2019-2020学年湘教版七年级数学下学期期末模拟试题(含答案)
2019~2020学年度第二学期初一数学七年级下册期末试卷及答案(湘教版)
2019~2020学年度第二学期初一数学期末试卷及答案(湘教版)一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B.C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15°D.120°(第4题)(第5题)(第7题)5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处 B.4处 C.3处 D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙 D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x 与y 的值相等,则k 等于( ) A .2B .1C .3D .49.如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( ) A .132° B .134° C .136° D .138°(第9题) (第13题) (第15题)二.填空题(共9小题)10.若a m =2,a n =3,则a 3m +2n = .11.若x 2﹣16x +m 2是一个完全平方式,则m= ;若m ﹣1m=9,则m 2+21m= . 12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是 .13.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为 .14.已知x 2+x ﹣1=0,则x 3+x 2﹣x +3的值为 .15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m 2,10m 2,36m 2,则第四块田的面积为 m 2.16.在△ABC 中,AB=AC=8,作AB 边的垂直平分线交AB 边于点D ,交直线AC 于点E ,若DE=3,则线段CE 的长为 .17.如图,将△ABC 沿着直线DE 折叠,使点C 与点A 重合,已知AB=7,BC=9,则△BAD 的周长为 .18.若(2x ﹣3y +5)2+|x +y ﹣2|=0,则x= ,y= . (第17题) 三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a (2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:(1)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.24.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共9小题)1.D.2.B.3.B.4.A.5.A.6.A.7.C.8.B.9.B.二.填空题(共9小题)10.72.11.±8;83.12.8.5..13.55°.14.3.15.m2.16.3或13.17.16.18.15,95.三.解答题(共7小题)19.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+1 4=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x 的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y 的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D 互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:(1)小红的这三次文化测试成绩的平均分是 590 分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有 41 名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分; (2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人; (3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y+=⎧⎨+=⎩解得200300 xy=⎧⎨=⎩故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则302 4560a a+=+解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
湘教版2020七年级数学下册期末模拟能力测试题(附答案)
湘教版2020七年级数学下册期末模拟能力测试题(附答案)1.学校举行图书节义卖活动,将所售款项捐给其他贫困学生,在这次义卖活动中,某班级售书情况如下表:下列说法正确的是( )A .该班级所售图书的总收入是226元B .在该班级所传图书价格组成的一组数据中,中位数是4元C .在该班级所售图书价格组成的一组数据中,众数是15元D .在该班级所售图书价格组成的一组数据中,平均数是4元2.若2x y +=,224x y +=,则20122012x y +的值是( ) A .4B .22012C .20122D .201243.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .44.若5a b +=,2253a b +=,则ab 等于( ) A .28B .14C .14-D .28-5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是( )A .甲优<乙优B .甲优>乙优C .甲优=乙优D .无法比较6.如图,△ABO 关于x 轴对称,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(b ,a )B .(﹣a ,b )C .(a ,﹣b )D .(﹣a ,﹣b )7.下列计算正确的是( ) A .333•2b b b =B .32410()?a a a =C .236()ab ab =D .22(2)4a a -=-8.某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15位销售人员该月销售量的平均数、众数、中位数分别是( )A .320,210,230B .320,210,210C .206,210,210D .206,210,2309.如图,B Ð的内错角是( )A .1∠B .2∠C .3∠D .4∠10.已知21x y =⎧⎨=⎩是方程组315ax y x by -=-⎧⎨+=⎩的解,则a 、b 的值为( )A .1,3a b =-=B .1,3a b ==C .3,1a b ==D .3,1a b ==-11.计算:2222221098721-+-++-=…__________.12.如图,要设计一幅长为3xcm ,宽为2ycm 的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm ,竖彩条的宽度为bcm ,问空白区域的面积是_____.13.若a+1a =3,则a ﹣1a=______. 14.计算:()()2332x y x y +-=___________15.如图,在ABC ∆中,将ABC ∆沿射线BC 方向平移,使点B 移动到点C ,得到DCF ∆,连接AF ,若ABC ∆的面积为4,则ACF ∆的面积为________.16.如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=______.17.已知x ﹣1x=6,求x 2+21x 的值为______.18.已知|2x +y ﹣6|+(x ﹣y +3)2=0,则x =_____,y =_____. 19.已知a+b=5,ab=-6,则代数式ab 2+a 2b 的值是______.20.计算:20192020133⎛⎫⋅-= ⎪⎝⎭______.21.如图1,BC AF ⊥于点C ,190A ∠+∠=︒.(1)求证:AB DE ∥;(2)如图2,点P 从点A 出发,沿线段AF 运动到点F 停止,连接PB 、PE .则ABP ∠、DEP ∠、BPE ∠三个角之间具有怎样的数量关系(不考虑点P 与点A ,D ,C 重合的情况)?并说明理由.22.先化简,再求值:b (b ﹣2a )﹣(a ﹣b )2,其中a =﹣3,b 23.如图,在平面直角坐标系中,已知四边形OABC 的顶点()1,2A ,()3,3B .(1)画出四边形OABC 关于y 轴的对称图形O A B C ''''; (2)请直接写出点C '关于x 轴的对称点C ''的坐标: .24.先化简,再求值:2(21)(4)(2)(2)x x x x x --++-+,其中1x =-. 25.将下列各式进行因式分解. (1)8a 3﹣12a 2b+4a (2)2x 3﹣8x26.解方程组()()231212m n m n ⎧-=⎪⎨+=-⎪⎩27.分解因式:(1)ax bx +(2)44x y -(3)22()4()4a b a a b a +-++28.《中国诗词大会》以“赏中华诗词,寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵,自开播以来深受广大师生的喜爱,某中学为了解学校学生的诗词水平,从八、九年级各随机抽取了20名学生进行了测试,并将八、九年级测试成绩(百分制,单位:分)整理如下: 收集数据八年级 93 92 84 55 85 82 66 74 88 67 87 87 67 61 87 61 78 57 72 75九年级 68 66 79 92 86 87 61 86 90 83 90 78 70 67 53 79 86 71 61 89整理数据按如下分数段整理数据,并补全表格:说明:测试成绩x (分),其中x ≥80为优秀,70≤x <80为良好,60≤x <70为合格,0≤x <60为不合格)分析数据补全下列表格中的统计量:得出结论(1)在此次测试中,有位同学的成绩是78分,在他所在的年级属于中等偏上,则这位同学属于哪个年级?(2)若九年级有800名学生,估计九年级诗词水平达到优秀的学生有多少名?29.如图,在边长为1个单位长度的小正方形组成的两个中,点、、A B C 都是格点.(1)将ABC ∆向左平移6个单位长度得到111B C ∆A .请画出111B C ∆A ; (2)将ABC ∆绕点O 按逆时针方向旋转180︒得到222A B C ∆,请画出222A B C ∆. 30.如图⑴所示,边长为a 的正方形中有一个边长为b 的小正方形,如图⑵所示是由图1中阴影部分拼成的一个正方形.(1)设图⑴中阴影部分的面积为1S ,图⑵中阴影部分面积为2S .请直接用含a,b 的代数式表示1S ,2S ;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:22222111111111123420082009⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L图(1) 图(2)参考答案1.A【解析】【分析】把所有数据相加可对A进行判断;利用中位数和众数的定义对B、C进行判断;利用平均数的计算公式计算出这组数据的平均,从而可对D进行判断.【详解】A、该班级所售图书的总收入为3×14+4×11+5×10+6×15=226,所以A选项正确;B、共50本书,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B选项错误;C、这组数据的众数为6,所以C选项错误;D、这组数据的平均数为226==4.5250x,所以D选项错误.故选:A.【点睛】本题考查计算中位数,众数和平均数,熟练掌握它们的计算方法是解题的关键.2.C【解析】【分析】给x+y=2左右两边平方并用完全平方公式展开,然后把x2+y2=4代入,可得xy=0,即x=0或y=0,分别求出y与x的值,代数式计算即可.【详解】解:∵(x+y)2=x2+y2+2xy=4,x2+y2=4∴xy=0,∴ x=0,y=2或x=2,y=0,∴x2012+y2012=22012.故答案为C.【点睛】本题考查了完全平方公式,掌握并灵活变形应用完全平方公式是解本题的关键.3.C【解析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合. 【详解】①∠B +∠BCD =180°,则同旁内角互补,可判断AB ∥CD ; ②∠1 = ∠2,内错角相等,可判断AD ∥BC ,不可判断AB ∥CD ; ③∠3 =∠4,内错角相等,可判断AB ∥CD ; ④∠B = ∠5,同位角相等,可判断AB ∥CD 故选:C 【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的. 4.C 【解析】 【分析】利用完全平方公式对已知条件进行变形,从而求得ab 的值. 【详解】 ∵5a b += ∴()225a b += ∴22225a ab b ++= ∵2253a b += ∴25325ab += ∴14ab =- 故选:C 【点睛】本题考查了完全平方公式,熟练掌握公式才能灵活运用公式进行变形求值. 5.A 【解析】 【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩, ∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人, ∴甲优<乙优, 故选:A . 【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键. 6.C 【解析】 【分析】由于△ABO 关于x 轴对称,所以点B 与点A 关于x 轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x 轴对称的点,横坐标相同,纵坐标互为相反数,得出结果. 【详解】由题意,可知点B 与点A 关于x 轴对称, 又∵点A 的坐标为(a ,b ), ∴点B 的坐标为(a ,−b ). 故选:C . 【点睛】本题考查了平面直角坐标系中关于x 轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B 与点A 关于x 轴对称是解题的关键. 7.B 【解析】 【分析】根据幂的乘方和积的乘方求出每个式子的值,再判断即可. 【详解】解:A 、336b b b =g ,故本选项不符合题意; B 、3244106()a a a a a •==•,故本选项符合题意;C 、2336()ab a b =,故本选项不符合题意;D 、22(2)4a a -=,故本选项不符合题意; 故选:B . 【点睛】本题考查了幂的乘方和积的乘方,能正确求出每个式子的值是解此题的关键. 8.B 【解析】 【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数. 【详解】解:平均数是:(1800+510+250×3+210×5+150×3+120×2)÷15=4800÷15=320(件); 210出现了5次最多,所以众数是210;表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件). 故选:B . 【点睛】此题主要考查了一组数据平均数的求法,以及众数与中位数的求法,又结合了实际问题,此题比较典型. 9.D 【解析】 【分析】根据内错角的定义,即可得到答案. 【详解】根据内错角定义:两条直线被第三条直线所截, 两个角分别在截线的两侧,且夹在两条被截直线之间, 具有这样位置关系的一对角叫内错角.可知B ∠的内错角是4∠. 故选:D. 【点睛】本题考查内错角定义,属基础题.10.B【解析】【分析】把x 与y 的值代入方程组计算即可求出a 与b 的值.【详解】解:把21x y =⎧⎨=⎩代入方程组得:23125a b -=-⎧⎨+=⎩, 解得:13a b =⎧⎨=⎩, 故选:B .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.55【解析】【分析】运用因式分解得原式=()()()()()()10910987872121+-++-+++-….【详解】2222221098721-+-++-…=()()()()()()10910987872121+-++-+++-…=19+15+11+7+3=55故答案为:55【点睛】考核知识点:因式分解应用.利用因式分解将式子进行变形是关键.12.(6xy ﹣6xa ﹣4by+4ab )cm 2【解析】【分析】可设想将彩条平移到如图所示的长方形的靠边处,则该长方形的面积就是空白区域的面积,这个大长方形长(3x ﹣2b )cm ,宽为(2y ﹣2a )cm ,根据矩形的面积公式求解即可.【详解】解:可设想将彩条平移到如图所示的长方形的靠边处,将9个小矩形组合成“整体”, 一个大的空白长方形,则该长方形的面积就是空白区域的面积.而这个大长方形长(3x ﹣2b )cm ,宽为(2y ﹣2a )cm .所以空白区域的面积为(3x ﹣2b )(2y ﹣2a )cm 2.即(6xy ﹣6xa ﹣4by+4ab )cm 2.故答案为:(6xy ﹣6xa ﹣4by+4ab )cm 2.【点睛】本题考查了空白区域面积的问题,掌握平移的性质、矩形的面积公式是解题的关键.13.【解析】【分析】由完全平方公式可得22()4()+-=-x y xy x y ,根据此等式即可解题.【详解】解:∵22()4()+-=-x y xy x y , ∴21a a ⎛⎫+ ⎪⎝⎭﹣4=21a a ⎛⎫- ⎪⎝⎭, 即23﹣4=21a a ⎛⎫- ⎪⎝⎭, 整理得2=15⎛⎫- ⎪⎝⎭a a∴1a a-=故答案为:【点睛】此题考查完全平方公式,明确22()4()+-=-x y xy x y 是解题的关键.14.22656x xy y +-【解析】【分析】直接根据多项式乘以多项式的法则进行计算.先去括号,再合并同类项.【详解】 ()()2332x y x y +-()()232332x x y y x y =-+-226496x xy xy y =-+-22656x xy y =+-故答案为:22656x xy y +-【点睛】考核知识点:多项式乘以多项式.根据乘法分配律,去括号,再合并同类项是关键. 15.4【解析】【分析】先根据平移的性质得BC=CF ,然后根据三角形面积公式求解.【详解】∵△ABC 沿射线BC 方向移动,使点B 移动到点C ,得到△DCF ,∴BC=CF ,由等底等高可得:S △ACF =S △ABC =4.故答案为:4.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.16.125°【解析】【分析】由平角定义可求出∠3的度数,再由 “两直线平行,同旁内角互补”得出∠2+∠3=180°,即可求出结论.【详解】解:如图,∵∠1+∠3+90°=180°,∠1=35°,∴∠3=90°-35°=55°.∵矩形对边平行,∴∠2+∠3=180°,∴∠2=180°-∠3=125°.故答案为:125°.【点睛】本题考查了平行线的性质以及平角定义,解题关键是根据两直线平行,同旁内角互补解答问题.17.38【解析】【分析】把x ﹣1x=6两边平方后化简整理解答即可. 【详解】解:将x ﹣1x=6两边平方, 可得:221236x x-+=, 解得:22138x x +=,故答案为:38.【点睛】此题考查完全平方公式,关键是把原式利用完全平方公式进行整理.18.1 4【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值即可.【详解】解:2|26|(3)0x y x y +-+-+=Q ,∴263x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,把1x =代入①得:4y =,则1x =,4y =,故答案为:1;4.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.-30.【解析】【分析】先利用提公因式法因式分解,然后利用整体代入法求值即可.【详解】解:∵ab 2+a 2b=ab (a+b ),而a+b=5,ab=-6,∴ab 2+a 2b=-6×5=-30. 故答案为:-30.【点睛】此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.20.-3【解析】【分析】根据积的乘方逆运算即可求解.【详解】20192020133⎛⎫⋅-= ⎪⎝⎭20191333⎡⎤⎛⎫⨯⨯- ⎪⎢⎥⎝⎭⎣⎦=()201931⨯-=-3故答案为:-3.【点睛】此题主要考查幂的运算,解题的关键是熟知积的乘方逆运算公式.21.(1)见详解;(2)当点P 在A ,D 之间时,BPE ABP DEP ∠=∠+∠;当点P 在C ,D 之间时,BPE ABP DEP ∠=∠-∠;当点P 在C ,F 之间时,BPE DEP ABP ∠=∠-∠. 【解析】【分析】(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB ∥DE .(2)分三种情况讨论:点P 在A ,D 之间;点P 在C ,D 之间;点P 在C ,F 之间;分别过P 作PG ∥AB ,利用平行线的性质,即可得到∠ABP ,∠DEP ,∠BPE 三个角之间的数量关系.【详解】解:(1)如图1,∵BC ⊥AF 于点C ,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB ∥DE .(2)如图2,当点P 在A ,D 之间时,过P 作PG ∥AB ,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;∠=∠+∠;∴BPE ABP DEP如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG-∠EPG=∠ABP-∠DEP;∠=∠-∠;∴BPE ABP DEP如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG ∥DE ,∴∠ABP=∠GPB ,∠DEP=∠GPE ,∴∠BPE=∠EPG-∠BPG=∠DEP-∠ABP .∴BPE DEP ABP ∠=∠-∠.【点睛】本题主要考查了平行线的性质与判断的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.﹣a 2,﹣9【解析】【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式= b 2﹣2ab ﹣(a 2-2ab +b 2)=b 2﹣2ab ﹣a 2+2ab ﹣b 2=﹣a 2,当a =﹣3时,原式=﹣9.【点睛】本题主要考查了整式的化简求值,涉及到的知识有:完全平方公式,合并同类项,单项式乘以多项式,在求代数式的值时,一般先化简,再把各字母的取值代入求值.23.(1)见解析;(2)()2,1--【解析】【分析】(1)先确定点C 的坐标,再利用关于y 轴对称点的性质得出对应点位置即可得出答案; (2)直接利用关于x 轴对称点的性质得出答案;【详解】(1)根据坐标平面得点C 的坐标为:(2,1)画图如图所示;(2)()2,1--.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.化简为2483x x --;求值为9.【解析】【分析】先根据完全平方公式,单项式乘以多项式法则,平方差公式计算,再合并同类项,再将x 的值代入化简后的结果中计算即可.【详解】解:2(21)(4)(2)(2)x x x x x --++-+ 22244144x x x x x =-+--+-2483x x =--当1x =-时,原式=24(1)8(1)39⨯--⨯--=.【点睛】此题考查整式的化简求出,正确掌握整式计算的完全平方公式,单项式乘以多项式法则,平方差公式是解题的关键.25.(1)4a (2a 2﹣3ab+1);(2)2x (x+2)(x ﹣2).【解析】【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)原式=4a (2a 2﹣3ab+1);(2)原式=2x (x 2﹣4)=2x (x+2)(x ﹣2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.26.11m n =⎧⎨=-⎩【解析】【分析】将方程(1)变形后代入方程(2),再解方程即可.【详解】由(1)得:n=2m-3(3),将(3)代入(2)得:m+2(2m-3)=-1,m=1,将m=1代入(3)得:n=-1,∴原方程组的解是11m n =⎧⎨=-⎩. 【点睛】此题考查解一元一次方程,根据方程的特点选用代入法或是加减法是解题的关键. 27.(1)()a b x +;(2) (x 2+y 2)(x+y)(x−y);(3)(a-b )2.【解析】【分析】(1)观察原式,找到公因式x ,提出即可得出答案.(2)原式利用平方差公式分解即可.(3)原式利用完全平方公式变形,分解即可.【详解】(1)ax bx +=()a b x +(2)原式=(x 2+y 2)(x 2−y 2)=(x 2+y 2)(x+y)(x−y).(3)原式=a 2+2ab+b 2—4a 2+4a 2-4ab=a 2-2ab+b 2=(a-b )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 28.补全表格:5;7;2;87;(1)这位同学属于八年级;(2)估计九年级诗词水平达到优秀的学生有360名.【解析】【分析】(1)根据给出的数据即可填表;(2)得出结论:(1)根据平均数的定义解答即可;(3)根据样本中优秀的学生所占比例计算即可.【详解】把八年级的测试成绩从小到大排列为:55,57,61,61,66,67,67,72,74,75,78,82,84,85,87,87,87,88,92,93.60≤x <70有5人;80≤x <90有7人;90≤x ≤100有2人.故答案为:5;7;2;∵87出现的次数最多,故87是这组数据的众数.故答案为:87;得出结论(1)在此次测试中,有位同学的成绩是78分,在他所在的年级属于中等偏上,则这位同学属于八年级;(2)980036020⨯=(人), 若九年级有800名学生,估计九年级诗词水平达到优秀的学生有360名.【点睛】本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.29.(1)图见详解;(2)图见详解.【解析】【分析】(1)将点A 、B 、C 分别向左平移6个单位长度,得出对应点,即可得出△A 1B 1C 1; (2)将点A 、B 、C 分别绕点O 按逆时针方向旋转180°,得出对应点,即可得出△A 2B 2C 2.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点睛】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.30.(1)()()2212,S a b S a b a b =-=+-;(2)()()22a b a b a b +-=-;(3)10052009. 【解析】【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得()()22a b a b a b +-=-; (3)从左到右依次利用平方差公式即可求解;【详解】解:(1)由题意得:()()2212,S a b S a b a b =-=+-;(2)()()22a b a b a b +-=-; (3)22222111111111123420082009⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 1111111111=1+11+11+11+2009200720111+12233442008200200820082008200082009200912010220091005209200931425322344930⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⨯⨯⎭⎝⎭⎝⎭⎝⨯⨯=⨯=⎭=⨯⨯⨯⨯⨯⨯L L故结果为: 10052009【点睛】本题主要考查平方差公式的几何背景.。
湘教版2019-2020学年度第二学期七年级期末考试数学试卷
湘教版2019-2020学年度第二学期七年级期末考试数学试卷 满分:120分,考试时间:100分钟 题号一 二 三 总分 得分评卷人得分 一、单选题(共30分)1.(本题3分)下面四个手机应用图标中,是轴对称图形的是( ) A . B . C . D . 2.(本题3分)下列方程中是二元一次方程的是( )A .1xy =B .12x y +=C .31y x =-D .230x x --= 3.(本题3分)下列运算正确的是( )A .22m n mn +=B .2232a b b a -=C .2363(2)8m n m n -=-D .22(2)4n n -=+ 4.(本题3分)已知2x 2y 3a 与-4x 2a y 1+b 是同类项,则b a 的值为( ) A .2 B .-2 C .1 D .-1 5.(本题3分)下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 6.(本题3分)计算(﹣1.5)2018×(23)2019的结果是( ) A .﹣32 B .32 C .﹣23 D .23 7.(本题3分)若多项式21x kx ++是一个完全平方式,则k 等于( ) A .4± B .2± C .2 D .2- 8.(本题3分)为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时²)为( )A .2B .19C .10D .2 9.(本题3分)如图,直线a ∥b ,将一块含30°角的直角三角尺按图中方式放置,其中点A 和点B 两点分别落在直线a 和b 上.若2=50∠︒,则1∠的度数为( )A .10︒B .20︒C .30°D .40︒ 10.(本题3分)小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm评卷人得分 二、填空题(共32分)11.(本题4分)因式分解:2()4()a a b a b ---=___.12.(本题4分)已知二元一次方程5x +y =9,若用含x 的代数式表示y ,则有y =_____. 13.(本题4分)如图,为了把河中的水引到C 处,可过点C 作CD AB ⊥于D ,然后沿CD 开渠,这样做可使所开的渠道最短,这种设计的依据是__________.14.(本题4分)为了参加中学生篮球联赛,某校篮球队准备购买10双运动鞋收集尺码,并整理如下统计表:尺码/cm 25 25.526 26.5 27 购买量/双 12 3 2 2则这组数据的中位数是__________________.15.(本题4分)根据图中提供的信息,可知一个杯子的价格是______.16.(本题4分)如图,将直角三角形ABC 沿CB 方向平移BE 的距离后,得到直角三角形DEF .已知AG=4,BE=6,DE=12,则阴影部分的面积为_____.17.(本题4分)如果()()1163a b a b +++-=,那么+a b 的值为______. 18.(本题4分)如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为_____.评卷人得分 三、解答题(共58分)19.(本题8分)解方程组:(1)213211x y x y +=⎧⎨-=⎩; (2)45011223x y x y --=⎧⎪⎨+=⎪⎩20.(本题8分)先化简,再求值::()()()2a 2a 22a 3+-++,其中a=13.21.(本题8分)因式分解(1)32234363x y x y xy -+-; (2)3()6()x a b y b a ---.22.(本题8分)体育文化用品商店购进篮球和排球共20个,进价和售价如下表所示,全部销售完后共获利润260元.(1)购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?23.(本题8分)观察下列等式:①2419⨯+=;②46125⨯+=;③68149⨯+=;…根据上述式子的规律,解答下列问题:(1)第④个等式为 ;(2)写出第n 个等式,并验证其正确性.24.(本题9分)如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.试问DG 与BA 是否平行?说明你的理由.25.(本题9分)某校为了解全校学生假期主题阅读的情况(要求每名学生的文章阅读篇数,最少3篇,最多7篇),随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 3 4 5 6 7人数(人)20 28 m16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生读书总数.答案第1页,总1页 参考答案1.D2.C3.C4.A5.D6.D7.B8.A9.A10.A11.()()()22a b a a -+-12.﹣5x +9.13.垂线段最短14.2615.816.6017.8±18.60°19.(1)=31x y ⎧⎨=-⎩;(2)23x y =⎧⎨=⎩ 20.12321.(1) 223()xy x y --;(2) 3()(2)a b x y -+22.(1)购进篮球12个,购进排球8个;(2)销售6个排球的利润与销售4个篮球的利润相等.23.(1)10×12+1=121;(2) 2n×(2n+2)+1=(2n+1)224.平行,理由见解析25.(1)100人,24;(2)中位数为5篇,众数为4篇;(3)3376本。
2019-2020学年湘教版七年级数学下期末复习试卷(二)(有答案)
湘教版版七年级数学下册期末复习试卷(二)解析版一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B.C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15°D.120°5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处B.4处 C.3处 D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.49.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二.填空题(共9小题)10.若a m=2,a n=3,则a3m+2n= .11.若x2﹣16x+m2是一个完全平方式,则m= ;若m﹣1m =9,则m2+21m= .12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是.13.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为.14.已知x2+x﹣1=0,则x3+x2﹣x+3的值为.15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为m2.16.在△ABC中,AB=AC=8,作AB边的垂直平分线交AB边于点D,交直线AC于点E,若DE=3,则线段CE的长为.17.如图,将△ABC沿着直线DE折叠,使点C与点A重合,已知AB=7,BC=9,则△BAD 的周长为.18.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= .()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.湘教版版七年级数学下册期末复习试卷(二)简答一.选择题(共9小题)1.D.2.B.3.B.4.A.5.A.6.A.7.C.8.B.9.B.二.填空题(共9小题)10.72 .11.±8 ;83 .12.8.5..13.55°.14. 3 .15.m2.16.3或13 .17.16 .18.15,95.三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣12【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+14=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:)小红的这三次文化测试成绩的平均分是590 分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有41 名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高中学习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分;(2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人;(3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB 上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF= ∠EFC .(两直线平行,内错角相等)∵EF∥AB,∴∠EFC =∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF= 40 °.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= 120 °.【分析】(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣60°=120°.【解答】解:(1)∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;(2)∵DE∥BC,∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内同位角相;两直线平行,同旁内角互补.25.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y+=⎧⎨+=⎩解得200300 xy=⎧⎨=⎩故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a 人, 则3024560a a +=+ 解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。
湘教版2019-2020学年七年级下学期数学期末考试试卷新版
湘教版2019-2020学年七年级下学期数学期末考试试卷新版姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列说法正确的是()A . 0的平方根是0B . 1的平方根是1C . -1的平方根是-1D . 的平方根是-12. (2分)在平面直角坐标系中,点(3,﹣2)所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)二元一次方程()A . 有且只有一解B . 有无数解C . 无解D . 有且只有两解4. (2分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A . 16,15B . 16,14C . 15,15D . 14,155. (2分)如果a>0,b<0,那么点P(a,b)在()A . 第一象限,B . 第二象限C . 第三象限,D . 第四象限.6. (2分)在同一平面内有直线a1 , a2 , a3 , a4 ,…,a100 ,若a1⊥a2 ,a2∥a3 ,a3⊥a4 ,a4∥a5 ,…,按此规律进行下去,则a1与a100的位置关系是()A . 平行B . 相交C . 重合D . 无法判断7. (2分)不等式组的整数解是()A . ﹣4B . 2,3,4C . 3,4D . 48. (2分)为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A . 1200名B . 450名C . 400名D . 300名9. (2分)有一张矩形纸片ABCD,AB=2.5,AD=1.5,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F(如图),则CF的长为()A . 1B . 1C .D .10. (2分)某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分,设她答对了x道题,则根据题意可列出不等式为()A . 10x-5(20-x) ≥90B . 10x-5(20-x)>90C . 10x-(20-x) ≥90D . 10x-(20-x)>90二、填空题 (共5题;共5分)11. (1分)已知二元一次方程3x-y=12,用含x的代数式表示y,则y=________。
湘教版 2019-2020学年七年级数学下册期末考试试题(含答案)
2019-2020学年七年级数学下册期末考试试卷一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.下列等式中,正确的是()A.3a+2b=5ab B.2(a﹣b)=2a﹣bC.(a﹣b)2=a2﹣b2D.(﹣2a3)2=4a62.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2﹣4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)23.把多项式x3﹣4x分解因式所得的结果是()A.x(x2﹣4)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.(x+2)(x﹣2)4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.5.如图,直线a∥b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度6.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.众数C.方差D.中位数7.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.78.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是()A.53°B.63°C.73°D.27°9.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3B.a+6C.2a+3D.2a+610.已知方程组,则x+y的值为()A.﹣1B.0C.2D.311.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为()A.20°B.50°C.80°D.110°12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.方程组的解是.14.如果10m=12,10n=3,那么10m+n=.15.分解因式:4x2﹣16=.16.如图,要使AD∥BF,则需要添加的条件是(写一个即可)17.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是.18.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.三、解答题(本大题共2个小题,每小题6分,满分12分)19.先化简,再求值:(x+2)(x﹣2)﹣(x+3)2,其中x=.20.给出三个多项式:a2+3ab﹣2b2,b2﹣3ab,ab+6b2,任请选择两个多项式进行加法运算,并把结果分解因式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=80°,求∠BOD的度数;(2)若∠EOC=∠EOD,求∠BOD的度数.22.如图,已知∠1=∠2,∠B=100°,求∠D的度数.五、解答题(本大题共2个小题,每小题9分,满分18分)23.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.24.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?六、综合题(本大题共2个小题,每小题10分,满分20分)25.填空或填写理由.(1)如图甲,∵∠=∠(已知);∴AB∥CD()(2)如图乙,已知直线a∥b,∠3=80°,求∠1,∠2的度数.解:∵a∥b,()∴∠1=∠()又∵∠3=∠4()∠3=80°(已知)∴∠1=∠=°(等量代换)又∵∠2+∠3=180°∴∠2=°(等式的性质)26.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n 的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.参考答案与试题解析一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.解:A、3a与2b不能合并,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣2a3)2=4a6,正确;故选:D.2.解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,过程不够完整,故选:A.3.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故选:C.4.解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.5.解:由直线a∥b,CD⊥b,得线段CD的长度是直线a,b之间距离,故选:B.6.解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:C.7.解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.8.解:∵∠1=27°,∴∠3=90°﹣∠1=90°﹣27°=63°.∵直尺对边平行,∴∠2=∠3=63°.故选:B.9.解:长方形的另一边长是:(a+3)+3=a+6,故选:B.10.解:,①+②得:3x+3y=9,则x+y=3.故选:D.11.解:∵△ABC绕点C顺时针旋转50°,∴∠ACA′=50°,∴∠A′CB=80°,∵l1∥l2,∴∠1=∠A′CB=80°.故选:C.12.解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分)13.解:,①﹣②,得3x=﹣3,解这个方程,得x=﹣1,把x=﹣1代入①,得﹣1+y=3,解得x=4,这个方程组的解为,故答案为:.14.解:10m+n=10m•10n=12×3=36.故答案为:36.15.解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).16.解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).17.解:运动员张华测试成绩的众数是7,故答案为:7.18.解:如图所示,新图形是一个轴对称图形.故答案为:3.三、解答题(本大题共2个小题,每小题6分,满分12分)19.解:原式=x2﹣4﹣(x2+6x+9)=x2﹣4﹣x2﹣6x﹣9=﹣6x﹣13,当x=时,原式=﹣6×﹣13=﹣2﹣13=﹣15.20.解:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).四、解答题(本大题共2个小题,每小题8分,满分16分)21.解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°;(2)设∠EOC=x,∠EOD=x,根据题意得x+x=180°,解得x=90°,∴∠EOC=x=90°,∴∠AOC=∠EOC=×90°=45°,∴∠BOD=∠AOC=45°.22.解:∵∠1=∠AEF,∠1=∠2,∴∠AEF=∠2,∴AB∥CD,∴∠B+∠D=180°,∵∠B=100°,∴∠D=80°.五、解答题(本大题共2个小题,每小题9分,满分18分)23.解:(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分),∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.24.解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40﹣30)+60×(50﹣35)=1300(元).答:商场共计获利1300元.六、综合题(本大题共2个小题,每小题10分,满分20分)25.解:(1)∵∠3=∠4(已知);∴AB∥CD(内错角相等,两直线平行)(2)∵a∥b,(已知)∴∠1=∠4(两直线平行,同位角相等)又∵∠3=∠4(对顶角相等)∠3=80°(已知)∴∠1=∠3=80°(等量代换)又∵∠2+∠3=180°∴∠2=100°(等式的性质)故答案为:3;4;内错角相等,两直线平行;已知;4;两直线平行,同位角相等;对顶角相等;3;80;100.26.解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n=6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.1、三人行,必有我师。
湘教版2020七年级数学下册期末模拟能力测试题1(附答案)
湘教版2020七年级数学下册期末模拟能力测试题1(附答案)1.如果单项式-2x a -2b y 2a +b 与x 3y 8b 是同类项,那么这两个单项式的积是( )A .-2x 6y 16B .-2x 6y 32C .-2x 3y 8D .-4x 6y 162.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是( )A .()()19x y x y y x -=⎧⎨+++=⎩ B .()1109x y x y y x =+⎧⎨+=++⎩ C .110109x y x y y x =+⎧⎨+=+-⎩D .110109x y x y y x =+⎧⎨+=++⎩ 3.下列各式是完全平方公式的是( )A .16x²-4xy+y²B .m²+mn+n²C .9a²-24ab+16b²D .c²+2cd+14c² 4.下列多项式的乘法中,不能用平方差公式计算的是( )A .(43)(34)x y y x ---B .2222(2)(2)x y x y -+C .()()a b c c b a +---+D .()()x y x y -+-5.若22916x mxy y ++是一个完全平方式,那么m 的值是( )A .12±B .-12C .24±D .-246.如图,将三角形ABC 沿水平方向向右平移到三角形DEF 的位置,已知点A ,D 之间的距离为2,CE =4,则BF 的长( )A .4B .6C .8D .17.下面的图形中,是轴对称图形的是( )A .B .C .D . 8.下列计算结果正确的是( )A .842a a a ÷=B .236a a a ⋅=C .()236a a =D .()32628a a -=9.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .10.下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.如图,点P 为线段AB 外一动点,P A =2,AB =3,以P 为直角顶点作等腰Rt △MPB ,(△MPB 的三个顶点按顺时针顺序排列为P 、M 、B ),则线段AM 长的最大值为12.多项式x 2-x+k 恰能分解成两个多项式之积,其中一个为x-2,则k=____13.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.14.如图,若∠1=∠D =38°,∠C 和∠D 互余,则∠B =_____.15.若1122326x x x ++-=g ,则x =_____.16.把a 2(x ﹣3)+(3﹣x)分解因式的结果是______________.17.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.18.一组数据a ,b ,c ,d ,e 的平均数是7,则另一组数据a +2,b +2,c +2,d +2,e +2的平均数为________.19.分解因式:= .20.如下图,按要求作图:(1)过点P 作直线CD 平行于AB .(2)过点P 作PE ⊥AB ,垂足为O.21.如图,∠1=∠2,∠3=∠4,∠5=∠6,求证:AD ∥BC22.如图1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O(点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想.(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.23.因式分解:(1)2288x y xy y -+;(2)()()229a x y b x y --- ;(3)()()2293242m n m n +--;(4)()()2221619y y -+-+.24.先化简(a 2b -2ab 2-b 3)÷b -(a +b)(a -b),然后对式子中a 、b 分别选择一个自己最喜欢的数代入求值.25.由于被墨水污染,一道几何题仅能见到如图所示的图形和文字:“如图,已知:四边形ABCD 中,AD ∥BC ,∠D=67°,…”(1)根据以上信息,你可以求出∠A 、∠B 、∠C 中的哪个角?写出求解的过程;(2)若要求出其它的角,请你添上一个适当的条件: ,并写出解题过程.26.如图,△ABC 在平面直角坐标系的坐标分别为A (﹣1,5),B (﹣1,0),C (﹣4,3),按要求完成:(1)在同一坐标系中,画出△ABC 关于y 轴对称的图形△A'B'C';(2)若CD 是△ABC 中AB 边的中线,E 是CD 的中点,F 是AE 的中点,连接AE 、BE ,FB ,则△EFB 的面积S= .27.手机下单,随叫随走,每公里一元……继“共享单车”后,重庆、北京、上海、成都等多地开始流行起时尚、炫酷的“共享汽车”,只需下载手机APP ,注册后就能用手机在附近找到汽车使用,到达目的地后可把车还到指定停车网点或任意的正规停车场.这种新兴出行方式越来越受到人们的青睐.在重庆,戴姆勒集团和力帆集团已经完成第一批共享汽车的投放,共计1400辆,戴姆勒集团投放的奔驰smart 汽车购买单价为15万元,力帆集团投放的AE 纯电动汽车购买单价为8万元;两家公司的汽车成本总投资额为1.54亿元.(1)求两集团公司在重庆第一批共享汽车的投放数量分别为多少?(2)这种共享的方式能够很好的整合社会资源,实现社会资源的优化配置,政府决定对后期投放的每辆汽车补贴成本价的%(050)a a <<,在此政策刺激下,戴姆勒集团公司决定再次购买并投放与第一次销售单价相同的第二批奔驰smart 共享汽车,数量在两家公司第一次投放总和的一半的基础上增加4%a ,并且享受完政府补贴后,购买成本为1.197亿元,求a 的值.28.如图,已知∠A=∠C,∠1+∠2=180°,试猜想AB 与CD 之间有怎样的位置关系?并说明理由.参考答案1.B【解析】由同类项的定义得,a-2b=3,2a+b=8b,联立这两个方程解得a=7,b=2,所以-2x3y16·x3y16=-2x6y32.故选B.2.D【解析】本题考查的是根据实际问题列方程组根据等量关系:十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,即可列出方程组.根据十位上的数字x比个位上的数字y大1,可列方程为,根据若颠倒个位数字与十位数字的位置,得到的新数比原数小9,可列方程为,则可列方程组为1{10109x yx y y x=++=++,,故选D.3.C【解析】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+14c²不能分解成两个因式的乘积,故本选项错误.故选C.4.D【解析】A. 原式=(−3y+4x)(−3y−4x),可以运用平方差公式,故本选项错误;B. 符合两个数的和与这两个数差的积的形式,可以运用平方差公式,故本选项错误;C. 可以把−c+a看做一个整体,故原式=(−c+a+b)(−c+a−b),可以运用平方差公式,故本选项错误;D. 不能整理为两个数的和与这两个数差的积的形式,所以不可以运用平方差公式,故本选项正确.故选D.5.C【解析】试题分析:完全平方式是指:()222b 2ab a a b ±=±+,根据题意可得:m=±2×3×4=±24,则选项C .6.C【解析】根据平移的性质,对应点间的距离等于平移距离求出BE 、CF ,然后求解即可.解:∵点A ,D 之间的距离为2,∴BE=CF=2,又∵CE=4,∴BF=BE+CE+CF=2+4+2=8.故选C .“点睛”本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键. 7.D【解析】试题解析:D 是轴对称图形.故选D.点睛:轴对称图形:在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形. 8.C【解析】A 选项: 844a a a ÷=,故是错误的;B 选项: 235a a a ⋅=,故是错误的;C 选项: ()236a a =是正确的;D 选项: ()32628aa -=-,故是错误的;故选C 。
湘教版2019-2020学年七年级下学期数学期末考试试卷(I)卷
湘教版2019-2020学年七年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)3.61的平方根是()A . -1.9B . 1.9C . ±1.9D . 不存在2. (2分)点P的坐标是(4,-3),则点P所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)若是方程的一个解,则的值是()A .B .C .D .4. (2分)数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是()A . 中位数和众数都是8小时B . 中位数是25人,众数是20人C . 中位数是13人,众数是20人,D . 中位数是6小时,众数是8小时5. (2分)点P(-3,2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A . 20°B . 40°C . 50°D . 70°7. (2分)如果不等式组只有一个整数解,那么a的范围是()A . 3<a≤4B . 3≤a<4C . 4≤a<5D . 4<a≤58. (2分)某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有()A . 50人B . 64人C . 90人D . 96人9. (2分)如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF 折叠成图(3),则图(3)中的∠CFE的度数是()A . 2αB . 90°+2αC . 180°﹣2αD . 180°﹣3α10. (2分)某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分,设她答对了x道题,则根据题意可列出不等式为()A . 10x-5(20-x) ≥90B . 10x-5(20-x)>90C . 10x-(20-x) ≥90D . 10x-(20-x)>90二、填空题 (共5题;共5分)11. (1分)等式的性质1:等式两边都同时________,所得结果仍是等式.①若x-3=5,则x=5+________;②若3x=5+2x,则3x-________=5.12. (1分)把以,为端点的线段向下平移个单位得到线段,上的任意一点的坐标可表示为________.13. (1分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=________.14. (1分)若关于的不等式的解集为,化简________.15. (1分)如图所示,点E在AC的延长线上,有下列条件∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD 的是________.三、解答题 (共8题;共82分)16. (10分)求下列各式中的x:(1)2x2+1=9(2)16﹣2(x﹣3)3=0.17. (5分)(1)解方程组:(2)因式分解:a3b﹣ab18. (10分)三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图:(1)分别写出下列各点的坐标:A'________; B'________;C'________;(2)三角形A'B'C'由三角形ABC经过怎样的平移得到?________;(3)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为________;(4)求三角形ABC的面积.19. (5分)某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?20. (7分)深圳市某校艺术节期间,开展了“好声音”歌唱比赛,在初赛中,学生处对初赛成绩做了统计分析,绘制成如下频数、频率分布表和频数分布直方图(如图),请你根据图中提供的信息,解答下列问题:分组频数频率74.5≤x<79.520.0479.5≤x<84.5a0.1684.5≤x<89.5200.4089.5≤x<94.5160.3294.5≤x<100.54b合计501(1)频数、频率分布表中a=________,b=________;(2)补全频数分布直方图;(3)初赛成绩在94.5≤x<100.5分的四位同学恰好是七年级、八年级各一位,九年级两位,学生处打算从中随机挑选两位同学谈一下决赛前的训练,则所选两位同学恰好都是九年级学生的概率为________.21. (10分)如图,在△ABC中,D为AB上的一点,过点D作DE∥AC,DF∥BC,分别交BC,AC于点E,F.(1)求证:△ADF∽△DBE.(2)若BE:CE=2:3,求AF:DE的值.22. (15分)今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在零售价基础上每箱降价3m%,这样每天可多销售 m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.23. (20分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系,并说明理由;(2)如果∠C=128°,求∠AEB的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共82分) 16-1、16-2、17-1、17-2、18-1、18-2、18-3、18-4、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、第11 页共11 页。
湘教版2019-2020学年七年级下学期数学期末考试试卷A卷
湘教版2019-2020学年七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)的平方根是()A .B .C .D .2. (2分)在平面直角坐标系中,点P(-3,2)所在象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)已知某个二元一次方程的一个解是,则这个方程可能是()A . 2x+y=5B . 2x-y=0C . x-2y=0D . x=2y4. (2分)某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。
甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A . 甲和乙B . 乙和丙C . 甲和丙D . 甲和乙及丙5. (2分)以方程组的解为坐标的点(x , y)在().A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF 的大小为()A . 60°B . 75°C . 90°D . 105°7. (2分)若关于x的不等式组的整数解有3个,则a的取值范围是()A . 3<a≤4B . 2<a≤3C . 2≤a<3D . 3≤a<48. (2分)周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有()个学生去过该景点.A . 1000人B . 800人C . 720人D . 640人9. (2分)如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME =α,∠ABE =β,则α 与β 之间的数量关系为()A . α+3β=180°B . β-α=20°C . α+β=80°D . 3β-2α=90°10. (2分)某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A . 5x﹣3(30﹣x)>70B . 5x+3(30﹣x)≤70C . 5x﹣3(30+x)≥70D . 5x+3(30﹣x)>70二、填空题 (共5题;共5分)11. (1分)若 ________12. (1分)线段是由线段平移得到的,点的对应点为,则点的对应点的坐标为________.13. (1分)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为________.14. (1分)不等号填空:若a>b>0则 ________ ; ________ ;________ .15. (1分)如图,请添加一个条件:________,使DE∥BC.三、解答题 (共8题;共82分)16. (10分)解下列方程:(1)(x﹣2)2﹣25=0(2)x3﹣1=21517. (5分)解下列方程组:(1);(2)18. (10分)平面直角坐标系中,三角形ABC的顶点都在网格点上.(1)平移三角形ABC,使点C与坐标原点O是对应点,请画出平移后的三角形A′B′C′;(2)写出A,B两点的对应点A′,B′的坐标;(3)请直接写出三角形ABC的面积.19. (5分)在课间活动中,小英、小丽和小华在操场上画出、两个区域,一起玩投沙包游戏,沙包落在区域所得分值与落在区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.20. (7分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________,样本成绩的中位数落在________范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有850名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?21. (10分)如图,△ABC中,∠ABC、∠AC B的平分线相交于点P,过点P且平行于BC的直线分别交AB、AC于点D、点E.(1)求证:DB=DP;(2)若DB=5,DE=9,求CE的长.22. (15分)冬季即将来临,是流感的高发期,某中学积极进行班级环境消毒,总务处购买甲、乙两种消毒液共100瓶,购买这两种消毒液共用780元,其中甲种消毒液共用240元,且乙种消毒液的单价是甲种消毒液单价的1.5倍.(1)求甲、乙两种消毒液的单价各为多少元?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),共140瓶,且所需费用不超过1210元,问甲种消毒液至少要购买多少瓶?23. (20分)如图(1)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF=________.(________)∵EF∥AB,∴________=∠ABC.(________)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=________°.(2)应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=________°.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共82分) 16-1、16-2、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、。
2019-2020学年湘教版初一数学第二学期期末模拟试题(含答案)
2019-2020学年七年级数学下册期末模拟试卷一、选择题(每小题3分,共计18分):每小题只有一个选项是正确的。
1.在图中,轴对称图形共有()A.1个B.2个C.3个D.4个2.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°3.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n24.以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是5.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个6.如图,扇形OAB上有一动点P,P从点A出发,沿、线段BO、线段OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共计30分)7.一个DNA分子的直径约为0.0000002m,这个数用科学记数法可表示为cm.8.计算:(﹣2018)0﹣2﹣2﹣()﹣3﹣(﹣3)2得:.9.已知一个角的余角比它的补角的小18°,则这个角.10.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.11.仅用直尺,请你在如图所示的网格中画一条与AB(A,B两点在网格的格点上)平行的线段CD,一条与AB垂直的线段EF.12.如图,直线AB∥CD∥EF,如果∠A+∠ADF=208°,那么∠F=.13.一个三角形的两边长分别是2和7,最长边a为偶数,则这个三角形的周长为.14.已知x+y=4,则x2﹣y2+8y=.15.请在下面空白处画一个几何图形来解释:(a+3)2≠a2+32(a>0)16.已知2015×2016×2017×2018+1是一个自然数的平方,若设2016=x,则这个自然数用含x的代数式可表示为:三、解答题(共10小题,满分72分)17.(5分)计算:(﹣3ab2)3÷a3b3×(﹣2ab3c)18.(7分)化简求值:[4(xy﹣1)2﹣(xy+2)•(2﹣xy)]÷(xy),其中x=,y=﹣.19.(8分)已知,如图所示,AD⊥BC于D,EF⊥BC于F,∠3=∠E,说明AD是∠BAC的角平分线请你完成下列说理过程(在横线上填上适当的内容,在括号内写出说理依据).理由:∵AD⊥BC,EF⊥BC(已知)∴∠4=∠5=90°(),∴AD∥EF(),∴∠1=(),∠2=(),又∵∠E=∠3(已知)∴(),即AD是∠BAC的角平分线.20.(7分)如图,是一块正方形的瓷砖,请用四块这样的瓷砖拼出一个轴对称图形.在图1、图2、图3中画出,要求三种画法各不相同.21.(8分)如图,在平面直角坐标系中,请用尺规求作一点C,使得CA=CB,且CA∥OB.(保留作图痕迹,不写作法)22.(8分)一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀.(1)如果从中任意摸出1个球.①你能够事先确定摸到球的颜色吗?②你认为摸到哪种颜色的球的概率最大?③如何改变袋中白球、红球的个数,就能使摸到这三种颜色的球的概率相等.(2)从中一次性最少摸出个球,必然会有红色的球.23.(7分)某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动朱老师先跑,当小明出发时,朱老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)朱老师的速度为米/秒;小明的速度为米/秒;(3)小明与朱老师相遇次,相遇时距起点的距离分别为米.24.已知,如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC→CD→DA向终点A运动设点P的运动时间为t秒,要使△ABP和△DCE全等,试求t的值.25.(5分)如图,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.(1)证明:△ACD≌△BCE;(2)求∠AEB的度数.26.(7分)如图,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE.(1)求∠AEB的度数;(2)线段CM、AE、BE之间存在怎样的数量关系?请说明理由.参考答案与试题解析一、选择题(每小题3分,共计18分):每小题只有一个选项是正确的。
湘教版2019-2020学年七年级下数学期末模拟测试卷含答案解析
第 1 页 共 10 页 湘教版2019-2020学年七年级下数学期末模拟测试卷
一、选择题(每小题3分,共30分)
1.下列运算正确的是( )
A.a 3·a 4=a 12
B.(-2a 2b 3)3=-2a 6b 9
C.a 6÷a 3=a 3
D.(a +b )=a 2+b 2
2.下列等式从左到右的变形,属于分解因式的是( )
A.a (x -y )=ax -ay
B.x 2+2x +1=x (x +2)+1
C.(x +1)(x +3)=x 2+4x +3
D.x 3-x =x (x +1)(x -1)
3.如图,直线a ,b ,c ,d ,已知c ⊥a ,c ⊥b ,直线b ,c ,d 交于一点,若∠1=50°,则∠2等于(
)
A.60°
B.50°
C.40°
D.30°
4.两人练习跑步,如果乙先跑16米,则甲8秒钟可以追上乙,如果乙先跑2秒钟,则甲4秒钟可以追上乙,求甲、乙两人每秒钟各跑多少米.若设甲每秒钟跑x 米,乙每秒钟跑y 米,则所列方程组应该是( ) A. B. C. D.
5.下列图形中,是轴对称图形的是(
)
6.一组数据:3,2,1,2,2的众数、中位数、方差分别是( )
A.2,1,0.4
B.2,2,0.4
C.3,1,2
D.2,1,0.2
7.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )。
【湘教版】七年级数学下期末模拟试题附答案
一、选择题1.下列事件中必然事件有()①当x是非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个B.2个C.3个D.4个2.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5183.下列说法中正确的是()A.367人中至少有两人是同月同日生B.某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C.“打开电视机,正在播放《动物世界》”是必然事件D.“明天降雨的概率是80%”表示明天有80%的时间降雨4.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是( ).A.对应点所连线段都相等B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直D.对应点连线互相平行5.如图,点D,E在ABC边上,沿DE将ADE翻折,点A的对应点为点'A,'40∠等于()∠=︒,则AA DB∠=︒,'110A ECA.30B.35︒C.60︒D.70︒6.下列大学的校徽图案是轴对称图形的是( )A .B .C .D . 7.下列长度的三条线段中,有组成三角形的是( )A .3cm,4cm,9cmB .8cm,7cm,15cmC .12cm,13cm,24cmD .2cm,2cm,6cm8.下列四个图形中,线段BE 表示△ABC 的高的是( )A .B .C .D .9.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS10.为了更好地保护水资源,造福人类,某工厂计划建一个容积为200m 3的污水处理池,池的底面积S (m 2)与其深度h (m )满足关系式:S•h=200,则S 关于h 的函数图象大致是( )A .B .C .D . 11.下列语句中正确的是( )A .直线AB 和直线BA 是两条不同的直线B .连接两点间的线段叫两点的距离C .一条射线就是一个周角D .一个角的余角比这个角的补角小 12.将多项式241x +加上一个单项式后,使它能成为一个完全平方式,下列添加单项式错误的是( )A .2xB .4xC .4x -D .44x 二、填空题13.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.14.有四张卡片(背面完全相同)分别写有运算符号+,﹣,×,÷,把它们背面朝上洗匀后,从中随机抽出1张卡片,放在2□1的方框里组成一个算式,再计算出结果,则计算结果是2的可能性是____.15.Rt ABC 中,C ∠是直角,O 是两内角平分线的交点,6AC =,8BC =,10BA =,O 到三边的距离是______.16.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是________.17.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 18.根据图中的程序,当输入x =2时,输出的结果y =_______.19.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;(③指针指向黄色;④指针不指向黄色,估计各事件的可能性大小,完成下列问题.(1)④事件发生的可能性大小是 ;(2)多次实验,指针指向绿色的频率的估计值是 ;(3)将这些事件的序号按发生的可能性从小到大的顺序排列为: < < < .22.如图,//AD BC ,BE 平分ABC ∠.(1)尺规作图:作BAD ∠的平分线交BE 于点F ;(2)在(1)的条件下,ABF ∆按角分类时,它是什么三角形,请说明理由. 23.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =.(1)求证://AB CD ;(2)直线EF 过点O ,分别交AB ,CD 于点E ,F ,试判断OE 与OF 是否相等,并说明理由.24.下图表示购买某种商品的个数与付款数之间的关系 (1)根据图形完成下列表格购买商品个数(个)2 4 6 7 付款数(元) (2)请写出表示付款数y (元)与购买这种商品的个数x (个)之间的关系式.25.如图,已知BC AE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.26.图1是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于 .(2)观察图2你能写出下列三个代数式(m +n )2,(m ﹣n )2,mn 之间的等量关系 .(3)运用你所得到的公式,计算若mn =﹣2,m ﹣n =4,求:①(m +n )2的值.②m 4+n 4的值.(4)用完全平方公式和非负数的性质求代数式x 2+2x +y 2﹣4y +7的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x 是非负实数时,0,是必然事件;②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.A解析:A【解析】【分析】根据概率的定义对各选项进行逐一分析即可.【详解】解:A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率不同,错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为0.482,错误;故选:A.【点睛】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.3.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.5.B解析:B【解析】【分析】根据翻转变换的性质得到∠ADE=∠A′DE ,∠AED=∠A′ED ,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵'40A EC ∠=︒,'110A DB ∠=︒,沿DE 将ADE 翻折,点A 的对应点为点'A , ∴()11'1809035,'22ADE A DE A DB A DB AED A ED ''∠=∠=︒-∠=︒-∠=︒∠=∠, ∴180°-∠DEC=∠A′EC+∠DEC ,即190'9020702DEC A EC ∠=-∠=-︒=︒︒︒, 703535A DEC ADE ∴∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.B解析:B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.C解析:C【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A、∵3+4=7<9,∴不能构成三角形,故本选项不符合题意;B、∵8+7=15,∴不能构成三角形,故本选项不符合题意;C、∵12+13=25>24,∴能构成三角形,故本选项符合题意;D、∵2+2=4<6,∴不能构成三角形,故本选项不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8.C解析:C【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】解:线段BE是△ABC的高的图是选项C.故选:C.【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.10.C解析:C【解析】【分析】首先利用已知得出S与h的函数关系式,进而利用h的取值范围得出函数图象.【详解】解:∵S•h=200,∴S关于h的函数关系式为:S=200,故此函数图象大致是:反比例函数图象,即双曲h线,故选C.【点睛】本题考查函数图象,得出S与h的函数关系式是解题关键.11.D解析:D【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解.【详解】A、直线AB和直线BA是一条直线,原来的说法是错误的,不符合题意;B、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D、一个角的余角比这个角的补角小是正确的,符合题意;故选:D.【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.12.A解析:A【分析】根据完全平方公式即可求出答案.【详解】解:A.4x2+2x+1,不是完全平方式,故此选项符合题意;B.4x2+4x+1=(2x+1)2,是完全平方式,故此选项不符合题意;C.4x2-4x+1=(2x-1)2,是完全平方式,故此选项不符合题意;D.4x4+4x2+1=(2x2+1)2,是完全平方式,故此选项不符合题意;故选:A.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.二、填空题13.8【解析】【分析】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比【详解】解:设袋子里有x 个蓝球则=08解得x=8即有8个蓝球【点睛】本题考查概率能够根据公式列出式子是解答本题 解析:8【解析】【分析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.【详解】解:设袋子里有x 个蓝球, 则2x x =0.8, 解得x=8. 即有8个蓝球.【点睛】本题考查概率,能够根据公式列出式子是解答本题的关键.14.【解析】试题分析:先把符号+﹣×÷放在2□1的方框里计算出各数再由概率公式即可得出结论解:∵2+1=32﹣1=12×1=22÷1=2∴计算结果是2的可能性==故答案为考点:可能性的大小 解析:.【解析】试题分析:先把符号+,﹣,×,÷放在“2□1”的方框里计算出各数,再由概率公式即可得出结论.解:∵2+1=3,2﹣1=1,2×1=2,2÷1=2,∴计算结果是2的可能性==.故答案为.考点:可能性的大小.15.2【分析】根据角平分线性质求出OE =OD =OF 根据三角形面积公式求出R 即可【详解】解:过O 作OD ⊥AC 于DOE ⊥BC 于EOF ⊥AB 于F 连接OC ∵O 为∠A ∠B 的平分线的交点∴OD =OFOE =OF ∴OD解析:2【分析】根据角平分线性质求出OE =OD =OF ,根据三角形面积公式求出R 即可.【详解】解:过O 作OD ⊥AC 于D ,OE ⊥BC 于E ,OF ⊥AB 于F ,连接OC ,∵O为∠A、∠B的平分线的交点,∴OD=OF,OE=OF,∴OD=OE=OF,设OD=OE=OF=R,∵S△ACB=S△AOC+S△BCO+S△ABO,则12×6×8=12×6R+12×8R+12×10R,解得R=2,即OD=OE=OF=2,∴点O到三边的距离为2,故答案为:2.【点睛】本题主要考查了角平分线的性质,三角形面积公式的应用,熟知角的平分线上的点到角的两边的距离相等的知识是解答此题的关键.16.45°【分析】根据折叠过程可知在折叠过程中角一直是轴对称的折叠【详解】在折叠过程中角一直是轴对称的折叠故答案为45°【点睛】考核知识点:轴对称理解折叠的本质是关键解析:45°【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,22.5245AOB︒︒∠=⨯=故答案为45°【点睛】考核知识点:轴对称.理解折叠的本质是关键.17.26或22【分析】因为等腰三角形的底边和腰不确定6cm可以为底边也可以为腰长故分两种情况:当6cm为腰时底边为10cm先判断三边能否构成三角形若能求出此时的周长;当6cm为底边时10cm为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.3【解析】解:当输入x=2时因为x>1所以y=﹣x+5=﹣2+5=3故答案为3 解析:3【解析】解:当输入x=2时,因为x>1,所以y=﹣x+5=﹣2+5=3.故答案为3.19.70或30【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解【详解】解:根据题意有两种情况:(1)当∠A=∠B可得:x=210﹣2x解得:x=70;(2)当∠A+∠B=180°时可得解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b)2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23将a+b=5两边平方,利用完全平方公式化简,将ab的值代入计算即可求出a2+b2的值.【详解】解:将a+b=5两边平方得:(a+b)2=a2+2ab+b2=25,将ab=1代入得:a2+2+b2=25,则a2+b2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.(1)23;(2)16;(3)②、③、①、④.【解析】【分析】(1)共3红2黄1绿相等的六部分,④指针不指向黄色的可能性大小为42 63 =;(2)共3红2黄1绿相等的六部分,②指针指向绿色的概率为16;(3)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.【详解】解:(1) ∵共3红2黄1绿相等的六部分,∴④指针不指向黄色的可能性大小为4263=,则④事件发生的可能性大小是23;(2) ∵共3红2黄1绿相等的六部分,∴②指针指向绿色的概率为16,则多次实验,指针指向绿色的频率的估计值是16;(3) ∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为31=62,③指针指向黄色的概率为21=63,将这些事件的序号按发生的可能性从小到大的顺序排列为:②<③<①<④ .【点睛】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.22.(1)图见解析;(2)直角三角形,证明见解析.(1)根据角平分线的做法作图即可;(2)根据平行线的性质和角平分线的性质证明90AFB ∠=︒即可得到结论.【详解】解:(1)如图所示,AF 即为所求(2)ABF ∆按角分类时,它是直角三角形.理由如下:∵BE ,AF 分别为ABC ∠和BAD ∠的平分线, ∴12ABE ABC ∠=∠,12BAF BAD ∠=∠. ∵//AD BC ,∴180ABC BAD ∠+∠=︒.∴90ABE BAF ∠+∠=︒. 在ABF ∆中,()18090AFB ABF BAF ∠=︒-∠+∠=︒.∴ABF ∆是直角三角形.【点睛】此题主要考查了复杂作图,以及平行线的性质和角平分线的性质,关键是灵活运用它们的性质解决问题.23.(1)证明见解析;(2)OE=OF ,证明见解析.【分析】(1)利用SAS 证明△AOB ≌△COD ,根据全等三角形对应角相等可得∠B=∠D ,再根据平行线的判定定理可证得结论;(2)利用ASA 证明AOE COF ∆∆≌,根据全等三角形对应边相等可证得结论.【详解】解:(1)由题可知,在△AOB 与△COD 中,AO OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∆∆≌,B D ∴∠=∠,//AB CD ∴;(2)OE=OF ,理由如下:由(1)可知:AOB COD ∆≅∆,在△AOE 于△COF 中,A C AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COF ASA ∴∆∆≌,OE OF ∴=.【点睛】本题考查全等三角形的性质和判定.掌握全等三角形的判定定理,并能灵活运用是解题关键.24.(1)4;8;12;14;(2)付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y =kx ,代入x 与y 的值即可解得k 为2,及关系式为y =2x .【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =kx , 根据题意得:4=2k ,解得k =2,∴付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【点睛】本题考查一元一次方程,根据题意列出关系式并解出k 的值是解题的关键.25.(1)∠1=∠ABD ,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC ∥DE ,再根据平行线的性质结合23180∠+∠=︒可得∠2=∠CBD ,从而可得CF ∥DB 得出∠1=∠ABD ; (2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB 为直角,即可得出∠ACF .【详解】解:(1)∠1=∠ABD ,理由:∵BC ⊥AE ,DE ⊥AE ,∴BC ∥DE ,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴CF ∥DB ,∴∠1=∠ABD .(2)∵∠1=70°,CF ∥DB ,∴∠ABD=70°,又∵BC 平分∠ABD , ∴1352DBC ABD ︒∠=∠=, ∴∠2=∠DBC=35°,又∵BC ⊥AG , ∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.26.(1)m ﹣n ;(2)(m ﹣n )2=(m +n )2﹣4mn ;(3)①8;②136(4)2【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答即可;(2)根据大正方形的面积减去四个长方形的面积等于阴影部分小正方形的面积解答即可; (3)把数据代入(3)的数量关系计算即可得解;(4)根据完全平方公式配方,再根据非负数的性质即可得解.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m ﹣n ;故答案为:m ﹣n ;(2)根据正方形的面积公式,阴影部分的面积为(m ﹣n )2,还可以表示为(m +n )2﹣4mn ,∴(m ﹣n )2=(m +n )2﹣4mn ,故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)①∵mn =﹣2,m ﹣n =4,∴(m +n )2=(m ﹣n )2+4mn =42+4×(﹣2)=16﹣8=8,②m 2+n 2=(m ﹣n)2+2mn=42+2×(﹣2)=16﹣4=12,∴m 4+n 4=(m 2+n 2)2﹣2 m 2·n 2=122﹣2×(﹣2)2=136;(4)x 2+2x +y 2﹣4y +7,=x 2+2x +1+y 2﹣4y +4+2,=(x +1)2+(y ﹣2)2+2,∵(x +1)2≥0,(y ﹣2)2≥0,∴(x +1)2+(y ﹣2)2≥0,∴当x =﹣1,y =2时,代数式x 2+2x +y 2﹣4y +7的最小值是2.【点睛】本题考查了完全平方公式的几何意义、平方数的非负性,准确识图,能用两种不同的方式表示阴影的面积,灵活运用完全平方公式解决问题是解答的关键.。
2019-2020学年湘教版七年级数学下册(专题二)期末模拟(二)
A.
B.
C.
2.下列计算结果正确的是( )
A.a4·a2=a 8 B.(a5)2=a7
C.(a-b)2=a2-b2
D. D.(ab)2=a2b2
3.下列分解因式正确的是 ( )
A. m2 + n2 = (m + n)2
B.16m2 − 4n2 = (4m − n)(4m + 2n)
C. a3 − 3a2 + a = a(a2 − 3a)
7/8
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
根据题意得: 200 (1350 −1200) +150 2 (1200 m −1000) = 54000 , 10
解得: m = 9 . 答: B 种商品打 9 折销售的.
8/8
C.1284((xx−−
y) y)
= =
360 360
D.1284((xx
− +
y) y)
= 360 = 360
8.如图,把水渠中的水引到水池 C,先过 C 点向渠岸 AB 画垂线, 垂足为 D,再沿垂线 CD 开沟才能使沟最短,其依据是( )
A.垂线最短 B.过一点确定一条直线与已知直线垂直
C.垂线段最短
(x + a)(x + b) = x2 + (a + b)x + ab ;
(2)①原式 = x2 + 9x + 20 ,
②原式 = x2 + x − 6 , ③原式 = x2 − 7x + 6 ;
(3)① x2 + 5x + 6 = (x + 2)(x + 3) , ② x2 − x −12 = (x + 3)(x − 4) .
2019-2020学年湘教版七年级数学下册(专题七)期末模拟(七)
专题7 2019-2020学年湘教版七年级下册期末模拟(七)学校:___________姓名:___________班级:___________考号:___________ 一.选择题(本题共计 8 小题,每题4 分 ,共计32分)1.下列多项式中,含有因式的多项式是( )A 、B 、C 、D 、2. 已知多项式分解因式为,则的值为( )A 、B 、C 、D 、3. 下列方程中,是二元一次方程的有( )A 、B 、C 、D 、mn+m=7 4. 下列多项式乘法,能用平方差公式进行计算的是( ) A.(x+y)(-x -y) B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)5. 下列多项式:①16x 5-x ;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)2+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①④ (B)②④ (C)③④ (D)②③6. 若,则m ,k 的值分别是( )A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=-12、 7.下列计算中,正确的是( )A .(a+b )2=a 2+b 2B .(a ﹣b )2=a 2﹣b 2)1(+y 2232x xy y --22)1()1(--+y y )1()1(22--+y y 1)1(2)1(2++++y y c bx x ++22)1)(3(2+-x x c b ,1,3-==c b 2,6=-=c b 4,6-=-=c b 6,4-=-=c b 1225=-n m az y -=-6114732y x =--22)32(9-=++x kx mxC .(a+m )(b+n )=ab+mnD .(m+n )(﹣m+n )=﹣m 2+n 28.下列分解因式正确的是( ) A .100p 2﹣25q 2=(10+5q )(10﹣5q )B .x 2+x ﹣6=(x+3)(x ﹣2)C .﹣4m 2﹣n 2=﹣(2m+n )(2m ﹣n )D .二.填空题 (本题共计 8 小题,每题3分,共24分)9. 已知x+y=6,xy=4,则x 2y+xy 2的值为 .10.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为_____________11. 已知,则的值是 12.已知是方程2x+ay=5的解,则 a=13.如果3x3m ﹣2﹣2y 2+n+10=0是二元一次方程,那么mn=14.已知m 2+n 2-6m +10n +34=0,则m +n =15.如果x ,y 满足方程组⎩⎪⎨⎪⎧2x -2y =1,x +y =4,那么x 2-y 2=16. 若是完全平方公式,则m=三、解答题(共72分)17.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧x +3y =8,5x -3y =4; ( 2)⎩⎪⎨⎪⎧x3+1=y ,2(x +1)-y =6.31=+a a 221a a +⎩⎨⎧==12y x 16)3(22+-+x m x18.(8分)分解因式:(1)a3-a; (2)8(x2-2y2)-x(7x+y)+xy.19.(8分)已知|3x﹣2y+5|+(3x﹣5y+2)2=0,求(xy2)2的值20.(8分)已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.21.(10分)先化简,再求值:(1)(1+a)(1-a)+(a -2)2,其中a =12;(2)(2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =-3.22.(10分)已知方程组⎩⎪⎨⎪⎧ax +5y =15①,4x -by =-2②.甲由于看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1.乙由于看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.若按正确的a ,b 计算,求原方程组的解.23.(10分)为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家今年2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时;(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.24.(10分)观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,…(1)根据以上规律,可知(x-1)(x6+x5+x4+x3+x2+x+1)=________;(2)你能否由此归纳出一般性规律:(x-1)(x n+x n-1+…+x+1)=________;(3)根据(2)计算:1+2+22+…+234+235.参考答案1-- 10 CDCCADDB9、24 10、X 2+X+1 11、7 12、1 13、-1 14、-2 15、7或-1 16、217.解:(1)⎩⎨⎧x +3y =8①,5x -3y =4②,①+②,得6x =12,解得x =2.(2分)将x =2代入①中,得2+3y =8,解得y =2.∴方程组的解为⎩⎨⎧x =2,y =2.(4分)(2)原方程组可化为⎩⎨⎧x =3y -3①,2x -y =4②,将①代入②中,得2(3y -3)-y =4,解得y =2.(6分)将y =2代入①中,得x =3.∴方程组的解为⎩⎨⎧x =3,y =2.(8分)18.解:(1)原式=a (a 2-1)=a (a -1)(a +1).(4分)(2)原式=8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y )(x -4y ).(8分) 19.解:|3x ﹣2y+5|+(3x ﹣5y+2)2=0, ∴3x ﹣2y+5=0且3x ﹣5y+2=0,即 解得:,(xy 2)2=[(﹣)×(﹣1)2]2=.20.解:(x -1)(x -9)=x 2-10x +9,∴q =9,(2分)(x -2)(x -4)=x 2-6x +8,∴p =-6.(4分)∴原二次三项式是x 2-6x +9.(6分)因式分解,得x 2-6x +9=(x -3)2.(8分)21.解:(1)原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(5分)(2)原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5.(8分)当x =-3时,原式=(-3)2-5=4.(10分)22.解:将⎩⎨⎧x =-3,y =-1代入②,得-12+b =-2,∴b =10.(3分)将⎩⎨⎧x =5,y =4代入①,得5a +20=15,∴a =-1.(6分)故原方程组为⎩⎨⎧-x +5y =15,4x -10y =-2,(8分)解得⎩⎨⎧x =14,y =295.(10分) 23.解:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,(1分)根据题意得⎩⎨⎧80x +(100-80)y =68,80x +(120-80)y =88,(3分)解得⎩⎨⎧x =0.6,y =1.(4分)答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(7分) (2)80×0.6+(130-80)×1=98(元).(9分) 答:预计小张家6月份应上缴的电费为98元.(10分) 24.解:(1)x 7-1(3分) (2)x n +1-1(6分)(3)原式=(2-1)(1+2+22+…+234+235)=236-1.(10分)。
2019-2020学年湘教版七年级数学下册(专题一)期末模拟(一)
专题1 2019-2020学年湘教版七年级下册期末模拟(一)学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分,共40分)1.下列属于二元一次方程组的是( )A.⎩⎪⎨⎪⎧x 3+y 5=4,x -y =0.B.⎩⎪⎨⎪⎧3x +5y =4,x -y =0.C.⎩⎪⎨⎪⎧x +y =5,x 2+y 2=1. D.⎩⎪⎨⎪⎧y =12x -2,xy =1.2.下列运算正确的是( ) A.a 3·a 4=a12B.(-2a 2b 3)3=-8a 6b9C.a 6-a 3=a3D.(a+b)=a 2+b 23.下列图形中,轴对称图形的个数为( )A. 1个B. 2个C. 3个D. 4个4.下列等式从左到右的变形,属于分解因式的是( )A.a(x-y)=ax-ayB.x 2+2x+1=x(x+2)+1 C.(x+1)(x+3)=x 2+4x+3 D.x 3-x=x(x+1)(x-1) 5. 下列各式中能用完全平方公式进行因式分解的是( ) A. x 2+x+1 B. x 2+2x ﹣1 C. x 2﹣1D. x 2﹣6x+96.一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.27.如图,直线a,b,c,d,已知c ⊥a,c ⊥b,直线b,c,d 交于一点,若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30°8.两人练习跑步,如果乙先跑16米,则甲8秒钟可以追上乙,如果乙先跑2秒钟,则甲4秒钟可以追上乙,求甲、乙两人每秒钟各跑多少米.若设甲每秒钟跑x 米,乙每秒钟跑y 米,则所列方程组应该是( )A.{16=8(x -y),(2+4)y =4xB.{8x -8y =16,4x -4y =4 C.{8x +16=8y,4x -4y =2D.{8x =8y +16,4x -2=4y9.如图①,在边长为a正方形中挖掉一个边长为b 的小正方形,把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A.()()2222a b a b a ab b +-=+-B. ()2222a b a ab b +=++C. ()2222a b a ab b -=-+ D. ()()22a b a b a b -=+-10.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,,则第⑤个图形中棋子的颗数为( )A. 51B. 70C.31D. 81的二、填空题(每小题4分,共32分)11.若方程12122m n m x y -++=是二元一次方程,则mn =__________. 12.计算:3a ·a 2+a 3= .13.分解因式39a a -=__________.14.若{x =9,y =2是方程组{4x -7y =a +b,3x -y =a -b的解,则a,b 的值分别是.15.如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是 .16.在一次中学生田径运动会上,参加男子跳高的15名运动员成绩如下表:成绩(米) 1.50 1.60 1.65 1.70 1.75 1.80人数(个) 2 3 3 2 4 1则这些运动员成绩的中位数是 米.17. 多项式16x 2+1加上一个单项式后成为一个整式的完全平方,则加上的单项式为(写一个即可).18.如图,一串有趣的图案按一定规律排列,请仔细观察,按此规律画出的第10个图案是 ;在前16个图案中有 个“”,第2020个图案是 .三.计算题:(本大题共7小题,共78分.计算应有演算步骤)19.解方程组:(每小题5分,共10分)()14,3222.x y x y -=⎧⎨+=⎩ ()2 23,131.22x y x y +=⎧⎪⎨-=-⎪⎩20.化简:(每小题5分,共10分)()1()()322332x y xy z --; ()2 ()()()2412525x x x +-+-.21.因式分解:(每小题5分,共10分)()1()()232x x x ---; ()2224129x xy y -+-22.(10分)完成下面的证明.已知:如图,D 是BC 上任意一点,BE AD ⊥,交AD 的延长线于点E ,CF AD ⊥,垂足为F .求证:12∠=∠. 证明:BE AD ⊥,BED ∴∠= .( )CF AD ⊥, CFD ∴∠= . BED CFD ∠∠∴=. //BE CF ∴( ).12∠∠∴=( ).23.(12分)使满足方程组 的x , y 的值 的和等于2.(1)求原方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年七年级数学下册期末模拟试卷一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.下列等式中,正确的是()A.3a+2b=5ab B.2(a﹣b)=2a﹣bC.(a﹣b)2=a2﹣b2D.(﹣2a3)2=4a62.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2﹣4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)23.把多项式x3﹣4x分解因式所得的结果是()A.x(x2﹣4)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.(x+2)(x﹣2)4.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A .B .C .D .5.如图,直线a∥b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度6.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.众数C.方差D.中位数7.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A.2B.3C.5D.78.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是()A.53°B.63°C.73°D.27°9.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3B.a+6C.2a+3D.2a+610.已知方程组,则x+y的值为()A.﹣1B.0C.2D.311.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为()A.20°B.50°C.80°D.110°12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A .B .C .D .二、填空题(本大题共6个小题,每小题3分,满分18分)13.方程组的解是.14.如果10m=12,10n=3,那么10m+n=.15.分解因式:4x2﹣16=.16.如图,要使AD∥BF,则需要添加的条件是(写一个即可)17.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是.18.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.三、解答题(本大题共2个小题,每小题6分,满分12分)19.先化简,再求值:(x+2)(x﹣2)﹣(x+3)2,其中x=.20.给出三个多项式:a2+3ab﹣2b2,b2﹣3ab,ab+6b2,任请选择两个多项式进行加法运算,并把结果分解因式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=80°,求∠BOD的度数;(2)若∠EOC=∠EOD,求∠BOD的度数.22.如图,已知∠1=∠2,∠B=100°,求∠D的度数.五、解答题(本大题共2个小题,每小题9分,满分18分)23.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.24.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?六、综合题(本大题共2个小题,每小题10分,满分20分)25.填空或填写理由.(1)如图甲,∵∠=∠(已知);∴AB∥CD()(2)如图乙,已知直线a∥b,∠3=80°,求∠1,∠2的度数.解:∵a∥b,()∴∠1=∠()又∵∠3=∠4()∠3=80°(已知)∴∠1=∠=°(等量代换)又∵∠2+∠3=180°∴∠2=°(等式的性质)26.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n 的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.参考答案与试题解析一、选择题(本大题共12道小题,每小题3分,满分36分,每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填写在下表内)1.解:A、3a与2b不能合并,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(﹣2a3)2=4a6,正确;故选:D.2.解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,过程不够完整,故选:A.3.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故选:C.4.解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.5.解:由直线a∥b,CD⊥b,得线段CD的长度是直线a,b之间距离,故选:B.6.解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选:C.7.解:∵数据3,2,5,3,7,5,x的众数是5,∴5出现的次数是3次,∴x=5,数据重新排列是:2,3,3,5,5,5,7,由于7个数中5在正中间,所以中位数是5.故选:C.8.解:∵∠1=27°,∴∠3=90°﹣∠1=90°﹣27°=63°.∵直尺对边平行,∴∠2=∠3=63°.故选:B.9.解:长方形的另一边长是:(a+3)+3=a+6,故选:B.10.解:,①+②得:3x+3y=9,则x+y=3.故选:D.11.解:∵△ABC绕点C顺时针旋转50°,∴∠ACA′=50°,∴∠A′CB=80°,∵l1∥l2,∴∠1=∠A′CB=80°.故选:C.12.解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分)13.解:,①﹣②,得3x=﹣3,解这个方程,得x=﹣1,把x=﹣1代入①,得﹣1+y=3,解得x=4,这个方程组的解为,故答案为:.14.解:10m+n=10m•10n=12×3=36.故答案为:36.15.解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).16.解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).17.解:运动员张华测试成绩的众数是7,故答案为:7.18.解:如图所示,新图形是一个轴对称图形.故答案为:3.三、解答题(本大题共2个小题,每小题6分,满分12分)19.解:原式=x2﹣4﹣(x2+6x+9)=x2﹣4﹣x2﹣6x﹣9=﹣6x﹣13,当x =时,原式=﹣6×﹣13=﹣2﹣13=﹣15.20.解:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).四、解答题(本大题共2个小题,每小题8分,满分16分)21.解:(1)∵OA平分∠EOC,∴∠AOC =∠EOC =×80°=40°,∴∠BOD=∠AOC=40°;(2)设∠EOC=x,∠EOD=x,根据题意得x+x=180°,解得x=90°,∴∠EOC=x=90°,∴∠AOC =∠EOC =×90°=45°,∴∠BOD=∠AOC=45°.22.解:∵∠1=∠AEF,∠1=∠2,∴∠AEF=∠2,∴AB∥CD,∴∠B+∠D=180°,∵∠B=100°,∴∠D=80°.五、解答题(本大题共2个小题,每小题9分,满分18分)23.解:(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分),∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.24.解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40﹣30)+60×(50﹣35)=1300(元).答:商场共计获利1300元.六、综合题(本大题共2个小题,每小题10分,满分20分)25.解:(1)∵∠3=∠4(已知);∴AB∥CD(内错角相等,两直线平行)(2)∵a∥b,(已知)∴∠1=∠4(两直线平行,同位角相等)又∵∠3=∠4(对顶角相等)∠3=80°(已知)∴∠1=∠3=80°(等量代换)又∵∠2+∠3=180°∴∠2=100°(等式的性质)故答案为:3;4;内错角相等,两直线平行;已知;4;两直线平行,同位角相等;对顶角相等;3;80;100.26.解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n=6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.。