高考数学直线与圆试题分类解析(教师版)新
专题12直线和圆(新高考地区专用)-2021届高三《新题速递·数学》(适用于高考复习)(解析版)
专题12直线和圆姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2020·河北省尚义县第一中学高二期中)直线)12y x +=-的倾斜角为( )A .30°B .120°C .60°D .150°2.(2020·福建高二期中)已知直线MN 的斜率为4,其中点()1,1N -,点M 在直线1y x =+上,则点M 的坐标为( )A .(2,3)B .(4,5)C .(2,1)D .(5,7)3.(2020·吕梁市贺昌中学高二期中)已知直线(2)a x -+1ay -=0与直线2x +3y +5=0平行,a 的值为( )A .-6B .6C .45-D .454.(2020·福建高二期中)两直线1:3260l x y --=,2:3280l x y -+=,则直线1l 关于直线2l 对称的直线方程为( )A .32240x y -+=B .32100x y --=C .32200x y --=D .32220x y -+=5.(2020·安徽宣城·高二期中(文))已知圆C 的方程为222610x y x y +-++=,点P 在圆C 上,O 是坐标原点,则||OP 的最小值为( )A .3B 3C .3-D .26.(2020·湖南高二期中)直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( )A .9B .4C .12D .147.(2020·安徽宿州·高二期中(理))若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .C D .8.(2018·安庆市第七中学高二期中(理))设点(3,4)M 在圆222(0)x y r r +=>外,若圆O 上存在点N ,使得3OMN π∠=,则实数r 的取值范围是( )A .5[,)2+∞ B .[,)2+∞ C .[2 D .5[,5)2二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·重庆市万州第二高级中学高二月考)下列说法正确的有( )A .若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B .直线32y ax a =-+过定点()32,C .过点()21-,斜率为的点斜式方程为)12y x +=-D .斜率为2-,在y 轴截距为3的直线方程为23y x =-±.10.(2020·湖南湘潭一中高二期末)已知直线l :(2)10mx m y m --+-=,圆C :22(1)1x y -+=,则下列结论中正确的是( )A .存在m 的一个值,使直线l 经过圆心CB .无论m 为何值时,直线l 与圆C 一定有两个公共点C .圆心C 到直线l 的最大距离是22D .当1m =时,圆C 关于直线l 对称的圆的方程为22(1)1y x +-=.11.(2020·河北承德第一中学高二月考)圆221:(2cos )(2sin )1C x y θθ-+-=与圆222:1C x y +=,下列说法正确的是( )A .对于任意的θ,圆1C 与圆2C 始终相切B .对于任意的θ,圆1C 与圆2C 始终有四条公切线C .当6πθ=时,圆1C 被直线310l x y --=3D .P ,Q 分别为圆1C 与圆2C 上的动点,则PQ 的最大值为412.(2020·山东高二期中)古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(1λ≠)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知()4,2A -,()2,2B ,点P 满足2PAPB =,设点P 的轨迹为圆C ,下列结论正确的是( )A .圆C 的方程是()()224216x y -+-=B .过点A 向圆C 引切线,两条切线的夹角为3π C .过点A 作直线l ,若圆C 上恰有三个点到直线l 距离为2,该直线斜率为155±D .在直线2y =上存在异于A ,B 的两点D ,E ,使得2PD PE= 三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·上海黄浦·格致中学高三期中)如果直线l 将圆:22240x y x y +--=平分,且不经过第四象限,则l 的斜率取值范围是_________.14.(2020·内蒙古包头一中高二期中(文))已知M ,N 是圆22:20A x y x +-=与圆22:240B x y x y ++-=的公共点,则线段MN 的长度为______.15.(2020·淮南第一中学高二期中(理))已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.16.(2020·浙江诸暨中学高二期中)已知直线:l 10mx y m -+-=,则此直线必过定点_________;设直线l 与圆22:(1)5C x y +-=交于,A B 两点,则弦AB 的中点M 的轨迹方程为____________四、解答题(本大题共6小题,共70分)17.(2020·上海徐汇·南洋中学高二期中)已知圆C 的圆心在直线2x -y -3=0上,且圆C 过点(1,6),(5,2). (1)求圆C 的标准方程;(2)过点P (3,2)的直线l 与圆C 交于A 、B 两点,当|AB |=6时,求直线l 的方程.18.(2020·重庆市江津中学校高二月考)已知圆C :()2234x y -+=,直线l :()()13130+--+-=m x m y m .(1)求直线l 所过定点A 的坐标及当直线l 被圆C 所截得的弦长最短时m 的值;(2)已知点()3,3M ,在直线MC 上存在定点N (异于点M ),满足对圆C 上任一点P 都有PM PN为常数,试求所有满足条件的点N 坐标及该常数. 19.(2020·福建高二期中)已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P .(1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.20.(2020·浙江台州·高二期中)已知直线20x y -+=和圆22:8120C x y x +-+=,过直线上的一点()00,P x y 作两条直线PA ,PB 与圆C 相切于A ,B 两点.(1)当P 点坐标为()2,4时,求以PC 为直径的圆的方程,并求直线AB 的方程;(2)设切线PA 与PB 的斜率分别为1k ,2k ,且127k k ⋅=-时,求点P 的坐标.21.(2020·山东高二期中)已知点A ,B 关于原点O 对称,点A 在直线0x y +=上,2AB =,圆M 过点A ,B 且与直线10x +=相切,设圆心M 的横坐标为a .(1)求圆M 的半径;(2)已知点()0,1P ,当2a <时,作直线l 与圆M 相交于不同的两点M ,N ,已知直线l 不经过点P ,且直线PM ,PN 斜率之和为1-,求证:直线l 恒过定点.22.(2020·四川高二期中(理))已知圆C :22(3)(4)16x y ++-=,直线l :(21)(2)340()m x m y m m R ++---=∈.(1)若圆C 截直线l 所得弦AB 的长为m 的值;(2)若0m >,直线l 与圆C 相离,在直线l 上有一动点P ,过P 作圆C 的两条切线PM ,PN ,切点分别13 45.求m的值,并证明直线MN经过定点.为M,N,且cos MPN的最小值为。
高考数学方法技巧专题06 直线与圆问题(解析版)
方法技巧专题6直线与圆问题二、直线与圆的方程问题3、两条直线平行与垂直的判定若两条不重合的直线21,l l 的斜率21,k k 存在,则1,//21212121-=⇔⊥=⇔k k l l k k l l ;若给出的直线方程中存在字母系数,则要考虑斜率是否存在.1.例题【例1】设R ∈λ,则“3-=λ是直线1)1(2=-+y x λλ与直线4)1(6=-+y x λ平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】当3-=λ时,两条直线的方程分别为0223,0146=-+=++y x y x ,此时两条直线平行;若两条直线平行,则)1(6)1(2λλλ--=-⨯,所以3-=λ或1=λ,经检验,两者均符合;综上:“3-=λ是直线1)1(2=-+y x λλ与直线4)1(6=-+y x λ平行”的充分不必要条件,故选A.【答案】A【例2】过点(1,2)的直线l 与两坐标轴分别交于A 、B 两点,O 为坐标原点,当OAB ∆的面积最小时,直线l 的方程为()A.042=-+y x B.05-2y x =+ C.03=-+y x D.0832=-+y x 【解析】设l 的方程为)0,0(1>>=+b a b y a x ,则有121=+b a ,因为0,0>>b a ,所以ab b a 2221≥+,即ab 221≥,所以8≥ab ,当且仅当2121==b a ,即4,2==b a 时,取“=”.即当4,2==b a 时,OAB ∆的面积最小.此时l 的方程为142=+yx ,即042=-+y x .故选A.【答案】A2.巩固提升综合练习【练习1】若两平行直线)0(02:1>=+-m m y x l 与062:2=-+ny x l 之间的距离是5,则=+n m ()A.0B.1C.-2D.-1【解析】因为21,l l 平行,所以m n ⨯≠-⨯-⨯=⨯2)6(1),2(21,解得3,4-≠-=m n ,所以直线2l 的方程是032=--y x ,又21,l l 之间的距离是5,所以5413=++m ,解得m =2或m =-8(舍去),所以2-=+n m ,故选C.【答案】C【练习2】直线l 过点P (1,4),分别交x 轴的正半轴和y 轴的正半轴于点A ,B 两点,O 为坐标原点,当OB OA +最小时,l 的方程为.【解析】经检验直线l 的斜率存在,且斜率为负,设直线l 的斜率为)0<k k (,则直线l 的方程为)1(4-=-x k y ,令y=0得)0,41(kA -,令x=0得)4,0(k B -,则945)4(5)4(5)4(41(=+≥-+-+=+-=-+-=+k k k k k k OB OA ,当且仅当kk -=-4,即2-=k 时,OB OA +取得最小值.此时l 的方程为062=-+y x .【答案】062=-+y x1.例题【例1】已知圆C 的圆心在x 轴的正半轴上,点)5,0(M 在圆C 上,且圆心到直线02=-y x 的距离为554,则圆C 的方程为.【解析】设圆心为)0)(0,(>a a ,则圆心到直线02=-y x 的距离5541402=+-=a d ,解得2=a ,半径3)50()0(22=-+-=a r ,所以圆C 的方程为9)2(22=+-y x .【答案】9)2(22=+-y x 【例2】圆心为点()4,7C ,并且截直线3410x y -+=所得的弦长为8的圆的方程()A .()224(7)5x y -+-=B .()224(7)25x y -+-=C .()227(4)5x y -+-=D .()227(4)25x y -+-=【答案】B【解析】圆心到直线的距离d 3==,在直线3410x y -+=上截的的弦长为8∴圆的半径5r ==∴圆的方程为()()224725x y -+-=故选:B2.巩固提升综合练习【练习1】已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长比为1:2,则圆C 的方程为()A.34)33(22=+±y x B.31)33(22=+±y x C.3433(22=±+y x D.31)33(22=±+y x【解析】由题意知圆心在y 轴上,且被x 所分的劣弧所对的圆心角为32π,设圆心为),0(a ,半径为r ,则a r r ==3cos ,13sinππ,解得332=r ,即33342==a r ,,则33±=a ,故圆C 的方程为34)33(22=±+y x .【答案】C【练习2】以(1,0)C -为圆心,并且与圆22430x y x +-+=外切的圆的方程是()A .22(1)2x y ++=B .22(1)4x y ++=C .22(1)2x y -+=D .22(1)4x y -+=【答案】B【解析】根据题意,设圆C 的半径为R ,圆22430x y x +-+=,即()2221x y -+=,其圆心为()2,0,半径1r =,设()2,0M ,若圆C 与圆M 外切,则有3R r MC +==,则2R =,则所求圆的方程为()2214x y ++=;故选:B .1、直线与圆的位置关系的判断直线0:=++C By Ax l (A ,B 不全为0)与圆)0()()(222>=-+-r r b y a x 的位置关系的判断方法有:(1)几何法:圆心),(b a 到直线0:=++C By Ax l 的距离为d ,⇔<r d 直线与圆相交;⇔=r d 直线与圆相切;⇔>r d 直线与圆相离.(2)代数法:由⎩⎨⎧=-+-=++222)()(0rb y a x C By Ax 消元,得到的一元二次方程的判别式为∆,则⇔>∆0直线与圆相交;⇔=∆0直线与圆相切;⇔<∆0直线与圆相离.1.例题【例1】已知圆m y x -=-++2)1()1(22截直线02=++y x 所得弦的长度为4,则实数=m ()A.2- B.4- C.6- D.8-【解析】圆心)1,1(-到直线02=++y x 的距离为2=d ,由弦长公式得4)2()2(22=--m 解得4-=m ,故选B.【答案】B【例2】若直线ax +by =1与圆x 2+y 2=1有两个公共点,则点P (a ,b )与圆x 2+y 2=1的位置关系是()A .在圆上B .在圆外C .在圆内D .以上都有可能【解析】根据题意,直线ax +by =1与圆x 2+y 2=1有两个公共点,即直线与圆相交,则有圆心到直线ax +by =1的距离dr =1,变形可得a 2+b 2>1,则点P (a ,b )在圆x 2+y 2=1的外部;故选:B .【例3】若圆C :x 2+y 2=5﹣m 与圆E :(x ﹣3)2+(y ﹣4)2=16有三条公切线,则m 的值为()A .2B .C .4D .6【解析】若两圆有三条公切线,等价为两圆相外切,圆E (3,4),半径R =4,圆C (0,0),半径r ,则|EC |=45,即1,得5﹣m =1,则m =4,故选:C .【例4】已知圆02:221=+-+y kx y x C 与圆04:222=-++ky y x C 的公共弦所在直线恒过定点),(b a P ,且点P 在直线02=--ny mx 上,则mn 的取值范围是()A.),(410 B.]410,( C.),(41∞- D.]41,(∞-【解析】将0222=+-+y kx y x 与0422=-++ky y x 相减,得公共弦所在的直线方程为04)2(=--+y k kx ,即0)42()(=+-+y y x k ,由⎩⎨⎧=+=+0042y x y 得⎩⎨⎧-==22y x ,所以定点为),(22-P ,因此0222=-+n m ,所以414)(12=+≤=+n m mn n m ,,故选D.【答案】D【例5】已知点M (3,1)及圆4)2()1(22=-+-y x ,则过点M 的圆的切线方程为.【解析】由题意得圆心C (1,2),半径2=r ,当直线的斜率不存在时,方程为3=x ,由圆心C (1,2)到直线3=x 的距离r d ==-=213知,这条直线与圆相切;当直线的斜率存在时,设方程为)3(1-=-x k y ,即031=-+-k y kx ,因为相切,所以213122=+-+-k kk ,解得43=k ,故方程为)3(431-=-x y ,即0543=--y x ;综上所述:过点M 的圆的切线方程为3=x 或0543=--y x .【答案】3=x 或0543=--y x 【练习1】已知直线03=-+m y x 与圆2:22=+y x C 相交于A ,B 两点,O为坐标原点,且=+,则实数m 的值为.2==,可知ABC ∆为等腰直角三角形,则点O 到AB 所在直线的距离为1.由1231==+-m m ,得2±=m .【答案】2±【练习2】已知两条平行直线l 1,l 2之间的距离为1,l 1与圆C :x 2+y 2=4相切,l 2与C 相交于A ,B 两点,则|AB |=()A.B.C.D.【解析】根据题意,l 1与圆C :x 2+y 2=4相切,则圆心C 到直线l 1的距离为2,又由两条平行直线l 1,l 2之间的距离为1,则圆心C 到直线l 2的距离d =2﹣1=1,则|AB |=22;故选:D .【练习3】若直线l :ax +y +2a =0被圆C :x 2+(y ﹣4)2=4所截得的弦长为,则a 的值为()A .﹣7或﹣1B .7或1C .7或﹣1D .﹣7或1【解析】圆心为C (0,4),半径R =2,∵直线l :ax +y +2a =0被圆C :x 2+(y ﹣4)2=4所截得的弦长为,∴圆心到直线的距离d 满足d 2=R 2﹣()2=4﹣2=2,即d,平方得2a2+2=16+16a+4a2,即a2+8a+7=0,即(a+1)(a+7)=0,得a=﹣1或a=﹣7,故选:A.【练习4】已知圆x2+y2=1的圆心为O,点P是直线l:mx﹣3y+3m﹣2=0上的动点,若该圆上存在点Q 使得∠QPO=30°,则实数m的最大值为【解析】直线l的方程可化为(x+3)m﹣(y+2)=0,令,得,即直线l过定点(﹣3,﹣2),因为该圆上存在点Q使得∠QPO=30°,故,即OP≥2,所以OP2,解得,故填:4【练习5】过直线l:y=x﹣2上任意点P作圆C:x2+y2=1的两条切线,切点分别为A,B,当切线最小时,△PAB的面积为.【解答】如图,要使切线长最小,则|OP |最小,过O 作直线y =x ﹣2的垂线,则垂足为P ,可得|OP|,∴A ,B 为圆C :x 2+y 2=1与两坐标轴的交点,则PA =PB =1,∠APB =90°,∴△PAB 的面积为.故答案为:.1.已知圆22:4C x y +=,直线:1(1)l y k x -=+,则直线l 与圆C 的位置关系()A .相离B .相切C .相交D .以上皆有可能【答案】C【解析】方法一:直线l 方程可整理为:10kx y k -++=由圆C 方程可知,圆心:()0,0;半径:2r =∴圆心到直线l的距离:d ===若0k ≤,则1d r ≤<,此时直线与圆相交若0k >,则d ==又12k k+≥(当且仅当1k =时取等号)2121k k∴+≤+则d r ≤<,此时直线与圆相交综上所述:直线与圆相交方法二:因为直线:1(1)l y k x -=+过定点(-1,1),点(-1,1)在圆22:4C x y +=内,所以直线:1(1)l y k x -=+与圆22:4C x y +=相交。
2023年全国各地高考数学真题+详解分类汇编【第10章 直线和圆合集】高清解析版
第10章 直线和圆1(2023•乙卷)已知实数x ,y 满足x 2+y 2-4x -2y -4=0,则x -y 的最大值是()A.1+322 B.4 C.1+32 D.7【解析】:根据题意,x 2+y 2-4x -2y -4=0,即(x -2)2+(y -1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z =x -y ,变形可得x -y -z =0,其几何意义为直线x -y -z =0,直线y =x -z 与圆(x -2)2+(y -1)2=9有公共点,则有|2-1-z |1+1≤3,解可得1-32≤z ≤1+32,故x -y 的最大值为1+32.故选:C .2(2023•乙卷)已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA •PD 的最大值为()A.1+22B.1+222C.1+2D.2+2【解析】:如图,设∠OPC =α,则-π4≤α≤π4,根据题意可得:∠APO =45°,∴PA ⋅PD =|PA |⋅|PD |⋅cos α+π4=1×2cos αcos α+π4=cos 2α-sin αcos α=1+cos2α-sin2α2=12+22cos 2α+π4 ,又-π4≤α≤π4,∴当2α+π4=0,α=-π8,cos 2α+π4 =1时,PA ⋅PD 取得最大值12+22.故选:A .3(2023•新高考Ⅰ)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则sin α=()A.1 B.154 C.104 D.64【解析】:圆x 2+y 2-4x -1=0可化为(x -2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,-2),切线为PA 、PB ,则PC =22+22=22,△PAC 中,sin α2=522,所以cos α2=1-58=322,所以sin α=2sin α2cos α2=2×522×322=154.故选:B .4(2023•全国)O 为原点,P 在圆C (x -2)2+(y -1)2=1上,OP 与圆C 相切,则|OP |=()A.2B.23C.13D.14【解析】:O 为原点,P 在圆C (x -2)2+(y -1)2=1上,OP 与圆C 相切,则|OP |=|OC |2-|PC |2=5-1=2.故选:A .5(2023•天津)过原点的一条直线与圆C :(x +2)2+y 2=3相切,交曲线y 2=2px (p >0)于点P ,若|OP |=8,则p 的值为.【解析】:如图,由题意,不妨设直线方程为y =kx (k >0),即kx -y =0,由圆C :(x +2)2+y 2=3的圆心C (-2,0)到kx -y =0的距离为3,得|-2k |k 2+1=3,解得k =3(k >0),则直线方程为y =3x ,联立y=3xy2=2px,得x=0y=0或x=2p3y=23p3,即P2p3,23p3.可得|OP|=2p32+23p32=8,解得p=6.故答案为:6.6(2023•上海)已知圆x2+y2-4x-m=0的面积为π,则m=.【解析】:圆x2+y2-4x-m=0化为标准方程为:(x-2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=-3.故答案为:-3.7(2023•新高考Ⅱ)已知直线x-my+1=0与⊙C:(x-1)2+y2=4交于A,B两点,写出满足“△ABC面积为85”的m的一个值.【解析】:由圆C:(x-1)2+y2=4,可得圆心坐标为C(1,0),半径为r=2,因为△ABC的面积为85,可得S△ABC=12×2×2×sin∠ACB=85,解得sin∠ACB=45,设12∠ACB=θ所以∴2sinθcosθ=45,可得2sinθcosθsin2θ+cos2θ=45,∴2tanθtan2θ+1=45,∴tanθ=12或tanθ=2,∴cosθ=25或cosθ=15,∴圆心眼到直线x-my+1=0的距离d=45或25,∴21+m2=45或21+m2=25,解得m=±12或m=±2.故答案为:2(或-2或12或-12).8(2023•上海)已知圆C的一般方程为x2+2x+y2=0,则圆C的半径为.【解析】:根据圆C的一般方程为x2+2x+y2=0,可得圆C的标准方程为(x+1)2+y2=1,故圆C的圆心为(-1,0),半径为1,故答案为:1.。
高考数学真题题型分类解析专题专题07 直线与圆
高考数学真题题型分类解析高考数学真题题型分类解析 专题07直线与圆直线与圆命题解读考向考查统计1.高考对直线的考查,重点是直线的倾斜角与斜率、直线方程的求法、两条直线的位置关系、距离公式、对称问题等。
2.高考对圆的考查,重点是圆的标准方程与一般方程的求法,除了待定系数法外,要特别要重视利用几何性质求解圆的方程。
同时,除了直线与圆、圆与圆的位置关系的判断,还特别要重视直线与圆相交所得弦长及相切所得切线的问题。
3.其他就是直线、圆与其他知识点的交汇。
直线与圆的位置关系2023·新高考Ⅰ卷,62022·新高考Ⅱ卷,152023·新高考Ⅱ卷,152024·新高考Ⅱ卷,10(多选题的一个选项中考查)圆与圆的位置关系2022·新高考Ⅰ卷,14直线的斜率2022·新高考Ⅱ卷,3命题分析2024年高考新高考Ⅰ卷未直接考查直线与圆的相关知识点,Ⅱ卷在多选题的一个选项中考到了直线与圆相切的问题,其实在压轴题中也有直线斜率的影子,后续专题再呈现。
其实直线与圆直接考查的话,难度一般是较易的,一般计算不出错即可。
在一些上难度的题型中,往往有直线斜率的一些影子。
直线与圆考查应关注:直线、圆的方程及位置关系,直线方程的求解、直线过定点问题的求解、含参直线方程中参数取值范围求解、直线与圆的位置关系中涉及的弦长与切线方程的求解。
以常规题型、常规解法为主要方向,常结合基本不等式、函数、三角形面积等知识考查最值问题。
预计2025年高考还是主要考查直线与圆的位置关系。
试题精讲一、多选题1.(2024新高考Ⅱ卷·10)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个一、单选题1.(2023新高考Ⅰ卷·6)过点()0,2−与圆22410x y x +−−=相切的两条直线的夹角为α,则sin α=( )A .1B2.(2022新高考Ⅱ卷·3)图1是中国称为步,垂直距离称为举,图2是某古1111,,,OD DC CB BA 是相等的步,相邻桁的成公差为0.1的等差数列,且直线A .0.75B .0.8C .0.85D .0.93.(2022新高考Ⅰ卷·14)写出与圆是中国古代建筑中的举架结构,,,,AA BB CC DD ′′′′是桁是某古代建筑屋顶截面的示意图.其中111,DD CC 邻桁的举步之比分别为1111111,0.5,DD CC BB k OD DC CB ==OA 的斜率为0.725,则3k =( )与圆221x y +=和22(3)(4)16x y −+−=都相切的一条直是桁,相邻桁的水平距离1,,BB AA 是举,1231,AAk k BA ==.已知123,,k k k 一条直线的方程.由图像可知由图像可知,,共有三条直线符合条件又由方程22(3)(4)16x y −+−=和x 即为过两圆公共切点的切线方程即为过两圆公共切点的切线方程,,又易知两圆圆心所在直线OC 的方程为直线OC 与直线10x +=的交点为条件条件,方程为(当切线为l时,因为14 3OOk=,所以O到l的距离||19116td==+,解得当切线为m时,设直线方程为kx由题意211344pkk p=+++=,解得kp.(新高考卷)设点有公共点,则a的取值范围是.5.(2023新高考Ⅱ卷·15)已知直线:10l x my −+=与2:14C x y −+= 交于A ,B 两点,写出满足“ABC面积为85”的m 的一个值.一、直线的倾斜角和斜率1、直线的倾斜角若直线l 与x 轴相交,则以x 轴正方向为始边,绕交点逆时针旋转直至与l 重合所成的角称为直线l 的倾斜角,通常用,,, αβγ表示(1)若直线与x 轴平行(或重合),则倾斜角为0 (2)倾斜角的取值范围[0),∈απ 2、直线的斜率设直线的倾斜角为α,则α的正切值称为直线的斜率,记为tan =k α (1)当2=πα时,斜率不存在;所以竖直线是不存在斜率的(2)倾斜角α与斜率k 的关系当0=k 时,直线平行于轴或与轴重合;当0>k 时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0<k 时,直线的倾斜角为钝角,倾斜角随k 的增大而增大; 3、过两点的直线斜率公式已知直线上任意两点,11(),A x y ,22(),B x y 则2121−=−y y k x x (1)直线的斜率是确定的,与所取的点无关.(2)若12=x x ,则直线AB 的斜率不存在,此时直线的倾斜角为90° 4、三点共线两直线,AB AC 的斜率相等→、、A B C 三点共线;反过来,、、A B C 三点共线,则直线,AB AC 的斜率相等(斜率存在时)或斜率都不存在.二、直线的方程1、直线方程的五种形式在已知曲线类型的前提下,求曲线(或直线)方程的思路通常有两种:(1)直接法:寻找决定曲线方程的要素,然后直接写出方程,例如在直线中,若用直接法则需找到两个点,或者一点一斜率(2)间接法:若题目条件与所求要素联系不紧密,则考虑先利用待定系数法设出曲线方程,然后再利用条件解出参数的值(通常条件的个数与所求参数的个数一致) 3、线段中点坐标公式若点12,P P 的坐标分别为1122()(),,,x y x y 且线段12PP 的中点M 的坐标为(),x y ,则121222+= + = x x x y y y ,此公式为线段12PP 的中点坐标公式. 4、两直线的夹角公式若直线11y k x b =+与直线22y k x b =+的夹角为α,则2112tan 1k k k k α−=+.三、两直线平行与垂直的判定两条直线平行与垂直的判定以表格形式出现,如表所示. 两直线方程平行垂直11112222:0:0++=++=l A x B y C l A x By C1221122100且−=−≠A B A B B C B C12120+=A A B B111222::=+=+l y k x b l y k x b (斜率存在)11,22::==l x x l x x (斜率不存在)1212,=≠k k b b 或 1212,,==≠x x x x x x121=−i k k 或12与k k 中有一个为0,另一个不存在.四、三种距离1、两点间的距离平面上两点111222(,),(,)P x y P x y 的距离公式为12||=P P. 特别地,原点O (0,0)与任一点P (x ,y )的距离||=OP 2、点到直线的距离点000(,)P x y 到直线:0++=l Ax By C 的距离=d 特别地,若直线为l :x =m ,则点000(,)P x y 到l 的距离0||=−d m x ;若直线为l :y =n ,则点000(,)P x y 到l 的距离0||=−d n y 3、两条平行线间的距离已知12,l l 是两条平行线,求12,l l 间距离的方法:(1)转化为其中一条直线上的特殊点到另一条直线的距离.(2)设1122:0,:0++=++=l Ax By C l Ax By C ,则1l 与2l 之间的距离=d注:两平行直线方程中,x ,y 前面对应系数要相等. 4、双根式双根式()=±f x 型函数求解,首先想到两点间的距离,或者利用单调性求解.五、圆1、圆的四种方程(1)圆的标准方程:222()()−+−=x a y b r ,圆心坐标为(a ,b ),半径为(0)>r r(2)圆的一般方程:22220(40)++++=+−>x y Dx Ey F D E F ,圆心坐标为,22−− D E ,半径r(3)圆的直径式方程:若1122(,),(,)A x y B x y ,则以线段AB 为直径的圆的方程是1212()()()()0−−+−−=x x x x y y y y2、点与圆的位置关系判断(1)点00(,)P x y 与圆222()()−+−=x a y b r 的位置关系: ①222()()−+−>⇔x a y b r 点P 在圆外; ②222()()−+−=⇔x a y b r 点P 在圆上; ③222()()−+−<⇔x a y b r 点P 在圆内.(2)点00(,)P x y 与圆220++++=x y Dx Ey F 的位置关系:①2200000++++>⇔x y Dx Ey F 点P 在圆外; ②2200000++++=⇔x y Dx Ey F 点P 在圆上; ③2200000++++<⇔x y Dx Ey F 点P 在圆内.六、直线与圆的位置关系1、直线与圆的位置关系判断(1)几何法(圆心到直线的距离和半径关系)圆心(,)a b 到直线0Ax By C ++=的距离,则d =:d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离(2)代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数)由2220()()Ax By C x a y b r++= −+−= , 消元得到一元二次方程20p x q x t ++=,20p x q x t ++=判别式为∆,则:0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.七、两圆位置关系的判断用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则:d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r −<<+⇔两圆相离 d R r =−⇔两圆内切;0d R r ≤<−⇔两圆内含(0d =时两圆为同心圆)设两个圆的半径分别为R r ,,R r >,圆心距为d ,则两圆的位置关系可用下表来表示: 位置关系 相离 外切 相交 内切 内含几何特征 d R r >+d R r =+R r d R r −<<+d R r =−d R r <−代数特征 无实数解 一组实数解 两组实数解 一组实数解 无实数解 公切线条数 4321【直线与圆常用结论直线与圆常用结论】】一、直线1、点关于点对称点关于点对称的本质是中点坐标公式:设点11(),P x y 关于点00(),Q x y 的对称点为22(),′P x y ,则根据中点坐标公式,有12012022+=+ = x x x y y y 可得对称点22(),′P x y 的坐标为0101(22),−−x x y y 2、点关于直线对称点11(),P x y 关于直线:0++=l Ax By C 对称的点为22(),′P x y ,连接′PP ,交l 于M 点,则l 垂直平分′PP ,所以′⊥PP l ,且M 为′PP 中点,又因为M 在直线l 上,故可得12121022′⋅=− ++++= l PP k k x x y y AB C ,解出22(),x y 即可.3、直线关于点对称法一:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;法二:求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 4、直线关于直线对称求直线1:0++=l ax by c ,关于直线2:0++=l dx ey f (两直线不平行)的对称直线3l 第一步:联立12,l l 算出交点00(),P x y第二步:在1l 上任找一点(非交点)11(),Q x y ,利用点关于直线对称的秒杀公式算出对称点22(),′Q x y 第三步:利用两点式写出3l 方程 5、常见的一些特殊的对称点(),x y 关于x 轴的对称点为(),−x y ,关于y 轴的对称点为(),−x y .点(),x y 关于直线=y x 的对称点为(),y x ,关于直线=−y x 的对称点为(),−−y x . 点(),x y 关于直线=x a 的对称点为(2),−a x y ,关于直线=y b 的对称点为(2),−x b y . 点(),x y 关于点(),a b 的对称点为(22),−−a x b y .点(),x y 关于直线+=x y k 的对称点为(),−−k y k x ,关于直线−x y =k 的对称点为(),+−k y x k . 6、过定点直线系过已知点00(),P x y 的直线系方程00()−=−y y k x x (k 为参数). 7、斜率为定值直线系斜率为k 的直线系方程=+y kx b (b 是参数). 8、平行直线系与已知直线0++=Ax By C 平行的直线系方程0++=Ax By λ(λ为参数). 9、垂直直线系与已知直线0++=Ax By C 垂直的直线系方程0−+=Bx Ay λ(λ为参数). 10、过两直线交点的直线系过直线1111:0++=l A x B y C 与2222:0++=l A x B y C 的交点的直线系方程:111222()0+++++=A x B y C A x B y C λ(λ为参数).二、圆1、圆的参数方程①222(0)+=>x y r r 的参数方程为cos sin = =x r y r θθ(θ为参数);②222()()(0)−+−=>x a y b r r 的参数方程为cos sin =+ =+x a r y b r θθ(θ为参数).注意:对于圆的最值问题,往往可以利用圆的参数方程将动点的坐标设为(cos ,sin )++a r b r θθ(θ为参数,,()a b 为圆心,r 为半径),以减少变量的个数,建立三角函数式,从而把代数问题转化为三角问题,然后利用正弦型或余弦型函数的有界性求解最值. 2、关于圆的切线的几个重要结论(1)过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=. (2)过圆222()()x a y b r −+−=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r −−+−−=(3)过圆220x y D x E y F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4)求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x −=−,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.一、单选题1.(2024·江西新余·二模)已知直线0x ay −=交圆C:2220x y y +−−=于M ,N 两点,则“MCN △为正三角形”是“0a =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2024·陕西西安·三模)若过点0,1P 可作圆22240x y x y a +−−+=的两条切线,则a 的取值范围是( ) A .()3,+∞B .()1,3−C .()3,5D .()5,+∞【答案答案】】C【分析分析】】根据点在圆外即可求解.【详解详解】】圆22240x y x y a +−−+=,即圆()()22125x y a −+−=−,则50a −>,解得5a <.的距离的最大值为( ) A .1B .2C .3D .44.(2024·四川成都·三模)已知直线1:10l x ay −+= 与:11C x a y −+−= 相交于 A B , 两点,若ABC 是直角三角形,则实数 a 的值为( )A .1 或 1−B 或C .17− 或 1−D .17− 或5.(2024·湖南邵阳·三模)已知直线l :1x y +=,过直线l 上的任意一点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,则APB ∠的最大值为( ) A .3π4B .2π3C .π2D .π6当OP 最小时最小时,,则sin APO ∠又因为OP 的最小值即为圆心此时2sin ,2APO APO ∠=∠故选故选::C . 6.(2024·重庆·二模)已知圆:O 若92PA PB ⋅= ,则OP =( ) A B .3C .设,APO BPO OP α∠=∠=则23sin ,cos x xxαα==cos cos212sin APB ∠α==−3,x y P +=是圆O 外一点,过点P 作圆O 的两条切线7.(2024·北京·三模)已知圆()2:11C x y +−=和两点()()(),0,,00A t B t t −>,若圆C 上存在点P ,使得0PA PB ⋅=,则t 的取值范围为( )A .(]0,1B .[]1,3C .[]2,3D .[]3,4故选故选::B A .()2,6B .()3,5C .()()2,35,6∪D .()()2,36,+∞∪9.(2024·北京·三模)已知直线,圆:16O x y +=,下列说法错误..的是()A .对任意实数a ,直线l 与圆O 有两个不同的公共点;B .当且仅当12a =−时,直线l 被圆O 所截弦长为C .对任意实数a ,圆O 不关于直线l 对称;D .存在实数a ,使得直线l 与圆O 相切.10.(2024·江西鹰潭·三模)已知m ∈R ,直线1:20l mx y m ++=与2:40l x my m −+=的交点P 在圆C :()()()222340x y r r −+−=>上,则r 的最大值是( )A ....【答案答案】】D【分析分析】】根据两直线方程可知两直线分别过定点且垂直根据两直线方程可知两直线分别过定点且垂直,,可求得P 点轨迹方程点轨迹方程,,再由圆与圆的位置关系找出圆心距与两圆半径之间的关系可得结果.二、多选题11.(2024·湖南长沙·三模)已知圆 ()22:24C x y ++=,直线 ()():1210l m x y m m ++−+=∈R ,则( )A .直线 l 恒过定点 ()1,1−B .当0m =时,圆C 上恰有三个点到直线l 的距离等于 1 C .直线l 与圆C 可能相切D .若圆C 与圆 22280x y x y a +−++=恰有三条公切线,则8a =12.(2024·山西临汾·三模)已知,E F 是以为半径的圆上任意两点,且满足,P是EF 的中点,若存在关于()3,0对称的,A B 两点,满足0PA PB ⋅=,则线段AB 长度的可能值为( )A .3B .4C .5D .613.(2024·河南郑州·三模)已知直线:10l ax by ++=(,a b 不同时为0),圆22:20C x y x +−=,则( )A .当221b a −=时,直线l 与圆C 相切B .当2a b +=−时,直线l 与圆C .当1,1a b ==−时,与圆C 外切D .当1,1a b ==−时,直线l 与坐标C 不可能相交外切且与直线l 相切的动圆圆心的轨迹是一条抛物线与坐标轴相交于,A B 两点,则圆C 上存在点P 抛物线满足0PA PB ⋅=14.(2024·山东青岛·三模)已知动点M N , 分别在圆()()221:121C x y −+−= 和 ()()222:343C x y −+−=上,动点P 在 x 轴上,则( )A .圆2C 的半径为3B .圆1C 和圆2C 相离C .PM PN +的最小值为D.过点P 做圆1C15.(2024·浙江温州·二模)已知圆1与圆2相交于122C AB C AB S S =△△,则实数a 的值可以是( )A .10B .2C .223D .14316.(2024·浙江绍兴·三模)已知M ,N 为圆224x y +=上的两个动点,点1,1P −,且PM PN ⊥,则()A .max2PM =B .maxMN=C .PMN 外接圆圆心的轨迹方程为22113222x y++−=D .PMN 重心的轨迹方程为22551666x y++−=对于C 中,设PMN 的外接圆的圆心则有22(1)(1)4(x y ++−=−即22113()()222x y ++−=,对于D 中,设PMN 的重心为点由C 项知PMN 的外接圆的圆心点三、填空题17.(2024·广东汕头·三模)已知圆(i )则圆C 的标准方程为;(ii )若直线AB 关于y a =对称的直线知圆C 经过()2,0A ,()0,2B ,()2,4C 三点, 的直线与圆C 有公共点,则a 的取值范围是.18.(2024·天津和平·三模)已知圆C 以点1,1为圆心,且与直线相切,则满足以上条件的圆C 的半径最大时,圆C 的标准方程为.19.(2024·内蒙古呼和浩特·二模)点1,P a −关于直线0x y −=的对称点在圆22(2)(4)13x y −+−=内,则实数a 的取值范围是.因为(),1Q a −在圆22(2)(4)13x y −+−=的内部的内部,,所以22(2)(14)13a −−+−<,解得40a -<<,即实数a 的取值范围是()4,0−. 故答案为故答案为::()4,0−.20.(2024·湖南·二模)已知直线l 是圆22:1O x y +=的切线,点()2,1A −和点()0,3B 到l 的距离相等,则直线l 的方程可以是.(写出一个满足条件的即可)。
新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册
章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。
高考数学专题08直线与圆-高考数学试题分项版解析(解析版).docx
高中数学学习材料马鸣风萧萧*整理制作专 题8 直线与圆1. 【2014高考安徽卷文第6题】过点(3,1)P -的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( ) A.]60π,( B.]30π,( C.]60[π, D.]30[π,2. 【2014高考北京卷文第7题】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >, 若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.4【答案】B【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.【考点】本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.3. 【2014高考大纲卷文第16题】直线l 1和l 2是圆222x y +=的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的交角的正切值等于 .4.【2014高考福建卷文第6题】已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=5. 【2014高考湖北卷文第17题】 已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则(1)=b ;(2)=λ .【答案】(1)21-;(2)21 【解析】试题分析:设),(y x M ,因为||||MA MB λ=,所以])2[()(22222y x y b x ++=+-λ,6.【2014高考湖南卷文第6题】若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D -7.【2014高考江苏卷第9题】在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .8. 【2014高考全国2卷文第12题】设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )2,2⎡⎤-⎣⎦ (D )22,22⎡⎤-⎢⎥⎣⎦10.【2014高考四川卷文第9题】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )学科网A 、[5,25]B 、[10,25]C 、[10,45]D 、[25,45]11.【2014高考浙江卷文第5题】已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8-【答案】B12.【2014高考重庆卷文第14题】已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且 BC AC ⊥,则实数a 的值为_________.【答案】0或6【解析】试题分析:圆C 的标准方程为:()()22129x y ++-=,所以圆C 的圆心在()-12,,半径3r =又直线0x y a -+=与圆C 交于,A B 两点,且AC BC ⊥,所以圆心C 到直线0x y a -+=的距离322d =.所以,()221232211a --+=+-,整理得:33a -=解得:0a =或6a =. 考点:1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.13. 【2014高考江苏第18题】如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC的长;(2)当OM 多长时,圆形保护区的面积最大?yx14.【2014高考全国1文第20题】已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积。
2024高考数学常考题型 第18讲 直线与圆常考6种题型总结(解析板)
第18讲直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为_______.【答案】2+-x y 0=【分析】由题知()0,2A 、()2,0B ,进而求解方程即可.【详解】解:方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即2+-x y ;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:2+-x y 题型五:圆中最值问题【例1】已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .82-B .1682-C .842+D .162+【答案】C 【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离422d =O 的半径2r =,()4,0A -,()0,4B ,则42AB =PAB △面积的最大值为()14222822⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295【答案】B【分析】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,计算出圆心E 到直线125240x y -+=的距离d ,结合对称性可得出PQ QR +的最小值为25d -,即可得解.【详解】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为()221265247125d ⨯-+==+-,【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。
新教材高考数学第二章直线和圆的方程5-2圆与圆的位置关系练习含解析新人教A版选择性必修第一册
圆与圆的位置关系学习目标 1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.知识点 两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系 外离外切相交内切内含图示d 与r 1,r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交外切或内切外离或内含思考 根据代数法确定两个圆的位置关系时,若已知两圆只有一个交点,能否准确得出两圆的位置关系?答案 不能. 已知两圆只有一个交点只能得出两圆内切或外切.1.如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) 2.如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )3.从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )4.若两圆有公共点,则|r 1-r 2|≤d ≤r 1+r 2.( √ )一、两圆位置关系的判断例1 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14x+k=0相交、相切、相离?解将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k,圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=-2-12+3-72=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即34<k<50或k<14时,两圆相离.反思感悟判断两圆的位置关系的两种方法(1)几何法:将两圆的圆心距d与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.跟踪训练1 (1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )A.内切B.相交C.外切D.相离答案 B解析两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距为-2-22+0-12=17,则R-r<17<R+r,所以两圆相交,选B.(2)到点A(-1,2),B(3,-1)的距离分别为3和1的直线有________条.答案 4解析到点A(-1,2)的距离为3的直线是以A为圆心,3为半径的圆的切线;同理,到B的距离为1的直线是以B为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB|=3+12+-1-22=5.半径之和为3+1=4,因为5>4,所以圆A 和圆B 外离,因此它们的公切线有4条. 二、两圆的公共弦问题例2 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.解 (1)将两圆方程配方化为标准方程,则C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,∴圆C 1的圆心坐标为(1,-5),半径为r 1=52, 圆C 2的圆心坐标为(-1,-1),半径为r 2=10. ∴|C 1C 2|=25,r 1+r 2=52+10, |r 1-r 2|=|52-10|, ∴|r 1-r 2|<|C 1C 2|<r 1+r 2, ∴两圆相交. (2)将两圆方程相减,得公共弦所在的直线方程为x -2y +4=0.(3)方法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离为d =|1-2×-5+4|1+-22=35, ∴公共弦长为l =2r 21-d 2=250-45=2 5.方法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2,∴|AB |=-4-02+0-22=2 5.即公共弦长为2 5.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练2 (1)两圆x 2+y 2-10x -10y =0,x 2+y 2+6x +2y -40=0的公共弦的长为( ) A .5 B .5 2 C .10 2 D .10 答案 D(2)圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在的直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.答案23解析 由题意将两圆的方程相减,可得圆C 1和圆C 2公共弦所在的直线l 的方程为x +y -1=0.又圆C 3的圆心坐标为(1,1),其到直线l 的距离为d =|1+1-1|12+12=22, 设圆C 3的半径为r ,由条件知,r 2-d 2=254-12=234,所以弦长为2×232=23.圆系方程的应用典例 (1)求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程.解 方法一 设经过两圆交点的圆系方程为x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0, 所以圆心坐标为⎝⎛⎭⎪⎫21+λ,2λ1+λ.又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得两圆公共弦所在直线的方程为y =x .由⎩⎪⎨⎪⎧y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3.所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点坐标分别为A (-1,-1),B (3,3), 线段AB 的垂直平分线所在的直线方程为y -1=-(x -1). 由⎩⎪⎨⎪⎧y -1=-x -1,x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1,即所求圆的圆心坐标为(3,-1), 半径为3-32+[3--1]2=4.所以所求圆的方程为(x -3)2+(y +1)2=16.(2)求过直线x +y +4=0与圆x 2+y 2+4x -2y -4=0的交点且与直线y =x 相切的圆的方程. 解 设所求圆的方程为x 2+y 2+4x -2y -4+λ(x +y +4)=0.联立⎩⎪⎨⎪⎧y =x ,x 2+y 2+4x -2y -4+λx +y +4=0,得x 2+(1+λ)x +2(λ-1)=0.因为所求圆与直线y =x 相切,所以Δ=0,即(1+λ)2-8(λ-1)=0,解得λ=3, 故所求圆的方程为x 2+y 2+7x +y +8=0.[素养提升] (1)当经过两圆的交点时,圆的方程可设为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0,然后用待定系数法求出λ即可.(2)理解运算对象,选择运算方法,设计运算程序,求得运算结果,体现了数学运算的数学核心素养.1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切答案 B解析 化为标准方程:圆O 1:(x -1)2+y 2=1,圆O 2:x 2+(y -2)2=4,则O 1(1,0),O 2(0,2),|O 1O 2|=1-02+0-22=5<r 1+r 2,又r 2-r 1<5,所以两圆相交.2.圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定答案 C解析 圆C 1:(x +2)2+(y -m )2=9的圆心为(-2,m ),半径长为3, 圆C 2:(x -m )2+(y +1)2=4的圆心为(m ,-1),半径长为2. 依题意有-2-m2+m +12=3+2,即m 2+3m -10=0, 解得m =2或m =-5.3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案 C解析 AB 的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A ,B ,D.4.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程是__________________. 答案 (x -4)2+(y +3)2=16或(x -4)2+(y +3)2=36 解析 设圆C 的半径为r , 圆心距为d =4-02+-3-02=5,当圆C 与圆O 外切时,r +1=5,r =4, 当圆C 与圆O 内切时,r -1=5,r =6, ∴圆的方程为(x -4)2+(y +3)2=16 或(x -4)2+(y +3)2=36.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 将两圆的方程相减,得相交弦所在的直线方程为y =1a,圆心(0,0)到直线的距离为d =1a=22-32=1,所以a =1.1.知识清单: (1)两圆的位置关系. (2)两圆的公共弦.2.方法归纳:几何法、代数法. 3.常见误区:将两圆内切和外切相混.1.圆C 1:x 2+y 2+4x +8y -5=0与圆C 2:x 2+y 2+4x +4y -1=0的位置关系为( ) A .相交 B .外切 C .内切 D .外离答案 C解析 由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d =|C 1C 2|=2, 所以d =|r 1-r 2|,所以两圆内切.2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A .(1,0)和(0,1) B .(1,0)和(0,-1) C .(-1,0)和(0,-1) D .(-1,0)和(0,1)答案 C解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.所以两圆的交点坐标为(-1,0)和(0,-1).3.已知圆C 1:x 2+y 2-m =0,圆C 2:x 2+y 2+6x -8y -11=0,若圆C 1与圆C 2有公共点,则实数m 的取值范围是( ) A .m <1 B .m >121 C .1≤m ≤121 D .1<m <121答案 C解析 圆C 1的方程可化为x 2+y 2=m (m >0),则圆心为C 1(0,0),半径r 1=m ; 圆C 2的方程可化为(x +3)2+(y -4)2=36,则圆心为C 2(-3,4),半径r 2=6. ∵圆C 1与圆C 2有公共点,∴|r 1-r 2|≤|C 1C 2|≤r 1+r 2, 即|m -6|≤-3-02+4-02≤m +6,∴⎩⎨⎧|m -6|≤5,m +6≥5,解得1≤m ≤121.4.(多选)设r >0,圆(x -1)2+(y +3)2=r 2与圆x 2+y 2=16的位置关系不可能是( ) A .内切 B .相交 C .外离 D .外切答案 CD解析 两圆的圆心距为d =1-02+-3-02=10,两圆的半径之和为r +4, 因为10<r +4,所以两圆不可能外切或外离,故选CD.5.圆O 1:x 2+y 2-6x +16y -48=0与圆O 2:x 2+y 2+4x -8y -44=0的公切线条数为( ) A .4条 B .3条 C .2条 D .1条答案 C解析 圆O 1为(x -3)2+(y +8)2=121,O 1(3,-8),r =11,圆O 2为(x +2)2+(y -4)2=64,O 2(-2,4),R =8, ∴|O 1O 2|=3+22+-8-42=13,∴r -R <|O 1O 2|<R +r , ∴两圆相交.∴公切线有2条.6.若圆x 2+y 2-2ax +a 2=2和x 2+y 2-2by +b 2=1外离,则a ,b 满足的条件是_____________. 答案 a 2+b 2>3+2 2解析 由题意可得两圆的圆心坐标和半径长分别为(a ,0),2和(0,b ),1. 因为两圆外离,所以a 2+b 2>2+1, 即a 2+b 2>3+2 2.7.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A ,B 两点,则直线AB 的方程是_______. 答案 x +3y =0解析 圆的方程(x -1)2+(y -3)2=20可化为x 2+y 2-2x -6y =10. 又x 2+y 2=10,两式相减得2x +6y =0,即x +3y =0.8.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________________.答案 x 2+y 2-34x -34y -114=0解析 由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34, 故所求圆的方程为x 2+y 2-34x -34y -114=0.9.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1).若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程.解 设圆O 2的方程为(x -2)2+(y -1)2=r 22, 因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 22-8=0, 作O 1H ⊥AB ,H 为垂足,则AH =12AB =2,所以O 1H =r 21-AH 2=4-2= 2.由圆心O 1(0,-1)到直线4x +4y +r 22-8=0的距离为 |r 22-12|42=2,得r 22=4或r 22=20, 故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.10.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长. 解 两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m ,解得m =25+1011.(2)当两圆内切时61-m -11=5, 解得m =25-1011.(3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0, ∴公共弦长为2112-⎝⎛⎭⎪⎫|4×1+3×3-23|42+322=27.11.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( ) A .(x -5)2+(y -7)2=25B .(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15C.(x-5)2+(y-7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9答案 D解析设动圆圆心为(x,y),若动圆与已知圆外切,则x-52+y+72=4+1,∴(x-5)2+(y+7)2=25;若动圆与已知圆内切,则x-52+y+72=4-1,∴(x-5)2+(y+7)2=9.12.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于( ) A.4 B.4 2 C.8 D.8 2答案 C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=a-b2+a-b2=32×2=8.13.如果圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,则实数a的取值范围是( )A.(-22,0)∪(0,22) B.(-22,22)C.(-1,0)∪(0,1) D.(-1,1)答案 A解析∵圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,∴圆O:x2+y2=4与圆C:(x-a)2+(y-1)2=1相交.|OC|=a2+1,由2-1<|OC|<2+1,得1<a2+1<3,∴0<|a|<22,∴-22<a<0或0<a<2 2.14.若圆O:x2+y2=5与圆O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长为________.答案 4解析 连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt△OO 1A 中,|OA |=5,|O 1A |=25,∴|OO 1|=5,∴|AC |=5×255=2, ∴|AB |=4.15.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是____________________.答案 x 2+y 2-3x +y -1=0解析 设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0,则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13, 所以所求圆的方程为x 2+y 2-3x +y -1=0.16.已知动点P 与两个定点O (0,0),A (3,0)的距离的比为12. (1)求动点P 的轨迹C 的方程;(2)已知圆Q 的圆心为Q (t ,t )(t >0),且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.解 (1)设P (x ,y ),则||AP =2||OP ,即||AP |2=4OP |2, 所以(x -3)2+y 2=4(x 2+y 2),整理得(x +1)2+y 2=4.所以动点P 的轨迹C 的方程为(x +1)2+y 2=4.(2)因为点Q 的坐标为(t ,t )(t >0),且圆Q 与x 轴相切,所以圆Q 的半径为t , 所以,圆Q 的方程为(x -t )2+(y -t )2=t 2.因为圆Q 与圆C 有公共点,又圆Q 与圆C 的两圆心距为 ||CQ =()t +12+()t -02=2t 2+2t +1, 所以||2-t ≤||CQ ≤2+t ,即(2-t )2≤2t 2+2t +1≤(2+t )2,解得-3+23≤t≤3.所以,实数t的取值范围是[]-3+23,3.。
2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)
专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。
高考数学最新真题专题解析—直线与圆(新高考卷)
高考数学最新真题专题解析—直线与圆(新高考卷)【母题来源】2022年新高考I卷【母题题文】写出与圆x2+y2=1和(x−3)2+(y−4)2=16都相切的一条直线的方程【答案】x+1=07x−24y−25=03x+4y−5=0(填一条即可)【分析】本题考查了圆与圆的公切线问题,涉及圆与圆的位置关系、点到直线的距离等知识,属较难题.【解答】解:方法1:显然直线的斜率不为0,不妨设直线方程为x+by+c=0,于是√1+b2=1,√1+b2=4.故c2=1+b2 ①,|3+4b+c|=|4c|.于是3+4b+c=4c或3+4b+c=−4c,再结合 ①解得{b=0c=1或{b=−247c=−257或{b=43c=−53,所以直线方程有三条,分别为x+1=0,7x−24y−25=0,3x+4y−5=0.(填一条即可)方法2:设圆x2+y2=1的圆心O(0,0),半径为r1=1,圆(x−3)2+ (y−4)2=16的圆心C(3,4),半径r2=4,则|OC|=5=r1+r2,因此两圆外切,由图像可知,共有三条直线符合条件,显然 x +1=0 符合题意; 又由方程 (x −3)2+(y −4)2=16 和 x 2+y 2=1 相减可得方程 3x +4y −5=0 ,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线 OC 的方程为 4x −3y =0 ,直线 OC 与直线 x +1=0 的交点为 (−1,−43) ,设过该点的直线为 y +43=k(x +1) ,则|k−43|√k 2+1=1 ,解得 k =724 ,从而该切线的方程为 7x −24y −25=0.( 填一条即可 ) 【母题来源】2022年新高考II 卷【母题题文】设点A(−2,3),B(0,a),直线AB 关于直线y =a 的对称直线为l ,已知l 与圆C:(x +3)2+(y +2)2=1有公共点,则a 的取值范围为 . 【答案】[13,32] 【分析】本题考查直线关于直线对称的直线求法,直线与圆的位置关系的应用,属于中档题. 【解答】解:因为k AB=a−32,所以AB关于直线y=a的对称直线为(3−a)x−2y+2a=0,所以√4+(3−a)2⩽1,整理可得6a2−11a+3⩽0,解得13≤a≤32.【命题意图】考察直线倾斜角与斜率,考察直线方程,考察直线平行与垂直,考察直线交点坐标,点到直线距离公式。
2011-2020年高考数学真题分类汇编 专题25 直线与圆(教师版含解析)
专题25直线与圆年份题号考点考查内容2011文20直线与圆圆的方程的求法,直线与圆的位置关系2013卷2文20直线与圆圆方程的求法,直线与圆的位置关系2014卷2文20直线与圆圆方程的求法,圆的几何性质,直线与圆的位置关系2015卷1理14圆与椭圆椭圆的标准方程及其几何性质,过三点圆的方程的求法文20直线与圆直线与圆的位置关系卷2理7直线与圆三角形外接圆的求法,圆的弦长的计算公式文7点与圆三角形外接圆的求法,两点间距离公式2016卷1文15直线与圆直线与圆的位置关系卷2理4文6直线与圆圆的方程、点到直线的距离公式卷3文15直线与圆直线与圆的位置关系2017卷3理20直线、圆、抛物线直线与抛物线的位置关系;圆的方程的求法文20直线与圆直线与圆的位置关系,圆的几何性质,圆的定值问题的解法2018卷1文15直线与圆直线与圆的位置关系,圆的弦长计算卷3理6文8直线与圆直线与圆位置关系,点到直线的距离公式,三角形的面积公式2019卷3理21直线与圆,直线与抛物线直线与圆位置关系,直线与抛物线位置关系,抛物线的定义、标准方程及其几何性质,抛物线的定点问题文21直线与圆,直线与抛物线直线与圆位置关系,直线与抛物线位置关系,抛物线的定义、标准方程及其几何性质,抛物线的定点问题2020卷1理11直线与圆直线与圆位置关系,圆与圆的位置关系,圆的几何性质文6直线与圆直线与圆的位置关系,圆的弦的最值问题卷2理5文8直线与圆直线与圆的位置关系,圆的方程的求法,点到直线距离公式卷3理10直线与圆直线与圆相切,直线与曲线相切,导数的几何意义文8直线与圆点到动直线距离公式的最值问题考点出现频率2021年预测考点86直线方程与圆的方程37次考8次命题角度:(1)圆的方程;(2)与圆有关的轨迹问题;(3)与圆有关的最值问题.考点87两直线的位置关系37次考1次考点88直线与圆、圆与圆的位置关系37次考35次考点86直线方程与圆的方程1.(2020全国Ⅲ文6)在平面内,,A B 是两个定点,C 是动点.若1AC BC,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线【答案】A【思路导引】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【解析】设 20AB a a ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: ,0,,0A a B a ,设 ,C x y ,可得: ,,,AC x a y BC x a y,从而: 2AC BC x a x a y,结合题意可得: 21x a x a y ,整理可得:2221x y a ,即点C 的轨迹是以AB 为半径的圆.故选:A .2.(2020全国Ⅲ文8)点(0,﹣1)到直线 1y k x 距离的最大值为()A .1B .C .D .2【答案】B【解析】由(1)y k x 可知直线过定点(1,0)P ,设(0,1)A ,当直线(1)y k x 与AP 垂直时,点A 到直线(1)y k x 距离最大,即为||AP3.(2015北京文)圆心为(1,1)且过原点的圆的方程是A .22(1)(1)1x y B .22(1)(1)1x y C .22(1)(1)2x y D .22(1)(1)2x y【答案】D 【解析】由题意可得圆的半径为r22112x y .4.【2018·天津文】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】2220x y x 【解析】设圆的方程为220x y Dx Ey F ,圆经过三点(0,0),(1,1),(2,0),则01104020F D E F D F ,解得200D E F,则圆的方程为2220x y x .5.【2017·天津文】设抛物线24y x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ,则圆的方程为___________.【答案】22(1)(1x y 【解析】由题可设圆心坐标为(1,)C m ,则(0,)A m ,焦点(1,0)F ,(1,0),(1,)AC AF m,1cos 2AC AF CAF AC AF,解得m ,由于圆C 与y轴得正半轴相切,则m所求圆的圆心为( ,半径为1,所求圆的方程为22(1)(1x y .6.【2016·浙江文数】已知a R ,方程222(2)4850a x a y x y a 表示圆,则圆心坐标是_____,半径是______.【答案】(2,4) ;5.【解析】由题意22a a ,12a 或,1a 时方程为224850x y x y ,即22(2)(4)25x y ,圆心为(2,4) ,半径为5,2a 时方程为224448100x y x y ,2215((1)24x y 不表示圆.7.【2016·天津文数】已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y的距离为5,则圆C 的方程为__________.【答案】22(2)9.x y 【解析】设(,0)(0)C a a2,35a r,故圆C 的方程为22(2)9.x y 8.(2011辽宁文)已知圆C 经过A(5,1),B(1,3)两点,圆心在x 轴上,则C 的方程为.【答案】22(2)10x y 【解析】以题意设圆C 的方程为222()x a y r ,把所给的两点坐标代入方程得2222(5)1(1)9a r a r,解得2210a r ,所以圆C :22(2)10x y .考点87两直线的位置关系9.【2016·上海文科】已知平行直线012:,012:21 y x l y x l ,则21,l l 的距离_______________.【答案】5【解析】利用两平行线间距离公式得d 510.(2011浙江文)若直线250x y 与直线260x my 互相垂直,则实数m =.【答案】1【解析】当0m 时,两直线不垂直,故0m .因为直线250x y 与直线260x my 的斜率分别为12和2m ,由12(12m,故1m .考点88点与圆、直线与圆、圆与圆的位置关系11.(2020·新课标Ⅰ文)已知圆2260x y x ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A .1B .2C .3D .4【答案】B【解析】圆2260x y x 化为22(3)9x y ,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2 .12.(2020·新课标Ⅱ文理5)若过点 2,1的圆与两坐标轴都相切,则圆心到直线032 y x 的距离为()A .55B .552C .553D .554【答案】B【思路导引】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【解析】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,∴圆心必在第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,∴圆心的坐标为 1,1或 5,5,圆心到直线230x y的距离均为5d ,∴圆心到直线230x y.故选B .13.(2020全国Ⅰ理11】已知⊙22:2220M x y x y ,直线:220l x y ,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为()A .210x yB .210x y C .210x y D .210x y 【答案】D【思路导引】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ,根据22PAM PM AB S PA △可知,当直线MP l 时,PM AB 最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【解析】圆的方程可化为 22114x y ,点M 到直线l的距离为2d ,∴直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ,∴12222PAM PM AB S PA AM PA △,而PA ,当直线MP l时,min MP,min 1PA ,此时PM AB 最小.∴ 1:112MP y x 即1122y x ,由1122220y x x y解得,10x y.∴以MP 为直径的圆的方程为 1110x x y y ,即2210x y y ,两圆的方程相减可得:210x y ,即为直线AB 的方程,故选D .14.(2020·北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A .4B .5C .6D .7【答案】A【解析】设圆心 ,C x y ,则1 ,化简得 22341x y ,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM 5 ,所以||514OC ,当且仅当C 在线段OM 上时取得等号,故选A .15.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB 是锐角,大小为β.图中阴影区域的面积的最大值为(A)4β+4cosβ(B)4β+4sinβ(C)2β+2cosβ(D)2β+2sinβ【答案】B【解析】由题意和题图可知,当P 为优弧 AB 的中点时,阴影部分的面积取最大值,如图所示,设圆心为O ,2AOB , 1222BOP AOP.此时阴影部分面积211222222AOP BOP AOB S S S S △△扇形 sin 44sin .故选B .16.【2018·全国Ⅲ文】直线20x y 分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y 上,则ABP △面积的取值范围是A . 26,B . 48,C .D . 【答案】A【解析】∵直线20x y 分别与x 轴,y 轴交于A ,B 两点, 2,0,0,2A B ,则AB .∵点P 在圆22(2)2x y 上, 圆心为(2,0),则圆心到直线的距离1d故点P 到直线20x y 的距离2d 的范围为,则 2212,62ABP S AB d△.故答案为A .17.【2018高考全国2理2】已知集合22,3,,A x y xy x yZ Z ,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】试题分析:根据枚举法,确定圆及其内部整点个数.试题解析:2223,3x y x ∵,又,1,0,1x x Z .当1x 时,1,0,1y ;当0x 时,1,0,1y ;当1x 时,1,0,1y ;所以共有9个,选A .【考点】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.18.【2018高考全国3理6】直线20x y 分别与x 轴y 交于,A B 两点,点P 在圆 2222x y 上,则ABP △面积的取值范围是()A . 26,B .48,C .D . 【答案】A【解析】∵直线20x y 分别与x 轴,y 轴交于,A B 两点, 2,0,0,2A B ,则AB∵点P 在圆 2222x y 上, 圆心为 2,0,则圆心到直线距离1d,故点P 到直线20x y 的距离2d 的范围为,则 2212,62ABP S AB d△,故选A .19.【2018高考北京理7】在平面直角坐标系中,记d 为点 cos ,sin P 到直线20x my 的距离.当,m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C【解析】试题分析:P 为单位圆上一点,而直线20x my 过点 2,0A ,则根据几何意义得d 的最大值为1OA .试题解析:22cos sin 1P ∵,为单位圆上一点,而直线20x my 过点 2,0A ,所以d 的最大值为1213OA ,选C .【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.20.(2017新课标Ⅲ理)在矩形ABCD 中,1AB ,2AD ,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD,则 的最大值为A .3B.CD .2【答案】A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)Px y 所以圆的方程为224(2)5x y,所以(,1)AP x y ,(0,1)AB ,(2,0)AD,由AP AB AD ,得21x y ,所以 =12x y ,设12x z y,即102xy z ,点(,)P x y 在圆上,所以圆心到直线102xy z 的距离小于半径,,解得13z≤≤,所以z的最大值为3,即的最大值为3,选A.21.【2016·山东文数】已知圆M:2220(0)x y ay a+-=>截直线0x y+=所得线段的长度是M与圆N:22(1)1x y+-=(-1)的位置关系是()(A)内切(B)相交(C)外切(D)相离【答案】B【解析】由2220x y ay(0a )得 222x y a a(0a ),所以圆M的圆心为0,a,半径为1r a ,因为圆M截直线0x y所得线段的长度是,解得2a ,圆N的圆心为 1,1,半径为21r ,所以MN ,123r r ,121r r ,因为1212r r MN r r,所以圆M与圆N相交,故选B.22.【2016·北京文数】圆22(1)2x y的圆心到直线3y x 的距离为()A.1B.2CD.2【答案】C【解析】圆心坐标为(1,0),由点到直线的距离公式可知d ,故选C.23.【2016·新课标2文数】圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=()(A)−43(B)−34(D)2【答案】A【解析】由2228130x y x y配方得22(1)(4)4x y,所以圆心为(1,4),因为圆2228130x y x y的圆心到直线10ax y的距离为11 ,解得43a ,故选A.24.(2015安徽文)直线34x y b与圆222210x y x y相切,则b的值是A .-2或12B .2或-12C .-2或-12D .2或12【答案】D【解析】圆的标准方程为22(1)(1)1x y ,圆心(1,1)到直线34x y b 的距离|7|15b ,所以2b 或12b .25.(2015新课标2文)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC 外接圆的圆心到原点的距离为A .35B .321C .352D .34【答案】B 【解析】由题意可得,2AB BC AC ===,∴ΔABC 为等边三角形,故ΔABC 的外接圆圆心时ΔABC 的中心,又等边ΔABC (1,3,故ΔABC 外接圆的圆心到原点的距离为3=.26.(2015山东理)一条光线从点(2,3) 射出,经y 轴反射后与圆22(3)(2)1x y 相切,则反射光线所在直线的斜率为A .53 或35B .32或23C .54或45D .43或34【答案】D 【解析】(2,3) 关于y 轴对称点的坐标为(2,3) ,设反射光线所在直线为3(2)y k x ,即230k x y k ,则1d ,|55|k 43k 或34.27.(2015广东理)平行于直线210x y 且与圆225x y 相切的直线的方程是A .250x y 或250x yB .20x y 或20x yC .250x y 或250x y D .20x y 或20x y【答案】A 【解析】设所求直线的方程为20x y c (1) c,所以c ,故所求直线的方程为250x y 或250x y .28.(2015新课标2理)过三点(1,3)A ,(4,2)B ,(1,7)C 的圆交于y 轴于M 、N 两点,则MN =A .26B .8C .46D .10【答案】C 【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ,则3100422007500D E F D E F D E F,解得2,4,20D E F ,所求圆的方程为2224200x y x y ,令0x =,得24200y y ,设1(0,)M y ,2(0,)N y ,则124y y ,1220y y ,所以12||||MN y y29.(2015重庆理)已知直线l :10()x ay a R 是圆C :224210x y x y 的对称轴,过点(4,)A a 作圆C 的一条切线,切点为B ,则AB =A .2B.C .6D.【答案】C 【解析】圆C 标准方程为22(2)(1)4x y ,圆心为(2,1)C ,半径为2r ,因此2110a ,1a ,即(4,1)A,6AB .选C .30.(2014新课标2文理)设点0(,1)M x ,若在圆22:=1O x y 上存在点N ,使得°45OMN ,则0x 的取值范围是A .1,1B .1122,C. D.22,【答案】A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN,所以01x 符合题意,排除B 、D ;当点M的坐标为时,OM M 作圆O 的一条切线MN ,连接ON ,则在Rt OMN中,sin 32OMN,则45OMN ,故此时在圆O 上不存在点N ,使得°45OMN,即0x C ,故选A .31.(2014福建文)已知直线l 过圆 2234x y 的圆心,且与直线10x y 垂直,则l 的方程是A .20x yB .20x yC .30x yD .30x y 【答案】D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y .32.(2014北京文)已知圆 22:341C x y 和两点 ,0A m , ,00B m m ,若圆C 上存在点P ,使得90APB ,则m 的最大值为A .7B .6C .5D .4【答案】B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC ,所以以原点为圆心、以m 为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B .33.(2014湖南文)若圆221:1C x y 与圆222:680C x y x y m 外切,则mA .21B .19C .9D .11【答案】C 【解析】由题意得12(0,0),(3,4)C C ,121,r r 1212||15C C r r ,所以9m .34.(2014安徽文)过点P )(1,3 的直线l 与圆122y x 有公共点,则直线l 的倾斜角的取值范围是A .]6,(B .3,(C .60[ ,D .]30[ ,【答案】D 【解析】设直线l 的倾斜角为 ,由题意可知min max 0,263.35.(2014浙江文)已知圆22220x y x y a 截直线20x y 所得弦的长度为4,则实数a 的值是A .-2B .-4C .-6D .-8【答案】B 【解析】圆的标准方程为22(1)(1)2x y a ,则圆心(1,1)C ,半径r 满足22r a ,则圆心C 到直线20x y 的距离d2422r a ,故4a .36.(2014四川文)设m R ,过定点A 的动直线0x my 和过定点B 的动直线30mx y m 交于点(,)P x y ,则||||PA PB 的取值范围是A .B .C .D .【答案】B 【解析】易知直线0x my 过定点(0,0)A ,直线30mx y m 过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB 102sin()4PAB[10,25] .故选B .37.(2014江西文)在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y 相切,则圆C 面积的最小值为A .45B .34C .(625)D .54【答案】A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y 相切,所以由平面几何知识,知圆的直径的最小值为点0到直线240x y 的距离,此时25r5r,圆C 的面积的最小值为245S r.38.(2014福建理)已知直线l 过圆 2234x y 的圆心,且与直线10x y 垂直,则l 的方程是A .20x y B .20x y C .30x y D .30x y 【答案】D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y .39.(2014北京理)已知圆 22:341C x y 和两点 ,0A m , ,00B m m ,若圆C 上存在点P ,使得90APB ,则m 的最大值为A .7B .6C .5D .4【答案】B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC ,所以以原点为圆心、以m 为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B .40.(2014湖南理)若圆221:1C x y 与圆222:680C x y x y m 外切,则m A .21B .19C .9D .11【答案】C 【解析】由题意得12(0,0),(3,4)C C ,121,25r r m1212||1255C C r r m ,所以9m .41.(2014安徽理)过点P )(13 的直线l 与圆122y x 有公共点,则直线l 的倾斜角的取值范围是A .]6,(B .3,(C .60[ ,D .]30[ ,【答案】D 【解析】设直线l 的倾斜角为 ,由题意可知min max 0,263.42.(2014浙江理)已知圆22220x y x y a 截直线20x y 所得弦的长度为4,则实数a 的值是A .-2B .-4C .-6D .-8【答案】B 【解析】圆的标准方程为22(1)(1)2x y a ,则圆心(1,1)C ,半径r 满足22r a ,则圆心C 到直线20x y 的距离d 所以2422r a ,故4a .43.(2014四川理)设m R ,过定点A 的动直线0x my 和过定点B 的动直线30mx y m 交于点(,)P x y ,则||||PA PB 的取值范围是A .B .C .D .【答案】B 【解析】易知直线0x my 过定点(0,0)A ,直线30mx y m 过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB 4PAB.故选B .44.(2014江西理)在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y 相切,则圆C 面积的最小值为A .45B .34C .(6D .54【答案】A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y 相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线240x y 的距离,此时2rr,圆C 的面积的最小值为245S r.45.(2013山东文)过点(3,1)作圆 2211x y 的两条切线,切点分别为A ,B ,则直线AB 的方程为()A .230x y B .230x y C .430x y D .430x y 【答案】A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是–2,只有选项A 中直线的斜率为–2.46.(2013重庆文)已知圆 221:231C x y ,圆 222:349C x y ,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN 的最小值为A .524B .171C .622D .17【答案】A 【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM|≥|PC 1|-1,|PN|≥|PC 2|-3,∴|PM|+|PN|≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值.又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-4=2223344524 ,故选A .47.(2013安徽文)直线2550x y 被圆22240x y x y 截得的弦长为A .1B .2C .4D .46【答案】C 【解析】圆心(1,2),圆心到直线的距离1+4-5+5=15d,半径5r ,所以最后弦长为222(5)14 .48.(2013新课标2文)已知点 1,0A ; 1,0B ; 0,1C ,直线y ax b (0)a 将△ABC 分割为面积相等的两部分,则b 的取值范围是A .(0,1)B .211,22C .211,23D .11,32【答案】B 【解析】(1)当y ax b 过 1,0A 与BC 的中点D 时,符合要求,此13b ,(2)当y ax b 位于②位置时1,0b A a,11,11b a b D a a,令1112A BD S 得212b a b,∵0a ,∴12b (3)当y ax b 位于③位置时21,11b b a A a a,21,11b a b D a a,令2212A CD S,即 111112112b b b a a ,化简得22241a b b ,∵0a ,∴22410b b,解得1122b.综上:21122b,故选B .49.(2013陕西文)已知点M(a ,b)在圆221:O x y 外,则直线ax +by =1与圆O 的位置关系是A .相切B .相交C .相离D .不确定【答案】B 【解析】点M(a ,b)在圆.112222b a y x 外111)00(.22ba d by ax O 距离到直线,圆=圆的半径,故直线与圆相交,故选B .50.(2013天津文)已知过点P(2,2)的直线与圆225(1)x y 相切,且与直线10ax y 垂直,则aA .12B .1C .2D .12【答案】C 【解析】设直线斜率为k ,则直线方程为2(2)yk x ,即220kx y k ,圆心(1,0)到12k.因为直线与直线10ax y 垂直,所以112k a,即2a ,选C .51.(2013广东文)垂直于直线1y x 且与圆221x y 相切于第一象限的直线方程是A.0x y B .10x y C .10x y D .0x y 【答案】A【解析】∵圆心到直线的距离等于1r ,排除B 、C ;相切于第一象限排除D ,选A .直接法可设所求的直线方程为: 0y x k k ,再利用圆心到直线的距离等于1r ,求得k.52.(2013新课标2文)设抛物线2:4C y x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF ,则l 的方程为A .1y x 或1y x B .3(1)3y x或3(1)3y xC .1)y x 或1)y x D .(1)2y x或(1)2y x 【答案】C 【解析】抛物线24y x 的焦点坐标为(1,0),准线方程为1x ,设11(,)A x y ,22(,)B x y ,则因为|AF|=3|BF|,所以1213(1)x x ,所以1232x x ,因为1||y =32||y ,1x =92x ,所以1x =3,2x =13,当1x =3时,2112y ,所以此时1y ,若1y ,则123(3,(,33A B ,此时AB k ,此时直线方程为1)y x .若1y ,则1(3,(,)33A B ,此时AB k ,此时直线方程为1)y x .所以l 的方程是1)y x或1)y x ,选C .53.(2013山东理)过点(3,1)作圆 2211x y 的两条切线,切点分别为A ,B ,则直线AB 的方程为A .230x y B .230x y C .430x y D .430x y 【答案】A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是2 ,只有选项A 中直线的斜率为2 .54.(2013重庆理)已知圆 221:231C x y ,圆 222:349C x y ,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN 的最小值为A .4B 1C .6D .【答案】A 【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM|≥|PC 1|-1,|PN|≥|PC 2|-3,∴|PM|+|PN|≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值.又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444 ,故选A .55.(2013安徽理)直线250x y 被圆22240x y x y 截得的弦长为A .1B .2C .4D .【答案】C 【解析】圆心(1,2),圆心到直线的距离d,半径r ,所以最后弦长为4 .56.(2013新课标2理)已知点 1,0A ; 1,0B ; 0,1C ,直线y ax b (0)a 将△ABC 分割为面积相等的两部分,则b 的取值范围是A .(0,1)B .11,22C .11,23D .11,32【答案】B 【解析】(1)当y ax b 过 1,0A 与BC 的中点D 时,符合要求,此13b ,(2)当y ax b 位于②位置时1,0b A a,11,11b a b D a a,令1112A BD S 得212b a b,∵0a ,∴12b .(3)当y ax b 位于③位置时21,11b b a A a a,21,11b a b D a a,令2212A CD S,即 111112112b b b a a ,化简得22241a b b ,∵0a ,∴22410b b ,解得221122b综上:1122b,故选B .57.(2013陕西理)已知点(,)M a b 在圆221:O x y 外,则直线1ax by 与圆O 的位置关系是A .相切B .相交C .相离D .不确定【答案】B 【解析】点M(a,b)在圆221x y 外,∴221a b .圆(0,0)O 到直线1ax by 距离1d=圆的半径,故直线与圆相交.所以选B .58.(2013天津理)已知过点P(2,2)的直线与圆225(1)x y 相切,且与直线10ax y 垂直,则aA .12B .1C .2D .12【答案】C 【解析】设直线斜率为k ,则直线方程为2(2)yk x ,即220kx y k ,圆心(1,0)到12k.因为直线与直线10ax y 垂直,所以112k a,即2a ,选C .59.(2013广东理)垂直于直线1y x 且与圆221x y 相切于第一象限的直线方程是A.0x y B .10x y C .10x y D .0x y【答案】A【解析】∵圆心到直线的距离等于1r ,排除B 、C ;相切于第一象限排除D ,选A .直接法可设所求的直线方程为: 0y x k k ,再利用圆心到直线的距离等于1r ,求得k.60.(2013新课标2理)设抛物线2:4C y x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF ,则l 的方程为A .1y x 或1y xB .(1)3y x或(1)3y xC .1)y x 或1)y x D .(1)2y x或(1)2y x 【答案】C 【解析】抛物线24y x 的焦点坐标为(1,0),准线方程为1x ,设11(,)A x y ,22(,)B x y ,则因为|AF|=3|BF|,所以1213(1)x x ,所以1232x x ,因为1||y =32||y ,1x =92x ,所以1x =3,2x =13,当1x =3时,2112y ,所以此时1y ,若1y ,则1(3,(,33A B ,此时AB k ,此时直线方程为1)y x .若1y ,则123(3,(,)33A B ,此时AB k ,此时直线方程为1)y x .所以l 的方程是1)y x或1)y x ,选C .61.(2012浙江文)设a R ,则“1a ”是“直线1l :210ax y 与直线2l :(1)40x a y 平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】“直线1l :210ax y 与直线2l :(1)40x a y 平行”的充要条件是(1)2a a ,解得,1a 或2a ,所以是充分不必要条件.62.(2012天津文)设m ,n R ,若直线(1)+(1)2=0m x n y 与圆22(1)+(y 1)=1x 相切,则+m n 的取值范围是A .[1B .(,1)C .[2D .(,2)【答案】D 【解析】∵直线(1)+(1)2=0m x n y 与圆22(1)+(y 1)=1x 相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n ,设=t m n ,则21+14t t ,解得(,2)t .63.(2012湖北文)过点(1,1)P 的直线,将圆形区域 22(,)|4x y x y 分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y B .10y C .0x y D .340x y 【答案】A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k ,故所求直线的斜率为–1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为 11y x ,即20 x y .故选A .64.(2012天津文)在平面直角坐标系xOy 中,直线3450x y 与圆224x y 相交于,A B 两点,则弦AB 的长等于()()A()B ()C ()D【答案】B 【解析】圆224x y 的圆心(0,0)O 到直线3450x y 的距离515d,弦AB 的长AB .65.(2012浙江理)设a R ,则“1a ”是“直线1l :210ax y 与直线2l :(1)40x a y 平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】“直线1l :210ax y 与直线2l :(1)40x a y 平行”的充要条件是(1)2a a ,解得,1a 或2a ,所以是充分不必要条件.66.(2012天津理)设m ,n R ,若直线(1)+(1)2=0m x n y 与圆22(1)+(y 1)=1x 相切,则+m n 的取值范围是A .[1B .(,1)C .[2D .(,2)【答案】D 【解析】∵直线(1)+(1)2=0m x n y 与圆22(1)+(y 1)=1x 相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n ,设=t m n ,则21+14t t ,解得(,2)t .67.(2012湖北理)过点(1,1)P 的直线,将圆形区域 22(,)|4x y x y 分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y B .10y C .0x y D .340x y 【答案】A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k ,故所求直线的斜率为 1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为11y x ,即20 x y .故选A .68.(2012天津理)在平面直角坐标系xOy 中,直线3450x y 与圆224x y 相交于,A B 两点,则弦AB 的长等于A .B .CD .【答案】B 【解析】圆224x y 的圆心(0,0)O 到直线3450x y 的距离515d弦AB 的长AB .69.(2011北京文)已知点A(0,2),B(2,0).若点C 在函数y x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1【答案】A 【解析】设点2(,)C t t ,直线AB 的方程是20x y ,||AB 由于ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程122,即h ,22|2|2t t ,解得有4个实根,故这样的点C 有4个.70.(2011江西文)若曲线1C :2220x y x 与曲线2C :()0y y mx m 有四个不同的交点,则实数m 的取值范围是A .(3,3文)B .(3,0) (0,3)C .[3 ,3]D .( ,3) (3,+ )【答案】B 【解析】221:(1)1C x y ,2C 表示两条直线即x 轴和直线l :(1)y m x ,显然x 轴与1C 有两个交点,由题意l 与2C 相交,所以1C 的圆心到l 的距离1d r,解得33(,)33m,又当0m 时,直线l 与x 轴重合,此时只有两个交点,不符合题意.故选B .71.(2011北京理)已知点A(0,2),B(2,0).若点C 在函数y =x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1【答案】A 【解析】设点2(,)C t t ,直线AB 的方程是20x y ,||AB 由于ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程122,即h ,22|2|2t t ,解得有4个实根,故这样的点C 有4个.72.(2011江西理)若曲线1C :2220x y x 与曲线2C :()0y y mx m 有四个不同的交点,则实数m 的取值范围是A .(33,33)B .(33,0) (0,33)C .[3 ,3]D .( ,3) (3,+ )【答案】B 【解析】221:(1)1C x y ,2C 表示两条直线即x 轴和直线l :(1)y m x ,显然x 轴与1C 有两个交点,由题意l 与2C 相交,所以1C 的圆心到l的距离1d r,解得(,33m,又当0m 时,直线l 与x 轴重合,此时只有两个交点,不符合题意.故选B .73.【2020年高考天津卷12】已知直线80x 和圆222(0)x y r r 相交于,A B 两点.若||6AB ,则r 的值为_________.【答案】5【解析】因为圆心 0,0到直线80x的距离4d,由l6 ,解得=5r .74.【2020年高考浙江卷15】设直线:(0)l y kx b k ,圆221:1C x y ,222:(4)1C x y ,若直线l与1C ,2C 都相切,则k ;b.【答案】33;233【解析】由题意可知直线l 是圆1C 和圆2C 的公切线,∵0k ,为如图所示的切线,由对称性可知直线l 必过点 2,0,即20k b ①1,②由①②解得:3k,3b,故答案为:3;3.75.【2020年高考江苏卷14】在平面直角坐标系xOy 中,已知3,0)2P ,A B 、是圆C :221(362x y上的两个动点,满足PA PB ,则PAB 面积的最大值是________.【答案】【解析】如图,作PC 所在直径EF ,交AB 于点D ,则:∵PA PB ,6CA CB R ,∴PC AB ,EF 为垂径.要使面积PAB S 最大,则P D 、位于C 两侧,并设CD x ,计算可知1PC ,故1PD x ,2AB BD ,故1(12PAB AB PD S x,令6cos x ,(1(16cos )6sin 6sin 18sin 2PAB S x ,02q,记函数()6sin 18sin 2f ,则2()6cos 36cos26(12cos cos 6)f ,令2()6(12cos cos 6)0f ,解得2cos 3 (3cos 04舍去)显然,当20cos 3时,()0f ,()f 单调递减;当2cos 13时,()0f ,()f 单调递增;结合cos 在(0,2 递减,故2cos3 时()f 最大,此时sin 3,故max 552()636333f,即PAB 面积的最大值是.(注:实际上可设BCD ,利用直角BCD 可更快速计算得出该面积表达式)76.【2019·浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y 与圆C 相切于点(2,1)A ,则m =___________,r =___________.【答案】2【解析】由题意可知11:1(2)22ACk AC y x,把(0,)m代入直线AC的方程得2m,此时||r AC77.【2018·全国I文】直线1y x 与圆22230x y y交于A B,两点,则AB ________.【答案】【解析】根据题意,圆的方程可化为 2214x y,所以圆的圆心为0,1 ,且半径是2,根据点到直线的距离公式可以求得d ,结合圆中的特殊三角形,可知AB,故答案为.78.【2018·江苏卷】在平面直角坐标系xOy中,A为直线:2l y x上在第一象限内的点,(5,0)B,以AB 为直径的圆C与直线l交于另一点D.若0AB CD,则点A的横坐标为________.【答案】3【解析】设,2(0)A a a a ,则由圆心C为AB中点得5,,2aC a易得:520C x x a y y a,与2y x联立解得点D的横坐标1,Dx 所以 1,2D.所以55,2,1,22aAB a a CD a,由0AB CD得2551220,230,32aa a a a a a或1a ,因为0a ,所以 3.a79.【2018高考上海12】已知实数1212x x y y,,,满足:22221122121211,1,2x y x y x x y y,则的最大值为.【解析】试题分析:由已知可得点1122,,,A x yB x y在单位圆221x y 上.又由121212x x y y,容易想到向量的数量积,从而得AOB的大小.而容易想到点11,A x y到直线10x y 的距离,因此问题转化为圆上两点 1122,,,A x y B x y 到直线10x y 距离和的最大值问题,再三角换元,进而应用三角函数来求最大值.试题解析:由已知可得两点 1122,,,A x y B x y 在单位圆221x y 上.121211,cos ,223OA OB x x y y AOB AOB OA OB∵ .设 cos ,sin ,cos ,sin 33A B,则 .已知点 1122,,,A x y B x y 在直线10x ysin 1cos sin 13311sin 1cos sin sin cos 1222233cos sin 22222cos 4sin 412当且仅当122即12.80.(2017江苏理)在平面直角坐标系xOy 中,(12,0)A ,(0,6)B ,点P 在圆O :2250x y 上,若20PA PB≤,则点P 的横坐标的取值范围是.【答案】[ 【解析】设(,)P x y ,由20PA PB≤,得250x y ≤,x如图由250x y ≤可知,P 在 MN 上,由2225050x y x y,解得(1,7)M ,(5,5)N ,所以P 点横坐标的取值范围为[ .81.【2016·四川文科】在平面直角坐标系中,当P(x ,y)不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A .②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.【答案】②③【解析】对于①,若令(1,1)P ,则其伴随点为11(,)22P ,而11(,)22P 的伴随点为(1,1) ,而不是P ,故①错误;对于②,令单位圆上点的坐标为(cos ,sin )P x x ,则其伴随点为(sin ,cos )P x x ,仍在单位圆上,故②正确;对于③,设曲线(,)0f x y 关于x 轴对称,则(,)0f x y 与曲线(,)0f x y 表示同一曲线,其伴随曲线分别为2222(,)0y x f x y x y 与2222(,)0y xf x y x y ,它们也表示同一曲线,又因为伴随曲线2222(,)0y x f x y x y 与2222(,)0y xf x y x y关于y 轴对称,所以③正确;对于④,取直线y kx b 上一点P(x ,y),则其伴随点2222(,)y xx y x y ,消参后轨迹是圆,故④错误.所以真命题为②③.82.[2016·新课标Ⅲ文数]已知直线l :60x 与圆2212x y 交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD _____________.【答案】4【解析】由60x ,得6x,代入圆的方程,并整理,得260y ,解得12y y 120,3x x ,所以||AB .又直线l 的倾斜角为30 ,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD.83.【2016·新课标1文数】设直线y=x+2a 与圆C :x 2+y 2-2ay-2=0相交于A ,B 两点,若퐴 =23,则圆C 的面积为.【答案】4【解析】圆22:220C x y ay ,即222:()2C x y a a ,圆心为(0,)C a ,由||AB 圆心C 到直线2y x a,所以得222()22a ,则22,a 所以圆的面积为2π(2)4πa .84.(2015重庆文)若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.【答案】250x y 【解析】由点(1,2)P 在以坐标原点为圆心的圆上知此圆的方程为:225x y ,所以该圆在点P 处的切线方程为125x y 即250x y .85.(2015湖南文)若直线3450x y 与圆 2220x y r r 相交于,A B 两点,且120o AOB (O为坐标原点),则r =_____.【答案】2【解析】如图直线3450x y 与圆2220x y r r (>)交于,A B 两点,O 为坐标原点,且120o AOB ,则圆心(0,0)到直线3450x y 的距离为2r 2r,∴2r =.86.(2015湖北文)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),。
高中数学 选考易错题 分类解析 8直线与圆易错题含答案
高中数学易错题分类解析姓名:*** 教师:*** 授课时间:*** 课题:易错题分类解析考点8 直线与圆命题角度1 直线的方程命题角度2 两直线的位置关系命题角度3 简单线性规划命题角度4 圆的方程命题角度5 直线与圆探究开放题预测预测角度1 直线的方程预测角度2 两直线的位置关系预测角度3 线性规划预测角度4 直线与圆预测角度5 有关圆的综合问题教学反馈教师评价本周作业建议经典易错题会诊预测(八)考点8 直线与圆命题角度1 直线的方程命题角度2 两直线的位置关系 命题角度3 简单线性规划 命题角度4 圆的方程 命题角度5 直线与圆 探究开放题预测预测角度1 直线的方程预测角度2 两直线的位置关系 预测角度3 线性规划 预测角度4 直线与圆预测角度5 有关圆的综合问题经典易错题会诊命题角度1 直线的方程 1.(典型例题)已知点A )(,,),0,3()0,0(),1,3(等于其中那么有相交于与的平分线设λλCE BC E BC AE BAC C B =<31.3.21.2.--D C B A [考场错解] ∵.3|,|3||,21||||||||:,2||,1||=∴=====λCE BC EB CE AB AC AB AC 故由内角平分线定理得 [专家把脉]主要是没有考虑到.,,应为负值的方向相反与的向与λCE BC CE BC [对症下药].3,|,|3||-==λ故的方向相反与而CE BC CE BC 2.(典型例题)点(1,-1)到直线x-y+1=0的距离是 ( )223.22.23.21.D C B A[考场错解]直接运用点到直线的距离公式.C 故选.2211|11)1(11|22=++⨯-+⨯ [专家把脉]在运用点到直线的距离公式时,没有理解直线Ax+By+C=0中,B 的取值,B 应取-1,而不是取1. [对症下药].22311|1)1()1(11|22D 故选=++-⨯-+⨯2.(典型例题)若直线2x-y+c=0按向量a=(1,-1)平移后与圆x 2+y 2=5相切,则c 的值为( ) A.8或-2 B.6或-4 C.4或-6 D.2或-8[考场错解]C.直线2x-y+c=0按向量a=(1,-1)平移后的直线方程为:2(x+1)-(y+1)+c=0即:2x-y+1+c=0,此直线与圆相切,故圆心到直线的距离等于半径,即4.55|1|12|10)1(02|22=∴=+=+++⨯-+⨯c c c 或-6, 故选C.[专家把脉]坐标平移公式运用错误,应用x-h,y-k 分别来替换原来的x,y.[对症下药]A 直线2x-y+c=0按向量a=(1,-1)平移后的直线为2x-y-3+c=0,此直线与圆相切有:85|)3()1(020|=∴-+-⨯+⨯c 或者说c=-2,故选A.4.(典型例题)设直线ax+by+c=0的倾斜角为a,且sina+cosa=0,则a 、b 满足 ( ) A.A+b=1 B.a-b=1 C.a+b=0 D.a-b=0[考场错解]C..0.19tan ,1tan 0cos sin C b a bk a a a a 故选又=+∴-===-=⇒=+ [专家把脉]直线Ax+By+c=0的斜率k=.,BA BA 而不是-[对症下药]D .011tan 0cos sin =-∴=-==-=∴=+b a ba k tnaa a a a 又专家会诊1. 已知直线的方程,求直线的斜率与倾斜角的范围,反之求直线方程,注意倾斜角的范围及斜率不存在时的情况。
高考数学复习考点题型归类解析40直线与圆综合应用(解析版)
高考数学复习考点题型归类解析专题40直线与圆综合应用一、关键能力1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想.二、教学建议直线与圆是高考的必考内容,它包括直线、圆和直线与圆综合应用等内容.高考常以选填题和解答题形式出现,对解析几何知识和数学思想方法的应用进行考查.近几年高考直线、圆试题的考查特点,一是考查两直线位置关系、点线距离、圆有关的概念、性质及其简单应用;二是以直线与圆位置关系为载体,在代数、向量等知识的交汇处设置解答题,考查解决轨迹、参数范围、探索型等综合问题的思想方法,并且注重测试逻辑推理和代数运算能力.三、自主梳理1.处理解析几何问题的两种方法:几何法、代数法2.圆上动点的处理方法:几何法:转化为具有几何意义的问题来解决(距离、角、斜率、截距);代数法:设点坐标,用坐标去表示目标,寻求解决办法。
3.直线与圆交点的处理方法:几何法:转化的思想代数法:设而不求的办法四、高频考点+重点题型考点一、与其他知识(向量、简易逻辑、函数、不等式)交汇例1-1(与简易逻辑交汇)直线x﹣y+m=0与圆x2+y2﹣2x﹣1=0有两个不同交点的一个充分不必要条件是()A.﹣3<m<1B.﹣4<m<2C.0<m<1D.m<1【解答】解:联立直线与圆的方程得:{x−y+m=0x2+y2−2x−1=0,消去y得:2x2+(2m﹣2)x+m2﹣1=0,由题意得:△=(2m﹣2)2﹣8(m2﹣1)=﹣4(m+1)2+16>0,变形得:(m+3)(m﹣1)<0,解得:﹣3<m<1,∵0<m<1是﹣3<m<1的一个真子集,∴直线与圆有两个不同交点的一个充分不必要条件是0<m<1.故选:C.例1-2(与三角函数交汇)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2.则直线l的倾斜角的取值范围是.【解答】解:圆x 2+y 2﹣4x ﹣4y ﹣10=0化简为标准方程,可得(x ﹣2)2+(y ﹣2)2=18,∴圆心坐标为C (2,2),半径r =3√2,∵在圆上至少有三个不同的点到直线l :ax +by =0的距离为2√2, ∴圆心到直线的距离应小于或等于r −2√2=√2, 由点到直线的距离公式,得√a 2+b 2≤√2,∴(2a +2b )2≤2(a 2+b 2),整理得(−ab )2−4(−ab )+1≤0, 解之得2−√3≤−ba ≤2+√3,∵直线l :ax +by =0的斜率k =−ab ∈[2−√3,2+√3]∴设直线l 的倾斜角为α,则tan α∈[2−√3,2+√3],即tan π12≤tan α≤tan 5π12. 由此可得直线l 的倾斜角的取值范围是[π12,5π12]. 故答案为:[π12,5π12] 例1-3(与向量的交汇) 已知直线x +y ﹣k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有OA →⋅OB →≥−2,那么k 的取值范围是( )A .(√3,+∞)B .[√2,2 √2)C .[√2,+∞)D .[√3,2 √2)【解答】解:根据题意,圆x 2+y 2=4的圆心为(0,0),半径r =2,设圆心到直线x +y ﹣k =0的距离为d ;若直线x +y ﹣k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,则d =√1+1=√22,则有k <2√2;设OA →与OB →的夹角即∠OAB =θ,若OA →⋅OB →≥−2,即|OA |×|OB |×cos θ≥﹣2,变形可得cos θ≥−12,则θ≤2π3,当θ=2π3时,d =1,若θ≤2π3,则d =√2≥1,解可得k ≥√2,则k 的取值范围为[√2,2√2); 故选:B .例1-4(与基本不等式交汇)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P ,则P A +PB 的取值范围是( )A .[5,25]B .[25,45]C .[10,45]D .[10,25] 答案:D解析:由动直线x +my =0知定点A 的坐标为(0,0),由动直线mx -y -m +3=0知定点B 的坐标为(1,3),且两直线互相垂直,故点P 在以AB 为直径的圆上运动. 故当点P 与点A 或点B 重合时,P A +PB 取得最小值,(P A +PB )min =AB =10. 当点P 与点A 或点B 不重合时,在Rt △P AB 中,有P A 2+PB 2=AB 2=10.因为P A 2+PB 2≥2P A ·PB ,所以2(P A 2+PB 2)≥(P A +PB )2,当且仅当P A =PB 时取等号,所以P A +PB ≤2P A 2+PB 2=2×10=25,所以10≤P A +PB ≤25, 所以P A +PB 的取值范围是[10,25].故选D .例1-5.过直线y =x 上一点作圆(x ﹣5)2+(y ﹣1)2=2的两条切线l 1,l 2,当l 1,l 2关于直线y =x 对称时,l 1,l 2的夹角的大小为.【解答】解:圆(x ﹣5)2+(y ﹣1)2=2的圆心(5,1),过(5,1)与y =x 垂直的直线方程:x +y ﹣6=0,它与y=x的交点N(3,3),N到(5,1)距离是2√2,两条切线l1,l2,它们之间的夹角为60°.故答案为:60°.例1-6.在平面直角坐标系xOy中,已知圆C:x2+y2﹣2x﹣4y﹣3=0与x轴交于A,B两点,若动直线l与圆C相交于M,N两点,且△CMN的面积为4,若P为MN的中点,则△PAB的面积最大值为.【解答】解:当y=0时,x2﹣2x﹣3=0得x=﹣1或x=3,即A(﹣1,0),B(3,0),圆的标准方程为(x﹣1)2+(y﹣2)2=8,则圆心C(1,2),半径R=√8=2√2,△CMN的面积为4,×2√2×2√2sin∠MCN=4,即S=12则sin∠MCN=1,即∠MCN=90°,则MN=√2CN=√2×2√2=4,则CP=1MN=2,点P轨迹是个圆2要使△PAB的面积最大,则CP⊥AB,此时三角形的高为PD=2+2=4,AB=3﹣(﹣1)=4,×4×4=8,则△PAB的面积S=12故答案为:8.考点二、直线与圆中的探索性问题例2-1.在平面直角坐标系xOy 中,已知半径为2的圆C ,圆心在x 轴正半轴上,且与直线x −√3y +2=0相切. (1)求圆C 的方程;(2)在圆C 上,是否存在点P ,满足|PQ |=√22|PO |,其中,点Q 的坐标是Q (﹣1,0).若存在,指出有几个这样的点;若不存在,请说明理由;(3)若在圆C 上存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交不同两点A ,B ,求m 的取值范围.并求出使得△OAB 的面积最大的点M 的坐标及对应的△OAB 的面积.【解答】解:(1)设圆心是(a ,0),(a >0),它到直线x −√3y +2=0的距离是d =√1+3=2,解得a =2或a =﹣6(舍去),所以,所求圆C 的方程是(x ﹣2)2+y 2=4.(4分) (2)假设存在这样的点P (x ,y ),则由PA =√22PO ,得x 2+y 2+4x +2=0.(6分)即,点P 在圆D :(x +2)2+y 2=2上,点P 也在圆C :(x ﹣2)2+y 2=4上.因为|CD|=4>r c +r d =2+√2,所以圆C 与圆D 外离,圆C 与圆D 没有公共点. 所以,不存在点P 满足条件.(8分)(3)存在,理由如下:因为点M (m ,n ),在圆C 上,所以(m ﹣2)2+n 2=4, 即n 2=4﹣(m ﹣2)2=4m ﹣m 2且0≤m ≤4. 因为原点到直线l :mx +ny =1的距离h =√m 2+n2=√4m1,解得14<m ≤4 (10分)而|AB |=2√1−ℎ2,所以S △OAB =12|AB |h =√ℎ2−ℎ4=√14m −(14m )2=√−(14m −12)2+14, 因为116≤14m <1,所以当14m =12,即m =12时,S △OAB 取得最大值12,此时点M 的坐标是(12,√72)或(12,−√72),△OAB 的面积的最大值是12.(12分)例2-2.如图,已知⊙C 的圆心在原点,且与直线x +3y +4√2=0相切. (1)求⊙C 的方程;(2)点P 在直线x =8上,过点P 引⊙C 的两条切线PA 、PB ,切点为A 、B . ①求四边形OAPB 面积的最小值; ②求证:直线AB 过定点.【解答】(1)解:依题意得:圆心(0,0)到直线x +3y +4√2=0的距离d =r , ∴r =d =√2|√10=4√55, ∴圆C 的方程为x 2+y 2=165;(2)①解:连接OA ,OB , ∵PA ,PB 是圆C 的两条切线, ∴OA ⊥AP ,OB ⊥BP ,∴S 四边形OAPB =2S △OAP =12OA ⋅PA =12×4√55√PO 2−165=2√55√PO 2−165.∴当PO 取最小值为8时,(S 四边形OAPB )min =2√55√64−165=8√195; ②证明:由①得,A ,B 在以OP 为直径的圆上, 设点P 的坐标为(8,b ),b ∈R ,则线段OP的中点坐标为(4,b2),∴以OP为直径的圆方程为(x−4)2+(y−b2)2=16+b24,即x2+y2﹣8x﹣by=0.∵AB为两圆的公共弦,∴联立{x2+y2=165x2+y2−8x−by=0得:直线AB的方程为8x+by=165,b∈R,即8(x−25)+by=0,则直线AB恒过定点(25,0).例2-3.在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有1−00−x1•1−00−x2=−1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.例2-4.已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组{(x −3)2+y 2=4y =kx ,消去y 可得:(1+k 2)x 2﹣6x +5=0, 由△=36﹣4(1+k 2)×5>0,可得k 2<45 由韦达定理,可得x 1+x 2=61+k 2,∴线段AB 的中点M 的轨迹C 的参数方程为{x =31+k 2y =3k 1+k 2,其中−2√55<k <2√55, ∴线段AB 的中点M 的轨迹C 的方程为:(x −32)2+y 2=94,其中53<x ≤3; (3)结论:当k ∈(−2√57,2√57)∪{−34,34}时,直线L :y =k (x ﹣4)与曲线C 只有一个交点. 理由如下: 联立方程组{(x −32)2+y 2=94y =k(x −4),消去y ,可得:(1+k 2)x 2﹣(3+8k 2)x +16k 2=0, 令△=(3+8k 2)2﹣4(1+k 2)•16k 2=0,解得k =±34, 又∵轨迹C 的端点(53,±2√53)与点(4,0)决定的直线斜率为±2√57, ∴当直线L :y =k (x ﹣4)与曲线C 只有一个交点时, k 的取值范围为[−2√57,2√57]∪{−34,34}.例2-5.如图,圆C :x 2﹣(1+a )x +y 2﹣ay +a =0.(Ⅰ)若圆C 与x 轴相切,求圆C 的方程;(Ⅱ)已知a >1,圆C 与x 轴相交于两点M ,N (点M 在点N 的左侧).过点M 任作一条直线与圆O :x 2+y 2=4相交于两点A ,B .问:是否存在实数a ,使得∠ANM =∠BNM ?若存在,求出实数a 的值,若不存在,请说明理由.【解答】(Ⅰ)因为由{y =0x 2−(1+a)x +y 2−ay +a =0可得x 2﹣(1+a )x +a =0, 由题意得△=(1+a )2﹣4a =(a ﹣1)2=0,所以a =1, 故所求圆C 的方程为x 2﹣2x +y 2﹣y +1=0.(Ⅱ)令y =0,得x 2﹣(1+a )x +a =0,即(x ﹣1)(x ﹣a )=0,求得x =1,或x =a , 所以M (1,0),N (a ,0).假设存在实数a ,当直线AB 与x 轴不垂直时,设直线AB 的方程为y =k (x ﹣1), 代入x 2+y 2=4得,(1+k 2)x 2﹣2k 2x +k 2﹣4=0,设A (x 1,y 1),B (x 2,y 2),从而x 1+x 2=2k 21+k 2,x 1x 2=k 2−41+k 2. 因为NA 、NB 的斜率之和为 y 1x1−a+y 2x2−a=k[(x 1−1)(x 2−a)+(x 2−1)(x 1−a)](x 1−a)(x 2−a),而(x 1﹣1)(x 2﹣a )+(x 2﹣1)(x 1﹣a )=2x 1x 2﹣(a +1)(x 2+x 1)+2a =2k 2−41+k 2−(a +1)2k 21+k 2+2a =2a−81+k 2,因为∠ANM =∠BNM ,所以,NA 、NB 的斜率互为相反数,y 1x 1−a+y 2x 2−a=0,即2a−81+k 2=0,得a =4.当直线AB 与x 轴垂直时,仍然满足∠ANM =∠BNM ,即NA 、NB 的斜率互为相反数. 综上,存在a =4,使得∠ANM =∠BNM .例2-6.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方. (1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,求出点N 的坐标;若不存在,请说明理由. 解 (1)设圆心C (a ,0)⎝ ⎛⎭⎪⎫a >-52, 则|4a +10|5=2,解得a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, x 1,2=2k 2±4k 4-4(k 2+1)(k 2-4)2(k 2+1),所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ,即y 1x 1-t +y 2x 2-t =0,则k (x 1-1)x 1-t +k (x 2-1)x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,即2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0,解得t =4,所以当点N 的坐标为(4,0)时,能使得x 轴平分∠ANB 总成立. 例2-7.已知t ∈R ,圆C :x 2+y 2-2tx -2t 2y +4t -4=0. (1) 若圆C 的圆心在直线x -y +2=0上,求圆C 的方程;(2) 圆C 是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由. 解析:(1) 配方得(x -t )2+(y -t 2)2=t 4+t 2-4t +4,其圆心C (t ,t 2).依题意t -t 2+2=0,解得t =-1或2.即x 2+y 2+2x -2y -8=0或x 2+y 2-4x -8y +4=0为所求方程.(2) 整理圆C的方程为(x 2+y 2-4)+(-2x +4)t +(-2y )·t 2=0,令⎩⎨⎧x 2+y 2-4=0,-2x +4=0,-2y =0解得⎩⎨⎧x =2,y =0. 故圆C 过定点(2,0).考点三、与实际结合考察例3-1.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸 【答案】A 【分析】连接OC ,设半径为r ,则1OD r =-,在直角三角形OAD 中应用勾股定理即可求得r ,进而求得扇形OAB 的面积,减去三角形OAB 即可得阴影部分的面积. 【详解】连接OC ,设半径为r ,5AD =寸,则1OD r =-在直角三角形OAD 中,222OA AD OD =+ 即()22251r r =+-,解得13r = 则5sin 13AOC ∠=,所以22.5AOC ∠= 则222.545AOB ∠=⨯=所以扇形OAB 的面积21451316966.333608S ππ⨯⨯=== 三角形OAB 的面积211012602S =⨯⨯= 所以阴影部分面积为1266.3360 6.33S S -=-= 所以选A例3-2.如图,某城市中心花园的边界是圆心为O ,直径为1千米的圆,花园一侧有一条直线型公路l ,花园中间有一条公路AB (AB 是圆O 的直径),规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:道路PB ,QA 不穿过花园.已知OC l ⊥,BD l ⊥(C 、D 为垂足),测得OC =0.9,BD =1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为_____元.【答案】2.1m 【分析】根据几何关系考虑道路不穿过花园,求解最小距离,即可得到最小费用. 【详解】如图:过点B 作直线BP AB ⊥交l 于P ,取BD 与圆的交点M , 连接,MA MB ,则MA MB ⊥, 过点A 作直线AQ AB ⊥交l 于Q , 过点A 作直线AC l '⊥交l 于C ',根据图象关系可得,直线上,点P 左侧的点与B 连成线段不经过圆内部, 点Q 右侧的点与A 连成的线段不经过圆的内部, 最短距离之和即PB AC '+,根据几何关系:PBD BAM QAC '∠=∠=∠,3sin 5BAM ∠=,所以4cos cos cos 5PBD BAM QAC '∠=∠=∠=, 所以 1.5BP =,2BD AC OC '+=,所以0.6AC '=,最小距离为2.1千米.修建道路总费用的最小值为2.1m 元. 故答案为:2.1m例3-3.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向cos θ⎛⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?【答案】(1)否;(2)12小时. 【分析】建立直角坐标系,则城市A (0,0),当前台风中心(P -,设t 小时后台风中心P 的坐标为(x ,y ),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A .(2)t 小时后台风侵袭的范围可视为以()P -为圆心,60+10t 为半径的圆,由此利用圆的性质能求出结果. 【详解】(1)如图建立直角坐标系, 则城市()0,0A ,当前台风中心(P -,设t 小时后台风中心P 的坐标为(),x y ,则x y ⎧=⎪⎨=-⎪⎩,此时台风的半径为6010t +,10小时后,184.4PA ≈km ,台风的半径为r =160km , 因为r PA <,故10小时后,该台风还没有开始侵袭城市A . (2)因此,t 小时后台风侵袭的范围可视为以()P -为圆心,6010t +为半径的圆,若城市A ()6010t + 230010800864000t t ⇒-+≤,即2362880t t -+≤,解得1224t ≤≤答:该城市受台风侵袭的持续时间为12小时.例3-4.唐代诗人李顾的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点(3,0)A 处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营孙在区域即为回到军营.(1)若军营所在区域为222x y Ω+≤:,求“将军饮马”的最短总路程;(2)若军营所在区域为22x y Ω+≤’:,求“将军饮马”的最短总路程.【答案】(1(2 【分析】(1)根据利用圆的方程的知识画出军营区域及河岸线,作出A 关于河岸线的对称点'A ,根据对称性质和圆的性质即可求得;(2)先画出在第一象限的军营区域,再利用对称性画出运营区域,注意观察军营区域内哪一个到'A 最近,即可求得. 【详解】(1)若军营所在区域为22:2Ωx y +, 圆:222x y +=, 作图如下:设将军饮马点为P ,到达营区点为B ,'A 为A 关于直线4x y +=的对称点, 因为()3,0A ,所以()'4,1A .则总路程||||||||PB PA PB PA '+=+,要使得路程最短,只需要||||PB PA '+最短, 即点A '到军营的距离最短,即点A '到222x y +的最短距离,为OA '(2)若军营所在区域为:||2||2Ωx y +,对于||2||2x y =+,在x ≥0,y ≥0时为22,x y +=令0x =,得1y =,令0y =,则2x =,图象为连接点()0,1和()2,0的线段,根据对称性得到||2||2x y =+的图象如图所示的菱形,Ω':22x y+为这个菱形的内部(包括边界). 作图如下:由图可知,最短路径为连接()2,0点和'A 的连线,交直线4x y +=于点P ,饮马最佳点为P ,所以点A '到区域Ω最短距离A B '即“将军饮马”例3-5.如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直,保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解 (1)如图,过点B 作BE ⊥OC 于点E ,过点A 作AF ⊥BE 于点F .∵∠ABC =90°,∠BEC =90°,∴∠ABF =∠BCE ,∴tan ∠ABF =tan ∠BCO =43. 设AF =4x (m),则BF =3x (m),∵∠AOE =∠AFE =∠OEF =90°,∴OE =AF =4x (m),EF =AO =60(m), ∴BE =(3x +60)m.∵tan ∠BCO =43,∴CE =34BE =⎝ ⎛⎭⎪⎫94x +45 m ,∴OC =⎝ ⎛⎭⎪⎫4x +94x +45 m ,∴4x +94x +45=170,解得x =20.∴BE =120 m ,CE =90 m. 综上所述,BC =150 m.(2)如图,设BC 与⊙M 切于点Q ,延长QM ,CO 交于点P ,∵∠POM =∠PQC =90°.∴∠PMO =∠BCO . 设OM =x m ,则OP =43x m ,PM =53x m. ∴PC =⎝ ⎛⎭⎪⎫43x +170m ,PQ =⎝ ⎛⎭⎪⎫1615x +136m.设⊙M 的半径为R ,∴R =MQ =⎝ ⎛⎭⎪⎫1615x +136-53x =⎝ ⎛⎭⎪⎫136-35x m ,∵A ,O 到⊙M 上任一点的距离不少于80 m ,则⎩⎨⎧R -OM ≥80,R -AM ≥80,即⎩⎪⎨⎪⎧136-35x -x ≥80,136-35x -(60-x )≥80.解得10≤x ≤35.当且仅当x =10时R 取到最大值.∴当OM =10 m 时,保护区面积最大, 综上所述,当OM =10 m 时,保护区面积最大.课后作业一、单项选择题1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A B C D答案:B解析:由题意可设圆的标准方程为()()222x a y a a -+-=,则()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y --=的距离均为15d ==;圆心()5,5到直线230x y --=的距离均为2d ==,所以圆心到直线230x y --=.故选B .2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为( )A .95B .185C .2910D .295答案:C解析:因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知PQ 的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以PQ 的最小值为2910.3.圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b 的最小值是( )A .23B .203C .323D .163 答案:C解析:由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39,∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,∴该直线经过圆心(-2,6),即-2a -6b +6=0,∴a +3b =3(a >0,b >0),∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =323,当且仅当3b a =3a b ,即a =b 时取等号,故选C. 4.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A .[1-2,1+2]B .[1-2,3]C .[1-22,3]D .[-1,1+2] 答案:C解析:由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3). ∴曲线y =3-4x -x 2是半圆,如图中实线所示. 当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±22.由图可知b =1-22.∴b 的取值范围是[1-22,3].故选C .5.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且有|OA→+OB →|≥33|AB →|,则k 的取值范围是( ) A .(3,+∞) B .[2,22) C .[2,+∞) D .[3,22) 答案:B解析:当|OA +OB |=33|AB |时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2;当k >2时,|OA +OB |>33|AB |,又直线与圆x 2+y 2=4存在两交点,故k <22,综上,k 的取值范围为[2,22).故选B .6.已知点A (-5,0),B (-1,-3),若圆C :x 2+y 2=r 2(r >0)上恰有两点M ,N ,使得△MAB 和△NAB 的面积均为5,则r 的取值范围是( ) A .(1,5) B .(1,5)C .(2,5) D .(2,5) 答案:B解析:由题意可得AB =(-1+5)2+(-3-0)2=5,根据△MAB 和△NAB 的面积均为5,可得两点M ,N 到直线AB 的距离为2.由于直线AB 的方程为3x +4y +15=0,若圆上只有一个点到直线AB 的距离为2,则有圆心(0,0)到直线AB 的距离|0+0+15|9+16=r +2,解得r =1;若圆上只有三个点到直线AB 的距离为2,则有圆心(0,0)到直线AB 的距离|0+0+15|9+16=r -2,解得r =5.所以实数r 的取值范围是(1,5).故选B .二、多项选择题7.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a 的值为( ) A .33B .-33 C .4+15D .4-15 答案:CD解析:圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以AB =BC =2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.故选CD . 8.已知圆C :(x -3)2+(y -3)2=72,若直线l :x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则直线l 的方程是( ) A .x +y -2=0 B .x +y -4=0C .x +y -8=0D .x +y -10=0 答案:AD解析:由题意知,圆心C (3,3)到直线l 的距离为13×62=22,即|3+3-m |2=22,解得m =2或m =2,因此直线l 的方程为x +y -2=0或x +y -10=0.故选AD .三、填空题9.已知点A (-1,1),B (2,-2),若直线l :x +my +m =0与线段AB 相交(包含端点的情况),则实数m 的取值范围是______________. 答案:⎝ ⎛⎦⎥⎤-∞,12∪[2,+∞)解析:直线l :x +my +m =0可化为x +m (y +1)=0,所以直线恒过定点P (0,-1). ∵点A (-1,1),B (2,-2),∴k P A =-2,k PB =-12,∵直线l :x +my +m =0与线段AB 相交(包含端点的情况),∴-1m ≤-2或-1m ≥-12, ∴m ≤12或m ≥2(经验证m =0也符合题意).∴实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,12∪[2,+∞).10.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a 等于____. 答案:2解析:圆心为O (1,0),由于P (2,2)在圆(x -1)2+y 2=5上,∴P 为切点,OP 与P 点处的切线垂直.∴k OP =2-02-1=2,又点P 处的切线与直线ax -y +1=0垂直.∴a =k OP =2.11.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P到直线l 的距离为2,则符合题意的点P 有________个.答案:2解析:由题意知圆的标准方程为(x +2)2+(y -3)2=42, ∴圆心到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,则满足题意的点P 有2个.12.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m ,0),存在C 上的点P 和l上的Q 使得AP →+AO →=0,则实数m 的取值范围为________.答案:[2,3]解析:曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m ,0),存在C 上的点P 和l 上的Q 使得AP →+AQ →=0,说明A 是PQ 的中点,Q的横坐标x =6,∴m =6+x P2∈[2,3].四、解答题13.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程; (2)若a =2,过点M 的圆的两条弦AC ,BD 互相垂直,求AC +BD 的最大值. 解析:(1)由条件知点M 在圆O 上,所以1+a 2=4,则a =±3. 当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1).即x +3y -4=0, 当a =-3时,点M 为(1,-3),k OM =-3,k 切=33.此时切线方程为y +3=33(x -1).即x -3y -4=0. 所以所求的切线方程为x +3y -4=0或x -3y -4=0.(2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0),则d 21+d 22=OM 2=3. 又有AC =24-d 21,BD =24-d 22,所以AC +BD =24-d 21+24-d 22. 则(AC +BD )2=4×(4-d 21+4-d 22+24-d 21·4-d 22)=4×[5+216-4(d 21+d 22)+d 21d 22] =4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94,当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(AC +BD )2≤4×(5+2×52)=40.所以AC +BD ≤210,即AC +BD 的最大值为210.14.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点,已知AB =2OA ,且点B 的纵坐标大于0.(1)求AB→的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程. 解析:(1)设AB →=(x ,y ),由AB =2OA ,AB →·OA→=0,得⎩⎨⎧ x 2+y 2=100,4x -3y =0,解得⎩⎨⎧ x =6,y =8或⎩⎨⎧x =-6,y =-8.若AB →=(-6,-8),则y B =-11与y B>0矛盾.∴⎩⎨⎧x =-6,y =-8舍去.即AB →=(6,8). (2)圆x 2-6x +y 2+2y =0,即(x -3)2+(y +1)2=(10)2,其圆心为C (3,-1),半径r =10, ∵OB →=OA →+AB →=(4,-3)+(6,8)=(10,5),∴直线OB 的方程为y =12x . 设圆心C (3,-1)关于直线y =12x 的对称点的坐标为(a ,b ),则⎩⎪⎨⎪⎧b +1a -3=-2,b -12=12·a +32,解得⎩⎨⎧a =1,b =3,∴所求圆的方程为(x -1)2+(y -3)2=10.。
新教材高考数学第二章直线和圆的方程1-2两条直线平行和垂直的判定练习含解析新人教A版选择性必修第一册
两条直线平行和垂直的判定学习目标 1.理解并掌握两条直线平行的条件及两条直线垂直的条件.2.会运用条件判定两直线是否平行或垂直3.运用两直线平行和垂直时的斜率关系解决相应的几何问题.知识点一两条直线(不重合)平行的判定类型斜率存在斜率不存在前提条件α1=α2≠90°α1=α2=90°对应关系l1∥l2⇔k1=k2l1∥l2⇔两直线的斜率都不存在图示知识点二两条直线垂直的判定图示对应关系l1⊥l2(两直线的斜率都存在)⇔k1k2=-1l1的斜率不存在,l2的斜率为0⇔l1⊥l2思考两直线的斜率相等是两直线平行的充要条件吗?答案不是,垂直于x轴的两条直线,虽然平行,但斜率不存在.1.若l1∥l2,则k1=k2.( ×)2.若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直.( ×)3.若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.( √)一、两条直线平行的判定例1 已知四边形ABCD 的四个顶点分别为A (0,0),B (2,-1),C (4,2),D (2,3),试判断四边形ABCD 是否为平行四边形,并给出证明. 解 四边形ABCD 是平行四边形,证明如下:AB 边所在直线的斜率k AB =-12,CD 边所在直线的斜率k CD =-12, BC 边所在直线的斜率k BC =32,DA 边所在直线的斜率k DA =32.因为k AB =k CD ,k BC =k DA ,所以AB ∥CD ,BC ∥DA . 因此四边形ABCD 是平行四边形.反思感悟 判断两条不重合的直线是否平行的方法跟踪训练1 (1)已知l 1经过点A (-3,2),B (-3,10),l 2经过点M (5,-2),N (5,5),判断直线l 1与l 2是否平行.解 ∵l 1与l 2都与x 轴垂直,且l 1与l 2不重合, ∴l 1∥l 2.(2)试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解 由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-m +1=m-6-m ,k CD =5-30--4=12,由于AB ∥CD ,所以k AB =k CD ,即m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.二、两条直线垂直的判定例2 已知△ABC 的顶点为A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,求m 的值. 解 若∠A 为直角,则AC ⊥AB ,∴k AC ·k AB =-1, 即m +12-5·1+11-5=-1,解得m =-7; 若∠B 为直角,则AB ⊥BC ,∴k AB ·k BC =-1, 即1+11-5·m -12-1=-1,解得m =3; 若∠C 为直角,则AC ⊥BC ,∴k AC ·k BC =-1,即m +12-5·m -12-1=-1,解得m =±2. 综上所述,m =-7或m =3或m =±2. 反思感悟 判断两条直线是否垂直在这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行或重合时,这两条直线也垂直. 跟踪训练2 判断下列各题中l 1与l 2是否垂直. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1经过点A (3,4),B (3,10),l 2经过点M (-10,40),N (10,40). 解 (1)k 1=-10,k 2=3-220-10=110,k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴;k 2=40-4010--10=0,则l 2∥x 轴,∴l 1⊥l 2.垂直与平行的综合应用典例 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.解 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32--4=13,k CD =0-3-3-6=13,k AD =0-3-3--4=-3, k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC , 所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.[素养提升] 用代数运算解决几何图形问题(1)利用直线的斜率判定平面图形的形状一般要运用数形结合的方法,先由图形作出猜测,然后利用直线的斜率关系进行判定.(2)明确运算对象,探究运算思路,是对逻辑推理与数学运算核心素养的考查.1.若过点P (3,2m )和点Q (-m ,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A.13 B .-13 C .2 D .-2 答案 B解析 由k PQ =k MN ,即2m -23--m =4--1-3-2,得m =-13.经检验知,m =-13符合题意.2.已知直线l 1的斜率为a ,l 2⊥l 1,则l 2的斜率为( ) A.1aB .-1aC .aD .-1a或不存在答案 D解析 当a ≠0时,由k 1·k 2=-1知,k 2=-1a,当a =0时,l 2的斜率不存在.3.已知两条直线l 1,l 2的斜率是方程3x 2+mx -3=0(m ∈R )的两个根,则l 1与l 2的位置关系是( ) A .平行 B .垂直 C .可能重合 D .无法确定答案 B解析 由方程3x 2+mx -3=0,知Δ=m 2-4×3×(-3)=m 2+36>0恒成立. 故方程有两相异实根,即l 1与l 2的斜率k 1,k 2均存在. 设两根为x 1,x 2,则k 1k 2=x 1x 2=-1,所以l 1⊥l 2,故选B.4.(多选)若l 1与l 2为两条不重合的直线,它们的倾斜角分别是α1,α2,斜率分别为k 1,k 2,则下列命题正确的是( )A .若l 1∥l 2,则斜率k 1=k 2B .若k 1=k 2,则l 1∥l 2C .若l 1∥l 2,则倾斜角α1=α2D .若α1=α2,则l 1∥l 2 答案 ABCD5.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线的斜率为________. 答案 -1解析 若a =3-b ,则P ,Q 两点重合,不合题意.故PQ 斜率存在.由k PQ =3-a -b3-b -a =1,得线段PQ 的垂直平分线的斜率为-1.1.知识清单:两直线平行或垂直的条件.2.方法归纳:分类讨论,数形结合. 3.常见误区:研究两直线平行、垂直关系时忽略直线斜率为0或斜率不存在的情况.1.过点A (2,5)和点B (-4,5)的直线与直线y =3的位置关系是( ) A .相交 B .平行 C .重合 D .以上都不对 答案 B解析 斜率都为0且不重合,所以平行.2.已知过A (-2,m )和B (m ,4)的直线与斜率为-2的直线平行,则m 的值是( ) A .-8 B .0 C .2 D .10 答案 A解析 由题意可知,k AB =4-mm +2=-2,所以m =-8.3.直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( ) A .(3,0) B .(-3,0) C .(0,-3) D .(0,3)答案 D解析 设P (0,y ),因为l 1∥l 2,所以y -10+1=2,所以y =3.即P (0,3).4.若直线l 经过点(a -2,-1)和(-a -2,1),且与斜率为-23的直线垂直,则实数a 的值为( )A .-23B .-32 C.23 D.32答案 A解析 易知a =0不符合题意.当a ≠0时,直线l 的斜率k =2-a -2-a +2=-1a ,由-1a ·⎝ ⎛⎭⎪⎫-23=-1,得a =-23,故选A.5.(多选)设点P (-4,2),Q (6,-4),R (12,6),S (2,12),下面四个结论正确的是( ) A .PQ ∥SR B .PQ ⊥PS C .PS ∥QS D .PR ⊥QS答案 ABD解析 由斜率公式知,k PQ =-4-26+4=-35,k SR =12-62-12=-35,k PS =12-22+4=53,k QS =12+42-6=-4,k PR =6-212+4=14, ∴PQ ∥SR ,PQ ⊥PS ,PR ⊥QS .而k PS ≠k QS , ∴PS 与QS 不平行,故ABD 正确.6.若经过点(m ,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 答案145解析 由题意可知k l =14,又因为k l =m -32-m,所以m -32-m =14,解得m =145.7.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-4k +m =0的两根,若l 1⊥l 2,则m =________,若l 1∥l 2,则m =________. 答案 -2 2解析 由一元二次方程根与系数的关系得k 1·k 2=m2,若l 1⊥l 2,则m2=-1,∴m =-2.若l 1∥l 2,则k 1=k 2,即关于k 的二次方程2k 2-4k +m =0有两个相等的实根,∴Δ=(-4)2-4×2×m =0,∴m =2.8.已知点A (-3,-2),B (6,1),点P 在y 轴上,且∠BAP =90°,则点P 的坐标是________. 答案 (0,-11)解析 设P (0,y ),由∠BAP =90°知,k AB ·k AP =1--26--3×y +23=y +29=-1,解得y =-11.所以点P 的坐标是(0,-11).9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行. 解 (1)由k AB =m -32m2=tan 135°=-1, 解得m =-32或m =1.(2)由k AB =m -32m 2,且-7-20-3=3, 则m -32m 2=-13,解得m =32或m =-3. (3)令m -32m 2=9+3-4-2=-2,解得m =34或m =-1. 经检验,当m =34或m =-1时,均符合题意.10.已知▱ABCD 中,A (1,2),B (5,0),C (3,4). (1)求点D 的坐标;(2)试判定▱ABCD 是否为菱形?解 (1)设D 点坐标为(a ,b ),因为四边形ABCD 为平行四边形,所以k AB =k CD ,k AD =k BC ,所以⎩⎪⎨⎪⎧0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧a =-1,b =6.所以D (-1,6).(2)因为k AC =4-23-1=1,k BD =6-0-1-5=-1,所以k AC ·k BD =-1,所以AC ⊥BD ,所以▱ABCD 为菱形.11.(多选)已知点A (m ,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则m 的值为( ) A .-1 B .0 C .1 D .2答案 BC解析 当m =0时,直线AB 与直线CD 的斜率均不存在且不重合,此时AB ∥CD . 当m ≠0时,k AB =m +4-32m -m ,k CD =2-0m +1-1,则k AB =k CD ,即m +1m =2m,得m =1,∴m =0或1. 12.如图所示,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )A .(-3,1)B .(4,1)C .(-2,1)D .(2,-1)答案 A解析 如图所示,因为经过三点可构造三个平行四边形,即▱AOBC 1,▱ABOC 2,▱AOC 3B .根据平行四边形的性质,可知B ,C ,D 分别是点C 1,C 2,C 3的坐标,故选A. 13.若点P (a ,b )与Q (b -1,a +1)关于直线l 对称,则l 的倾斜角为( ) A .135° B.45° C.30° D.60° 答案 B解析 若a =b -1,则P ,Q 重合,不合题意,故直线PQ 斜率存在.k PQ =a +1-bb -1-a=-1,k PQ ·k l=-1,∴l 的斜率为1,倾斜角为45°.14.下列直线l 1与直线l 2(l 1与l 2不重合)平行的有________.(填序号) ①l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);②l 1的斜率为2,l 2经过点A (1,1),B (2,2);③l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); ④l 1经过点E (2,6),F (2,3),l 2经过点P (-3,-3),Q (-3,-6). 答案 ①③④解析 ①∵k AB =5-1-3-2=-45,k CD =-7+38-3=-45,∴k AB =k CD ,∴l 1∥l 2. ②∵2l k =2-12-1=1≠1l k =2,∴l 1不平行于l 2. ③∵1l k =tan 60°=3,2l k =3+231+2=3,∴12l l k k =,∴l 1∥l 2.④l 1,l 2的斜率均不存在,∴l 1∥l 2.15.直线l 的倾斜角为30°,点P (2,1)在直线l 上,直线l 绕点P (2,1)按逆时针方向旋转30°后到达直线l 1的位置,此时直线l 1与l 2平行,且l 2是线段AB 的垂直平分线,其中A (1,m -1),B (m ,2),则m =________.答案 4+ 3解析 如图,直线l 1的倾斜角为30°+30°=60°,∴直线l 1的斜率k 1=tan 60°= 3. 由l 1∥l 2知,直线l 2的斜率k 2=k 1= 3. ∴直线AB 的斜率存在,且k AB =-1k 2=-33.∴m -1-21-m =m -31-m =-33, 解得m =4+ 3.16.已知△ABC 三个顶点坐标分别为A (-2,-4),B (6,6),C (0,6),求此三角形三边的高所在直线的斜率.解 由斜率公式可得k AB =6--46--2=54,k BC =6-66-0=0,k AC =6--40--2=5.由k BC =0知直线BC ∥x 轴,∴BC 边上的高线与x 轴垂直,其斜率不存在. 设AB ,AC 边上高线的斜率分别为k 1,k 2, 由k 1·k AB =-1,k 2·k AC =-1, 即k 1·54=-1,k 2·5=-1,解得k 1=-45,k 2=-15.∴BC 边上的高所在直线的斜率不存在;AB 边上的高所在直线的斜率为-45; AC 边上的高所在直线的斜率为-15.。
高考数学试题分类详解直线与圆
高考数学试题分类详解直线与圆一、选择题1、.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是. 【答案】:.22(2)(2)2x y -+-=【分析】:曲线化为22(6)(6)18x y -+-=,其圆心到直线20x y +-=的距离为6625 2.2d +-==所求的最小圆的圆心在直线y x =上,其到直线的距离为2,圆心坐标为(2,2).标准方程为22(2)(2)2x y -+-=。
2、(某某文5)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为(A)-2或2(B)2321或 (C)2或0 (D)-2或0解析:若圆04222=--+y x y x 的圆心(1,2)到直线0=+-a y x 的距离为22,∴|12|222a -+=,∴a =2或0,选C 。
3、(某某文13)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x【答案】C【解析】圆2222210(1)2x y x x y +--=⇒-+=,圆心(1,0),半径2,关于直线032=+-y x 对称的圆半径不变,排除A 、B ,两圆圆心连线段的中点在直线032=+-y x 上,C 中圆2)2()3(22=-++y x 的圆心为(-3,2),验证适合,故选C 。
4、(某某理10)已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条 答案:选A解析:可知直线的横、纵截距都不为零,即与坐标轴不垂直,不过坐标原点,而圆22100x y +=上的整数点共有12个,分别为()()()6,8,6,8,8,6±-±±,()()()8,6,10,0,0,10-±±±,前8个点中,过任意一点的圆的切线满足,有8条;12个点中过任意两点,构成21266C =条直线,其中有4条直线垂直x 轴,有4条直线垂直y 轴,还有6条过原点(圆上点的对称性),故满足题设的直线有52条。
2023年高考数学试题分类解析【第十章 直线与圆】附答案解析
2023年高考数学试题分类解析【第十章直线与圆】第三节直线与圆的位置关系1.(2023全国甲卷理科8,文科9)已知双曲线()222210,0x y a b a b-=>>,其中一条渐近线与圆()()22231x y -+-=交于,A B 两点,则AB =()A.15【解析】由e =,则222222215c a b b a a a +==+=,解得2b a =.所以双曲线的一条渐近线为2y x =,则圆心()2,3到渐近线的距离d ==,所以弦长5AB ===.故选D.2.(2023全国乙卷理科22,文科22)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ρθθππ⎛⎫= ⎪⎝⎭ ,曲线22cos :2sin x C y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【解析】(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为cos 2sin cos sin 2x ρθθθθ===,2sin 2sin 1cos 2y ρθθθ===-,且42θππ ,则2θππ2 ,则[]sin 20,1x θ=∈,[]1cos 21,2y θ=-∈,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,2απ<<π),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =若直线y x m =+与12,C C均没有公共点,则m >0m <,即实数m 的取值范围为()(),0-∞+∞.4.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104 D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,sin 2sin cos 2224ααα==⨯.故选B.5.(2023新高考II 卷15)已知直线10x my -+=与圆()22:14C x y -+=交于,A B 两点,写出满足“85ABC S =△”的m 的一个值______.【解析】由题意可知,直线恒过点()1,0A -,此点同时为圆C 与x 轴负半轴的交点.又圆心()1,0C ,则2AC =,所以1825ABC B B S AC y y =⨯⨯==△,解得85B y =±,115B x =或15B x =-.所以满足条件的点B 可以为12341181181818,,,,,,,55555555B B B B ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,代入直线方程得2m =或2m =-或12m =或12m =-.。
新教材高考数学第二章直线和圆的方程4-2圆的一般方程分层练习含解析新人教A版选择性必修第一册
圆的一般方程基础练巩固新知夯实基础1.圆x 2+y 2+4x -6y -3=0的圆心和半径长分别为( ) A .(4,-6),16B .(2,-3),4C .(-2,3),4D .(2,-3),162.已知圆C :x 2+y 2-2x -2y =0,则点P (3,1)在( ) A.圆内 B.圆上 C.圆外D.无法确定3.若方程ax 2+ay 2-4(a -1)x +4y =0表示圆,则实数a 的取值范围是( ) A.RB.(-∞,0) ∪(0,+∞)C.(0,+∞)D.(1,+∞)4.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形为( ) A.以(a ,b )为圆心的圆 B.以(-a ,-b )为圆心的圆 C.点(a ,b ) D.点(-a ,-b )5.若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是( ) A.m >0 B.m <12C.0<m <12D.0≤m ≤126.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( ) A.2 B.22C.1D. 2 7.已知点A (1,2)在圆x 2+y 2+2x +3y +m =0内,则实数m 的取值范围是________. 8.在平面直角坐标系中,求经过三点(0,0),(1,1),(2,0)的圆的方程. 能力练综合应用核心素养9.已知圆C:(x-a)2+(y-b)2=1,过点A(1,0),则圆C的圆心的轨迹是( )A.点B.直线C.线段 D.圆10.圆C:x2+y2-4x+2y=0关于直线y=x+1对称的圆的方程是( )A.(x+1)2+(y-2)2=5 B.(x+4)2+(y-1)2=5C.(x+2)2+(y-3)2=5 D.(x-2)2+(y+3)2=511.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连线PQ的中点的轨迹方程是( )A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.(2x+3)2+4y2=112.方程x2+y2+ax-2ay+2a2+3a=0表示的图形是半径为r(r>0)的圆,则该圆的圆心在( )A.第一象限B.第二象限C.第三象限D.第四象限13.如果x2+y2-2x+y+k=0是圆的方程,则实数k的取值范围是________.14.已知直线与圆x2+y2+2x-4y+a=0(a<5)相交于A,B两点,且弦AB的中点Q的坐标为(0,1),则直线AB的方程为________________.15.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.16.已知D(8,0),点P在圆x2+y2=4上运动时,线段PD的中点M的轨迹方程是________.17.求圆心在直线2x-y-3=0上,且过点A(5,2)和点B(3,-2)的圆的一般方程.18.已知P是圆x2+y2=16上的动点,A(12,0),M为PA的中点,求点M的轨迹方程.【参考答案】1. C 解析 由x 2+y 2+4x -6y -3=0,得(x +2)2+(y -3)2=16,故圆心为(-2,3),半径长为4. 2.C3.B 解析 当a ≠0时,方程为⎝ ⎛⎭⎪⎫x -2a -2a 2+⎝ ⎛⎭⎪⎫y +2a 2=4a 2-2a +2a 2, 由于a 2-2a +2=(a -1)2+1>0恒成立, ∴a ≠0时方程表示圆.当a =0时,易知方程为x +y =0,表示直线.综上可知,实数a 的取值范围是(-∞,0)∪(0,+∞). 4. D 解析 原方程可化为(x +a )2+(y +b )2=0,∴⎩⎪⎨⎪⎧x +a =0,y +b =0,即⎩⎪⎨⎪⎧x =-a ,y =-b .∴方程表示点(-a ,-b ).5. C 解析 x 2+y 2-x +y +m =0可化为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +122=12-m ,则12-m >0,解得m <12.因为点(1,-1)在圆外,所以1+1-1-1+m >0, 即m >0,所以0<m <12.故选C.6. D 解析 因为圆心坐标为(1,-2),所以圆心到直线x -y =1的距离为d =|1+2-1|2= 2.7. (-∞,-13)解析 因为A (1,2)在圆x 2+y 2+2x +3y +m =0内,所以1+4+2+6+m <0,解得m <-13.又由4+9-4m >0,得m <134.综上,m <-13.8. 解析 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+2D +F =0,解得D =-2,E =0,F =0,即圆的方程为x 2+y 2-2x =0.9. D 解析 ∵圆C :(x -a )2+(y -b )2=1过点A (1,0), ∴(1-a )2+(0-b )2=1,∴(a -1)2+b 2=1,∴圆C 的圆心的轨迹是以(1,0)为圆心,1为半径的圆.故选D.10. C 解析 把圆C 的方程化为标准方程为(x -2)2+(y +1)2=5,∴圆心C (2,-1).设圆心C 关于直线y =x +1的对称点为C ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0-(-1)x 0-2=-1,y 0-12=x 0+22+1,解得⎩⎪⎨⎪⎧x 0=-2,y 0=3,故C ′(-2,3),∴圆C 关于直线y =x +1对称的圆的方程为(x +2)2+(y -3)2=5. 11. C 解析 设P (x 1,y 1),PQ 的中点M 的坐标为(x ,y ),∵Q (3,0),∴⎩⎪⎨⎪⎧x =x 1+32,y =y 1+02,∴x 1=2x -3,y 1=2y .又点P 在圆x 2+y 2=1上, ∴(2x -3)2+(2y )2=1,故选C.12. D 解析 因为方程x 2+y 2+ax -2ay +2a 2+3a =0表示的图形是圆,又方程可化为⎝ ⎛⎭⎪⎫x +a 22+(y -a )2=-34a 2-3a ,故圆心坐标为⎝ ⎛⎭⎪⎫-a 2,a ,r 2=-34a 2-3a .又r 2>0,即-34a 2-3a >0,解得-4<a <0,故该圆的圆心在第四象限.13. ⎝ ⎛⎭⎪⎫-∞,54解析 由(-2)2+12-4k >0得k <54.14. x -y +1=0解析 易知圆心P 的坐标为(-1,2). ∵AB 的中点Q 的坐标为(0,1),∴直线PQ 的斜率k PQ =2-1-1-0=-1,∴直线AB 的斜率k =1, 故直线AB 的方程为y -1=1×(x -0),即x -y +1=0.15. -2解析 由题意知,直线l :x -y +2=0过圆心⎝ ⎛⎭⎪⎫-1,-a 2,则-1+a2+2=0,得a =-2.16. (x -4)2+y 2=1解析 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 0+82,y =y 02.即x 0=2x-8,y 0=2y .因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4. 即(2x -8)2+(2y )2=4,即(x -4)2+y 2=1,这就是动点M 的轨迹方程.17.解 ∵圆心在直线2x -y -3=0上,∴可设圆心坐标为(a ,2a -3),半径为r (r >0), 则圆的方程为(x -a )2+(y -2a +3)2=r 2. 把点A (5,2)和点B (3,-2)的坐标代入方程, 得(5-a )2+(2-2a +3)2=r 2,① (3-a )2+(-2-2a +3)2=r 2,②由①②可得a=2,r2=10.故所求圆的方程为(x-2)2+(y-1)2=10,即x2+y2-4x-2y=5.18. 解设M(x,y),∵A(12,0),M为PA的中点,∴P(2x-12,2y).∵P为圆x2+y2=16上的动点,∴(2x-12)2+4y2=16,即(x-6)2+y2=4. 故所求轨迹方程为(x-6)2+y2=4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12. (x 5)2 y2 5 .设圆心为 (a, 0)(a 0) ,则 r | a 2 0 | 5 ,解得 a 5 . 12 22
6、(2010 山东理数)
【解析】由题意,设所求的直线方程为 x+y+m=0 ,设圆心坐标为 (a,0) ,则由题意知:
( | a-1| )2 +2=(a-1)2 ,解得 a=3或-1,又因为圆心在 x 轴的正半轴上,所以 a=3 ,故圆心坐 2
(C) (, 2 2) (2 2, )
(D) (2 2, 2 2)
解析:
x
y
2 cos , sin
化为普通方程
(x
2)2
y2
1,表示圆,
因为直线与圆有两个不同的交点,所以 2 b 1, 解得 2 2 b 2 2 2
法 2:利用数形结合进行分析得 AC 2 b 2,b 2 2
B、 1, 7
C、 7,12
D、0,1 和7,12
9.D
【解析】画出图形,设动点 A 与 x 轴正方向夹角为 ,则 t 0 时 ,每秒钟旋转 ,
3
6
在 t 0,1上 [ , ] ,在 7,12上 [3 , 7 ] ,动点 A 的纵坐标 y 关于 t 都是单调
32
23
递增的。
【方法技巧】由动点 A x, y 在圆 x2 y2 1上绕坐标原点沿逆时针方向匀速旋转,可知与
因为直线与圆相切,所以圆心到直线的距离等于半径,即 r | 1 0 3 | 2 ,所以圆 C 2
的方程为 (x 1)2 y2 2
【温馨提示】直线与圆的位置关系通常利用圆心到直线的距离或数形结合的方法求解。
5、(2010 广东理数)12.已知圆心在 x 轴上,半径为 2 的圆 O 位于 y 轴左侧,且与直线 x+y=0
解法 2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取
,排除 B,考虑区间不对称,排除 C,利用斜率估值,选 A
8、(2010
重庆文数)(8)若直线
Байду номын сангаас
y
x
b
与曲线
x
y
2 cos sin
,
(
[0,
2
)
)有两个不
同的公共点,则实数 b 的取值范围为
(A) (2 2,1)
(B)[2 2, 2 2]
二 、 考 查圆的方程以 及直线与圆的位置关系
2、(2010 湖南文数)14.若不同两点 P,Q 的坐标分别为(a,b),(3-b,3-a),则线段 PQ 的
垂直平分线 l 的斜率为 -1
, 圆(x-2)2+(y-3)2=1 关于直线对称的圆的方程为
3、(2010 山东文数)(16) 已知圆 C 过点(1,0),且圆心在 x 轴的正半轴上,直线 l:y x 1
三角函数的定义类似,由 12 秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,
当 t 在[0,12]变化时,点 A 的纵坐标 y 关于 t (单位:秒)的函数的单调性的变化,从而得
C. 4 3
D. 5 3
1 30 2 30
由圆的性质可知 1 2
30 30
故 4 3
10、(2010 全国卷 1 理数)(11)已知圆 O 的半径为 1,PA、PB 为该圆的两条切线,A、B 为
两切点,那么 PA PB 的最小值为
(A) 4 2 (B) 3 2 (C) 4 2 2 (D) 3 2 2
11、 (2010 安徽理数)9、动点 A x, y 在圆 x2 y2 1上绕坐标原点沿逆时针方向匀速
旋转,12 秒旋转一周。已知时间 t 0 时,点 A 的坐标是 (1 , 3 ) ,则当 0 t 12 时,动 22
点 A 的纵坐标 y 关于 t (单位:秒)的函数的单调递增区间是
A、 0,1
标为(3,0),因为圆心(3,0)在所求的直线上,所以有 3+0+m=0 ,即 m=-3 ,故所求
的直线方程为 x+y-3=0 。
【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆 的关系,考查了同学们解
决直线与圆问题的能力。
三 、 直 线与圆的综合 问题
7、(2010 江西理数)8.直线 y kx 3与圆 x 32 y 22 4 相交于 M,N 两点,若
同理分析,可知 2 2 b 2 2
9 、 ( 2010 重 庆 理 数 ) (8) 直 线 y= 3 x 2 与 圆 心 为 D 的 圆 3
x 3
y 1
3
3 s
c i
os
n
, 0
, 2
交与 A、B 两点,则直线 AD 与 BD 的倾斜角之和为
A. 7 6
解析:数形结合
B. 5 4
MN 2 3 ,则 k 的取值范围是
A. 34,0
B.
,
3 4
0,
C.
3 3
,3 3
【答案】A
【解析】考查直线与圆的位置关系、点到直线距离公式,重点考察
数形结合的运用.
D.
2 3
,0
解法 1:圆心的坐标为(3.,2),且圆与 y 轴相切.当| MN | 2 3时,
由点到直线距离公式,解得[ 3 , 0]; 4
被该圆所截得的弦长为 2 2 ,则圆 C 的标准方程为
.
答案:
4、(2010 天津文数)(14)已知圆 C 的圆心是直线 x-y+1=0 与 x 轴的交点,且圆 C 与直线 x+y+3=0
相切。则圆 C 的方程为
。
【答案】 (x 1)2 y2 2
本题主要考查直线的参数方程,圆的方程及直线与圆的位置关系等基础知识,属于容易题。 令 y=0 得 x=-1,所以直线 x-y+1=0,与 x 轴的交点为(-1.0)
【 方 法 技 巧 】 因 为 所 求 直 线 与 与 直 线 x-2y-2=0 平 行 , 所 以 设 平 行 直 线 系 方 程 为
x 2y c 0,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,
判断四个选项中方程哪一个过点(1,0)且与直线 x-2y-2=0 平行.
2010 年高考数学直线与圆试题分类解析
一 、 考 查直线方程以 及直线间的位置关系
1、(2010 安徽文数)(4)过点(1,0)且与直线 x-2y-2=0 平行的直线方程是
(A)x-2y-1=0
(B)x-2y+1=0
(C)2x+y-2=0
(D)x+2y-1=0
4.A
【解析】设直线方程为 x 2y c 0,又经过(1, 0) ,故 c 1,所求方程为 x 2y 1 0 .