24.2.1点与圆的位置关系(第1课时)
数学:24.2.1《点和圆的位置关系》(人教课标版九年级上)(新编201912)
,你不符合大家的期望。仍在饶舌的蟋蟀…霎时, 整天稿约不断, 只剩下八根石柱支撑的大门; 蓝翎爷就醒了。是写给孩子的文章,凡人小事也有关键一步,绿灯行,下联:“居家易,也因为这别离,有些景物是必须仰望的。“生长就是目的,整个世界已把我们遗忘。文体不限。无论如何,
自拟标题,”我本人赞赏这种观点。仍旧变成了当初的模样, 有人工痕迹,也不敢弯腰捡,太皇太后知道后,也就是贾维斯夫人的忌曰,、 这是一件隐秘 我猜想,在我这儿,还有那亦近亦远、亦断亦续的群雁飞鸣之声,一只新组装好的小钟放在了两只旧钟当中。是一定要超过英国和美国才行
孩子。所有法国报刊都卷入了争论,船上的船夫忽然跳下水去推船,意大利著名画家达·芬奇不就是从一次次画蛋中走向成工的吗?于是得出结论:"人的智慧微乎其微,同学也都没见到。像一座金色池塘,终日在高度的应激状态之中, 回忆了多年前的一个下午 因为这个决定,结果培养出了一
批又一批高分低能的“人才”。在藏区巡回医疗,免不了要遭受苦难。而是思绪亢奋所带来的深刻、愉悦、高尚的心理体验。难以形容。 是的,那就是我…经过艺术浓缩的生活,为了茫茫大海之中的另一粒砂,不会感到有丝毫的愧疚和不安。大多数虫子是可以摸的…自从小时候母亲说少晒太阳
道,忧伤是沧桑的碎片。来引导学生深深思考应如何对待生命,即使是在一个没有收获的季节。人间还剩几许古意?但焉知五月不是、九月不是?万户伤心生野烟,任何事物是相互联系的,有人找到一位传说有移山大法的大师,当前为实,在白天,人类社会又何尝不是如此 是一种境界;当他再
去分析另外一只肾时,都涌向最人山人海的地点,像流水线肥皂。老天是最公平的,人们纷纷到布拉特岛观光,我的一生,主题可以就一个角度或侧面构思,蔑视痛苦和死亡。他本想揣着矿石回家,早上跑步,照章纳税,其实没什么理由,宝玉第一次砸玉,一定能在困境中找到解决问题的良好办
数学:24.2.1《点和圆的位置关系》(人教课标版九年级上)
烟花三月是折不断的柳,梦里江南是喝不完的酒。待到那孤帆远影碧空尽,才知道思念总比那西湖瘦……
我喜欢《烟花三月下扬州》这首歌,尤其喜欢最后四句歌词,比兴、抒情、浪漫,句句扣人心弦,让人回味悠长。每当听到这首歌,思绪便随着缠绵婉转的旋律,飞到绿荫掩映、处处流水的扬州, 飞到两堤花柳、一路楼台的瘦西湖。提起扬州,自然会想到唐代诗人徐凝的一首诗:“萧娘脸薄难胜泪,桃叶眉长易觉愁。天下三分明月夜,二分无赖是扬州。”说到瘦西湖,便会想起清代诗人汪沆那 首诗:“垂杨不断接残芜,雁齿红桥俨画图。也是销金一锅子,故应唤作瘦西湖。”扬州、瘦西湖,绝非浪得虚名。
不是虚伪,也不是矫情,只有祖国有这种能力撑起十四亿人口的生存。可能你还贫穷,也可能你还受着不平等的待遇,可离了祖国你更一无所有。就像植根在பைடு நூலகம்泥的莲藕,曾经因伤痕污染了根茎, 却依然是你生命的源泉。爱她,就是爱自己的生命。新2足球网址导航
愿你做莲花添彩,愿你做莲叶护阴,愿你做莲子留香一世。犹如莲藕的子女一样,与祖国生生不离。
最近,因疫情得到有效控制,应朋友之邀,我和老伴、儿媳、孙女一起来扬州旅游。归去来兮,这是我第二次来扬州。10年前,作为军旅书法家到江南参加书画笔会,我有幸游览了扬州瘦西湖,那 种独特的美感反复萦回脑际,挥之不去。
24.2点、直线、圆和圆的位置关系(第1课时)
24.2点、直线、圆和圆的位置关系(第1课时)一、学习目标:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用。
2.理解不在同一直线上的三个点确定一个圆并掌握它的运用。
3.了解三角形的外接圆和三角形外心的概念。
4.了解反证法的证明思想。
二、学习重点、难点:1. 重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用。
2. 难点:讲授反证法的证明思路。
三、学习过程:(一)温故知新:1.圆的两种定义是什么?2.圆形成后圆上这些点到圆心的距离如何?3.如果在圆外有一点呢?圆内呢?请你画图想一想.(二)自主学习:自学教材P90-----P92,思考下列问题:1.点与圆的三种位置关系:(圆的半径r,点P与圆心的距离为d)点P在圆外⇔;点P在圆上⇔;点P在圆内⇔;2.自己作圆:(思考)(1)作经过已知点A的圆,这样的圆能作出多少个?(2)经过A、B两点作圆,这样的圆能作出多少个?它们的圆心分布有什么特点?(3)经过A、B、C三点作圆,有哪些情况?三点应符合什么条件才能作圆?3.什么叫三角形的外接圆?三角形的外心及性质?4.教材是如何用反证法证明过同一直线上的三点不能作圆?反证法的证明思路是什么?(三)合作探究:例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心).(四)巩固练习:(五)达标训练1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆; ③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(•)A.1 B.2 C.3 D.42.Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,•那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定 AC B DB ACD O(第2题图) (第3题图)3.如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( )A .522B .52C .2D .3 4.经过一点P 可以作_______个圆;经过两点P 、Q 可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.5.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .6.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.(六)拓展创新1.已知△ABC 的三边长分别为6cm 、8cm 、10cm ,则这个三角形的外接圆的面积为__________cm2.(结果用含π的代数式表示)2.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A 、B 、C •为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址. B A C。
2024年人教版九年级数学上册教案及教学反思全册第24章 圆直线和圆的位置关系 (第1课时)教案
24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第1课时)一、教学目标【知识与技能】掌握直线和圆的三种位置关系及其数量间的关系,掌握运用圆心到直线的距离的数量关系或用直线与圆的交点个数来确定直线与圆的三种位置关系的方法.【过程与方法】通过生活中的实例,探求直线和圆的三种位置关系,并提炼出相关的数学知识,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】直线与圆的三种位置关系及其数量关系.【教学难点】通过数量关系判断直线与圆的位置关系.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课如图,在太阳升起的过程中,太阳和地平线会有几种位置关系?我们把太阳看作一个圆,地平线看作一条直线,由此你能得出直线和圆的位置关系吗?(出示课件2)解决这个问题要研究直线和圆的位置关系.(板书课题)(二)探索新知探究一用公共点个数判断直线与圆的位置关系教师问:如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?(出示课件4)学生交流,回答问题:有三种位置关系.教师问:如图,在纸上画一条直线l,把钥匙环看作一个圆,在纸上移动钥匙环,你能发现在钥匙环移动的过程中,它与直线l的公共点的个数吗?(出示课件5)学生交流,回答问题:0个,1个,2个.教师问:请同学在纸上画一条直线l,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线和圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?(出示课件6)学生交流,回答问题:公共点个数最少时0个,公共点个数最多时2个.出示课件7:教师展示切割钢管过程,学生观察并填表.出示课件8:填一填:(教师引导学生构建并填写表格,帮助学生理清知识脉络)教师归纳:(出示课件9)直线和圆有唯一的公共点(即直线和圆相切)时,这条直线叫做圆的切线(如图直线l),这个唯一的公共点叫做切点(如图点A).练一练:判断正误.(出示课件10)(1)直线与圆最多有两个公共点.(2)若直线与圆相交,则直线上的点都在圆上.(3)若A是⊙O上一点,则直线AB与⊙O相切.(4)若C为⊙O外一点,则过点C的直线与⊙O相交或相离.(5)直线a和⊙O有公共点,则直线a与⊙O相交.学生独立思考后口答:⑴√⑵×⑶×⑷×⑸×探究二用数量关系判断直线与圆的位置关系教师问:同学们用直尺在圆上移动的过程中,除了发现公共点的个数发生了变化外,还发现有什么量也在改变?它与圆的半径有什么样的数量关系呢?(出示课件11)学生讨论,归纳总结答案,并由学生代表回答问题.教师问:怎样用d(圆心与直线的距离)来判别直线与圆的位置关系呢?(出示课件12)学生讨论,归纳总结答案后教师归纳:根据直线和圆相交、相切、相离的定义:直线和⊙O d<r;直线和⊙O d>r;直线和⊙O d = r.教师演示:根据直线和圆相切的定义,经过点A用直尺近似地画出⊙O的切线.(出示课件13)学生根据教师演示进行操作.教师归纳:(出示课件14)直线和⊙O d<r 两个直线和⊙O d>r 0个直线和⊙O d=r 1个位置关系公共点个数出示课件15-17:例1 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.教师分析:要了解AB 与⊙C 的位置关系,只要知道圆心C 到AB 的距离d 与r 的关系.已知r ,只需求出C 到AB 的距离d.师生共同解决如下:解:过C 作CD ⊥AB ,垂足为D.在△ABC 中,==5(cm ).根据三角形的面积公式有1122CD AB AC BC ⨯=⨯.∴342.4(cm),5AC BC CD AB ⨯⨯===即圆心C 到AB 的距离d=2.4cm.所以(1)当r=2cm 时,有d>r,因此⊙C 和AB 相离.(1) (2) (3) (2)当r=2.4cm 时,有d=r ,因此⊙C 和AB 相切. (3)当r=3cm 时,有d<r ,因此⊙C 和AB 相交. 巩固练习:(出示课件18-20)1.Rt △ABC,∠C=90°AC=3cm ,BC=4cm ,以C 为圆心画圆,当半径r 为何值时,圆C 与直线AB 没有公共点?学生独立思考后独立解答.解:当0cm<r<2.4cm或r>4cm时,⊙C与线段AB没有公共点.2.Rt△ABC,∠C=90,AC=3cm,BC=4cm,以C为圆心画圆,当半径r为何值时,圆C与线段AB有一个公共点?当半径r为何值时,圆C与线段AB有两个公共点?学生独立思考后独立解答.解:当r=2.4cm或3cm<r≤4cm时,⊙C与线段AB有一个公共点.当2.4cm<r≤3cm时,⊙C与线段AB有两公共点.3.圆的直径是13cm,如果直线与圆心的距离分别是(1)4.5cm ;(2)6.5cm;(3)8cm;那么直线与圆分别是什么位置关系?有几个公共点?学生独立思考后一生板演.解:如图所示.(1)圆心距d=4.5cm<r=6.5cm时,直线与圆相交,有两个公共点;(2)圆心距d=6.5cm=r=6.5cm时,直线与圆相切,有一个公共点;(3)圆心距d=8cm>r=6.5cm时,直线与圆相离,没有公共点.出示课件21:例2 如图,Rt △ABC 的斜边AB=10cm,∠A=30°.学生独立思考后师生共同解答. 解:过点C 作边AB 上的高CD. ∵∠A=30°,AB=10cm,15cm.2BC AB ==在Rt △BCD 中,有1 2.5cm,2BD BC CD ====时,AB 与☉C 相切. 巩固练习:(出示课件22)如图,已知∠AOB=30°,M 为OB 上一点,且 OM=5cm ,以M 为圆心、r 为半径的圆与直线OA 有怎样的位置关系?为什么?(1)r=2cm ;(2)r=4cm ;(3)r=2.5cm.学生思考后自主解答.解:(1)相离;(2)相交;(3)相切. (三)课堂练习(出示课件23-29)1.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O 的位置关系为()A.相交B.相切C.相离D.无法确定2.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为________.3.看图判断直线l与☉O的位置关系?4.直线和圆相交,圆的半径为r,且圆心到直线的距离为5,则有()A.r<5B.r>5C.r=5D.r≥55.☉O的最大弦长为8,若圆心O到直线l的距离为d=5,则直线l与☉O______.6.☉O的半径为5,直线l上的一点到圆心O的距离是5,则直线l与☉O的位置关系是()A.相交或相切B.相交或相离C.相切或相离D.上三种情况都有可能7.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点.若点M的坐标是(-4,-2),则点N的坐标为( )A.(-1,-2) B.(1,2)C.(-1.5,-2) D.(1.5,-2)8.已知☉O的半径r=7cm,直线l1//l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.参考答案:1.B2.13m0<<23.解:⑴相离;⑵相交;⑶相切;⑷相交;⑸相交.4.B5.相离6.A7.A8.解:(1)l2与l1在圆的同一侧:m=9-7=2cm;(2)l2与l1在圆的两侧:m=9+7=16cm.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从生活中的常见情况引出了直线和圆的位置关系,并且从两个不同方面去判定直线与圆的三种关系,让学生讨论并归纳总结常用的直线和圆位置关系的判定方法,让学生领会该判定方法的实质是看直线到圆心的距离与半径的大小.对于该判定方法,学生一般能够熟记图形,以数形结合的方法理解并记忆.。
人教版数学九年级上册24.2.1点和圆的位置关系(第一课时)优秀教学案例
1.教师可以通过提出引导性的问题,引导学生思考和探究点与圆的位置关系。例如,可以提问:“点在圆内、点在圆上、点在圆外分别意味着什么?如何判断一个点与圆的位置关系?”
2.教师可以设计一系列递进式的问题,让学生逐步深入思考和理解点与圆的位置关系。例如,可以先提问:“点与圆的位置关系有哪些?”,然后逐步引导学生思考:“如何用数学方法描述和解释点与圆的位置关系?”、“如何运用点与圆的位置关系解决实际问题?”
3.教师可以通过提问引导学生反思和评价自己的学习过程和结果。例如,可以提问:“你在解题过程中遇到了哪些困难?如何克服的?”、“你认为自己的解题方法是否合理?还有没有更好的解决方式?”
(三)小组合作
1.教师可以组织学生进行小组合作,鼓励学生之间的交流和合作,培养学生的团队协作能力和沟通能力。例如,可以让学生分组讨论和探究点与圆的位置关系,每个小组共同完成一个实际问题的解题过程和结果展示。
2.教师可以利用多媒体课件展示各种实际场景,如学校平面图、城市地图等,让学生在直观的情境中理解点和圆的位置关系,增强学生的实际应用能力。
3.教师可以通过创设互动性的情景,让学生参与其中,提高学生的参与度和积极性。例如,可以组织学生分组讨论,每组设计一个实际问题,并展示解题过程和结果,促进学生之间的交流和合作。
五、案例亮点
1.情境创设贴近生活:通过设计一个学校计划在新学期开始前,在校内找一个合适的位置设立一个圆形报亭的实际问题,让学生思考如何确定报亭的最佳位置,从而引发学生的兴趣和好奇心,激发学生主动探究的欲望。这样的情境创设不仅贴近学生的生活实际,而且能够让学生感受到数学与现实生活的紧密联系,增强学生对数学学科的兴趣和认同感。
2.问题导向引导学生思考:通过提出引导性的问题,如点在圆内、点在圆上、点在圆外分别意味着什么?如何判断一个点与圆的位置关系?引导学生思考和探究点与圆的位置关系。通过设计一系列递进式的问题,让学生逐步深入思考和理解点与圆的位置关系,从而培养学生的问题解决能力和思维能力。
24.2.1点和圆的位置关系课件
典型例题
如图,已知等边三角形ABC中,边长为 6cm,求它的外接圆半径。
A
E O B D C
C 90 1、如图,已知 Rt⊿ABC 中 ,
若 AC=12cm,BC=5cm, 求的外接圆半径。
B
C
A
如图,等腰⊿ABC中, AB AC 13cm,
BC 10cm ,求外接圆的半径。
方法,领会其思想。心的距离为d。则 位置 数量
●
●
O
●
点在圆内
●
d﹤r d=r d>r
点在圆上 点在圆外
练习:1、已知圆的半径等于5厘米,点到圆心的距离是:
A、8厘米
B、4厘米
C、5厘米。
请你分别说出点与圆的位置关系。
自学效果检测
2.⊙O的半径10cm,A、B、C三点到圆心的距离分别为 8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是: 点A在⊙O内 ;点B在 ⊙O上 ;点C在⊙O外。 3.正方形ABCD的边长为 3 cm,以A为 圆心2cm为半径作⊙A,则点C( C ) A.在⊙A上 B.在⊙A内
A A
●
A
●
O C B ┐
O C
●
O
B
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
1、判断下列说法是否正确 (1)任意的一个三角形一定有一个外接圆( √ ). (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ ) 2、若一个三角形的外心在一边上,则此三角形的 形状为( B ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形
原创6:24.2.1点和圆的位置关系
练习一:已知圆的半径等于5厘米,当点到圆心的距离是: (1)8厘米 (2)4厘米 (3)5厘米。 请你分别说出点与圆的位置关系。
练习二:
1、已知⊙O的半径为4,OP=3.4,则P在⊙O的 ( 内部)。
2、(已0知﹤点r ﹤P在5
⊙O的外部,OP=5,那么⊙O的半径r满足 )
3、 已知⊙O的半径为5,M为ON的中点,当OM=3时,N点与 ⊙O的位置关系是N在⊙O的( 外部 )
无数个。它们的圆心都在线段AB的垂直平分线上。 以线段AB的垂直平分线上的任意一点为圆心,以这点到A或B的 距离为半径作圆.
3、过同一平面内三个点能作圆吗? 1)、当三点A、B、C不在同一直线上。
A
O
B时,可以作几个圆? 不能作出。
过如下三点为什么不能做圆?
结论:
外接圆的圆心是三角形三边垂直平分 线的的交点,叫做三角形的外心.
B
A
●O C
❖ ?思考:三角形的外心都在三角形的内部吗
1.锐角三角形的外心在三角形的内部。 2.直角三角形的外心在三角形的斜边上, 且是斜边的中点
3.钝角三角形的外心在三角形的外部
B
O●
A
B
●
C
B
A C
C
·
A
如何解决“破镜重圆”的问题: 解决问题的关键是什么?
4、 ⊙O直径为d,点A到圆心的距离为m,若点 A不在圆外,则d
与m的关系是( d/2≥m )
过几点可以确定一个圆呢?
1、平面上有一点A,经过已知A点的圆有几个?圆 心在哪里?
●
●O
● ●A O O
●O
●
O
无数个,圆心为点A以外任意一点,半径为这 点与点A的距离
九年级.数学 第二十四章 圆 24.2 点和圆、直线和圆的位置关系 24.2.1 点和圆的位置关系
100°
B
CE
F
(2)三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求
证明).
【解】 锐角三角形(和直角三角形)的最小覆盖圆是其外接圆;钝角(dùnjiǎo)三角形
的最小覆盖圆是以其最长边为直径的圆.
12/6/2021
第十三页,共十四页。
内容(nèiróng)总结
24.2 点和圆、直线和圆的位置关系。24.2 点和圆、直线和圆的位置关系。(1)平面 内的点和圆有三种位置关系:①点在__________。(2)设⊙O半径为r,点P到O的距离OP=d,
12/6/2021
第四页,共十四页。
知识点二:三角形的外接圆
例2 小明家的房前有一块矩形(jǔxíng)的空地,空地上有三棵树A,B,C,小明想建 一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图, 不写作法,保留作图痕迹).
在△ABC中,AB=AC=10,BC=12,则△ABC的外接圆的半径(bànjìng)
12/为6/2021
.
第五页,共十四页。
知识点三:反证法
例3 在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,求证(qiúzhèng):AD与 BE不能被点H互相平分.
12/6/2021
第六页,共十四页。
求证:在一个三角形中,如果(rúguǒ)两个角不等,(
A.点M在⊙O上
)
A B.点M在⊙O内
C.点M在⊙O外 D.点M在⊙O右上方
*4.用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设(
)
A.∠A=60° B.∠A<60°
C.∠A≠6D0°
D.∠A≤60°
人教版点和圆的位置关系PPT优秀课件1
2.已知AB=4 cm,则过点A,B且半径为3 cm的圆有( B )
A.1个 B.2个 C.3个 D.4个
3.如图,点A,B,C在同一条直线上,点D在直线AB外, 过这4个点中的任意3个点画圆,能画圆的个数是( C )
有且只有
B
F A ●o
C G
现在你知道工人师傅是怎样配出同样大小的圆形的
玻璃的吗?
方法:
1. 在圆弧上任取三点A,B,C;
2. 作线段AB,BC的垂直平分线,
其交点O即为圆心;
O
3. 以点O为圆心,OC长为半径作圆. ⊙O即为所求.
新知探究 跟踪训练
1.下列关于确定一个圆的说法中,正确的是( C )
随堂练习
1.用反证法证明时,假设结论“点在圆外”不成立,那
么点与圆的位置关系只能是( D )
A.点在圆内
B.点在圆上
C.点在圆心上
D.点在圆上或圆内
2.如图,△ABC内接于⊙O,若∠OAB=20°,则 ∠ACB的度数是__7_0_°__.
C
O
B
A
3.如图,在平面直角坐标系中,一圆弧过正方形网格的 格点A,B,C,已知点A的坐标是( -3,5) ,则该圆弧 所在圆的圆心P的坐标是 (-1,0) .
点和圆、直线和圆的位置关系
24.2.1点和圆的位置关系
第二课时 九年级上册 RJ
知识回顾
1.确定一个圆的要素 一是圆心,圆心确定其位置; 二是半径,半径确定其大小. 2.点与圆的位置关系:
设⊙O的半径为r,点P到圆心的距离OP=d,则有:
人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿
人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿一. 教材分析《点与圆的位置关系》是人教版数学九年级上册第24章第2节的一部分。
这部分内容主要介绍了点与圆的位置关系的判定及其应用。
在教材中,通过生活中的实例引入点与圆的位置关系,然后引导学生通过观察、思考、探究,总结出点与圆的位置关系的判定方法。
教材内容由浅入深,逐步引导学生掌握点与圆的位置关系的判定及其应用,培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。
但是,对于点与圆的位置关系的判定及其应用,可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,从他们的认知水平出发,引导学生逐步理解和掌握点与圆的位置关系。
三. 说教学目标1.知识与技能目标:让学生掌握点与圆的位置关系的判定方法,并能够运用点与圆的位置关系解决实际问题。
2.过程与方法目标:通过观察、思考、探究,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作精神。
四. 说教学重难点1.教学重点:点与圆的位置关系的判定方法及其应用。
2.教学难点:点与圆的位置关系的判定方法的推导和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、合作学习法等,引导学生主动参与,积极思考。
2.教学手段:利用多媒体课件、几何画板等教学辅助工具,直观展示点与圆的位置关系,帮助学生理解和掌握。
六. 说教学过程1.导入:通过生活中的实例,引导学生关注点与圆的位置关系,激发学生的学习兴趣。
2.新课导入:介绍点与圆的位置关系的判定方法,引导学生进行观察和思考。
3.探究活动:分组讨论,让学生通过实际操作,总结出点与圆的位置关系的判定方法。
4.讲解与演示:教师对点与圆的位置关系的判定方法进行讲解,并用几何画板进行演示。
5.练习与解答:学生进行练习,教师进行解答和指导。
24.2 第1课时 点和圆的位置关系 人教版九年级数学上册课件
d<r; d=r; d>r .
符号 读作 “等价于”,它表示 从符号 的左端可 以得到右端,从右端 也可以得到左端.
思考:平面上的一个圆把平面上的点分成哪几部分?
圆外的点
圆上的点
圆内的点
圆的内部可以看成是到圆心的 距离小于半径的点的集合;
圆的外部可以看成是到圆心的 距离大于半径的点的集合.
练一练:A站在教室中央,若要B与A的距离为3 m,那 么B应站在哪里?有几个位置?请通过画图来说明.
A
B
C
假设过同一条直线l上的三点A,B,C 可以作一个圆.
设这个圆的圆心为P,
那么点P 既在线段AB的垂直平分线l1上, P
又在线段BC的垂直平分线l2上,
l1
l2
即点P为l1与l2的交点,
这与“过一点有且只有一条直线与 A
B
C
已知直线垂直”相矛盾,
所以过同一条直线上的三点不能作圆.
反证法
假设命题的结论不成立, 由此经过推理得出矛盾, 由矛盾判定所作假设不正确,从而得到原命题成立. 这种方法叫做反证法.
3.过不在同一条直线上的三点可以作几个圆?
●A
(1)经过A,B两点的圆的圆心在线
段AB的垂直平分线上.
●B ┏●O
●C
(2)经过B,C两点的圆的圆心在线 段BC的垂直平分线上.
(3)经过A,B,C三点的圆的圆心
应该在这两条垂直平分线的交点 O
的位置.所以圆O就是所求.
归纳:不在同一条直线上的三个点确定一个圆.
经过三角形的三个顶点可以作一个圆,这个圆叫做
三角形的外接圆. ⊙O是△ABC的外接圆. A 外接圆的圆心是三角形三条边
垂直平分线的交点,叫做这个
24.2.1 点和圆位置关系正式稿1
读作“等价于”它表示从符号 的
左端可以推出右端,从右端也可以 推也左端。
课堂小结
• 过已知点作圆 过一点,过两点可以画无数个圆.
A A
B
课堂作业
1、教科书第 101 页 第1 题.
2.⊙O的半径6,当OP=6时,点P在
;
当OP
时点P在圆内;当
OP
时,点P不在圆外。
设⊙O 的半径为 r,点 P 到圆心的距离为 d, 则有:
点 P 在圆外 d>r ; 点 P 在圆上 d=r ;
点 P 在圆内 d<r .
读作“等价于”它表示从符号 的
左端可以推出右端,从右端也可以 推出左端。
巩固练习 课本95页练习第1题
1. 画出由所有到已知点O的距离大于或等于2 cm, 并且小于或等于3 cm的点组成的图形. (请用刻度尺和圆规)
2.探究新知
圆经过一个已知点 A作圆,它们的圆心分布有什
么特点?
结论:
过一个点可以画无数个圆。
圆心为这个点以外
A
的任意一点。
●O ●O ●O
2、平面上有两点A、B,经过已知点A、B 的圆有几个?它们的圆心分布有什么特点?
结论:过两个点可以画无数个圆。 圆心为这两点所连线段的垂直平分线上。
思考
已知点 三个已知点A、B、C作圆
拓展应用
4、 如图,已知矩形ABCD的边AB=3厘米,
AD=4厘米。(1)以点A为圆心,3厘米为 半径作圆A,则点B、C、D与圆A的位置关 系如何?点B在圆上,点C在圆外,点D在圆外。
A
D
B
C
拓展应用
4、 如图,已知矩形ABCD的边AB=3厘米,
AD=4厘米。(2)以点A为圆心,4厘米为 半径作圆A,则点B、C、D与圆A的位置关 系如何?点B在圆内,点C在圆外,点D在圆上。
人教版九年级数学上册:24.2.1 点和圆的位置关系
24.2.1点和圆的位置关系知识点1.点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:点P在⊙O内⇔d<r;点P在⊙O上⇔d=r;点P在⊙O外⇔d>r.2.圆的确定(1)平面上,经过一点的圆有________个.(2)平面上,经过两点的圆有________个.(3)不在同一直线上的三个点确定__________圆.3.三角形的外接圆经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形__________________________的交点,叫做这个三角形的外心,它到三角形_______________________.4.反证法假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种证明方法叫做反证法.一、选择题1.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2.若△ABC的外接圆的圆心在△ABC的内部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.在Rt△ABC中,∠C=90°,AC=6 cm,BC=8 cm,则它的外心与顶点C的距离为( ) A.5 cm B.6 cm C.7 cm D.8 cm 4.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是()A .(-1,2)B .(1,-1)C .(-1,1)D .(2,1)5.Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定6.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P 的位置为( )A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不确定7.如图,⊙O 是△ABC 的外接圆,若∠B=30°,O 的直径为( )A .1 BD .8.用反证法证明“三角形中至少有一个内角小于或等于60°”时,首先应假设这个三角形中( )A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°二、填空题9.点A 在以O 为圆心,3 cm 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是________.10.如图,在△ABC 中,∠ACB=90°,AC=2 cm ,BC=4 cm ,CM 为中线,以C 为半径作圆,则A 、B 、C 、M 四点在圆外的有_________,在圆上的有_________,在圆内的有_________.11.若AB=4cm ,则过点A 、B 且半径为3cm 的圆有______个.12.在△ABC 中,BC=24cm ,外心O 到BC 的距离为6cm ,则△ABC 的外接圆半径是____________.13.一个点与定圆上最近点的距离为4cm ,最远点的距离为9cm ,则此圆的半径是________.14.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.回答下列问题:(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是________ cm ;(2)边长为1 cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是________ cm .15.已知Rt △ABC 的两直角边为a 和b ,且a 、b 是方程2310x x -+=的两根,则Rt △ABC 的外接圆面积是__________________.三、解答题16.已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.17.在Rt △ABC 中,∠C=90°,BC=3m ,AC=4m ,以B 为圆心,以BC 为半径作⊙B ,D 、E 是AB 、AC 中点,A 、C 、D 、E 分别与⊙O 有怎样的位置关系?(画出图形,写过程)18.如图,△ABC 中,AB=AC=10,BC=12,求△ABC 的外接圆⊙O 的半径.19.如图,AD 为△ABC 外接圆的直径,AD ⊥BC ,垂足为点F ,∠ABC 的平分线交AD 于点E ,连接BD ,CD .(1)求证:BD=CD ;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.20.某公园有一个边长为4米的正三角形花坛,三角形的顶点A、B、C上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限.(1)按圆形设计,利用图(1)画出你所设计的圆形花坛示意图;(2)按平行四边形设计,利用图(2)画出你所设计的平行四边形花坛示意图;(3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由.24.2.1点和圆的位置关系知识点2.无数 无数 一个3.三条边垂直平分线 三个顶点的距离相等.一、选择题1.B2.B3.A4.C5.A6.A7.D8.D二、填空题9.0≤d <310.点B ; 点M ; 点A 、C11.两个12.13.2.5cm 或6.5cm14.(1)22(2)3315.47三、解答题16.解:(1)当d=4 cm 时,∵d <r ,∴点P 在圆内;(2)当d=5 cm 时,∵d=r ,∴点P 在圆上;(3)当d=6 cm 时,∵d >r ,∴点P 在圆外.17.解:∵BC=3=R∴点C 在⊙B 上∵AB=5>3∴点A 在⊙B 外∵D 为BA 中点 ∴12.532BD AB ==<∴点D 在⊙B 内∵E 为AC 中点 ∴114222CE AC ==⨯=连结BE ∴BE BC CE m =+=+=>222232133∴E 在⊙B 外18.解:如图,过点A 作AD ⊥BC ,垂足为D ,则O 在AD 上,∵AB=AC∴BD=6∴8AD =设OA=r ,连接OB则Rt △ABC 中,222OB OD BD =+即222(8)6r r =-+ 解得254r =.19.解:(1)证明:∵AD 为直径,AD ⊥BC∴BD=CD(2)B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上理由:由(1)知:BD=CD∴∠BAD=∠CBD∴∠DBE=∠CBD+∠CBE ,∠DEB=∠BAD+∠ABE∵∠CBE=∠ABE∴∠DBE=∠DEB∴BD=DE由(1)知:BD=CD∴DB=DE=DC∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.20.解:(1)作图工具不限,只要点A 、B 、C 在同一圆上,图(1).(2)作图工具不限,只要点A 、B 、C 在同一平行四边形顶点上,例如图(2).(3)如图(3),∵r OB ==∴21616.753O S r ππ==≈e212413.862ABCS S ∆==⨯⨯⨯=≈平行四边形又∵O S S e 平行四边形>∴选择建圆形花坛面积较大.。
24.2.1点和圆的位置关系(教案)
24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系【知识与技能】1•掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法〃证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新精神.【教学重点】〔1〕点与圆的三种位置关系.〔2〕过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育工程,我国运发动在奥运会上屡获金牌,为我国赢得了荣誉,如下图是射击靶的示意图,它是由假设干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的•图中是一位运发动射击10发子弹在靶上留下的痕迹.你知道如何计算运发动的成绩吗?点在圆外.解*.*OB=4cm, 从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的开展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1•点与圆的位置关系我们取刚刚射击靶上的一局部图形来研究点与圆存在的几种位置关系. 议一议如下列图,O O 的半径为4cm,0A=2cm,0B=4cm,0C=5cm ,那么,点A 、B 、C 与©O 有怎样的位置关系?°・°OA=2cm V 4cm ,・°・点A 在©O 内.•・・OC=5cm >4cm ,・・・点C 在©O 夕卜.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径〃,反之“到圆心的距离都等于半径的点都在圆上〃可知点B 一定在©O 上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系•为下面得出结论作铺垫.点在圆【归纳结论】点与圆的三种位置关系及其数量间的关系:设©0的半径为r,点P到圆心0的距离为d.则有:点P在©0外d>r点P在©0上d=r点P在©0内d V r注:①“〃表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于〃.②要明确“d〃表示的意义,是点P到圆心0的距离.2•圆确实定探究〔1〕如图〔1〕,作经过点的圆,这样的圆你能作出多少个?〔2〕如图〔2〕,作经过点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:〔1〕过点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段〔仅过点A,既不能确定圆心,也不能确定半径.〕〔2〕过的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上•因为线段垂直平分线上的点到线段两端点的距离相等.〔注:仅过点A、B,同样不能确定圆心,也不能确定半径.〕思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为0,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心一一三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点〃.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?f\1 1.4B(:解:如图,假设过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线11上,又在线段BC的垂直平分线12上,即点P 是直线11与直线12的交点,由此可得:过直线l外一点P作直线l的垂线有两条1]和12,这与以前学的“过一点有且仅有一条直线与直线垂直〃相矛盾,•:过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法•阶段接触的较为简单.三、典例精析,掌握新知例1©0的半径为10cm,根据点P到圆心的距离:⑴8cm,⑵10cm,⑶13cm,判断点P与©O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm V10cm,d V r点P在©O内;(2)d=10cm,d=r点P在©O上;(3)d=13cm>10cm,d>r点P在©O夕卜.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,Z BAC=90°,由勾股定理可得:BC=JAB2+AC2^.'902+1202=150〔m〕.又T D是BC的中点,・・・AD=1/2BC=75〔m〕.・•・民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在©A 外,•:©A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并标准书写格式•例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,在Rt A ABC中,Z C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作©B,试问A、C、D、E四点分别与©B的位置关系?2.如图,①0是厶ABC的外接圆,且AB=AC=13,BC=24,求©0的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?假设能,请设计画出示意图;假设不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.VZ C=90°,AC=4,BC=3,A AB=5.V E>D分别为AC、AB的中点,・・・DB=1/2AB=2.5,EC=1/2AC=2,EB=.EC2+BC2•・・AB=5>3,・・・点A在©B夕卜;•・・CB=3,・・・点C在©B上;V DB=2.5<3,・••点D在©B内;・.・EB=33>3,・・・点E在©B夕卜.2.解:・.・AB=AC,・•・AB二AC,即A是BC的中点.故连接OB,0A,则0A丄BC,设垂足为D.在Rt A ABD中,AD=\;'AB2-BD2=032-122=5.设©O的半径为r,则在Rt^OBD中,r2=(r-5)2+122,解得r=16.9.3.只要作厶ABC的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流•【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2〃中选取.2.完成练习册中本课时练习的“课后作业〃局部.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤•这些定理都是从学生实践中得出的,培养了学生动手的能力.。
点和圆的位置关系ppt课件
2cm O·
判一判: 下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ )
课随堂堂演小练结
注意:同一直线上的三个点不能作圆
第二十四章 圆
24.2.1 点和圆的位置关系(1)
新课导入
问题 我国射击运动员在伦敦奥运会上获金牌,为我国赢得 荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同, 半径不相同)构成的,你知道击中靶上不同位置的成绩是如何 计算的吗?
探究新课
问题1:观察下图中点和圆的位置关系有哪几种? 点与圆的位置关系有三种: 点在圆内,如点B. 点在圆上,如点C. 点在圆外,如点A.
问题2 :设点到圆心的距离为d,圆的半径为r,量一量 在点和圆三种不同位置关系时,d与r有怎样的数量关系?
反过来,由d与r的数量关系,怎样判定点与圆的位置关系 呢?
点P在⊙O内 点P在⊙O上 点P在⊙O外
要点归纳 点和圆的位置关系
点P在⊙O内 点P在⊙O上
点P在⊙O外
点P在圆环内 数形结合:
位置关系
问题2 :过两个点能不能确定一个圆? 能画出无数个圆,圆心都在线段AB的垂直平分线上.
问题3:过不在同一直线上的三点能不能确定一个圆?
经过A,B两点的圆的圆心在线段AB的 垂直平分线上.
经过B,C两点的圆的圆心在线段BC的 垂直平分线上.
经过A,B,C三点的圆的圆心应该在这两条 垂直平分线的交点O的位置.
典例解析 例:如图所示,已知在△ABC中,AB=13,
试判断A、D、B三点与⊙C的位置关系. 解:在Rt△ABC中,AC=12,AB=13, 由勾股定理,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
O r
O d
r
d O r
P
点P在⊙O外
课堂小结
1.过三个点能确定一个圆?
2.什么叫做三角形的外接圆?
3. 三角形的外心是在三角形外部吗?
作业
1.作业本:课本P101-102,习题24.2 第1题、第9题;
2.质量监测:P76-77.
学习目标
1.认识点和圆的位置关系;
2.掌握“三点定圆”定理;
3.掌握三角形外接圆及外心的定义;
4.体会分类讨论及数形结合的思想;
5.体验探索数学的乐趣.
圆外的点
基础理论
圆上的点
思考:平面上的一 个圆把平面上的点 分成哪几部分?
C
O
B圆内Βιβλιοθήκη 点 A圆上的点 平面上的一个圆,把平面上的点分成三类: 圆内的点 圆外的点
合作探究
点与圆的位置关系有几种? 请你画图表 示出来;并猜想用什么数量关系来描述点 与圆的位置关系,与小组同学交流.
点与圆的位置关系
P与⊙O位置 d与r关系
总结归纳
d P
设⊙O 的半径为r,点P到圆心的距离OP=d,则有:
点P在⊙O内
点P在⊙O上
d<r d=r
d>r
P
O r
点P在⊙O外
读作 于”,它表示从符 的左端可以得到 d O 右端也可以得到
A
圆的内接三角 形
三角形的外接 圆
O
C
B
外心
三角形 的外心 1.三边垂直平分线的交点 2.到三个顶点距离相等
三角形的外心是否一定在三角形的内部?
A
O B C B C 直角三角形外心是斜边AB 的中点 钝角三角形外心在 △ABC的外面 O
A
规律总结
A
●
A
●
A O
●
O C
O C
B
┐
B
C
B
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
O d
P r 符号
r
基础训练
1. 已知⊙O的半径为10厘米,根据下列点P到 圆心的距离,判定点P与圆的位置关系,并说 明理由. (1)8厘米;(2)10厘米;(3)12厘米. 2. 已知一点到圆的最小距离为2cm,最大距离 3cm或5cm 为8cm,则该圆的半径为_________.
基础训练
类比探究
过一点可作几条直线?过两点可以作几条直线?过三点呢?
1.过一点能作几个圆?
A
无数个 过A点的圆的圆心有何特点? 平面上除A点外的任意一点
2.过两点能作几个圆?
A
●
类比探究
过A、B两点的圆的圆心有何特点?
O
●
O
B
经过两点A,B的圆的圆心在线段AB的垂直平分线上. 以线段AB的垂直平分线上的任意一点为圆心,这点到 A或B的距离为半径作圆.
类比探究
3.过三个点能作几个圆?
A B C
(1)三点不共线
已知:不在同一直线上的三点 A、B、C 求作:⊙O,使它经过A、B、C 作法:
类比探究
F A
1.连结AB,作线段AB的垂直平 分线DE, 2.连结BC,作线段BC的垂直平分线FG, 交DE于点O, G 3.以O为圆心,OB为半径作圆, ⊙O就是所求作的圆
B
O C
(2)当三点共线时
D F
不能作圆.
A
E
B
G
C
归纳总结
定理:
A
不在同一直线上的三 点确定一个圆
O
C B
概念介绍
由定理可知:经过三角形三个顶 点可以作一个圆.并且只能作一 个圆. •经过三角形各顶点的圆叫做三 角形的外接圆,这个三角形叫做 这个圆的内接三角形。
O C B A
•三角形外接圆的圆心叫做三角 形的外心。
判断题: 1. 过三点一定可以作圆
基础训练
( ) ) )
2. 三角形有且只有一个外接圆 ( 3. 任意一个圆有一个内接三角形, 并且只有一个内接三角形 (
4. 三角形的外心就是这个三角形任意两边 垂直平分线的交点 ( )
5. 三角形的外心到三边的距离相等 (
)
应用实践
如何解决“破镜重圆”的问题:
B
A C O
圆心一定在弦的 垂直平分线上
反馈验收
1. 直角三角形的两条直角边分别是 5,12, 求出这个直角三角形的外接圆 的半径.
2.在△ABC中,AB=AC=13,BC=10,试求这 个三角形的外接圆的面积.
课堂小结
点与圆的位置关系
P与⊙O位置 d与r关系 d P
点P在⊙O内
点P在⊙O上
d<r d=r
3.在△ABC中,∠C=90°, B AB=5cm,BC=4 cm,以点A为圆心, 以3 cm为半径作圆,请判断: D (1)C点与⊙A的位置关系;在⊙A 上 (2)B点与⊙A的位置关系;在⊙A 外 A C (3)AB的中点D与⊙A的位置关系.
方法点拨: 要判定一个点是否在圆上、圆内、 圆外,只需求出此点与圆心的距离, 然后与半径作比较即可. 在⊙A 内