浙教版九年级下数学《3.1投影》练习题含答案
浙教新版九年级下册《3.1_投影》2024年同步练习卷(5)+答案解析
![浙教新版九年级下册《3.1_投影》2024年同步练习卷(5)+答案解析](https://img.taocdn.com/s3/m/17c753610812a21614791711cc7931b764ce7b53.png)
浙教新版九年级下册《3.1投影》2024年同步练习卷(5)一、选择题:本题共1小题,每小题3分,共3分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,在平面直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为()A.4B.5C.6D.8二、填空题:本题共4小题,每小题3分,共12分。
2.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得,,这个三角尺的周长与它在墙上形成影子的周长比是______.3.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,,,,点P到CD的距离是,则AB与CD间的距离是______4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为﹙假定﹚,影长的最大值为m,最小值为n,那么下列结论中:①;②;③;④影子的长度先增大后减小.正确的结论序号是______.﹙直接填写正确的结论的序号﹚.5.如图,甲、乙两盏路灯底部间的距离是25米,一天晚上,当小华走到距路灯乙底部4米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为米,那么路灯甲的高为______米.三、解答题:本题共5小题,共40分。
解答应写出文字说明,证明过程或演算步骤。
6.本小题8分如图、分别是两棵树及其在太阳光或路灯下影子的情形哪个图反映了阳光下的情形,哪个图反映了路灯下的情形?你是用什么方法判断的?请画出图中表示小丽影长的线段.7.本小题8分如图,把放在与墙平行的位置上,在点O处打开一盏灯,点A在墙上的影子是点D,请画出在墙上的影子.要使的影子小一些应该怎么办?与它形成的影子相似吗?8.本小题8分如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB、请你在图中画出路灯灯泡所在的位置用点P表示;画出小华此时在路灯下的影子用线段EF表示9.本小题8分一木杆按如图的方式直立在地面上,请在图中画出它在阳光下的影子用线段CD表示10.本小题8分如图所示是两根标杆及它们在灯光下的影子,请在图中画出光源的位置用点P表示,并在图中画出人在此光源下的影子用线段EF表示答案和解析1.【答案】D【解析】解:如图,延长PA、PB交x轴于点C、D,过点P作轴,垂足为M,交AB于点N,点,,,,,,,,即,,故选:利用平行投影,转化为相似三角形,将点的坐标转化为线段的长,根据相似三角形的性质得出答案即可.本题考查中心投影,构造相似三角形,利用相似三角形的性质列方程求解是解决此类问题的基本方法.2.【答案】2:7【解析】解:如图,,,,三角尺与影子是相似三角形,三角尺的周长与它在墙上形成的影子的周长的比::故答案为2:先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.本题考查了相似三角形的应用,注意利用了相似三角形对应边成比例的性质,周长的比等于相似比的性质.3.【答案】【解析】解:,∽,,,,点P到CD的距离是,设AB与CD的距离为x m,,解得:,故答案为:直接利用相似三角形的判定与性质得出两三角形的相似比,再利用对应高的比也等于相似比进而得出答案.此题主要考查了相似三角形的应用,正确利用相似三角形的性质分析是解题关键.4.【答案】①③④【解析】解:当木杆绕点A按逆时针方向旋转时,如图所示当AB与光线BC垂直时,m最大,则,①成立;①成立,那么②不成立;最小值为AB与底面重合,故,故③成立;由上可知,影子的长度先增大后减小,④成立;故答案为:①③④.由当AB与光线BC垂直时,m最大即可判断①②,由最小值为AB与底面重合可判断③,点光源固定,当线段AB旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.本题主要考查中心投影与旋转性质,根据物高与点光源的位置可很快得到答案.5.【答案】10【解析】解:根据题意知,∽,即,解得故答案是:由于人和地面是垂直的,即人和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了方程的思想.6.【答案】解:第一幅图是太阳光形成的,第二幅图是路灯灯光形成的;太阳光是平行光线,物高与影长成正比;所画图形如下所示:【解析】和:物体在太阳光的照射下形成的影子是平行投影,物体在灯光的照射下形成的影子是中心投影.然后根据平行投影和中心投影的特点及区别,即可判断和说明;图1作平行线得到小丽的影长,图2先找到灯泡的位置再画小丽的影长.本题考查平行投影和中心投影的知识,解答关键是熟练掌握这两个基础概念.7.【答案】解:如图,即为所求;要使的影子小一些应该将向右移动;与它的影子相似.【解析】利用位似变换作出图形即可;将向右移动即可;利用位似变换的性质判断即可.本题考查作图-应用与设计作图,相似三角形的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.【答案】解:如图所示:点P就是所求的点;就是小华此时在路灯下的影子.【解析】根据小军和小丽的身高与影长即可得到光源所在;根据光源所在和小华的身高即可得到相应的影长.本题考查中心投影的特点与应用,解决本题的关键是得到点光源的位置.用到的知识点为:两个影长的顶端与物高的顶端的连线的交点为点光源的位置.9.【答案】解:如图所示:线段CD即为木杆在阳光下的影子.【解析】根据平行投影的性质,得出木杆的影子即可.此题主要考查了平行投影,得出太阳光线是平行光线是解题关键.10.【答案】解:根据两根标杆及它们在灯光下的影子,即可找到P点分,根据光源即可得出,作出人影分【解析】根据两根标杆及它们在灯光下的影子,即可找到P点,再根据光源即可得出,作出人影此题主要考查了中心投影的性质,利用中心投影的性质找到光源是解决问题的关键.。
数学9年级下册-投影第2课时备作业-浙教版
![数学9年级下册-投影第2课时备作业-浙教版](https://img.taocdn.com/s3/m/2be70346a55177232f60ddccda38376baf1fe0aa.png)
第3章投影与三视图3.1 投影(第2课时)一、选择题1.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是()A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②【答案】B【分析】根据一天中影子的长短和方向判断即可.【详解】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案故选B【点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.2.为了测量操场中旗杄的高度,小明学习了“太阳光与影子”,设计了如图所示的测量方案,根据图中标示的数据可知旗杆的高度为()A .4mB .6mC .8mD .9m【答案】B【分析】设出旗杆高,利用两物体影子的长与物高成比例,建立方程即可.【详解】设旗杄高度为:x m ,由题意得出:,3263x =+解得:,6x =故旗杆的高度为6m .故选则:B .【点睛】本题考查了平行投影的应用,掌握同一时刻太阳光线下物体影子的长短与物高成比例是解题关键.3.如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是( )A .②④①③B .①④③②C .②④③①D .①③②④【分析】根据影子变化的方向正好太阳所处的方向是相反的来判断,太阳从东方升起最后从西面落下确定影子的起始方向;【详解】太阳从东方升起最后从西面落下,木杆的影子开始时应该在西面,随着时间的变化影子逐渐的向北偏西,北偏东,正东方向的顺序移动,故它们按时间先后顺序进行排列为:①④③②,故选:B.【点睛】本题主要考查了平行投影的判定,准确分析判断是解题的关键.4.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( )A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【答案】B【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【详解】晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选B.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.5.如图,太阳光线AC 和是平行的,在同一时刻,若两根木杆的影子一样长,则两根木杆高度相A C ''等.这利用了全等图形的性质,其中判断ABC ≌的依据是( )A ABC '''V A .SASB .AASC .SSSD .ASA【答案】B【分析】根据平行线的性质可得∠ACB =∠A′C′B′,根据题意可得AB =A′B′,∠ABC =∠A′B′C′=90°,然后利用AAS 判定△ABC ≌△A′B′C′.【详解】解:∵AC ∥A′C′,∴∠ACB =∠A′C′B′,∵两根高度相同的木杆竖直插在地面上,∴AB =A′B′,∠ABC =∠A′B′C′=90°,在△ACB 和△A′B′C′中,,ACB A'C'B'ABC A'B'C'90AB A'B'︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△ABC ≌△A′B′C′(AAS ).【点睛】此题主要考查平行投影,全等三角形的应用,关键是掌握全等三角形的判定方法.6.和是直立在水平地面上的两根立柱,米,某一时刻测得在阳光下的投影米,同AB DE 7AB =4BC =时,测量出在阳光下的投影长为6米,则的长为( )DE DE A .米B .米C .米D .米14321224776【答案】B【分析】根据在同一时刻,不同物体的物高和影长成比例,构建方程即可解决问题.【详解】解:如图,在测量AB 的投影时,同时测量出DE 在阳光下的投影长EF 为6m ,∵△ABC ∽△DEF ,AB=7m ,BC=4m ,EF=6m ∴,AB DE BCEF =∴,746DE =∴DE=(m )212故选:B .本题考查了平行投影,解题的关键是记住在同一时刻,不同物体的物高和影长成比例.7.矩形的正投影不可能是()A.线段B.矩形C.正方形D.梯形【答案】D【分析】根据平行投影的特点即可确定答案.【详解】解:在同一时刻,平行物体的投影仍旧平行,即得到的应是线段、或特殊的平行四边形;则矩形的正投影不可能是梯形.故答案为D.【点睛】本题主要考查了平行投影的性质,解答本题的关键在于理解同一时刻,平行物体的投影仍旧平行.8.如图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是()A.①②③④B.④③①②C.④①③②D.②①③④【答案】B【分析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短再变长.解:根据平行投影的特点以及北半球影长的规律可知:从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知先后顺序是④③①②.故选:B .【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.2、填空题9.圆柱的轴截面平行于投影面,它的正投影是长为4、宽为3的矩形,则这个圆柱的表面积是__________.(结果保留)π【答案】或20π16.5π【解析】【分析】根据平行投影的性质得出①当圆柱底面圆的直径为3,高为4,②当圆柱底面圆的直径为4,高为3,进而求出其表面积.【详解】解:圆柱的轴截面平行于投影面,且它的正投影是长为4、宽为3的矩形,所以需分两种情况讨论:圆柱底面圈的直径为4、高为3,圆柱底面圆的直径为3、高为4,①当圆柱底面圆的直径为4、高为3时,圆柱的表面积为;22232220⨯⨯+⨯=πππ②当圆柱底面圆的直径为3、高为4时,圆柱的表面积;22 1.542 1.516.5⨯⨯+⨯=πππ故答案为:或.20π16.5π【点睛】根据平行投影的性质得出①当圆柱底面圆的半径为1.5,高为4,②当圆柱底面圆的半径为2,高为3,进而求出其表面积.10.如图,晚上小红由路灯A 走向路灯B ,当她走到点P 时,发现她的影子顶部正好接触到路灯B 的底部,此时她距离路灯A ,距离路灯B .如果小红的身高为,那么路灯A 的高度是___________m .20m 5m 1.2m【答案】6【解析】【分析】小亮的身影顶部正好接触路灯B 的底部时,构成两个相似三角形,利用对应线段成比例解答此题.【详解】解:如图,根据题意,得,1.2205===,,CP m AP m BP m 则,20525=+=+=()AB AP BP m由中心成影性质可知,BAD BPC ∆∆∽,PC PB AD AB ∴=,1.2525AD ∴=,6m AD ∴=∴路灯A 的高度是.6m 【点睛】此题主要考查了相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求解即可.11.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)【答案】逐渐变大【解析】【分析】在灯光下,离点光源越近,影子越大;离点光源越远,影子越小,所以当发光的手电筒由远及近时,落在竖直墙面上的球的影子会逐渐变大.【详解】解:根据中心投影的特点,可得:当发光的手电筒由远及近时,落在竖直墙面上的球的影子会逐渐变大,故答案为:逐渐变大.【点睛】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.12.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.【答案】4【分析】如图,∠CPD=90°,QC=2m,QD=8m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=2m,QD=8m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D ,∴Rt △PCQ ∽Rt △DPQ ,∴=PQ QC QD PQ 即,8=2PQ PQ ∴PQ=4,即旗杆的高度为4m .故答案为4.【点睛】本题主要考查了相似三角形的判定和性质的应用,也考查了平行投影,找准相似三角形是解答此题的关键.13.在同一时刻,测得身高的小明同学的影长为,同时测得一根旗杆的影长为,那么这根旗1.8m 3m 20m 杆的高度为____________________.m 【答案】12【分析】根据同时同地物高与影长成比例列式计算即可得解.【详解】解:设旗杆高度为xm ,由题意得,,1.8=320x 解得:x=12.故答案为:12.【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成比例,需熟记.14.如图是小孔成像原理的示意图,点与物体的距离为,与像的距离是,O AB 30cm CD 14cm . 若物体的高度为,则像的高度是_________.//AB CD AB 15cm CDcm 【答案】7【分析】根据三角形相似对应线段成比例即可得出答案.【详解】作OE ⊥AB 与点E ,OF ⊥CD 于点F根据题意可得:△ABO ∽△DCO ,OE=30cm ,OF=14cm ∴OE AB OF CD =即301514CD =解得:CD=7cm故答案为7.【点睛】本题考查的是相似三角形的性质,注意两三角形相似不仅对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.3、解答题AB BC DE EF M 15.如图,一墙墩(用线段表示)的影子是,小明(用线段表示)的影子是,在处有MN一颗大树,它的影子是.()1P试判断是路灯还是太阳光,如果是路灯确定路灯的位置(用点表示).如果是太阳光请画出光线.()2在图中画出表示大树高的线段.()3D若小明的眼睛近似地看成是点,试画图分析小明能否看见大树.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据光线相交于一点得出确定路灯的位置;(2)利用AB,DE,确定大树的高,(3)运用视角连接AD,即可得出能否看见大树.【详解】()1()2()3解:根据光线相交于一点,即可得出路灯确定路灯的位置;如图所示:如图所示,小明的眼睛D近似地看成是点,小明不能看见大树.【点睛】本题考查平行投影,视点、视角和盲区.16.如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角为,窗户的一部分在教室地面BPC ∠30所形成的影长为米,窗户的高度为米.求窗外遮阳蓬外端一点到教室窗户上椽的距离PE 3.5AF 2.5D .,结果精确米)AD 1.7≈0.1【答案】窗外遮阳蓬外端一点到教室窗户上椽的距离为.D AD 0.8m 【解析】【分析】如下图,过E 作EG ∥AC 交BP 于G ,根据平行线的性质,可得在Rt △PEG 中,∠P=30°;已知PE=3.5m .根据三角函数的定义,解三角形可得EG 的长,进而在Rt △BAD 中,可得tan30°=,解可ABAD 得AD 的值.【详解】过E 作EG ∥AC 交BP 于G ,∵EF ∥DP ,∴四边形BFEG 是平行四边形。
浙教版初中数学九年级下册《3.1 投影》同步练习卷
![浙教版初中数学九年级下册《3.1 投影》同步练习卷](https://img.taocdn.com/s3/m/5be558cd19e8b8f67c1cb98f.png)
浙教新版九年级下学期《3.1 投影》同步练习卷一.填空题(共50小题)1.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG 的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是(用“=、>或<”连起来)2.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.3.如图,在平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为点D,点C坐标为(3,1),则CD在x轴上的影子长为.4.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=.5.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.6.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是.(说出一种形状即可)7.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是.(填写“平行投影”或“中心投影”)8.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.9.如图是测得的两根木杆在同一时间的影子,那么它们是由形成的投影(填“太阳光”或“灯光”).10.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.11.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=.12.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为.13.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.14.物体在光线照射下,在地面或墙壁上留下的影子叫做它的.15.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.16.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为米.17.圆柱的轴截面平行于投影面S,它的正投影是长4,宽3的矩形,则这个圆柱的表面积是.(结果保留π)18.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.19.如图所示,此时的影子是在下(太阳光或灯光)的影子,理由是.20.如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列.21.如图所示,甲乙两建筑物在太阳光的照射下的影子的端点重合在C处,若BC=20m,CD=40m,乙的楼高BE=15m,则甲的楼高AD=m.22.一条线段经过正投影后形成的图形是.23.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向远离灯的位置移动时,圆形阴影面积的大小的变化情况是.24.如图,同一时刻在阳光照射下,树AB的影子BC=3m,小明的影子B'C'=1.5m,已知小明的身高A'B'=1.7m,则树高AB=.25.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是m.26.如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为.27.已知,如图,AB和DE是直立在地面上的两根立柱,AB=4m,某一时刻AB在阳光下的投影BC=3m,同一时刻测得DE影长为 4.5m,则DE=m.28.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高米.(结果保留根号)29.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.30.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面,这种投影称为正投影.31.如图,在A时测得某树的影长为4米,B时又测得该树的影长为9米,若两次日照的光线互相垂直,则树的高度为米.32.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号).①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是米.33.如图,在A时测得旗杆的影长是4米,B时测得的影长是9米,两次的日照光线恰好垂直,则旗杆的高度是米.34.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是cm.35.如图是四个直立在地面上的艺术字母的投影(阴影部分)效果,在艺术字母“L,K,C”的投影中,与艺术字母“N”属于同一种投影的有.36.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为米.37.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论中:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.正确的结论序号是.﹙直角填写正确的结论的序号﹚.38.如图,路灯垂直照射在地面的位置为点O,小华(用线段AB表示)站在离路灯不远的A处,在路灯的照射(中心投影)下,可形成小华的影子是线段.39.如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是.40.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动.小刚身高 1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,则小桥所在圆的半径.41.某时刻太阳光线与地面的夹角为58°,这个时刻某同学站在太阳光下,自己的影子长为1米,则这个同学的身高约为米.(精确到0.01米,参考数据:sin58°≈0.848,cos58°≈0.530,tan58°≈1.600)42.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是,影子的长短随人的位置的变化而变化的是.43.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序是.44.如图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为.45.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为.46.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长米.47.一个矩形薄木板在太阳光下形成的投影可能是(在“梯形”、“矩形”、“平行四边形”、“三角形”、“线段”、“一般四边形”中选择两个即可).48.大双、小双兄弟二人的身高相同,可是在灯光下,哥哥大双的影子比弟弟小双的影子短,这是因为.49.太阳光形成的投影是,手电筒、电灯泡所发出的光线形成的投影是.50.人在灯光下走动,当人远离灯光时,其影子的长度将.浙教新版九年级下学期《3.1 投影》2018年同步练习卷参考答案与试题解析一.填空题(共50小题)1.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG 的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是S1=S<S2(用“=、>或<”连起来)【分析】根据长方体的概念得到S1=S,根据矩形的面积公式得到S<S2,得到答案.【解答】解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.【点评】本题考查的是平行投影和立体图形,平行投影:由平行光线形成的投影是平行投影.2.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.3.如图,在平面直角坐标系中,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为点D,点C坐标为(3,1),则CD在x轴上的影子长为.【分析】利用相似三角形的判定与性质得出DE的长即可;【解答】解:∵DC∥AO,∴△ECD∽△EAO,∴=,∴=,解得DE=,即CD在x轴上的影子长为:;故答案为:.【点评】此题主要考查了相似三角形的应用,得出DE的长是解题关键.4.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=.【分析】依据点A(1,2)在x轴上的正投影为点A′,即可得到A'O=1,AA'=2,AO=,进而得出cos∠AOA′的值.【解答】解:如图所示,点A(1,2)在x轴上的正投影为点A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′===,故答案为:.【点评】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.5.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为8m.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=64,DC=8;故答案为:8m.【点评】本题考查了平行投影,通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.6.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状可能是矩形或正方形或平行四边形.(说出一种形状即可)【分析】根据平行投影的特点是:在同一时刻,不同物体的物高和影长成比例可知.【解答】解:矩形在阳光下的投影对边应该是相等的,影子的形状可能是矩形、正方形、平行四边形;故答案为:矩形或正方形或平行四边形【点评】本题综合考查了平行投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.7.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是中心投影.(填写“平行投影”或“中心投影”)【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:因为在同一时刻,两根长度不等的木杆置于阳光之下,当它们都垂直于地面或都倒在地上或平行插在地面时,木杆长的它的影子就长;当它们垂直竖立在地面上时,它们的影长相等,此时只能是中心投影.故答案为:中心投影.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.8.如图所示,此时树的影子是在太阳光(填太阳光或灯光)下的影子.【分析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光【点评】此题考查平行投影问题,解决本题的关键是理解平行投影的特点:实物顶点与像对应顶点的连线是平行关系.9.如图是测得的两根木杆在同一时间的影子,那么它们是由太阳光形成的投影(填“太阳光”或“灯光”).【分析】根据平行投影与中心投影的定义即可判断.【解答】解:由投影中光线是平行的可知它们是由太阳光形成的投影,故答案为:太阳光.【点评】本题主要考查投影,解题的关键是熟练掌握平行投影与中心投影的定义.10.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于10米.【分析】作DH⊥AB于H,如图,易得四边形BCDH为矩形,则DH=BC=8m,CD=BH=2m,利用平行投影得到∠ADH=45°,则可判断△ADH为等腰直角三角形,所以AH=DH=8m,然后计算AH+BH即可.【解答】解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,根据题意得∠ADH=45°,所以△ADH为等腰直角三角形,所以AH=DH=8m,所以AB=AH+BH=8m+2m=10m.故答案为10.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.11.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=m.【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【解答】解:如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG∥AF∥CD∴△EAF∽△ECD,△ABG∽△ACD∴AE:EC=AF:CD,AB:AC=BG:CD设BC=xm,CD=ym,则CE=(x+2.6)m,AC=(x+1)m,则即=,解得:x=,把x=代入=,解得:y=,∴CD=m.故答案为:m.【点评】考查了中心投影,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离.12.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为10m.【分析】根据平行的性质可知△ABC∽△DEF,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=∴∴DE=10(m)故答案为10m.【点评】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.13.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为7.5m.【分析】根据木杆旋转时影子的长度变化确定木杆AB的长,然后利用相似三角形的性质求得EF的高度即可.【解答】解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,∴=,解得:EF=7.5m.故答案为:7.5.【点评】本题考查了中心投影和相似三角形的判定及性质的知识,解题的关键是根据影子的变化确定木杆的长度.14.物体在光线照射下,在地面或墙壁上留下的影子叫做它的投影.【分析】根据投影的概念填空即可.【解答】解:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.故答案是:投影.【点评】本题考查投影的定义,影子现象就是数学上的投影现象,注意阳光下和月光下得到的影子为平行投影,灯光下的得到影子为中心投影.15.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.【分析】根据光源和两根木棒的物高得影子长即可.【解答】解:如图所示:【点评】本题考查中心投影的特点与应用,解决本题的关键是根据光源和两根木棒的物高得影子长.16.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为米.【分析】直接运用特殊角的三角函数求解即可.【解答】解:在直角三角形ABC中,∠ACB=60°.∵tan60°==,∴AC=,故答案为:.【点评】本题考查了解直角三角形的应用,理解锐角三角函数的概念,熟记特殊角的三角函数值.17.圆柱的轴截面平行于投影面S,它的正投影是长4,宽3的矩形,则这个圆柱的表面积是π或20π.(结果保留π)【分析】根据平行投影的性质得出①当圆柱底面圆的半径为1.5,高为4,②当圆柱底面圆的半径为2,高为3,进而求出其表面积.【解答】解:①当圆柱底面圆的半径为1.5,高为4,则圆柱的表面积为:2π××4+2π×()2=12π+π=π,②当圆柱底面圆的半径为2,高为3,则圆柱的表面积为:2π×2×3+2π×22=12π+8π=20π,故答案为:π或20π【点评】此题主要考查了平行投影以及圆柱体的表面积公式,得出圆柱体的底面圆的半径是解题关键.18.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是1.8m.【分析】根据AB∥CD,易得,△P AB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【解答】解:∵AB∥CD,∴△P AB∽△PCD,假设CD到AB距离为x,则=,=,x=1.8,∴AB与CD间的距离是1.8m;故答案为:1.8.【点评】本题考查了中心投影,用到的知识点是相似三角形的性质和判定,相似三角形对应高之比等于对应边之比.解此题的关键是把实际问题转化为数学问题(三角形相似问题).19.如图所示,此时的影子是在太阳光下(太阳光或灯光)的影子,理由是通过作图发现相应的直线是平行关系.【分析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.【点评】解决本题的关键是理解平行投影的特点:实物顶点与像对应顶点的连线是平行关系.20.如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列④②①③.【分析】根据不同时刻物体在太阳光下的影子的大小、方向的改变规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.【解答】解:西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为:④②①③.【点评】本题考查平行投影的特点和规律.在不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.21.如图所示,甲乙两建筑物在太阳光的照射下的影子的端点重合在C处,若BC=20m,CD=40m,乙的楼高BE=15m,则甲的楼高AD=30m.【分析】利用AD∥BE可判定△CBE∽△CDA,然后利用相似比计算AD的长即可.【解答】解:根据题意得AD∥BE,∴△CBE∽△CDA,∴=,即=,∴DA=30(m).故答案为30.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.22.一条线段经过正投影后形成的图形是线段或点..【分析】利用线段与投影面的位置关系不同可得到线段的投影为线段或点.【解答】解:一条线段经过正投影后形成的图形是线段或点.故答案为线段或点.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.23.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向远离灯的位置移动时,圆形阴影面积的大小的变化情况是变小.【分析】根据题意,灯光下影子越长的物体就越高,可联系到中心投影的特点,从而得出答案.【解答】解:灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.故答案为:变小.【点评】此题主要考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.24.如图,同一时刻在阳光照射下,树AB的影子BC=3m,小明的影子B'C'=1.5m,已知小明的身高A'B'=1.7m,则树高AB= 3.4m.【分析】利用同一时刻物体的高度与其影长成正比得到=,然后利用比例性质求出AB即可.【解答】解:根据题意得=,即=,所以AB=3.4(m).故答案为3.4m.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.25.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是14m.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【解答】解:设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻,平行投影中物体与影长成正比.26.如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为④①③②.【分析】根据影子变化规律可知道时间的先后顺序.【解答】解:从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.则四幅图按先后顺序排列应是④①③②.故答案为:④①③②.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.27.已知,如图,AB和DE是直立在地面上的两根立柱,AB=4m,某一时刻AB在阳光下的投影BC=3m,同一时刻测得DE影长为4.5m,则DE=6m.【分析】根据平行投影的性质可先连接AC,再过点D作DF∥AC交地面与点F,DF即为所求;根据平行的性质可知△ABC∽△DEF,利用相似三角形对应边成比例即可求出DE的长.【解答】解:DE在阳光下的投影是EF如图所示;在测量AB的投影时,同时测量出DE在阳光下的投影长为4.5m,∵△ABC∽△DEF,AB=4m,BC=3m,EF=4.5m,∴=,∴=,∴DE=6(m)故答案是:6.【点评】本题通过投影的知识结合图形相似的性质巧妙地求出点D离地面的距离,是平行投影性质在实际生活中的应用.28.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高4米.(结果保留根号)【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【解答】解:如图,在Rt△ABC中,tan∠ACB=,∴BC==,同理:BD=,∵两次测量的影长相差8米,∴﹣=8,∴x=4故答案为4.【点评】本题考查解直角三角形的应用,关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.29.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为3m.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m.答:路灯的高为3m.。
浙教版数学九年级下册《3.1投影(1)》练习.docx
![浙教版数学九年级下册《3.1投影(1)》练习.docx](https://img.taocdn.com/s3/m/d7b29e4efad6195f312ba692.png)
《3.1投影(1)》练习一、选择题1.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是()2.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①3.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形()A.四边形B.五边形C.六边形D.七边形二、填空题4.在安装太阳能热水器时,主要考虑太阳光线与热水器斜面间的角度(垂直时最佳),当太阳光线与水平面成35°角照射时,热水器的斜面与水平面的夹角最好应为_______3.投影按照光线特征可分为_________、_________,正投影是指_________.4.直角坐标系内,一点光源位于A(0,4)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x 轴上的影子长为_________,点C的影子坐标_________.三、解答题5.画出线段AC、BC在平面上的正投影,当AC⊥BC时请说明两影子的积与C点到平面的距离的关系.6.如图,已知两棵小树在同一时刻的影子,你如何确定影子是在什么光线下形成的?7.如图所示,小鼠唧唧在迷宫中寻找奶酪,当它分别在A、B位置时未发现奶酪,等它走到C处,终于发现了,请指出奶酪可能所在的位置.(用阴影表示)8.画出下列图形的正投影,(1)投影线从物体的左方射到右方,(2)投影线从物体的上方射到下方.9.如图所示,有甲、乙两根木杆,甲木杆的影子刚好落在乙杆与地面接触点处.(1)你能画出此时太阳光线及乙杆的影子吗?(不能画,说明理由;能画,用线段表示影子)(2)在所画的图形中有相似三角形吗?为什么?(3)从图中分析高杆与低杆的影子与它们的高度之间有什么关系?与同学进行交流.10.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图29-1-14所示的测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)参考答案一、选择题1. A2. B3. C二、填空题4.55°5.中心投影平行投影平行投影中光线与投影面垂直时的投影6.1;(4,0) 三、解答题7.解:作图,如下所示,AC 、BC 的正投影分别是AD 、BD .当AC ⊥BC 时,又CD ⊥AB ,所以△ADC ∽△CDB ,所以CD 2=AD ×BD .8.解:因两树的高度与影长成正比例(或影子的顶点与树的顶点的连线互相平行),所以是平行光线下形成的影子.9.解:10.解:(1)(2)11.解:(1)乙杆的影子如图中BC .(2)图中存在相似三角形,即△ABC ∽△DCE .因为两条太阳光线AB ∥DC ,两杆AC ∥DE . (3)在同一时刻杆越高,它的影子就越长,反之则短,即影长与杆高成正比.12.解:由题意知∠CED =∠AEB ,∠CDE =∠ABE =90°,∴△CED ∽△AEB . ∴BEABDE CD.∴7.87.26.1AB. ∴AB ≈5.2米.答案:AB ≈5.2米.初中数学试卷鼎尚图文**整理制作。
2019秋浙教版数学九年级下册同步测试题:3.1 投影【含答案】
![2019秋浙教版数学九年级下册同步测试题:3.1 投影【含答案】](https://img.taocdn.com/s3/m/5e992799bb4cf7ec4bfed00d.png)
第3章三视图与表面展开图3.1 投影第1课时平行投影知识点1.投影的概念1.圆形的物体在太阳光的投影下是(D)A.圆形B.椭圆形C.线段D.以上都有可能2.[2018·百色]如图1,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是__S1=S<S2__.(用“>”“<”或“=”连起来)图1【解析】∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S1<S2,∴S1=S<S2. 知识点2.平行投影3.平行投影中的光线是(A)A.平行的B.聚成一点的C.不平行的D.向四面发散的4.如图2中的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,则按时间先后顺序可排列为(A)图2A.③②①B.②①③C.①②③D.②③①5.小华在上午8时,上午9时,上午10时,上午12时,四次到室外的阳光下观察向日葵影子的变化情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为(A)A.上午8时B.上午9时C.上午10时D.上午12时【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.6.[2018春·临洮期中]如图3,当太阳光与地面成45°角时,树影投射在墙上的影高CD等于2 m,若树根到墙的距离BC等于8 m,则树高AB等于__10__m.图3 第6题答图【解析】如答图,作DH⊥AB于H,则DH=BC=8 m,CD=BH=2 m,根据题意得∠ADH=45°,∴△ADH为等腰直角三角形,∴AH=DH=8 m,∴AB=AH+BH=8+2=10 m.易错点:不理解“物体在太阳光下的影子的大小、方向改变的规律:就北半球而言,从早晨到傍晚物体的影子的指向是西-西北-北-东北-东,影长由长变短,再变长”.7.如图4中的四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序排列为__③④①②__.图4第2课时 中心投影知识点.中心投影1.如图1是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为( B )图1 A .太阳光线B .灯光光线C .太阳光线或灯光光线D .该影子实际不可能存在2.圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图2所示的圆环形阴影.已知桌面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面圆环形阴影的面积是( D )A .0.324π m 2B .0.288π m 2C .1.08π m 2D .0.72π m 2图2 第2题答图【解析】 如答图,∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD ,∴OA OB =AC BD ,即23=0.6BD ,解得BD =0.9 m ,同理,由AC ′=0.2 m ,可得BD ′=0.3 m ,∴S 圆环形阴影=0.92π-0.32π=0.72π(m 2).3.如图3,一根直立于水平地面的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE =5 m ,在旋转过程中,影长的最大值为5 m ,最小值3 m ,且影长最大时,木杆与光线垂直,则路灯EF 的高度为__7.5__m.图3 第3题答图【解析】当旋转到达地面时,为最短影长,等于AB,∵最小值3 m,∴AB=3 m,∵影长最大时,木杆与光线垂直,如答图,则AC=5 m,∴BC=4 m,∵∠ABC=∠FEC=90°,∠C是公共角,∴△CAB∽△CFE,∴BCEC=ABEF,∴410=3EF,解得EF=7.5 m.4.如图4,某光源下有三根杆子,甲杆GH的影子为GM,乙杆EF的影子一部分照在地面上为EA,一部分照在斜坡AB上为AD.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面上的影子;(2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面夹角为60°,AD=1 m,AE=2 m,请求出乙杆EF的高度.(结果保留根号)图4 第4题答图解:(1)如答图,NQ即为PQ在地面上的影子;(2)如答图,分别延长FD,EA交于点S,在Rt△ADS中,∠ADS=90°,∵∠DAS=60°,∴∠S=30°,又∵AD=1,∴AS=2,∴ES=AS+AE=2+2=4,在Rt△EFS中,∠FES=90°,EF=ES tan∠FSE=4tan30°=433m.易错点:混淆了中心投影与平行投影的特征.5.下列投影中,是平行投影的是(D)A B C D。
2017-2018学年数学浙教版九年级下册3.1.1 投影—投影与平行投影 同步练习
![2017-2018学年数学浙教版九年级下册3.1.1 投影—投影与平行投影 同步练习](https://img.taocdn.com/s3/m/d97fea085727a5e9856a616e.png)
2017-2018学年数学浙教版九年级下册3.1.1 投影—投影与平行投影同步练习一、基础训练1.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是现象.+2.形成投影应具备的条件有: 、、+3.在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是( )A、若栏杆的影子落在围栏里,则是在太阳光照射下形成的B、若这盏路灯有影子,则说明是在白天形成的C、若所有栏杆的影子都在围栏外,则是在路灯照射下形成的D、若所有栏杆的影子都在围栏外,则是在太阳光照射下形成的+4.皮影戏是在哪种光照射下形成的( )A、灯光B、太阳光C、平行光D、以上都不是+5.平行投影中的光线是( )A、平行的B、聚成一点的C、不平行的D、向四面发散的+6.下列各图中是太阳光下形成的影子的是( )A、B、C、D、+7.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )A、三角形B、线段C、长方形D、平行四边形+8.下列四幅图中,表示两棵树在同一时刻阳光下的影子的可能是( )A、B、C、D、+9.如图,是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( )A、③④②①B、②④③①C、③④①②D、③①②④+10.如图,林林在A时测得某树的影长为2 m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则该树的高度为+二、提升训练11.如图,在太阳光下,物体AB的影子为AB',物体CD的影子为CD',试画出物体CD.( AB,CD均垂直于地面)+12.某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5 m的同学的影长为1.35m,由于大树靠近一幢建筑物,因此树影的一部分落在建筑物上,如图所示,他们测得地面部分的影长为3.6 m,建筑物上的影长为1.8 m,则树的高度为.+13.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上.(1)、请你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)、若AB=5米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长. +14.如图,在一个长40 m、宽30m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)、此时两人相距多少米(DE的长)?(2)、张华追赶王刚的速度是多少?+。
浙教版初中数学九年级下册:3.1 投影 同步练习题测试卷
![浙教版初中数学九年级下册:3.1 投影 同步练习题测试卷](https://img.taocdn.com/s3/m/dff1a5f14b35eefdc8d333f1.png)
小题,每小题3分,满分24分)
、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )
A、A⇒B⇒C⇒D
B、D⇒B⇒C⇒A
、下列图中是太阳光下形成的影子是( )
、、
、、
、如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )、、
、、
这两个同学发现(画图用阴影表示)
20、路灯下站着小赵,小芳,小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光
下的影子.
1、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )
A、A⇒B⇒C⇒D
B、D⇒B⇒C⇒A
、下列图中是太阳光下形成的影子是( )
、、
、、
、如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )、、
、、
解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6
这两个同学发现(画图用阴影表示)考点:视点、视角和盲区。
下的影子.
解:
)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得
∴,
∴
说明:画图时,不要求学生做文字说明,只要画出两条平行线
点评:本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合
质;可得:=;即AB=.
)根据相似三角形的性质;可得:=;即AB=.
相信自己,就能走向成功的第一步。
浙教版数学九年级下册第3章 三视图与表面展开图
![浙教版数学九年级下册第3章 三视图与表面展开图](https://img.taocdn.com/s3/m/5bce50b40b4c2e3f56276351.png)
第3章三视图与表面展开图3.1 投影(1)1. 如图是小树的影子,图中反映的这一时刻大约是这一天的__上午__(填“上午”、“中午”或“下午”).(第1题)(第2题)2. 如图,A′B′是阳光照射下篮板上边框AB在地面上的投影,已知A′B′=1.5 m,那么AB =1.5 m(填“>”“<”或“=”).(第3题)3.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,那么窗户的高AB为__1.5__m.4.对同一建筑物,相同时刻在太阳光下的影子冬天比夏天(B)A.短B.长C.看具体时间D.无法比较5.小杨在上午上学的路上和下午放学的路上都看不到自己的影子,则小杨家在学校的(C) A.东面B.南面C.西面D.北面(第6题)6.如图,箭头表示投射线的方向,则图中圆柱在墙壁上的投影是(D)A.圆B.圆柱C.梯形D.矩形7.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形8.在太阳光下转动一个正方体,观察正方体在地上投下的影子,则这个影子边数最多时是(C) A.四边形B.五边形C.六边形D.七边形9.如图,三角形纸板ABC垂直于投影面,点A′是点A在投影面上的投影,画出△ABC在投影面上的平行投影.(第9题)【解】如图.利用推平行线法,分别过点B作BB′∥AA′,过点C作CC′∥AA′,使BB′=CC′=AA′,连结A′B′,A′C′,B′C′即可.10.如图的四幅图分别是两个物体在不同时刻太阳光下的影子,按照时间的先后顺序排列正确的是(D)(第10题)A.①②③④B.①③②④C.④②③①D.③④①②11.某教学兴趣小组利用树影测量树高,已测出树AB的影子AC为9 m,并测得此时太阳光线与地面成30°夹角.(1)求树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化.假设太阳光线与地面夹角保持不变,试求树影的最大长度.(结果精确到0.1 m,参考数据:2≈1.414,3≈1.732.)(第11题)【解】(1)在Rt△ABC中,∠BAC=90°,∠ACB=30°,tan∠ACB=ABAC,∴AB=AC·tan30°=9×33≈5.2(m).(2)以点A为圆心,AB长为半径作圆弧,当太阳光线与圆弧相切时树影最长.设点D为切点,DE⊥AD交AC于点E.∵∠ADE=90°,∠E=30°,AD=AB=5.2,∴AE=2AD=10.4(m).答:树高AB约为5.2 m,树影的最大长度约为10.4 m.(第12题)12.小刚手里有一根长为80 cm的木棒,他把木棒垂直放置在地面上(如图所示),此时测出该木棒在太阳光下的影子的长度为60 cm.小刚转动该木棒,想尽可能使木棒的影子最长.问:该木棒转到什么位置时影子最长?并求出此时影子的长度.(第12题解)【解】 当该木棒转到与太阳光线垂直的位置时,影子的长度最长,如解图. ∵AB =80,BC =60, ∴AC =100. ∴BD =80×60100=48.∵AC ∥EF ,∴△BDC ∽△BEF. ∴BD BE =BC BF ,即4880=60BF , 解得BF =100 cm.即该木棒转到与太阳光线垂直的位置时影子最长,此时影子的长度为100 cm.初中数学试卷。
浙教版数学九年级下册3.1 投影(1)同步练习
![浙教版数学九年级下册3.1 投影(1)同步练习](https://img.taocdn.com/s3/m/2511e64b2cc58bd63086bd02.png)
3.1 投影(1)同步练习◆基础训练1.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6米,5米,4米 B.4米,5米,6米C.4米,6米,5米 D.5米,6米,4米2.在同一时刻,一棵高5米的树的影长为2米,此时2米高的小树的影子长为()A.45米 B.54米 C.1米 D.2米3.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形 B.平行四边形C.比窗户略小的矩形 D.比窗户略大的矩形4.一组平行的栏杆,被太阳光照射到地面上后,它们的位置关系是______.5.当太阳光线与地面成______度角时,站在树下肯定不会看到自己的影子.6.如图所示是一球吊地空中,当发光的手电筒由远及近时,•落在竖直木板上的影子会逐渐_________.7.当一块斜靠在墙上的木板在地面上的影子是边长为4的正方形时,木板与地面的夹角为45°,其截面如图,试求木板的面积.8.如图,有两根木棒AB,CD在同一平面上直立着,其中木棒AB在太阳光下的影子BE如图所示,请你在图中画出此时木棒CD的影子.◆提高训练9.一根长为2.5米的铁栏杆直立在地面上,它在地上的影长为532时,•太阳光线与地面的夹角为________.10.如图,AB,CD是直立在地上的两根等长的木棍,当CD•的影长等于木棍长时,木棍的影子恰好到AB的B处,已知B,•C,•E•三点在一条直线上,•则四边形ABCD•是________形,太阳光与地面的夹角为_________.11.一个圆柱形的茶叶盒在太阳光下旋转,其影子的变化过程可能是()A.矩形、矩形、圆 B.正方形、圆、矩形C.圆、矩形、矩形 D.无法确定12.五角星的影子也是一个五角星吗?请说明理由.13.昨天小明测得小红的影子在3点时是2米,可今天的同一时刻小红却怎么也测不出小明的影子的长度,为什么?如果小明身高1.7米,小红身高1.5米,你能够帮助他们计算出这一时刻小明的影子长度吗?(结果保留两位有效数字)14.如图,AC,BD表示两座等高的楼房,分别说出三种情况下两座楼房影子的变化关系,并按时间顺序排序.◆拓展训练15.某研究小组测量篮球的直径,通过实验发现下面的测量方法:如图,将篮球放在水平的桌面上,在阳光的斜射下,得到篮球的影子AB,设光线DA,CB分别与篮球相切于点E,F,则EF即为篮球的直径.若测得∠ABC=30°,AB的长为60cm.•请计算出篮球的直径.答案:1.B 2.A 3.B 4.平行或重合 5.90 6.变大 7. 8.略 9.30°10.正方,45° 11.D 12.不一定,由太阳光线的方向决定13.因为是阴天,没有太阳光,2.3米14.图(1)中太阳向西边落下时,两座楼的影子越来越长,影子方向相同,•都在图中的右侧;图(2)中AC,BD的影子都变短,影子方向相同;图(3)中太阳从东边升起时,两座楼的影子越来越短,影子方向相同,都在图中的左侧.按时间排序为(3),(2),(1)15.30cm初中数学试卷。
(浙教版)九年级数学下册 同步备课系列专题3.1 投影(第1课时)(作业)
![(浙教版)九年级数学下册 同步备课系列专题3.1 投影(第1课时)(作业)](https://img.taocdn.com/s3/m/674e72f2af45b307e87197fc.png)
第3章投影与三视图3.1 投影(第1课时)一、单选题1.如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【答案】B【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【详解】解:A、影子的方向不相同,故本选项错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D、影子的方向不相同,故本选项错误;故选:B.【点睛】本题考查了平行投影特点,难度不大,注意结合选项判断.2.身高1.6米的小明同学利用相似三角形测量学校旗杆的高度,上午10点,小明在阳光下的影长为1米,此时测得旗杆的影长为9米,则学校旗杆的高度是()A.9米B.10米C.13.4米D.14.4米【答案】D【分析】同一时刻,物体的实际高度与影长成比例,据此列方程即可解答.【详解】∵同一时刻的物高与影长成正比例,∵1.6∶1=旗杆的高度∶9.∴旗杆的高度为14.4米.故选D.【点睛】本题主要考查了平行投影的知识点.3.长方形的正投影不可能是()A.正方形B.长方形C.线段D.梯形【答案】D【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得出答案.【详解】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故长方形的正投影不可能是梯形,故选:D.【点睛】此题主要考查了平行投影的性质,利用太阳光线是平行的,那么对边平行的图形得到的投影依旧平行是解题关键.4.下列现象不属于投影的是()A.皮影B.素描画C.手影D.树影【答案】B【分析】根据投影的概念,皮影、树影、手影都是由光线照射形成的,都是投影,而素描画不满足,不是投影,即可得到答案.【详解】根据平行投影的概念可知,素描画不是光线照射形成的,故选:B.【点睛】本题考查了投影的概念,掌握知识点是解题关键.5.下列投影现象属于平行投影的是()A.手电筒发出的光线所形成的投影B.太阳光发出的光线所形成的投影C.路灯发出的光线所形成的投影D.台灯发出的光线所形成的投影【答案】B【分析】投影线交于一点的投影为中心投影,投影线相互平行的投影称为平行投影,由慨念进行逐一判断即可.【详解】解:因为:投影线交于一点的投影为中心投影,投影线相互平行的投影称为平行投影,所以A,C,D都属于中心投影,只有B属于平行投影.故选B.【点睛】本题考查的是中心投影与平行投影,掌握慨念是解题的关键.6.下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【答案】A【分析】利用中心投影(光由一点向外散射形成的投影叫做中心投影)和平行投影(由平行光线形成的投影是平行投影)的定义即可判断出.【详解】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.B.台灯的光线是由台灯光源发出的光线,是中心投影;C.手电筒的光线是由手电筒光源发出的光线,是中心投影;D.路灯的光线是由路灯光源发出的光线,是中心投影.所以,只有A不是中心投影.故选:A.【点睛】本题考查了中心投影和平行投影的定义.熟记定义,并理解一般情况下,太阳光线可以近似的看成平行光线是解决此题的关键.7.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A.B.C.D.【分析】根据太阳光下的影子的特点:(1)同一时刻,太阳光下的影子都在同一方向;(2)太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.【详解】选项A、B中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A、B错误选项C中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C错误选项D中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D正确故选:D.【点睛】本题考查了太阳光下的影子的特点,掌握太阳光下的影子的特点是解题关键.8.在一盏路灯的周围有一圈栏杆,则下列叙述中正确的是()A.在太阳光照射下,栏杆的影子都落在围栏里B.在路灯照射下,栏杆的影子都落在围栏里C.若所有栏杆的影子都在围栏外,则是在路灯照射下形成的D.若所有栏杆的影子都在围栏外,则是在太阳光照射下形成的【答案】C【解析】【分析】根据太阳光下的影子与灯光下的影子的特点:同一时刻,太阳光下的影子都在同一方向,而灯光下的影子则不一定,据此逐项判断即可.同一时刻同一地点下,由太阳光照射形成的影子在同一方向,一圈栏杆的影子不可能在太阳光照射下都落在围栏里或是都落在围栏外,因此,A项和D项均错误路灯是中心投影,则整个围栏内部都被照亮,即影子在围栏的外部,因此,B项错误,C项正确故选:C.【点睛】本题考查了太阳光下的影子与灯光下的影子的特点,掌握理解投影的特点是解题关键.二、填空题AB有一盏灯E到地面垂直距离EF为2,m圆桌的影9.小华家客厅有一张直径为1.2,m高为0.8m的圆桌,CD FC ,则点D到点F的距离为_______.子为,2【答案】4【分析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵AB∥CD,∴△ABE∽△CDE,∴ABCD=20.82-.∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.10.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为16m,那么这根旗杆的高度为_______m.【答案】8【分析】根据同时同地物高与影长成比相等,列式计算即可得解.【详解】设旗杆高度为x米,由题意得:1.5 316x=解得8x=.故答案为8.【点睛】本题考查投影,解题的关键是应用相似三角形.11.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为__________m.【答案】14.4【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.12.投影线垂直于投影面产生的投影叫做______.【答案】正投影【分析】根据正投影的概念作答.【详解】解:正投影的概念:投影线垂直于投影面产生的投影.【点睛】本题考查了正投影的概念,根据概念内容得出所描述的内容为正投影.13.甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比的关系是___________【答案】相等【分析】根据平行投影特点:在同一时刻,不同物体的物高和影长成比例,即可得出答案.【详解】解:根据在同一时刻,不同物体的物高和影长成比例;故同一时刻他们的身高与其影长成比例,即同一时刻他们的身高与影长的比相等.故答案为:相等.【点睛】本题考查平行投影特点:在同一时刻,不同物体的物高和影长成比例.14.身高相同的小刚和小美站在一盏路灯下的不同位置,已知小刚的影子比小美长,我们可以判定小刚离灯较________.【答案】远【解析】【分析】根据中心投影的特点判断即可.【详解】解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.所以小刚离灯较远.故答案为:远.【点睛】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.三、解答题15.如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.【答案】(1)中心;(2)如图,线段FI为此光源下所形成的影子. 见解析【分析】(1)根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;(2)如图(见解析),先通过AB、CD的影子确认光源O的位置,再作立柱EF在光源O下的投影即可.【详解】(1)由中心投影的定义得:此光线下形成的投影是:中心投影故答案为:中心;(2)如图,连接GA、HC,并延长相交于点O,则点O就是光源,再连接OE,并延长与地面相交,交点为I,则FI为立柱EF在此光源下所形成的影子.【点睛】本题考查了中心投影的定义,根据已知立柱的影子确认光源的位置是解题关键.16.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60角,房屋向南的窗户AB高1.6m.现要在窗户外面的上方安装一个水平遮阳篷AC(如图所示).要使太阳光线不能直接射入室内,遮阳篷AC的宽度至少为多少?【答案】遮阳篷AC.【解析】【分析】利用相应的三角函数可求得此时AC的长度,当遮阳蓬的宽度大于AC的宽度时,太阳光线照在点B的下方,也不能射入室内.【详解】解:此时△ABC为∠ABC是30°的直角三角形,则AC=AB×tan30°= 3AB=15,当遮阳蓬AC 的宽度大于15时,太阳光线不能射入室内,. 【点睛】考查了解直角三角形的应用和平行投影.用到的知识点为:遮阳板越小,透进屋内的阳光越多,反正越少;关键是求得此时遮阳板的长度.17.如图,已知木棒AB 在投影面p 上的正投影为''A B ,且20'120=∠=︒,AB cm BAA ,求''A B 的长.【答案】''=A B .【解析】【分析】作AC ⊥BB′于点C ,利用锐角三角函数求得AC 的长即可求得AB 的正投影的长.【详解】解:如图,过点A 作'⊥AC BB 于B 点C ,则90,90,︒'︒''∠=∠==ACB CAA AC A B ,1209030''︒︒︒∴∠=∠-∠=-=BAC BAA CAA ,∴在Rt ABC ∆中,110cm 2==BC AB ,利用勾股定理得,===AC''∴==A B AC .【点睛】本题考查了平行投影的知识,解题的关键是了解当物体平行于投影面时,其正投影和实物长度相等. 18.一木杆按如图所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD 表示).【答案】见解析.【解析】【分析】根据平行投影的性质,得出木杆的影子即可.【详解】如图,CD是木杆在阳光下的影子.【点睛】此题主要考查了平行投影,得出太阳光线是平行光线是解题关键.19.如图,公路旁有两个高度相同的路灯AB,CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处晚自习放学时,小明站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处。
浙教版九年级数学下3.1投影课时训练(2)含答案
![浙教版九年级数学下3.1投影课时训练(2)含答案](https://img.taocdn.com/s3/m/a1b12b37b8f67c1cfbd6b83c.png)
3.1 投影◆基础训练1.皮影戏是在哪种光照射下形成的()A.灯光 B.太阳光 C.平行光 D.都不是2.下列各种现象属于中心投影现象的是()A.上午10点时,走在路上的人的影子 B.晚上10点时,走在路灯下的人的影子C.中午用来乘凉的树影 D.升国旗时,地上旗杆的影子3.小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远 B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关 D.路灯的灯光越来越亮4.两个物体映在地上的影子有时在同侧,有时在异侧,则这可能是________投影.5._______和_______都是在灯光照射下形成的影子.6.如图,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB•在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_______.7.说出平行投影与中心投影的异同.8.点光源发出的光线照射到物体上,会形成影子,那么在手术室里有4位医生,会有几个影子?说明你的理由.◆提高训练9.如图,AB,CD是两根木杆,它们在同一平面内的同一直线MN上,则下列有关叙述正确的是()A.若射线BN正上方有一盏路灯,则AB,CD的影子都在射线BN上;B.若线段BD正上方有一盏路灯,则AB的影子在射线BM上,CD的影子在射线DN上; C.若在射线DN正上方有一盏路灯,则A B,CD的影子都在射线BN上;D.若太阳处在线段BD的正上方,则AB,CD的影子位置与选项B中相同.10.在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是()A.若栏杆的影子落在围栏里,则是在太阳光照射下形成的B.若这盏路灯有影子,则说明是在白天形成的影子C.若所有的栏杆的影子都在围栏外,则是在路灯照射下形成的D.若所有的栏杆的影子都在围栏外,则是在太阳光照射下形成的11.如图,BE,DF是甲,乙两人在路灯下形成的影子,•请在图中画出灯泡的位置.12.如图,在圆桌的正上方有一盏吊灯,在灯光下,圆桌在地板上的投影是面积为4 m2的圆.已知圆桌的高度为1m,圆桌面的半径为0.5m,•试求吊灯距圆桌面的距离.13.在太阳光下两根竹竿直立在地上,如图所示是其中一根竹竿的位置和它在地面上的投影,以及另一根竹竿在地面上的投影,请画出第二根竹竿的位置(•不写画法).◆拓展训练14.请在图中画出灯泡的位置,并且画出形成影子MN的小木杆.15.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,•它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8•米,求木杆PQ的长度.QP N MC BA答案:1.A 2.B 3.A 4.中心 5.皮影,手影等 6.10m7.相同点:都是在光线照射下形成的影子;不同点:平行投影是平行光源,中心投影是点光源;形成的影子情况不同8.没有影子,手术室里用的是无影灯9.B 10.D 11.连结EA,FC,•它们的延长线的交点即为灯泡的位置12.13m 13.略14.连结CA,FD并延长,它们的交点S•即为灯泡的位置,连结MS,过N作GN⊥MN交MS于G,则GN就是小木杆,图略15.2.3m。
浙教版九年级数学下《3.1投影》同步练习
![浙教版九年级数学下《3.1投影》同步练习](https://img.taocdn.com/s3/m/1e28e21f168884868762d69d.png)
3.1第1课时平行投影一、选择题1.小明在操场上练习双杠时,他发现地上双杠的两横杠在阳光下的影子()A.相交B.平行(或重合)C.垂直D.无法确定2.如图K-51-1是小明某天上学、放学时看到的同一根电线杆在地上的投影,按时间先后顺序进行排列正确的是()图K-51-1A.(1)(2)(3)(4) B.(4)(3)(1)(2)C.(4)(3)(2)(1) D.(2)(3)(4)(1)3.上午9时,阳光灿烂,小李在地面上同时摆弄两根长度不相等的竹竿,若它们的影子长度相等,则这两根竹竿的相对位置可能是()A.两根都垂直于地面B.两根都倒在地面上C.两根不平行地斜竖在地面上D.两根平行地斜竖在地面上4.如图K-51-2,小芳和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.若小芳比爸爸矮0.3 m,则她的影长为()A.1.3 m B.1.65 m C.1.75 m D.1.8 m图K-51-2二、填空题5.小明同学拿着一个如图K-51-3所示的三角形木架在太阳光下玩,他不断变换三角形木架的位置,他说他发现了三角形木架在地上出现过的影子有四种:①点;②线段;③三角形;④四边形.你认为小明的说法中正确的有________个.图K-51-36.2017·吉林如图K-51-4,数学活动小组为了测量学校旗杆AB的高度,使用长为2 m的竹竿作为测量工具,移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4 m,BD=14 m,则旗杆AB的高为________ m.图K-51-47.某数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图K-51-5),其影长为1.2米,落在地面上的影长为2.4米,则树高为______米.图K-51-5三、解答题8.如图K-51-6,已知线段AB=2 cm,投影面为P,太阳光线与投影面垂直.(1)当AB垂直于投影面P时(如图K-51-6①),请画出线段AB的投影;(2)当AB平行于投影面P时(如图K-51-6②),请画出它的投影,并求出投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图③中画出线段AB的投影,并求出其投影的长.图K-51-69.在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65米的黄丽同学BC的影长BA为1.1米,如图K-51-7所示,与此同时,测得教学楼DE的影长DF为12.1米.(1)请你在图中画出此时教学楼DE在阳光下的投影DF;(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).图K-51-710.如图K-51-8,某广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下木杆CD的影子刚好不落在广告墙PQ上.(1)在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CD=3米,CD到PQ的距离DQ为4米,求此时木杆AB的影长.图K-51-811.如图K-51-9,阳光通过窗口照射到室内(太阳光线是平行光线),在地面上留下2.7 m宽的亮区,已知亮区到窗口下墙脚的距离EC=8.7 m,窗口高AB=1.8 m,求窗口底边离地面的高BC.图K-51-912思维延伸如图K-51-10,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m和1 m,则塔高AB为()图K-51-10A. 24 mB. 22 mC. 20 mD. 18 m1.[答案] B2.[解析] B根据平行投影的规律:早晨到傍晚物体在地上的投影的指向是西——西北——北——东北——东,影子由长变短,再变长,可知顺序为(4)(3)(1)(2).3.[答案] C4.[答案] C5.[答案] 26.[答案] 97.[答案] 4.28.解:(1)如图①,点C为所求的投影.(2)如图②,线段CD为所求的投影,CD=2 cm.(3)如图③,线段CD为所求的投影,CD=2×cos30°=3(cm).9.解:(1)DF如图所示.(2)∵BCAB=DEDF,∴1.651.1=DE12.1,∴DE=18.15≈18.2(米).即教学楼DE的高度约为18.2米.10.解:(1)如图所示:(2)设木杆AB 的影长BF 为x 米, 由题意,得 6x =34, 解得x =8.答:此时木杆AB 的影长为8米. 11.解:∵AE ∥BD , ∴∠AEC =∠BDC. 又∠C =∠C , ∴△AEC ∽△BDC , ∴AC BC =EC DC, 即1.8+BC BC =8.78.7-2.7. ∴BC =4(m ).答:窗口底边离地面的高BC 为4 m .11[解析] A 如图,过点D 作DF ⊥CD ,交AE 于点F ,过点F 作FG ⊥AB ,垂足为G.由题意得DF DE =1.62,∴DF =DE ×1.6÷2=14.4(m ). ∵GF =BD =12CD =6 m ,AG GF =1.61,∴AG =1.6×6=9.6(m ).∴AB=AG+GB=AG+DF=9.6+14.4=24(m).。
浙教版九年级下册数学第3章 3.1投影 第2课时 中心投影随堂练习(解析版)
![浙教版九年级下册数学第3章 3.1投影 第2课时 中心投影随堂练习(解析版)](https://img.taocdn.com/s3/m/a9e447c9a5e9856a571260cc.png)
浙教版九年级下册数学第3章3.1投影第2课时中心投影随堂练习(解析版)相交于2号房间的位置.6.[2019·北京]如图3-1-14,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__3__m.图3-1-14 第6题答图【解析】如答图,∵小军、小珠的身高与影长相等,∴∠E=∠F=45°,∴AB=BE=BF,设路灯的高AB为x m,则BD=(x-1.5)m,BC=(x-1.8)m,又∵CD=2.7 m,∴x-1.5+x-1.8=2.7,解得x=3.7.如图3-1-15,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).图3-1-15 第7题答图解:(1)如答图,点P就是路灯灯泡所在的位置;(2)如答图,EF就是小华此时在路灯下的影子.8.如图3-1-16,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB ∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是__1.8__m.图3-1-16【解析】∵AB∥CD,∴△PAB∽△PCD.假设CD到AB距离为x(m),则ABCD=2.7-x2.7,1.54.5=2.7-x2.7,解得x=1.8,∴AB与CD间的距离是1.8 m.9.如图3-1-17,身高1.6 m的小明从距路灯的底部(点O)20 m的点A沿AO 方向行走14 m到点C处,小明在A处,头顶B在路灯投影下形成的影子在M 处.(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置;(2)若路灯(点P)距地面8 m,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?图3-1-17 第9题答图解:(1)如答图所示;(2)设在A处时影长AM为x m,在C处时影长CN为y m.由xx+20=1.68,解得x=5,由yy+6=1.68,解得y=1.5,∴x-y=5-1.5=3.5.答:身影的长度变短了,变短了3.5 m.10.晚上,一个身高1.6 m的人站在路灯下,发现自己的影子刚好是4块地砖的长(地砖是边长为0.5 m的正方形),当他沿着影子的方向走了4块地砖时,发现自己的影子刚好是5块地砖的长,根据他的发现,你能不能计算出路灯的高度?第10题答图解:如答图,AC=4×0.5=2(m),CE=5×0.5=2.5(m),AB=CD=1.6 m,∵AB ∥OP,∴△CAB∽△COP,∴ABOP=CA CO,即1.6OP=22+AO,①∵CD∥OP,∴△ECD∽△EOP,∴CDOP=ECEO,即1.6OP=2.52.5+2+AO,②由①②,得22+AO=2.52.5+2+AO,解得AO=8,∴1.6OP=22+8,解得OP=8.答:路灯的高度为8 m.11.如图3-1-18,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为(A)图3-1-18A BC D【解析】如答图,设身高GE=h,CF=l,AF=a.当x≤a时,在△OEG和△OFC中,∠GOE=∠COF,∠AEG=∠AFC=90°,∴△OEG∽△OFC,第11题答图∴OEOF=GECF,∴ya-(x-y)=hl,∴y=-hl-hx+ahl-h.∵a,h,l都是固定的常数,∴自变量x的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线,∴影长将随着小亮离灯光越来越近而越来越短,到灯下的时候,将是一个点,然后随着离灯光越来越远而影长将越来越长.故选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投影
班级:___________姓名:___________得分:__________
一.选择题
1、小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()
A.6米,5米,4米B.4米,5米,6米
C.4米,6米,5米D.5米,6米,4米
2、太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()
A.与窗户全等的矩形B.平行四边形
C.比窗户略小的矩形D.比窗户略大的矩形
3、皮影戏是在哪种光照射下形成的()
A.灯光B.太阳光C.平行光D.都不是
4、下列各种现象属于中心投影现象的是()
A.上午10点时,走在路上的人的影子B.晚上10点时,走在路灯下的人的影子
C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子
5.小刚走路时发现自己的影子越走越长,这是因为()
A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近
C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮
二、填空题
1. 米长的标杆直立在水平的地面上,它在阳光下的影长为米,此时,若某电视塔的影长为
米,则此电视塔的高度应是_____米。
2. 下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序是_____。
3、数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为米的竹竿的影长为米。
同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为米,落在地面上的影长为米,则树高为_____米
三、解答题
1.把一个不透光的圆柱体放在桌上,旁边点一直蜡烛,桌上会投下清晰的影子,如果蜡烛个数增多,影子会发生什么变化,若在圆柱体周围都点上蜡烛,影子又有什么变化,科学家用这一原理发明了什么器材,用于什么行业?
2. 根据要求画出图形,如图,一根木棒竖直立在地面上,画出在灯光下的影子
.
3.五角星的影子也是一个五角星吗?请说明理由.
4.如图,AC,BD表示两座等高的楼房,分别说出三种情况下两座楼房影子的变化关系,并按时间顺序排序.
参考答案
一. 选择题
1. B
【解析】 下午之后,太阳下落,影子逐渐变长
2. A 【解析】大阳光是平行光线,平行投影得到的是与原图形全等的影子
3. A
【解析】皮影戏又名“灯影子”,就是用灯光将“影人”投影在幕布上
4 B
【解析】ACD 都属于太阳光的平行投影
故选B .
5.A
【解析】B 选项,离路灯越来越近,影子会越来越短;D 选项,灯光越亮,影子越深,与长度无关
二、填空题
1、125 【解析】
100
8.01x X=125
2、C-D-A-B
【解析】(1)就北半球而言,从早晨到傍晚,物体的影子的指向是:西→西北→北→东北→东.
(2)物体影子的大小变化:在早晨,投影较长,在上午,随着太阳位置的变化,投影的长度逐渐变短,下午又逐渐变长.
3、4.2
【解析】
三、解答题
1. 解:(1)蜡烛个数增多,影子会变小变淡
(2)若在圆柱体的周围点燃一圈蜡烛,则影子消失了,因为十周都有蜡烛点亮,就没有阴影了(3)根据这一原理发明了无影灯,用于医疗行业
2、解:
3.不一定,由太阳光线的方向决定
4.图(1)中太阳向西边落下时,两座楼的影子越来越长,影子方向相同,•都在图中的右侧;图(2)中AC,BD的影子都变短,影子方向相同;图(3)中太阳从东边升起时,两座楼的影子越来越短,影子方向相同,都在图中的左侧.按时间排序为(3),(2),(1)。