车站的坐标.25.如图1,已知直角梯形ABCO中,∠AOC=90°,AB∥x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣c-=07(1)求出点A、B、C的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N 从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求HCJABN∠∠的值(结果用含k的式子表示).一、选择题1.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 2.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b4.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 5.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗6.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .19.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 10.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限 11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).13.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.14.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.15.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 16.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 19.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.20.已知P (a,b ),且ab <0,则点P 在第_________象限.21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).23.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.24.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A 点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A,C,E,F的坐标.25.如图1,在平面直角坐标系中,A(a,0),C(b,4),且满足(a+5)2+5b=0,过C作CB⊥x轴于B.(1)a=,b=,三角形ABC的面积=;(2)若过B作BD//AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.一、选择题1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )A .D7,E6B .D6,E7C .E7,D6D .E6,D72.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,13.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)4.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 5.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或37.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)8.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( )A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1210.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 11.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112m B .2505m C .220092m D .2504m二、填空题 12.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.13.写一个第三象限的点坐标,这个点坐标是_______________.14.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __17.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.18.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____.19.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题22.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1): ;(1,2): ;(2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点 与点 的直线平行于x 轴,这两点的坐标的共同特点是 ; ②连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 .23.已知点()32,24A a a +-,试分别根据下列条件,求出a 的值并写出点A 的坐标. (1)点A 在x 轴上;(2)点A 与点8'4,3A ⎛⎫-- ⎪⎝⎭关于y 轴对称;(3)经过点()32,24A a a +-,()3,4B 的直线,与x 轴平行;(4)点A 到两坐标轴的距离相等.24.如图,在平面直角坐标系中,A (-2,0),C (2,2),过C 作CB ⊥x 轴于B ,在y 轴上是否存在点P ,使得ABC 和ABP △的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D(6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.。

江西省莲塘一中七年级数学下册第七章【平面直角坐标系】经典测试(培优)

江西省莲塘一中七年级数学下册第七章【平面直角坐标系】经典测试(培优)

一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)5.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗6.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-9.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.16.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.17.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .18.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.19.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.20.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别为()()()()12340,0,1,12,03,1A A A A -,按照这个规律解决下列问题:()1写出点5678,,,,A A A A 的坐标;()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”);()3试写出点n A 的坐标(n 是正整数).23.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.24.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标25.如图,A B C '''是ABC 经过平移得到的,ABC 中任意一点ABC 平移后的对应点为'(2,3)P x y +-(1)求A B C '''各顶点的坐标;(2)画出A B C '''.一、选择题1.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-2.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)7.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上8.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)9.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行 D .平行、垂直相交二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 15.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.16.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.17.写一个第三象限的点坐标,这个点坐标是_______________.18.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.19.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB =2,则点A的坐标是___.20.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.⊥于D.若A(4,0),B(m,3),21.如图,直线BC经过原点O,点A在x轴上,AD BCC(n,-5),则AD BC=______.三、解答题22.在平面直角坐标系中,ABC的位置如图所示,把ABC先向左平移2个单位,再'''.向下平移4个单位可以得到A B C(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.23.若点(1m -,32m -)在第二象限内,求m 的取值范围24.如图,已知五边形 ABCDE 各顶点坐标分别为A (-1,-1),B (3,-1),C (3,1),D (1,3),E (-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F ,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标. 25.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆; (2)点1B 到y 轴的距离是____个单位长; (3)求111O A B ∆的面积.一、选择题1.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 2.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 3.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-4.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 7.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 8.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)13.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______14.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.15.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________.16.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 17.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.18.已知P (a,b ),且ab <0,则点P 在第_________象限.19.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 23.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.24.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标.25.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC 以点O 为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系题型归纳总结【】一、直角坐标中点的坐标规律探究题例题讲解:1. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13) B.(-13,-13) C.(14,14) D.(-14,-14)2. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“⇒”方向排列,如(0,0)⇒(1,0)⇒(1,1)⇒(2,2)⇒(2,1)⇒(2,0)…根据这个规律探索可得,第100个点的坐标是 .3. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;……依此类推,这样作的第n 个正方形对角线交点M n的坐标为().A.111,22n n⎛⎫-⎪⎝⎭B.11111,22n n--⎛⎫-⎪⎝⎭C.11111,22n n++⎛⎫-⎪⎝⎭D.1111,122n n++⎛⎫-⎪⎝⎭变式练习:1、如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2012次,点P依次落在点P1,P2,P3…P2012的位置,则点的坐标为.2、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是.3、如图为风筝的图案.(1)若原点用字母O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积.10、点A(0,1),点B(0,-4),点C在x轴上,如果三角形ABC的面积为15,(1)求点C 的坐标.(2)若点C 不在x 轴上,那么点c 的坐标需满足什么样的条件(画图并说明)11、我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P (x 1,y 1)、Q (x 2,y 2)的对称中心的坐标为⎪⎭⎫⎝⎛++2,22121y y x x 观察应用: (1)如图,在平面直角坐标系中,若点P 1(0,-1)、P 2(2,3)的对称中心是点A ,则点A 的坐标为;(2)另取两点B (-1.6,2.1)、C (-1,0).有一电子青蛙从点P 1处开始依次关于点A 、B 、C 作循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…则点P 3、P 8的坐标分别为、. 拓展延伸:(3)求出点P 2012的坐标,并直接写出在x 轴上与点P 2012、点C 构成等腰三角形的点的坐标.二、平面直角坐标中有关面积问题【例1】.如图,点A (4,0),B (0,5),点C 在x 轴上,若三角形ABC 面积是5,求点C 的坐标x),B(2,0),点C在y轴正半轴上,且S△A BC = 18.(1)求点C的坐标;(2分)(2)是否存在位于坐标轴上的点P,S△ACP =12S△ABC.若存在,请求出P点坐标,若不存在,说明理由【例3】、平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3)(1)求ABCS的值;(2)AB交y轴于点D,AC交y轴于点E,求线段DE的长A(-3,-1),B(1,3),AB交y轴于点C(1)求AOB S 的值;(2)求点C 的坐标2、如图,在平面直角坐标系中,已知三点A (0,a ),B (b ,0),C (b ,c ),其中a ,b ,c 满足关系式01)3(22=--+-+-b c b a(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P (m ,21),请用含m 的式子表示四边形ABOP 的面积, (3)若四边形ABOP 的面积与△ABC 的面积相等,请求出点P 的坐标;三、动点问题【例1】、已知:在平面直角坐标系中,四边形ABCD 是长方形, ∠A =∠B =∠C =∠D =90°AB ∥CD ,AB =CD =8cm ,AD =BC =6cm ,D 点与原点重合,坐标为(0,0). (1)写出点B 的坐标.(2)动点P 从点A 出发以每秒3个单位长度的速度向终点B 匀速运动, 动点Q 从点C 出发以每秒4个单位长度的速度I 沿射线CD 方向匀速运动,若P ,Q 两点同时出发,设运动时间为t 秒,当t 为何值时,PQ ∥BC ? (3)在Q 的运动过程中,当Q 运动到什么位置时,使△ADQ 的面积为9? 求出此时Q 点的坐标.【例2】、已知点)0,(a A 、)0,(b B ,且|2|)4(2-++b a =0.(1)求b a ,的值;(2)在y 轴上是否存在点C ,使得△ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由; (3)点P 是y 轴正半轴上一点,且到x 轴的距离为3,若点P 沿x 轴负半轴以每秒1个长度单位平行移动至Q ,当运动的时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位?写出此时Q 点的坐标.变式练习1、如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

设从出发起运动了x 秒。

①请用含x 的代数式分别表示P,Q 两点的坐标;②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?2、如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。

(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A 、B 两点的坐标。

(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P ,问:点A 、B 在运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。

xx(3)如图,延长BA 至E ,在∠ABO 的内部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH 和∠BGC 的大小关系如何?请写出你的结论并说明理由。

四、平面直角坐标中代几结合综合问题【例1】、在棋盘中建立如图所示的直角坐标系,一颗棋子A 位置如图,它的坐标是(-1,1).(1)如果棋子B 刚好在棋子A 关于x 轴对称的位置上,则棋子B 的坐标为______________;棋子A 先向右平移两格再向上平移两格就是棋子C 的位置,则棋子C 的坐标为_______________;(2)棋子D 的坐标为(3,3),试判断A 、B 、C 、D 四棋子构成的四边形是否是轴对称图形,如果是,在图中用直尺作出它的对称轴,如果不是,请说明理由;(3)在棋盘中其他格点位置添加一颗棋子E ,使四颗棋子A ,B ,C ,E 成为轴对称图形,请直接写出棋子E 的所有可能位置的坐标__________________________________. A (-2,3)、B (-6,0)、C (-1,0), 对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,求出A′点的坐标。

.(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标【例3】、在平面直角坐标系中, 点A是第二象限的点, AB⊥轴于点B, 点C是y轴正半轴上一点, 设D点为线段OB上一点(D不与点O、B重合), DE⊥CD交AB于E.(1)当∠OCD=60°时, 求∠BED;(2)若∠BED、∠DCO的平分线的交点为P, 当点D在线段OB上运动时, 问∠P的大小是否为定值?若是定值, 求其值并说明理由;若变化, 求其变化范围;(3)当∠CDO=∠A时, 有:①CD⊥AC;②EP∥AC, 其中只有一个是正确的, 请选择正确的, 并说明理由.1、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.2、(1)在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD。

①直接写出图中相等的线段、平行的线段;②已知A(-3,0)、B(-2,-2),点C在y轴的正半轴上,点D在第一象限内,且=5,求点C、D的坐标;(2)在平面直角坐标系中,如图,已知一定点M(1,0),两个动点E(a,2a+1)、F(b,-2b+3),请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM。

若存在,求以点O、M、E、F为顶点的四边形的面积,若不存在,请说明理由。

课后作业一、选择题(每小题3分,共30分)1、下列各组数中,相等的是()A. 5-与5-B. 2-与38- C. 3-与13- D. 4-2、以下列各组数据为边长能组成直角三角形的是 ( )A .2、3、5B .4、5、6C .6、8、10D .1、1、13的整数部分是( )A .5 B. 6 C. 7 D. 8 4、立方根等于它本身的数是( ) A .0和1B. 0和±1C. 1D. 05、已知0<a ,那么点(1,)a a -在( ) A. 第一象限B. 第二象限 C . 第三象限 D. 第四象限6、下列说法正确的有( )①无限小数都是无理数; ②正比例函数是特殊的一次函数;a =; ④实数与数轴上的点是一一对应的;A. 3个B. 2个C. 1个D. 0个7、y =有意义,则x 的取值范围是( ) A .x≥0 B .x≠4 C .x>4 D .x≥0且x≠4 8、△ABC 中的三边分别是m 2-1,2m ,m 2+1(m>1),那么( ) A .△ABC 是直角三角形,且斜边长为m 2+1. B .△ABC 是直角三角形,且斜边长为2m . C .△ABC 是直角三角形,且斜边长为m 2-1. D .△ABC 不是直角三角形.二.填空题 (每小题3分,共12分)9、4的平方根...是 ,8的立方根...是 ; 10、点A (3,4)到x 轴的距离为 ,到y 轴的距离为 ; 11、已知Rt △ABC 一直角边为8,斜边为10,则S △ABC = ;三.计算题(每小题4分,共16分)12、计算:(1)(2)-13、解方程: (3)22(1)8x+=(4)33(21)81x-=-四.解答题(共42分)14、若(1) 求x y+的值;(2)求22x xy y-+的值.15、△ABC在方格中的位置如图所示。

相关文档
最新文档