2012数学考试大纲
2012考研《数学》大纲解析及备考指导汇总(精)
2012考研《数学》大纲解析及备考指导汇总考试科目:微积分 . 线性代数 . 概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为 150分,考试时间为 180分钟 .二、答题方式答题方式为闭卷、笔试 .三、试卷内容结构微积分约 56%线性代数约 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题 4分,共 32分填空题 6小题,每题 4分,共 24分解答题 (包括证明题 9小题,共 94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性 . 单调性 . 周期性和奇偶性复合函数 . 反函数 . 分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系 .2. 了解函数的有界性 . 单调性 . 周期性和奇偶性 .3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念 .4. 掌握基本初等函数的性质及其图形,了解初等函数的概念 .5. 了解数列极限和函数极限 (包括左极限与右极限的概念 .6. 了解极限的性质与极限存在的两个准则, 掌握极限的四则运算法则, 掌握利用两个重要极限求极限的方法 .7. 理解无穷小的概念和基本性质 . 掌握无穷小量的比较方法 . 了解无穷大量的概念及其与无穷小量的关系 .8. 理解函数连续性的概念 (含左连续与右连续 ,会判别函数间断点的类型 .9. 了解连续函数的性质和初等函数的连续性, 理解闭区间上连续函数的性质(有界性、最大值和最小值定理 . 介值定理 ,并会应用这些性质 .二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数 . 反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L´Hospital法则函数单调性的判别函数的极值函数图形的凹凸性 . 拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1. 理解导数的概念及可导性与连续性之间的关系, 了解导数的几何意义与经济意义 (含边际与弹性的概念 ,会求平面曲线的切线方程和法线方程 .2. 掌握基本初等函数的导数公式 . 导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数 .3. 了解高阶导数的概念,会求简单函数的高阶导数 .4. 了解微分的概念, 导数与微分之间的关系以及一阶微分形式的不变性, 会求函数的微分 .5. 理解罗尔 (Rolle定理 . 拉格朗日 ( Lagrange中值定理 . 了解泰勒定理 . 柯西(Cauchy中值定理,掌握这四个定理的简单应用 .6. 会用洛必达法则求极限 .7. 掌握函数单调性的判别方法, 了解函数极值的概念, 掌握函数极值、最大值和最小值的求法及其应用 .8. 会用导数判断函数图形的凹凸性 (注:在区间内,设函数具有二阶导数 . 当时,的图形是凹的 ; 当时,的图形是凸的 ,会求函数图形的拐点和渐近线 .9. 会描述简单函数的图形 .三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨 (Newton- Leibniz公式不定积分和定积分的换元积分法与分部积分法反常 (广义积分定积分的应用考试要求1. 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法 .2. 了解定积分的概念和基本性质, 了解定积分中值定理, 理解积分上限的函数并会求它的导数, 掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法 .3. 会利用定积分计算平面图形的面积 . 旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题 .4. 了解反常积分的概念,会计算反常积分 .四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值 . 最大值和最小值二重积分的概念 . 基本性质和计算 **区域上简单的反常二重积分考试要求1. 了解多元函数的概念,了解二元函数的几何意义 .2. 了解二元函数的极限与连续的概念, 了解有界闭区域上二元连续函数的性质 .3. 了解多元函数偏导数与全微分的概念 , 会求多元复合函数一阶、二阶偏导数,会求全微分 , 会求多元隐函数的偏导数 .4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件, 会求二元函数的极值, 会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值, 并会解决简单的应用问题 .5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法 (直角坐标 . 极坐标 . 了解 **区域上较简单的反常二重积分并会计算 .五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级杰的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径 . 收敛区间 (指开区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1. 了解级数的收敛与发散 . 收敛级数的和的概念 .2. 了解级数的基本性质和级数收敛的必要条件, 掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法 .3. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系, 了解交错级数的莱布尼茨判别法 .4. 会求幂级数的收敛半径、收敛区间及收敛域 .5. 了解幂级数在其收敛区间内的基本性质 (和函数的连续性、逐项求导和逐项积分 ,会求简单幂级数在其收敛区间内的和函数 .6. 了解 ... 及的麦克劳林 (Maclaurin展开式 .六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念 .2. 掌握变量可分离的微分方程 . 齐次微分方程和一阶线性微分方程的求解方法 .3. 会解二阶常系数齐次线性微分方程 .4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式 . 指数函数 . 正弦函数 . 余弦函数的二阶常系数非齐次线性微分方程 .5. 了解差分与差分方程及其通解与特解等概念 .6. 了解一阶常系数线性差分方程的求解方法 .7. 会用微分方程求解简单的经济应用问题 .线性代数一、行列式考试内容行列式的概念和基本性质行列式按行 (列展开定理考试要求1. 了解行列式的概念,掌握行列式的性质 .2. 会应用行列式的性质和行列式按行 (列展开定理计算行列式 .二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质 .2. 掌握矩阵的线性运算、乘法、转置以及它们的运算规律, 了解方阵的幂与方阵乘积的行列式的性质 .3. 理解逆矩阵的概念, 掌握逆矩阵的性质以及矩阵可逆的充分必要条件, 理解伴随矩阵的概念,会用伴随矩阵求逆矩阵 .4. 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法 .5. 了解分块矩阵的概念,掌握分块矩阵的运算法则 .三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1. 了解向量的概念,掌握向量的加法和数乘运算法则 .2. 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念, 掌握向量组线性相关、线性无关的有关性质及判别法 .3. 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩 .4. 理解向量组等价的概念,理解矩阵的秩与其行 (列向量组的秩之间的关系 .5. 了解内积的概念 . 掌握线性无关向量组正交规范化的施密特 (Schmidt方法 .四、线性方程组考试内容线性方程组的克莱姆 (Cramer法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组 (导出组的解之间的关系非齐次线性方程组的通解考试要求1. 会用克莱姆法则解线性方程组 .2. 掌握非齐次线性方程组有解和无解的判定方法 .3. 理解齐次线性方程组的基础解系的概念, 掌握齐次线性方程组的基础解系和通解的求法 .4. 理解非齐次线性方程组解的结构及通解的概念 .5. 掌握用初等行变换求解线性方程组的方法 .五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1. 理解矩阵的特征值、特征向量的概念, 掌握矩阵特征值的性质, 掌握求矩阵特征值和特征向量的方法 .2. 理解矩阵相似的概念, 掌握相似矩阵的性质, 了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法 .3. 掌握实对称矩阵的特征值和特征向量的性质 .六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1. 了解二次型的概念, 会用矩阵形式表示二次型, 了解合同变换与合同矩阵的概念 .2. 了解二次型的秩的概念, 了解二次型的标准形、规范形等概念, 了解惯性定理,会用正交变换和配方法化二次型为标准形 .3. 理解正定二次型 . 正定矩阵的概念,并掌握其判别法 .概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1. 了解样本空间 (基本事件空间的概念, 理解随机事件的概念, 掌握事件的关系及运算 .2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes公式等 .3. 理解事件的独立性的概念,掌握用事件独立性进行概率计算 ; 理解独立重复试验的概念,掌握计算有关事件概率的方法 .二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1. 理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率 .2. 理解离散型随机变量及其概率分布的概念, 掌握 0-1分布、二项分布、几何分布、超几何分布、泊松 (Poisson分布及其应用 .3. 掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布 .4. 理解连续型随机变量及其概率密度的概念, 掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5. 会求随机变量函数的分布 .三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1. 理解多维随机变量的分布函数的概念和基本性质 .2. 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布 .3. 理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系 .4. 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义 .5. 会根据两个随机变量的联合分布求其函数的分布, 会根据多个相互独立随机变量的联合分布求其函数的分布 .四、随机变量的数字特征考试内容随机变量的数学期望 (均值、方差、标准差及其性质随机变量函数的数学期望切比雪夫 (Chebyshev不等式矩、协方差、相关系数及其性质考试要求1. 理解随机变量数字特征 (数学期望、方差、标准差、矩、协方差、相关系数的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征 .2. 会求随机变量函数的数学期望 .3. 了解切比雪夫不等式 .五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利 (Bernoulli大数定律辛钦 (Khinchine大数定律棣莫弗 -拉普拉斯 (De Moivre-Laplace定理列维 -林德伯格 (Levy-Lindberg定理考试要求1. 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律 (独立同分布随机变量序列的大数定律 .2. 了解棣莫弗 -拉普拉斯中心极限定理 (二项分布以正态分布为极限分布、列维 -林德伯格中心极限定理 (独立同分布随机变量序列的中心极限定理 ,并会用相关定理近似计算有关随机事件的概率 .六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1. 了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念, 其中样本方差定义为2. 了解产生变量、变量和变量的典型模式 ; 了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表 .3. 掌握正态总体的样本均值 . 样本方差 . 样本矩的抽样分布 .4. 了解经验分布函数的概念和性质 .七、参数估计考试内容点估计的概念考试要求估计量与估计值矩估计法最大似然估计法 1.了解参数的点估计、估计量与估计值的概念. 2.掌握矩估计法(一阶矩、二阶矩和最大似然估计法 2012 考研数学大纲(数三的延伸阅读——GCT 考试各科技巧小贴士 GCT 有四部分组成:英语、数学、语文、逻辑。
2012考研《数学》大纲解析及备考指导汇总
2012考研《数学》大纲综述及备考指导2011年9月15日教育部考试中心发布了2012年全国硕士研究生入学统一考试数学考试大纲,与去年相比考试内容和考试要求上没有变化,具体如下:试卷题型结构为:单项选择题 8小题,每小题4分,共32分;填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分.数学一高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学二高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.数学三2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.农学数学高等数学部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.线性代数部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.概率论与数理统计部分:2012年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2011年相同.大纲在考试要求和考试内容上没有变化,对于考生来说可以按照既定的复习计划,按部就班的进行备考了。
与此同时,同学们最好能够根据考试大纲上的知识点再系统的复习一下相应的考试点,一方面可以起到巩固提高的作用,另外一方方面,可以形成知识体系脉络。
2012年普通高等学校招生全国统一考试数学大纲全国卷
2012年普通高等学校招生全国统一考试(大纲全国卷)一、选择题1.复数-1+3i1+i=( )A .2+iB .2-iC .1+2iD .1-2i2.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3 D .1或33.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A.x 216+y 212=1 B.x 212+y 28=1 C.x 28+y 24=1 D.x 212+y 24=14.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2 B. 3 C. 2 D .15.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.1011006.△ABC 中,AB 边的高为CD .若=b ,a·b =0,|a |=1,|b |=2,则=( )A.13a -13bB.23a -23bC.35a -35bD.45a -45b7.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53 B .-59C.59D.538.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.459.已知x =ln π,y =log 52,z =e -12,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.已知函数y =x 3-3x +c 的图像与x 轴恰有两个公共点,则c =( ) A .-2或2 B .-9或3 C .-1或1 D .-3或111.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A .12种B .18种C .24种D .36种12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =37.动点P从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A .16B .14C .12D .10二、填空题13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,则z =3x -y 的最小值为________.14.当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.15.若(x +1x )n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________.16.三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为________.三、解答题17.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A -C )+cos B =1,a =2c ,求C .18.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.19.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.设函数f (x )=ax +cos x ,x ∈[0,π]. (1)讨论f (x )的单调性;(2)设f (x )≤1+sin x ,求a 的取值范围.21.已知抛物线C :y =(x +1)2与圆M :(x -1)2+(y -12)2=r 2(r >0)有一个公共点A ,且在A 处两曲线的切线为同一直线l .(1)求r ;(2)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离.22.函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.答案2012年普通高等学校招生全国统一考试(大纲全国卷)一、选择题1.解析:-1+3i1+i =1+2i.答案:C2.解析:A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3.答案:B3.解析:由a 2c =4,2c =4,得c =2,a 2=8,b 2=a 2-c 2=8-4=4,所以椭圆的方程为x 28+y 24=1. 答案:C4.解析:连接AC ,交BD 于点O ,连接EO ,过点O 作OH ⊥AC 1于点H ,因为AB =2,所以AC =22,又CC 1=22,所以OH =2sin 45°=1.答案:D5.解析:设数列{a n }的公差为d ,则a 1+4d =5,S 5=5a 1+5×42d =15,得d =1,a 1=1,故a n =1+(n -1)×1=n ,所以1a n a n +1=1n (n +1)=1n -1n +1,所以S 100=1-12+12-13+…+1100-1101=1-1101=100101. 答案:A6.解析:由题可知|AB |2=22+12=5,因为AC 2=AD ·AB ,所以AD =AC 2AB =455,利用各选项进行验证可知选D.答案:D7.解析:将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53,因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)(cos α+sin α)=-53. 答案:A8.解析:因为c 2=2+2=4,所以c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,所以|PF 2|=22,|PF 1|=42,由余弦定理可知cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34.9.解析:因为ln π>ln e =1,log 52<log 55=1,所以x >y ,故排除A 、B ;又因为log 52<log 55=12,e -12=1e >12,所以z >y ,故排除C ,选D.答案:D10.解析:设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.答案:A11.解析:由分步乘法计数原理,先排第一列,有A 33种方法,再排第二列,有2种方法,故共有A 33×2=12种排列方法.答案:A12.解析:结合已知点E ,F 的位置,进行作图,推理可知,在反射过程中直线是平行的,那么利用平行关系,作图可以得到P 第一次碰到E 点时,需碰撞14次.答案:B 二、填空题 13.解析:作出不等式组所表示的平面区域,如图所示,由z =3x -y ,得y =3x -z ,由题可知,求z 的最小值即为求y =3x -z 在可行域内纵截距的最大值,当过点A 时,所求的-z 最大,即过点A (0,1),即最大值为1=3×0-z ,所以z min =-1.答案:-114.解析:y =sin x -3cos x =2(12sin x -32cos x )=2sin(x -π3)的最大值为2,又0≤x <2π,故当x -π3=π2,即x =5π6时,y 取得最大值.答案:56π15.解析:由C 2n =C 6n 可知n =8,所以(x +1x )8的展开式的通项公式为T r +1=C r 8x 8-r (1x)r=C r 8x8-2r,所以8-2r =-2⇒r =5,所以1x2的系数为C 58=56. 答案:5616.解析:将三棱柱ABC -A 1B 1C 1补充成为四棱柱ABCD -A 1B 1C 1D 1,其中四边形ABCD 为菱形.因为BC 1∥AD 1,所以异面直线AB 1与BC 1所成的角为∠B 1AD 1.设棱长为a ,则由题中条件可知AB 1=3a ,B 1D 1=3a ,AD 1=2a ,则由余弦定理可得cos ∠B 1AD 1=3a 2+2a 2-3a 226a 2=66. 答案:6617.解:由B =π-(A +C ),得cos B =-cos(A +C ). 于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C , 由已知得sin A sin C =12. ①由a =2c 及正弦定理得sin A =2sin C . ② 由①、②得sin 2C =14,于是sin C =-12(舍去),或sin C =12.又a =2c ,所以C =π6.18.解:法一:(1)因为底面ABCD 为菱形,所以BD ⊥AC ,又P A ⊥底面ABCD ,所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =22,P A =2,PE =2EC ,故 PC =23,EC =233,FC =2,从而PC FC =6,ACEC= 6.因为PC FC =ACEC,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故 AG ⊥平面PBC ,AG ⊥BC .BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =P A 2+AD 2=2 2. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E (423,0,23),B (2,-b,0).即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =(1,-2b,2). 因为平面P AB ⊥平面PBC ,故m ·n =0,即b -2b=0,故b =2,于是19.解:记A i 表示事件:第1次和第2次这2次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A ) =0.16×0.4+0.48×(1-0.4) =0.352.(2)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3.P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A )=P (A 0)P (A )=0.16×0.6=0.096, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3) =1-0.144-0.352-0.096 =0.408.Eξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3) =0.408+2×0.352+3×0.096 =1.400.20.解:(1)f ′(x )=a -sin x .①当a ≥1时 ,f ′(x )≥0,当且仅当a =1,x =π2时,f ′(x )=0,所以f (x )在[0,π]上是增函数;②当a ≤0时,f ′(x )≤0,当且仅当a =0,x =0或x =π时,f ′(x )=0,所以f (x )在[0,π]上是减函数;③当0<a <1时,由f ′(x )=0解得x 1=arcsin a ,x 2=π-arcsin a . 当x ∈[0,x 1)时,sin x <a ,f ′(x )>0,f (x )是增函数; 当x ∈(x 1,x 2)时,sin x >a ,f ′(x )<0,f (x )是减函数; 当x ∈(x 2,π]时,sin x <a ,f ′(x )>0,f (x )是增函数. (2)由f (x )≤1+sin x 得f (π)≤1,a π-1≤1,所以a ≤2π.令g (x )=sin x -2πx (0≤x ≤π2),则g ′(x )=cos x -2π.当x ∈(0,arccos 2π)时,g ′(x )>0,当x ∈(arccos 2π,π2)时,g ′(x )<0.又g (0)=g (π2)=0,所以g (x )≥0,即2πx ≤sin x (0≤x ≤π2).当a ≤2π时,有f (x )≤2πx +cos x .①当0≤x ≤π2时,2πx ≤sin x ,cos x ≤1,所以f (x )≤1+sin x ;②当π2≤x ≤π时,f (x )≤2πx +cos x =1+2π(x -π2)-sin(x -π2)≤1+sin x .综上,a 的取值范围是(-∞,2π].21.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1). 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1.圆心为M (1,12),MA 的斜率k ′=(x 0+1)2-12x 0-1.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·(x 0+1)2-12x 0-1=-1,解得x 0=0,故A (0,1), r =|MA |= (1-0)2+(12-1)2=52,即r =52. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为 y -(t +1)2=2(t +1)(x -t ), 即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M 到该切线的距离为52,即 |2(t +1)×1-12-t 2+1|[2(t +1)]2+(-1)2=52, 化简得t 2(t 2-4t -6)=0,解得t 0=0,t 1=2+10,t 2=2-10.抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为 y =2x +1,①y =2(t 1+1)x -t 21+1,② y =2(t 2+1)x -t 22+1,③ ②-③得x =t 1+t 22=2.将x =2代入②得y =-1,故D (2,-1).所以D 到l 的距离 d =|2×2-(-1)+1|22+(-1)2=655. 22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为 y -5=f (2)-5(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为 y -5=f (x k +1)-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3;x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①、②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得x n +1=3+4x n2+x n .设b n =x n -3,则 1b n +1=5b n+1, 1b n +1+14=5(1b n +14),数列{1b n +14}是首项为-34,公比为5的等比数列.因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1.。
【2012考研必备资料】数学一考试大纲
【2012考研必备资料】年全国硕士研究生入学考试数学(一)考试大纲考试科目:数学高等数学、线性代数、概率论与数理统计高等数学试卷结构(一)题分及考试时间试卷满分为150分,考试时间为180分钟。
(二)内容比例高等教学约60%线性代数约20%概率论与数理统计20%(三)题型比例填空题与选择题约40%解答题(包括证明题)约60%一、函数、极限、连续考试内容函数的概念及表示法函数的有界性(有界和收敛的关系存在正数M使f(x)<M恒成立则有界,不存在M 则无界,注意与无穷大的区别-如振荡型函数)、单调性、周期性(注意周期函数的定积分性质)和奇偶性(奇偶性的前提是定义域关于原点对称)复合函数(两个函数的定义域值域之间关系)、反函数(函数必须严格单调,则存在单调性相同的反函数且与其原函数关于y=x对称)、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立(应用题)数列极限(转化为函数极限单调有界定积分夹逼定理)与函数极限(四则变换无穷小代换积分中值定理洛必塔法则泰勒公式-要齐次展开)的定义及其性质(局部保号性)函数的左极限与右极限(注意正负号)无穷小(以零为极限)和无穷大(大于任意正数)的概念及其关系无穷小的性质(和性质积性质)及无穷小的比较(求导定阶)极限的四则运算(要在各自极限存在的条件下)极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念(点极限存在且等于函数值)函数间断点的类型(第一型(有定义):可去型,跳跃型第二型(无定义):无穷型,振荡型)初等函数的连续性闭区间上连续函数的性质(零点定理介值定理)考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容。
2012考研《数学一、二、三》大纲
第17页,共24页。
目标管理的含义
• 明确目标 • 参与决策 • 规定期限 • 反馈绩效
第18页,共24页。
• 目标设置的方法——自己制定个人目标 • 目标间的关系——完成组织目标就是完成个
第20页,共24页。
(三)目标管理的流程
图1-1 ห้องสมุดไป่ตู้标管理流程图
第21页,共24页。
需要层次理论与人性假设
第22页,共24页。
(五)实施目标管理的哲学基础
麦格雷戈 的Y理论:
• 人并不是生来就厌恶工作
• 人完全能够实现自我指挥和自我控制。 • 对目标做出贡献是同获得成就的报酬直接相关的。
• 人们不但能接受而且主动承担责任。 • 多数人具有想象力和创造力。 • 人们并非天生就对组织的要求采取消极的或抵制的态度 管理的基本任务是使人们的潜能充分发挥出来,更好地为实现组织的目
目标管理
第1页,共24页。
摸高试验
• 把十个成员分成两组进行摸高比赛,看 哪一组摸得更高。第一组十个学生,不规定 任何目标,由他们自己随意制定摸高的高度; 第二组规定每个人首先定一个标准,比如要 摸到1.60米或1.80米。试验结束后,把两组 的成绩全部统计出来进行评比,结果发现规 定目标的第二组的平均成绩要高于没有制定 目标的第一组。
第8页,共24页。
思考
• 公司的共同愿景是什么?与目标有何 关系?
第9页,共24页。
(三)目标与计划
• 德国大众设定的目标为赶超日本丰田汽车公 司,成为世界第三大汽车制造商,全面提高 品牌的知名度 。
高考数学2012考试大纲
《高中数学课程标准》(第二稿)前言2000年6月《高中数学课程标准》(以下简称《标准》)研制工作开始启动。
研制组认真学习国家教育部《基础教育课程改革指导纲要》等文件,对世界上主要发达国家的数学课程标准进行了比较研究,认真分析了国内高中数学课程实施状况以及高中生的数学学习心理,对社会需求进行了广泛的调研,听取了数学界、教育界以及相关学科专家的意见,经过反复研究和讨论,确立了本标准制定的基本理念,设计了《标准》的基本框架和主要内容。
高中阶段是与九年义务教育相衔接的高一级基础教育。
《标准》根据时代特点,渗透算法思想,加入二阶矩阵与向量变换、重视直观几何以及数学建模、要求对高中数学课程进行了新的设计。
在保持我国数学教育的优良传统的同时,力求改变目前基础教育中“繁、难、偏、旧”的状况在数学教学中的反映。
《标准》在高一设必修课。
高二、高三分别设置不同要求、内容各有侧重的A、B、C、D四类选修系列课程,为学生提供了多种选择。
其中A 系列由基础性内容以及拓展性、挑战性的数学内容所组成。
B系列的内容与自然科学的联系较为密切。
C 系列则侧重与社会人文科学的联系。
D 系列主要涉及人类文明、以及日常生活中有关的数学问题。
《标准》的数学内容与过去相比有重大变化。
加入了一些新内容,例如,渗数学探究、数学文化等专题;对微积分、概率统计进行了新的设计和整合。
原有的内容如解析几何、立体几何、三角恒等变形等将在整合中适当精简。
在此基础上,A系列课程将着重学生的探究、阅读、表达能力的培养,不追求与大学相重叠的新内容。
C系列注重扩大人文科学的视野,加强数学意识的培养。
各个系列都注重发展学生创新精神、应用意识和实践能力,渗透了新的数学课程理念。
以上课程设计,经过了大量的国际比较(见附录)以及对我国数学教育传统的分析思考。
在内容要求上,本《标准》与高中已普及的美国、日本大致持平,但仍低于法、德、俄等国的一些高中的水平。
目录第一部分高中数学课程的总体构想一、《高中数学课程标准》设计的基本理念二、高中数学课程的基本框架三、课程内容的构成四、高中数学课程内容处理的新认识五、高中数学课程国际比较第二部分高中一年级“数学必修部分”的课程标准1.前言2. 《数学必修部分》课程标准3. 附录第三部分《高中数学》B 系列课程标准1. 前言2.“高中数学”B系列课程标准3. 附录第四部分数学A、数学C系列的基本框架一、数学A系列课程标准的基本框架二、数学C系列课程标准的基本框架第一部分。
考研数学复习资料:2012考研数学一、二、三考试大纲全内容
说明:“考研数学复习资料”是系列文档,如大家需要相关文档可在搜索框中输入“考研数学复习资料”即可找到相关文档,该系列资料有“万晓群enjoyd ”收集整理,也可直接搜索“万晓群enjoyd ”搜索该用户上传的相关文档012年 硕士研究生入学统一考试数学考试大纲数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 约78%线性代数 约22%四、试卷题型结构试卷题型结构为:单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x xx →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径给大家分享点个人的秘密经验,让大家考得更轻松。
2012年高考全国新课标数学学科考纲和考试说明解读
2012年高考全国新课标数学学科
《考试大纲》和《考试说明》解读
2012年全国新课标数学学科《考试大纲》文理科和2011年对比,在内容、能力要求、时间、分值(含选修比例)、题型题量、难度等几个方面都没有发生变化。
2012年全国新课标数学学科《考试说明》文理科和2011年对比在公式记忆要求方面有点变化:文理都要求记住:(1)球、棱柱、棱锥、台的表面积和体积的计算公式;(2)样本数据标准差公式。
2011年不要求记忆这些公式。
(3)其余的变化就是一些文字的表述的变化。
①删减,原意不改变。
比如立体几何初步部分要求理解一下判定定理“如果平面为一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
”去掉了“如果”,将那么变成“则”。
②变更,意思基本不变。
比如统计部分“能从样本的数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释。
”其中的“给出”变更为“作出”。
③表述的形式的变化,变化加大,应该思考。
比如推理与证明部分,“了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
”变更为“了解合情推理的含义,能进行简单的归纳推理和类比推理,体会病人是合情推理在数学发现中的作用。
”④表述要求的变化。
选修内容不等式部分,“理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明一下不等式…”,改为“理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件。
”。
2012考研大纲数二
2012年硕士研究生入学统一考试数学考试大纲数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:x xsin1??1lim?e??lim1,??x x??0x???x闭区间上连续函数的性质初等函数的连续性函数间断点的类型函数连续的概念考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系..了解函数的有界性、单调性、周期性和奇偶性.2 .理解复合函数及分段函数的概念,了解反函数及隐函数的概念.3 4.掌握基本初等函数的性质及其图形,了解初等函数的概念..理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右5 极限之间的关系..掌握极限的性质及四则运算法则.6.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的7 方法..理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求8.极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.??b,a f(x)具有二阶导数.设函数(注:8.会用导数判断函数图形的凹凸性在区间内,当????(x)?0ff0(x)f(x)f)(x?的图形是凸的)时,时,,会求函数图形的图形是凹的;当的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念..掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握2.换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.(n)??????)yxy,(?fx),y(?f),yyy?f(.和.会用降阶法解下列形式的微分方程:34.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求n维向量、向量的线性组合与线性表示的概念..理解12.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
2012数学一考试大纲
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
对比:
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换对比:
中重要的基本概
初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.念之一,
在理解矩阵相关概念的基础上,握矩阵的运算,于篇幅所限,
重难考点的深度解析与可命题角度详见
全国硕士研究生入学统一考试数学考试大纲配套强化指导》
分,第二篇。
高考数学2012考试大纲(精编版)
《高中数学课程标准》(第二稿)前言2000年6月《高中数学课程标准》(以下简称《标准》)研制工作开始启动。
研制组认真学习国家教育部《基础教育课程改革指导纲要》等文件,对世界上主要发达国家的数学课程标准进行了比较研究,认真分析了国内高中数学课程实施状况以及高中生的数学学习心理,对社会需求进行了广泛的调研,听取了数学界、教育界以及相关学科专家的意见,经过反复研究和讨论,确立了本标准制定的基本理念,设计了《标准》的基本框架和主要内容。
高中阶段是与九年义务教育相衔接的高一级基础教育。
《标准》根据时代特点,渗透算法思想,加入二阶矩阵与向量变换、重视直观几何以及数学建模、要求对高中数学课程进行了新的设计。
在保持我国数学教育的优良传统的同时,力求改变目前基础教育中“繁、难、偏、旧”的状况在数学教学中的反映。
《标准》在高一设必修课。
高二、高三分别设置不同要求、内容各有侧重的A、B、C、D四类选修系列课程,为学生提供了多种选择。
其中A 系列由基础性内容以及拓展性、挑战性的数学内容所组成。
B系列的内容与自然科学的联系较为密切。
C 系列则侧重与社会人文科学的联系。
D 系列主要涉及人类文明、以及日常生活中有关的数学问题。
《标准》的数学内容与过去相比有重大变化。
加入了一些新内容,例如,渗数学探究、数学文化等专题;对微积分、概率统计进行了新的设计和整合。
原有的内容如解析几何、立体几何、三角恒等变形等将在整合中适当精简。
在此基础上,A系列课程将着重学生的探究、阅读、表达能力的培养,不追求与大学相重叠的新内容。
C系列注重扩大人文科学的视野,加强数学意识的培养。
各个系列都注重发展学生创新精神、应用意识和实践能力,渗透了新的数学课程理念。
以上课程设计,经过了大量的国际比较(见附录)以及对我国数学教育传统的分析思考。
在内容要求上,本《标准》与高中已普及的美国、日本大致持平,但仍低于法、德、俄等国的一些高中的水平。
目录第一部分高中数学课程的总体构想一、《高中数学课程标准》设计的基本理念二、高中数学课程的基本框架三、课程内容的构成四、高中数学课程内容处理的新认识五、高中数学课程国际比较第二部分高中一年级“数学必修部分”的课程标准1.前言2. 《数学必修部分》课程标准3. 附录第三部分《高中数学》B 系列课程标准1. 前言2.“高中数学”B系列课程标准3. 附录第四部分数学A、数学C系列的基本框架一、数学A系列课程标准的基本框架二、数学C系列课程标准的基本框架第一部分。
2012考试大纲_数学
2012年高考考试说明(课程标准实验版)——数学(理)根据教育部考试中心《2012年普通高等学校招生全国统一考试大纲(理科·课程标准试验版)》(以下简称《大纲》),结合基础教育的实际情况,制定了《2012年普通高等学校招生全国统一考试大纲的说明(理科·课程标准实验版)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1.试题类型试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、汇出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对资料进行估计和近似计算.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对资料进行整理、分析,并解决给定的实际问题.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息数据进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性质量要求个性质量是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间.Ⅳ.考试范围与要求一、必考内容和要求(1)集合1.集合的含义与表示(1)了解集合的含义,体会元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.(二)函数概念与基本初等函数Ⅰ1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用基本初等函数的图像分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4)体会指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.(3)体会对数函数是一类重要的函数模型;(4)了解指数函数与对数函数()互为反函数.4.幂函数(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环. 2.基本算法语句了解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.(2)理解样本数据标准偏差的意义和作用,会计算数据标准偏差(不要求记忆公式).(3)能从样本数据中提取基本的数字特征(如平均数、标准偏差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变数的相关性(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念.(2)能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出α,π±α的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数在区间()内的单调性.(4)理解同角三角函数的基本关系式:(5)了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.(6)体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念和两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括汇出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.(4)了解逻辑联结词“或”、“且”、“非”的含义.(5)理解全称量词与存在量词的意义.(6)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率).(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线).(4)了解曲线与方程的对应关系(5)理解数形结合的思想(6)了解圆锥曲线的简单应用.(十六)空间向量与立体几何(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线与垂直.(4)解直线的方向向量与平面的法向量.(5)能用向量语言表述线线、线面、面面的平行和垂直关系.(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.(十七)导数及其应用(1)了解导数概念的实际背景.(2)通过函数图像直观理解导数的几何意义.(3)根据导数的定义求函数(c为常数)的导数.(4)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.·常见基本初等函数的导数公式和常用导数运算公式:(C为常数);,n∈N+;;;;(a>0,且a≠1);;(a>0,且a≠1).·常用的导数运算法则:法则1.法则2.法则3.(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(6)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(7)会用导数解决某些实际问题..(8)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.(9)了解微积分基本定理的含义.(十八)推理与证明(1)了解合情推理的含义,能利用归纳和模拟等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.(3)了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.(4)了解反证法的思考过程和特点.(5)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(十九)数系的扩充与复数的引入(1)理解复数的基本概念,理解复数相等的充要条件.(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.。
2012数学考试大纲
2012考研数学一大纲所谓“了解”和“理解”是指对于“基本概念”的理解程度,“会求”和“掌握”则是指对于“基本解题方法”的把握程度。
当然“了解”低于“理解”,“会求”低于“掌握”。
因此“了解”和“会求”一般限于出选择和填空题,“理解”和“掌握”则有可能出计算题和证明题。
数学一 考试科目:高等数学、线性代数、概率论与数理统计试卷结构:(一)题分及考试时间: 试卷满分为150分,考试时间为180分钟。
(二)内容比例: 高等教学--约60% 线性代数--约20% 概率论与数理统计--20%(三)题型比例: 填空题与选择题--约40% 解答题(包括证明题)--约60%高等数学一、函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立. --------(调整知识点:将"简单应用问题函数关系的建立"调整为"函数关系的建立")----数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数----(调整知识点:将"基本初等函数的导数 导数和微分的四则运算"调整为"导数和 微分的四则运算 基本初等函数的导数")------ 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的n 阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数---(考试要求中将2005年的"4.会求分段函数的一阶、二阶导数"以及"5.会求隐函数和由参数方程所确定的函数以及反函数的导数"调整并合并为"4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数"。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012考研数学一大纲所谓“了解”和“理解”是指对于“基本概念”的理解程度,“会求”和“掌握”则是指对于“基本解题方法”的把握程度。
当然“了解”低于“理解”,“会求”低于“掌握”。
因此“了解”和“会求”一般限于出选择和填空题,“理解”和“掌握”则有可能出计算题和证明题。
数学一 考试科目:高等数学、线性代数、概率论与数理统计试卷结构:(一)题分及考试时间: 试卷满分为150分,考试时间为180分钟。
(二)内容比例: 高等教学--约60% 线性代数--约20% 概率论与数理统计--20%(三)题型比例: 填空题与选择题--约40% 解答题(包括证明题)--约60%高等数学一、函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立. --------(调整知识点:将"简单应用问题函数关系的建立"调整为"函数关系的建立")----数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数----(调整知识点:将"基本初等函数的导数 导数和微分的四则运算"调整为"导数和 微分的四则运算 基本初等函数的导数")------ 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的n 阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数---(考试要求中将2005年的"4.会求分段函数的一阶、二阶导数"以及"5.会求隐函数和由参数方程所确定的函数以及反函数的导数"调整并合并为"4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数"。
)----5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法. ----(将原来的第9条提前至第6条,足见"洛必达法则求未定式极限"的重要性。
)-----7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b内,设函数()f x具有二阶导数。
当()0f x''>时,()f x的图形是凹的;当()0f x''<时,()f x的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理用定积分表达和计算质心 ----(新增知识点:增加了"用定积分表达和计算质心)----"积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分概定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的以及平行、垂直的条件点到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1. 理解空间直角坐标系,理解向量的概念及其表示。
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4.掌握平面方程和直线方程及其求法。
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题。
6.会求点到直线以及点到平面的距离。
7. 了解曲面方程和空间曲线方程的概念。
8. 了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
9. 了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求其方程。
五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限和连续的概念有界闭区域上多元连续函数的性质多元函数偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义。
2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4.理解方向导数与梯度的概念并掌握其计算方法。
5.掌握多元复合函数一阶、二阶偏导数的求法。
6.了解隐函数存在定理,会求多元隐函数的偏导数。
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8.了解二元函数的二阶泰勒公式。
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用---(调整知识点:将"二重积分、三重积分的概念及性质二重积分、三重积分的计算和应用"调整为"二重积分与三重积分的概念、性质、计算和应用")---- 两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7.了解散度与旋度的概念,并会计算。
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。
七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数以及它们的收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等幂级数展开式函函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dlrichlei)定理函数在[-l,l]上的傅里叶级数函数在[0,l]上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。