12.1 全等三角形导学案(无答案)(新版)新人教版

合集下载

人教版八年级数学第十二章全等三角形导学案

人教版八年级数学第十二章全等三角形导学案

第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。

八年级数学上册 12.1《全等三角形》导学案1(无答案)(新版)新人教版

八年级数学上册 12.1《全等三角形》导学案1(无答案)(新版)新人教版

全等三角形一、学习目标1、回顾、整理本章所学知识内容和作图方法,构建知识结构框架,使所学知识系统化。

2、熟悉掌握三角形全等的条件,学会多角度、多方位的观察图形和思考问题,会进行逆向思维,能解决开放性问题。

3、进一步感受全等三角形与生活的密切联系,体会数学的价值,增强用数学的意识。

二、基础知识1、对应边相等,对应角相等两个三角形全等的条件两个直角三角形全等条件斜边、直角边(HL)边边边(SSS)角边角(ASA)角角边(AAS)边角边(SAS)本章知识框图。

2、填空:(1)如图1,AB=CD,AC=BD,则与∠ACB相等的角是________,为什么?(2)如图2,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。

若∠B=200,CD=5cm,则∠C=______,BE=_______.(3)如图3,若OB=OD,∠A=∠C,若AB=3cm,则CD=______三、知识运用:1、如图4,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?(5)如图5,∠CAE=∠BAD,∠B=∠D,AC=AE,,△ABC与△ADE全等吗?为什么?(6)“三月三,放风筝。

”如图是小东同学自己动手制作的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。

请你用所学的知识给予说明。

四、体验开放题1、填空:如图(7),请你选择合适的条件填入空格中,图(7)使两个三角形全等。

①因为DF=DF,___ ____ _,__ _____,根据_______,可知△DEF≌△DGF。

②因为DF=DF,______ __,_____ __,根据_______,可知△DEF≌△DGF。

③因为DF=DF,______ __,_ ______,根据_______,可知△DEF≌△DGF。

④因为DF=DF,______ __,__ _____,根据_______,可知△DEF≌△DGF。

最新人教版第十二章全等三角形导学案

最新人教版第十二章全等三角形导学案

12.1全等三角形班级 小组 姓名 【学习目标】1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边. 【重点难点】全等三角形的性质;找全等三角形的对应边、对应角.预习案【预习导学】预习课本第31-32页的内容,并完成下列问题:1.能够完全重合的两个图形叫做___________ .2.能够完全重合的两个三角形叫做____________,重合的顶点叫做 , 重合的边叫做___________,重合的角叫做_________,全等用符号_____表示,读作___________.3.如图所示,△ABC ≌△DEF.对应顶点有: ;对应角有: ;对应边有: .4.全等三角形的性质: .探究案探究一:图形的平移、翻折、旋转 如图甲:将△ABC 沿直线BC 平移得△DEF ;如图乙:将△ABC 沿BC 翻折180°得到△DBC ; 如图丙:将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE上述各图中的两个三角形全等吗?得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ .你能得到什么结论: 探究二 : 找对应顶点、对应边、对应角如图,△ABC ≌△CDA ,指出它们的对应顶点、对应边、对应角,并思考在书写两个三角形全等时,应该注意什么问题?探究三:全等三角形的性质的应用 1.如图,△ABC ≌△CDA,求证:AB ∥CD.ABC DEFABCDE2.如图,△ABC ≌△DEC,∠B=∠FCB.求证:ED ∥CF.训练案1.如图,已知△ABE ≌△ACD ,指出它们的对应边和对应角.2.已知如图△ABC ≌△ADE ,试找出对应边、对应角.3.如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .4.如图,若△ABC ≌△DEF ,回答下列问题:⑴若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; ⑵若∠A =50°,∠E=75°,则∠B= .5.如图,△ABN ≌△ACM.⑴写出它们的对应边和对应角; ⑵求证:BM=CN.DC ABEONMCBAF EDCB A ECADBOC 'B 'A 'CBA12.2 .1三角形全等的判定(SSS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SSS 判定定理. 2.会应用判定定理SSS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】1.什么是全等三角形?全等三角形有些什么性质?2.如图,ABC ∆≌C B A '''∆那么相等的边是: ; 相等的角是: . 【预习导学】预习课本第35-36页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足三边相等、三角相等六个条件中的一个.⑴一边或一角对应相等的两个三角形全等吗? 请画图说明.⑵两边或两角对应相等的两个三角形全等吗? 请画图说明⑶一角一边对应相等的两个三角形全等吗? 请画图说明探究案通过预习我们研究了满足全等三角形中的一个或两个条件的情况,现在我们探究满足全等三角形中三个条件(三边对应相等)的情况: 探究:三角形全等的判定方法1已知△ABC ,再画一个△C B A ''',使AB B A ='',BC C B ='',AC C A ='',比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法1: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧===AC BC AB ∴△ABC ≌ ( )练习:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .探究二:用尺规作图作一个角等于已知角. 已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB训练案1.下列说法中,错误的有( )个 ⑴周长相等的两个三角形全等. ⑵周长相等的两个等边三角形全等. ⑶有三个角对应相等的两个三角形全等. ⑷有三边对应相等的两个三角形全等A.1B.2C.3D.42.如图,OA=OB ,AC=BC.求证:△AOC ≌△BOC.3.已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC.4.如图,AB=AE ,AC=AD ,BD=CE ,求证:△ABC ≌△ADE.D CBACOAB AO B12.2.2三角形全等的判定(SAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SAS 判定定理. 2.会应用判定定理SAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 【预习导学】预习课本第37-39页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两边和一角对应相等.⑴两边和其中一边的对角分别相等的两个三角形全等吗? 请画图说明.⑵两边和它们的夹角分别相等的两个三角形全等吗? 请画图说明.探究案探究:三角形全等的判定方法2已知△ABC ,再画一个△C B A ''',使AB B A ='',AC C A ='',A A ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法2: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=AC A AB ∴△ABC ≌ ( )练习:如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB=CD.训练案1.如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB ∥CD.2.如图,AB=AC,AD=AE.求证:∠B=∠C.3.如图,BE=CF ,AB=DC ,∠B=∠C ,求证:∠A=∠D.4.如图,CD =CA ,∠1=∠2,EC =BC.求证:DE =AB.EABCD12DCABE12.2.3三角形全等的判定(ASA)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的ASA 判定定理. 2.会应用判定定理ASA 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和它们的夹边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.∠A =∠E,BC=EF, ∠D =∠C; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠D,AB=DE, ∠B =∠E; D.∠A =∠D,∠B =∠E, AC=EF探究案探究:三角形全等的判定方法3已知△ABC ,再画一个△C B A ''',使AB B A ='',A A ∠='∠,B B ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法3: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧=∠==∠B AB A ∴△ABC ≌ ( )练习:如图, AB=AC ,∠B=∠C .求证:AD=AE.D CABE训练案1.如图,AB⊥BD,ED⊥BD,BC=CE,求证:AB=DE.2.如图,∠1=∠2,∠3=∠4,求证:AC=AD.3.如图,已知AF=CD,AB∥DE,EF∥BC,求证:AB=DE.4.如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE,求证:AE=CF.ABC DEF12AB CDEFAB CDEC 'B 'A 'C B A 12.2.4三角形全等的判定(AAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的AAS 判定定理. 2.会应用判定定理AAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 全等三角形的判定方法3: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和其中一个角对边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.AB=DE,BC=EF, ∠A =∠E; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠E,AB=EF, ∠B =∠D; D.∠A =∠D,∠B =∠E, AC=DF探究案探究:三角形全等的判定方法4如图,在△ABC 和△C B A '''中,A A '∠=∠,B B '∠=∠,C B BC ''=,求证:△ABC ≌△C B A '''.判定方法4: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=∠AB A C ∴△ABC ≌ ( )练习:如图, AD=AE ,∠B=∠C .求证:AB=AC.D CABE训练案1.如图,已知BC=EF ,AB ∥DE ,∠B=∠E ,求证:AB=DE.2.如图,AE ⊥BE ,AD ⊥DC ,CD =BE ,∠DAB=∠EAC .求证:AB =AC3.如图,E ,F 在线段AC 上,AD ∥CB ,AE = CF .若∠B =∠D ,求证:DF =BE .4.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.ABCD E A B CD EFABCDEABCDEF12.2.5直角三角形全等的判定(HL)班级 小组 姓名【学习目标】1.理解并掌握直角三角形全等的判定方法(HL );2.学会利用直角三角形全等的判定方法(HL )解决问题. 【重点难点】直角三角形全等的判定方法(HL );灵活运用直角三角形全等的判定方法(HL )解决问题.预习案【旧知回顾】1.判定两个三角形全等的方法: 、 、 、 .2.如图,Rt △ABC 中,直角边是 、 ,斜边是 .3.如图,AB ⊥BE 于B ,DE ⊥BE 于E ,下列情况下,△ABC 与△DEF 全等吗? ①若∠A=∠D ,AB=DE : . ②若∠A=∠D ,BC=EF : . ③若AB=DE ,BC=EF : . ④若AB=DE ,BC=EF ,AC=DF : .【预习导学】预习课本第39-41页的内容,并完成下列问题:任意画出一个Rt ABC ∆,再画一个Rt C B A '''∆,使Rt ABC ∆与Rt C B A '''∆满足斜边和直角边对应相等,这两个直角三角形全等吗? 请画图说明.探究案探究:直角三角形全等的判定方法已知Rt △ABC 中,∠C=90°,再画一个Rt △C B A ''',使∠C '=90°,BC C B ='',AB B A ='',比较这两个直角三角形,看它们是否全等?由此你能得到什么结论?直角三角形的判定方法: . 简写成: 或 . 用数学语言表述:在Rt △ABC 和Rt △C B A '''中, ∵⎩⎨⎧==BC AB ∴Rt △ABC ≌ ( )练习:如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF . 求证:AE =DF .训练案1.如图,△ABC 中,AB=AC ,AD 是高,求证:D 是BC 的中点.2.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?3.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,BE =CF. 求证:AD 是△ABC 的角平分线.5.如图,DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB=CD,AF=CE,BD 交AC 于M 点. 求证:MB=MD,ME=MFA B C DEF12.2三角形全等的判定复习班级 小组 姓名 【学习目标】1.进一步理解巩固三角形全等的判定方法;2.学会灵活选择三角形全等的判定方法解决问题. 【重点难点】三角形全等的判定方法;灵活选择三角形全等的判定方法解决问题. 【学前准备】1.全等三角形有哪些性质?2.判断全等三角形的方法有哪些?【典型例题】例1:如图,AC=BD ,AB=DC ,求证:∠B=∠C.例2:如图,AB=AD ,CD=CB ,∠A+∠C=180°,试探索CB 与AB 的位置关系.例3:如图,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 、CE 交于点O ,且OD=OE ,求证:AB=AC.例4:已知AB 是等腰直角三角形ABC 的斜边,AD 是∠BAC 的角平分线, 求证:AC+CD=AB.DCBADCB AEODCBAECBDA例5:如图,AD 是△ABC 的高,∠B=2∠C ,求证:CD=AB+BD.例6:在△ABC 中,AB=AC ,在AB 上取一点D ,在AC 的延长线上取一点E ,使BD=CE ,连结DE 交BC 于F ,求证:DF=EF.例7:如图,OA=OB ,C 、D 分别是OA ,OB 上两点,且OC=OD ,连结AD 、BC 交于E , 求证:OE 平分∠AOB.例8:如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E ,求证:DE=AD-BE.ACBD FEDCBAEDCBAON M EDCBA12.3角的平分线的性质(1)班级小组姓名【学习目标】1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;2.能运用角的平分线性质定理解决简单的几何问题.【重点难点】掌握角的平分线的性质定理;角平分线定理的应用.预习案【旧知回顾】1.请说出三角形的判定方法:2.直角三角形有哪些判定方法:【预习导学】认真阅读课本P48-49,完成下列问题:1.怎样画一个角的平分线?画出图形,并写出做法.2.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论 .PD PE第一次第二次第三次探究案探究一:角平分线的性质求证:角平分线上的点到角的两边的距离相等.(提示:先画出图形,写出已知和求证,然后在证明.)小结:证明一个几何命题的步骤有那些?探究二:如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点, 问PE=PD? 为什么?小结:在应用角平分线定理时应注意哪些问题:训练案1.在Rt △ABC 中,BD 平分∠ABC , DE ⊥AB 于E ,则 ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE 相等?为什么?⑶若AB =10,BC =8,AC =6,求BE ,AE 的长和△AED 的周长.2.如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF,求证:CF=EB3.如图,在△ABC 中,AC ⊥BC ,AD 平分∠BAC ,DE ⊥AB ,AB =7㎝,AC =3㎝, 求BE 的长OA BED C PED CBA EDCBA12.3角的平分线的性质(2)班级小组姓名【学习目标】1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.3.激情参与,享受成功.【重点难点】角平分线的性质及其应用;灵活应用两个性质解决问题.预习案【旧知回顾】1.请写出角平分线定理:2.证明一个几何命题的步骤有那些?【预习导学】认真阅读课本P48-49,完成下列问题:1.画出三角形三个内角的平分线你发现了什么特点吗?探究案探究一:求证:到角的两边的距离相等的点在角的平分线上(提示:先画图,并写出已知、求证,再加以证明)探究二:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.PNMCBA探究三:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,训练案1.如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°ADCB第十二章全等三角形检测题班级小组姓名一.选择题(每小题3分,共30分)1.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论.①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个3.如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形。

重庆市八年级数学上册12.1全等三角形学案无答案新版新人教版27

重庆市八年级数学上册12.1全等三角形学案无答案新版新人教版27

12.1 全等三角形一.学习目的1.掌握全等三角形的性质。

2.在学习过程中培养学生的观察力和归纳能力。

3.增强学生的数学学习兴趣。

二.学习重难点全等三角形的性质及对应边和对应角的认识。

第一课时全等三角形的性质(一)构建新知1.阅读教材31~32页(1)观察比较图(1)和图(2)①发现这两个图形_________和____________形同。

②__________和______________相等。

(2)△ABC________△EDF。

(3)右图,在△ABC和△EFD中,①AB的对应边______,BC的对应边______, CA的对应边______;②∠A的对应角______,∠B的对应角______,∠C的对应角______;③E的对应点______,D的对应点______, F的对应点______;(二)合作学习1.如图,在四边形A BCD中,若△ABC≌△CDA。

(1)点A的对应点是________,点B的对应点是________,点C的对应点是________。

(2)AB的对应边是__________,AC的对应边是__________,AD的对应边是__________。

(3)∠DAC的对应角是_________,∠ADC的对应角是_________,∠ACD的对应角是_________。

(三)课堂检查1. 如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为________。

2. 如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA ′的度数为________。

3. 如图,△AB C ≌△DEF ,请根据图中提供的信息,写出x=______。

4. 已知:如图,△OAD ≌△OBC ,且∠O=70°,∠C=25°,则∠AEB= ______度。

5. 如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )。

第十二 章全等三角形全章导学案(2020人教版)

第十二 章全等三角形全章导学案(2020人教版)

第十二章全等三角形《12.1 全等三角形》导学案 N0.1一、学习目标1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.二、教学重、难点1.重点:探究全等三角形的性质.2.难点:掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.三、自主学习1.自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空:(1)形状、大小相同的图形放在一起能够完全重合,_________的两个图形叫做全等形._________的两个三角形叫做全等三角形.(2)全等三角形的_________相等,全等三角形的_________相等.四、合作探究知识点一:全等三角形的概念观察△ABC与△A′B′C′重合的情况.总结:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.归纳:能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.知识点二:全等三角形的性质把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.归纳:全等三角形的性质:全等三角形的对应边、对应角、周长分别对应相等。

找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.练习:1.下列图形中的全等图形是______.d与g,e与h.2.课本P32. 1. 2.知识点三:全等三角形的性质的应用例1.如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).五、课堂总结:1.全等三角形的概念;2.全等三角形的性质及其应用。

12.1全等三角形导学案

12.1全等三角形导学案

DCABODC ABE C 1B 1CABA1第一课时 12.1 全等三角形【学习目标】1、知道什么是全等形,什么是全等三角形,能够找出全等三角形的对应元素。

2、会正确表示两个全等三角形,掌握全等三角形的性质。

【学习重点】全等三角形的性质。

【学习难点】正确寻找全等三角形的对应元素 一、学前准备1、三角形的定义:____________________________________2、三角形按边分类: 三角形按角分类:二、探索思考(一)阅读书P31-32,完成下列问题(1) 的两个图形叫做全等形; 叫做全等三角形。

请举出一个生活中全等形的实例 平移、翻折、旋转前后的两个图形 改变了, 、 没变,即它们 (2)全等三角形的对应元素:两个全等的三角形重合到一起,重合的顶点叫 ;重合的边叫 ;重合的角叫如图:两个三角形全等,点C 和点B ,点A和点D是对应顶点, 则△ACO 与△BOD 全等记作 对应边: 和 、 和 、 和 对应角: 和 、 和 、 和 (3)全等三角形的性质:全等三角形的 , 全等三角形的 符号语言:∵△ABC ≌△A 1B 1C 1,∴练习11、将△ABC 沿BC 翻折180°得到△DBC ,则△ABC ≌ ,对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和2、将△ABC 旋转180°得△AED ,△ABC ≌ .对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和3、如图,已知△ABE ≌△ACD ,则对应顶点: 和 、 和 、 和 ∠ADE= ,∠B= ,∠BAE= ;AB= ,BE= ,AD=4、已知如图,△ABC ≌△ADE ,,则对应顶点: 和 、 和 、 和 ∠A= ,∠B= ,∠ACB= ;AB= ,BC= ,AC=三、典例分析1、 将△ABC 沿直线BC 平移,得到△DEF (如图)(1) 线段AB 、DE 是对应线段,有什么关系?线段AC 和DF 呢? (2)线段BE 和CF 有什么关系?为什么?(3)若∠A=50º,∠ABC=30º,求∠D 、∠DEF 、∠DFE 的度数四、当堂反馈1、如图△ BCE ≌ △ CBF ,若BE=3cm ,BF=5cm ,∠CBE=80°, ∠BEC=60, 则∠FBC= ,∠FCB= ,BE= , CE= .2、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm .3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C4、如图:△ABC ≌△DEF, △ ABC 的周是32cm,DE=9cm,EF=12cm ,求AC.5、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?6、如图,△AEC ≌△ADB ,点E 和点D 是对应顶点,若∠A=50°,∠ABD=35°,且∠1=∠2,求∠1的度数。

2017年秋季学期新版新人教版八年级数学上学期12.1、全等三角形导学案1

2017年秋季学期新版新人教版八年级数学上学期12.1、全等三角形导学案1

全等三角形12.1 全等三角形第一课时内容:全等三角形【教学目标】了解全等三角形的概念,理解全等三角形的性质,能找出全等三角形的对应元素,逐步培养学生的识图能力。

在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉。

在合作交流,探索新知,师生互动中,让学生感受到乐趣。

【重点】全等三角形的概念和性质【难点】全等三角形对应元素的确定【教学准备】纸板、三角形、多媒体课件【教学过程】情境诱导一位哲人曾经说过:“世界上没有两片完全相同的叶子”,但是在我们的周围却有着好多形状,大小完全相同的图案,大家能举出这样的例子吗?(通过投影展示丰富多彩的相同图案,揭示出数学源于生活)探究新知活动一:请同学们和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?活动二:把手中三角板按在纸上,画出三角形,并裁下来,把三角形和三角形放在一起,观察它们能够重合吗?(学生动手操作,教师巡视指导,生总结全等形及全等三角形的概念)观察:(多媒体动态展示△ABC沿直线BC平移,翻转,绕定点旋转,观察图形的大小形状是否变化)师生共同得出结论:一个图形经过平移、翻折、旋转后,位置变了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

1、平移2、翻折3、旋转活动三:(多媒体动态展示全等△ABC与△DEF重合)全等用符号表示;读作把两个全等三角形重合到一起,重合的顶点叫,重合的边叫,重合的角叫做。

全等三角形的性质:。

例题教学,强化应用说出图(1)中两个全等三角形的对应边,对应角。

如图(2)△OCA≌△OBD,点C和点B,点A和点D是对应点,说出这两个三角形中相等的边和角。

变式练习如图(1),△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角。

如图(2),△ABN≌△ACM,∠B和∠C是对应角,AB和AC是对应边,写出其他对应边及对应角。

如图(3),△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数。

《12.1 全等三角形》学历案-初中数学人教版12八年级上册

《12.1 全等三角形》学历案-初中数学人教版12八年级上册

《全等三角形》学历案(第一课时)一、学习主题本节课的学习主题是“全等三角形”。

全等三角形是初中数学中的重要概念,涉及图形的性质、判定及其在实际生活中的应用。

本节课是《全等三角形》系列的第一课时,旨在使学生理解全等三角形的定义及常见性质,并学会根据题目给出的信息判定三角形是否全等。

二、学习目标1. 掌握全等三角形的概念,理解全等三角形的定义和性质。

2. 学会识别全等三角形的基本判定方法,如SSS、SAS、ASA等。

3. 培养观察、分析和解决问题的能力,能将实际问题抽象为数学问题。

4. 培养学生的空间想象能力和几何直观能力。

三、评价任务1. 课堂互动评价:通过课堂提问和小组讨论,评价学生对全等三角形概念的理解程度。

2. 作业评价:通过布置相关练习题,评价学生对全等三角形判定方法的掌握情况。

3. 课后测试评价:通过小测验或作业,评价学生综合运用所学知识解决问题的能力。

四、学习过程1. 导入新课:通过回顾之前学过的三角形知识,引出全等三角形的概念,让学生初步了解全等三角形的意义。

2. 新课学习:(1)讲解全等三角形的定义及性质。

(2)通过例题演示如何判定两个三角形是否全等,介绍SSS、SAS、ASA等判定方法。

(3)引导学生观察、分析和总结不同判定方法的特点及适用条件。

3. 课堂练习:提供一组三角形图形,让学生运用所学知识进行判定。

教师巡视指导,及时解答学生疑问。

4. 小组讨论:分组进行讨论,分享各自的解题思路和方法,加深对全等三角形知识的理解。

5. 课堂总结:总结全等三角形的概念、性质及判定方法,强调重点和难点内容。

五、检测与作业1. 课堂检测:进行小测验,检测学生对全等三角形知识的掌握情况。

2. 课后作业:布置相关练习题,包括选择题、填空题和解答题,巩固所学知识。

3. 作业批改与反馈:及时批改作业,了解学生掌握情况,针对共性问题进行讲解和反馈。

六、学后反思1. 教师反思:反思教学过程中存在的问题和不足,总结有效的教学方法和策略,为今后的教学提供借鉴。

安义县七中八年级数学上册第十二章全等三角形12.1全等三角形学案1无答案新版新人教版

安义县七中八年级数学上册第十二章全等三角形12.1全等三角形学案1无答案新版新人教版

12.1 全等三角形学习目标1、了解全等三角形的有关概念,理解并掌握全等三角形的性质;2、能够准确辩认全等三角形的对应元素(对应顶点、对应边、对应角)学习重点:全等三角形性质的应用及准确辩认全等三角形的对应边、对应角.学习难点:理解全等三角形边、角之间的对应关系学法指导:观察思考,动手操作,参与概念的形成过程学习过程一、学前准备1、对于两条线段或两个角来说:如果它们的大小相等,那么放在一起能够;如果它们放在一起能够重合,那么它们的大小 .2、生活中的图片讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?二、合作探究1、全等形、全等三角形的有关概念(1)观察思考:每组中的两个图形有什么特点?(形状,大小 .)②③(2)请再举出类似的例子(至少3个).(3)由此,你发现上述图形的共同特征是:完全相同——放在一起能够 .(4)进而得出概念:叫做全等形.类似的,叫做全等三角形.2. 对应顶点,对应边和对应角用半透明的纸描绘下图中左边的△ABC,然后按要求在三个图中依次操作.体验“平移、翻折、旋转前后的两个图形全等”.你发现变换前后的两个三角形有什么关系?结论:一个图形经过平移、翻折、旋转后,变化了,但、都没有改变,即平移、翻折、旋转前后的图形。

(1)把两个全等三角形重合在一起,叫做对应顶点,叫做对应边,叫做对应角.(2)△ABC与△DEF全等,记作△ABC △DEF,读作△ABC △DEF.(注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置.)3、全等三角形的性质(1)把你自制的一对全等三角形纸片重合,你发现对应边、对应角有什么关系?(2)全等三角形的性质.全等三角形的相等;全等三角形的相等(3)如图,△ABC与△ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.DAC4、确定全等三角形的对应边、对应角(1)如图,将△ABC沿直线BC平移得到△DEF.A DB C E F那么,对应顶点是,对应边是,对应角是 .(3)确定全等三角形的对应边、对应角还有哪些规律?三、巩固练习1、教科书P32练习1.2、教科书P32练习2.四、课堂小结1. 这节课在动手实际操作中,得到了全等三角形的哪些知识?2. 找全等三角形对应元素的方法有哪些?五、当堂清1、下列说法:①全等三角形的对应边相等,对应角相等;②全等三角形的周长相等,面积也相等;③面积相等的三角形是全等三角形;④周长相等的三角形是全等三角形,正确的说法是()A ②③B ③④C ①②D ①②③2、△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与_______是对应角;AB与_______是对应边,BC与_______是对应边,AC与_______是对应边.3、如图△ ABD ≌△CDB,若AB=4,AD=5,BD=6,求BC、CD的长.参考答案:1.C 2. ∠F,DE,EF,DF 3.5,4六、学习反思《多项式除以单项式》教学反思多项式除以单项式这一课时,课本上的内容是比较简单,但我深深地感到,要把它上好,也是不那么容易的。

新人教版八年级数学上册《12-1 全等三角形》导学案(无答案)

新人教版八年级数学上册《12-1 全等三角形》导学案(无答案)

第(3)题图BACDE第(1)题图F DEC BA第(2)题图DACB 新人教版八年级数学上册《12.1 全等三角形》导学案学习目标:1、能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。

2、能在全等三角形中正确地找出对应顶点、对应边、对应角。

3、能说出全等三角形的对应边、对应角相等的性质。

学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 课前预习阅读课本,解决下列问题阅读课本内容,回答课本思考问题,并完成下面填空: 1、能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2、全等三角形 注意记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

课内探究活动一:观察下列各组的两个全等三角形,并回答问题:如图(1) (1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC = 。

全等三角形FE DAB C 定义 能够 的两个三角形。

表示 用 表示,左图记作:△ABC △DEF 读法读作:对应边 全等三角形____的边,如左图,AB 与 __,BC 与 __,AC 与 __。

对应 顶点全等三角形____的顶点,如左图, 点A 与 __,点B 与 __,点C 与 __。

对应角 全等三角形____的角,∠A 与__,∠B 与__,∠C 与∠__。

EFD C ABECABD∠A 对应角是 即可记为∠A = 。

(2) 如图(2)△ABC ≌△DEF ,△ABC 的边AC 的对应边是 ,即可记为AC = 。

(3) 如图(3)△ABC ≌△ ,∠ABC 对应角是 即可记为∠ = ∠ 。

(4) 如图(4)△ABC ≌△ ,△ABC 的∠BAC 的对应角是 即可记为∠ = ∠ 。

(5) △ABC ≌与△DEF ,AB =DE ,AC =DF ,BC =EF ,写出所有对应角相等的式子。

【拓展延伸】1、如图,已知ABC ∆≌EBD ∆,求证:21∠=∠2、如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知:30,43=∠=∠B A ,求ADC ∠的大小。

人教版八年级上12.1全等三角形--导学案设计(无答案)

人教版八年级上12.1全等三角形--导学案设计(无答案)
5.根据书写规范,按照对应顶点找对应边或对应角。
三、课堂练习:
1、下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角
学生课后检测
2、如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
2、如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,已知:∠A=43°,
镇雄县黑树初级中学“321”课堂教学模式导学案
学科:数学年级:八年级班级:96班班授课教师:
时间:年9月17日(第3周星期第节)教研组长签名:
课题
12.1全等三角形
激情导入
学生自己动手(同桌间相互配合)
让学生取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形剪下来,纸样与三角板有怎样的关系?
再看看它们的对应边有什么关系?对应角呢?
从而得出全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。
全等的表示方法:全等用符号“≌”表示,读作“全等于”
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
比如:△ABC≌△DEF
二、探究归纳:
在两个全等的三角形中,找到它们的对应边和对应角有没有什么规律可循呢?请同学们观察下边四组全等三角形,试试找出其中的规律。
学习目标
1.理解并掌握全等三角形的概念及其基本性质;(重点)
2.能找准全单的推理和计算,并解决一些实际问题.(难点)




一、自主学习:
活动一:获取概念(自学教材31--32页)
1、形状与大小都完全相同的两个图形就是.(要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.)

人教版八年级上册12.1全等三角形导学案设计(无答案)

人教版八年级上册12.1全等三角形导学案设计(无答案)

12.1 全等三角形第1课时 全等三角形一、自主学习1. 自学教材P 31-32.2.能够_________的图形叫做全等形, 两个全等图形的 和 完全相同;能够 的两个三角形叫全等三角形.3.把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 ,“全等”用符号“≌”表示,读作“ ”(注意:书写时对应顶点字母写在对应的位置上).4.全等三角形的性质:全等三角形的对应边 ,对应角 ;一个图形经过______、______、______后所得的图形与原图形全等.5.如图12-1所示,△AB C ≌△DEF.对应顶点有: ;对应角有: ;对应边有: .6.如图12-2,已知△ABC 中,AB=3,AC=4, ∠ABC =118°,将△ABC 沿着直线AC 翻折与△ADC 重合,那么这两个三角形___ ,即____≌_ ,所以DA=______,∠ADC =_____ °.12-1 CA B E 12-2AB C D(第7题)7.如图12-3,若△ABC ≌△ADE, BC=DE,∠C=∠E, 其它的对应边有: ,对应角有: .想一想: ∠BAD=∠CAE 吗?为什么?二、典例分析 例1. 如图12-4,△EFG ≌△NMH ,∠F 和∠M 是对应角. ∠F=54°,∠EGF=38°;在△EFG 中,FG 是最长边;在△NMH 中,MH 是最长边;EF =2.1㎝,EH =1.1㎝,NH =2.2㎝.(1)写出其他对应边及对应角;(2)求线段NM 及线段HG 的长和∠N 的度数.例2. 如图12-5,Rt △ABC 中,∠C=90°,AC=BC, ED ⊥AB ,△BCE ≌△BDE ,且AB=20㎝,求△ADE 的周长.12-5 A BC DE 12-4 E FG H M N3 / 6例 3. (1)如图12-6,已知△ABC ≌△ADE ,且∠CAD=10°,∠B=∠D=25°,∠(2) 如图12-7,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=15:2:1,则∠α三、课堂检测1. 如图12-8,5个全等的正六边形A 、B 、C 、D 、E ,请仔细观察A 、B 、C 、D 四个图案,其中与E 图案完全相同的是( )2.已知△ABC≌△DEF,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .63.如图12-9,已知△ABE ≌△DCF ,下列结:①AB=DC ;②AC=DB ;③∠EBD=∠FCA ;④AE ∥DF ;⑤BC=CD ;⑥A B E DS S =△△12-812-6 A B C DEF G 12-7 A C DE BF 12-94.如图12-10,△ABC≌△ADE,∠1=∠2,∠B=∠D,指出其它的对应边和对应角.四、课后练习● 基础过关1.下列说法错误的是( )A .全等三角形的面积相等;B .全等三角形的周长相等;C .面积相等的三角形全等;D .经过平移所得的图形与原图形全等.2.如图12-11,△ABC ≌△AEF ,AB=AE ,∠B=∠E ,则对于下列结论:①AC=AF ;②∠FAC=∠FAB ;③EF=BC ;④∠EAB=∠FAC .其中正确的结论的个数是( )A .1B .2C .3D .43.如图12-12,△ABC ≌△BAD ,AC 与BD 是对应边,AC=8cm ,AD=10cm ,DE=CE=2cm ,那么BE 的长是( )D 12-10A .8cmB .10cmC .2cmD .不能确定4.如图12-13,在Rt △ABC 中,∠ A=90°,若△ADB ≌△EDB ≌△EDC ,则∠C 等于多少度?● 能力提升5.如图12-14,已知AB ⊥BC ,△ABE ≌△ECD .(1)求证:BC=AB+DC ;(2)判断AE 与DE 的关系,并证明你的结论.A B C E F 12-11 D A C E B 12-12 A 12-13B CD E 12-14D6.如图12-15,A 、D 、E 三点在同一直线上,且△BAD ≌△ACE ,试说明:(1)BD —DE=CE ;(2)△ABD 满足什么条件时,BD ∥CE ?● 拓展训练7. 如图12-16,已知AE ⊥AB,△ACE ≌△AFB,CE 与AB 、BF 分别交于D 、M .求证:CE ⊥BF.12-15AB CD E M F 12-16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
E
第(1
)题图
E
B
第(2)题图
D
A
C
B 12.1 全等三角形
学习目标:
1、能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。

2、能在全等三角形中正确地找出对应顶点、对应边、对应角。

3、能说出全等三角形的对应边、对应角相等的性质。

学习重点:探究全等三角形的性质
学习难点: 掌握两个全等三角形的对应边、对应角 课前预习
阅读课本,解决下列问题
阅读课本内容,回答课本思考问题,并完成下面填空: 1、能够完全重合的两个图形叫做 .
全等图形的特征:全等图形的 和 都相同. 2、全等三角形
课内探究
活动一:观察下列各组的两个全等三角形,并回答问题:
如图
(1) (1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC = 。

C 与
F
C
B
E
B
∠A对应角是即可记为∠A = 。

(2)如图(2)△ABC≌△DEF,△ABC的边AC的对应边是,即可记为AC= 。

(3)如图(3)△ABC≌△,∠ABC对应角是即可记为∠= ∠。

(4)如图(4)△ABC≌△,△ABC的∠BAC的对应角是即可记为∠= ∠。

(5)△ABC≌与△DEF,AB=DE,AC=DF,BC=EF,写出所有对应角相等的式子。

【拓展延伸】
1、如图,已知ABC
∆≌EBD
∆,求证:2
1∠
=

2、如图,,
A CD
A B E∆

∆AB与AC,AD与AE是对应边,已知
30
,
43=

=
∠B
A,求ADC
∠的大小。

当堂检测
1、全等三角形的对应元素(说一说)
(1)对应顶点(三个)——重合的
(2)对应边(三条)——重合的
(3)对应角(三个)——重合的
2、寻找对应元素的规律
(1)有公共边的,公共边是;(2)有公共角的,公共角是;
(3)有对顶角的,对顶角是;
(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;
最大角对应最大角,最小角对应最小角.
简单记为:(1)大边对应大边,大角对应 ;
(2) 公共边是对应边,公共角是,对顶角也是 ;
3、“全等”用“”表示,读作“”
如图甲记作:△ABC≌△DEF读作:△ABC全等于△DEF
如图乙记作:读作:
如图丙记作:读作:
注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.
课后反思
课后训练
基础知识
1、“全等”用符号表示,读作:.
2、若△BCE≌△CBF,则∠CBE= ,
∠BEC= ,BE= ,CE= .
3、判断题
(1)全等三角形的对应边相等,对应角相等.()
B
D
A
C
F
(2)全等三角形的周长相等,面积也相等. ( ) (3)
面积相等的三角形是全等三角形. ( )
(4)周长相等的三角形是全等三角形. ( )
4、如图:△ABC ≌△DBF ,找出图中的对应边,对应角.
第4题图 答:∠B 的对应角是 ,∠C 的对应角是 ,∠BAC 的对应角是 ;
AB 的对应边是 ,AC 的对应边是 ,BC 的对应边是 .
5、如下图,ABC ∆≌CDA ∆,并且AD BC =,则下列结论错误的是( )
A 、21∠=∠
B 、CD AB =
C 、
D B ∠=∠ D 、DC AC =
6、如下图,ABC ∆≌BAD ∆,若6=AB ,4=AC ,5=BC ,则AD 的长为( )
A 、4
B 、5
C 、6
D 、以上都不对
7、如下图,直角△ABC 沿直角边BC 所在直线向右平移得到DEF ∆,下列结论错误的是( )
A 、ABC ∆≌DEF ∆
B 、︒=∠90DEF
C 、DF AC =
D 、CF EC =
8、在ABC ∆中,C B ∠=∠,与ABC ∆全等的三角形有一个角为︒100,则ABC ∆中与这个︒100角对应相等的角是( )
A 、A ∠
B 、B ∠
C 、C ∠
D 、B ∠或C ∠
第5题图 第6题图 第7题图。

相关文档
最新文档