绝对值的意义及应用(最新整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值的意义及应用

绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首

先必须弄清绝对值的意义和性质。对于数x而言,它的绝对值表示为:|x|.

一. 绝对值的实质:

正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即

也就是说,|x|表示数轴上坐标为x的点与原点的距离。

总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。

二. 绝对值的几何意义:

一个数的绝对值就是数轴上表示这个数的点到原点的距离。

例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )

A.2a+3b-c B.3b-c C.b+c D.c-b

(第二届“希望杯”数学邀请赛初一试题)

解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.

所以原式=-a+b+a+b-b+c=b+c,故应选(C).

三. 绝对值的性质:

1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。

2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤

|x|。

3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。

4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只

有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。

四. 含绝对值问题的有效处理方法

1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利

用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0,

求:(1)x+2的最大值;(2)6-x的最小值。

解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)

根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,

∴x-2≤0,即x≤2,这表示x的最大值为2

(1)当x=2时,x+2得最大值2+2=4;

(2)当x=2时,6-x得最小值6-2=4

2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。

例3. 已知|x-2|+x与x-2+|x|互为相反数,求x的最大值.

解:由题意得(|x-2|+x)+(x-2+|x|)=0,整理得|x-2|+|x|+2x-2=0

令|x-2|=0,得x=2,令|x|=0,得x=0

以0,2为分界点,分为三段讨论:

(1)x≥2时,原方程化为x-2+x+2x-2=0,解得x=1,因不在x≥2的范围内,舍去。

(2)0≤x<2时,原方程化为2-x+x+2x-2=0,解得x=0

(3)x<0时,原方程化为2-x-x+2x-2=0,从而得x<0

综合(1)、(2)、(3)知x≤0,所以x的最大值为0

3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。

例4. 若|a-2|=2-a,求a的取值范围。

解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2

4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算.

例5. 求满足关系式|x-3|-|x+1|=4的x的取值范围.

解:原式可化为|x-3|-|x-(-1)|=4

它表示在数轴上点x到点3的距离与到点-1的距离的差为4

由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

很容易确定a+c>0,b+c<0,a-b>0,由绝对值的概念,

原式=(a+c)-(b+c)-(a-b)=a+c-b-c-a+b=0

用数轴上的点来表示有理数,用这样的点与原点的距离来表示有理数的绝对值,这里运用了数形结合的思想。

相关文档
最新文档