鸽巢问题(教案)

合集下载

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】第2课时教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。

教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。

3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。

教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。

教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。

教学准备课件。

教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。

【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。

预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。

师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。

“鸽巢原理”真是这样吗今天我们继续来研究相关问题。

【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。

二、自主探究,建立模型1.课件出示教科书P69例2。

师:请你试着证明这个结论。

(学生用自己的方式证明。

)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。

可以证明总有一个抽屉里至少放进3本书。

预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。

预设3:我用算式来证明:7÷3=2……1,2+1=3。

师:你能理解这道算式表示的意思吗?(板书算式:7÷3=2……1,2+1=3)【学情预设】指导学生规范表达:把7本书平均放进3个抽屉,每个抽屉里放2本,还剩一本。

人教版数学六年级下册鸽巢问题说课稿推荐3篇

人教版数学六年级下册鸽巢问题说课稿推荐3篇

人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗一、说教材。

1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。

2、教材地位及作用。

本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。

实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

就课时划分而言,《鸽巢问题》的例1和例2既可以用一课时完成,又可以分两课时完成,我之所以选择后者,是因为在《鸽巢问题》中,“总有”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度。

而且例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“鸽巢问题”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,才能更好地学习鸽巢问题(二),才能灵活运用这一原理解决各种实际问题。

二、说学情。

1、年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。

因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。

三、说说教学目标。

根据《数学课程标准》和教材内容以及学生的学情,我确定本节课说说学习目标如下:知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。

能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。

《鸽巢问题》教案

《鸽巢问题》教案
针对以上教学难点与重点,教师在教学过程中应有针对性地进行讲解和强调,通过实例分析、合作交流等教学方法,帮助学生突破难点,确保学生能够理解透彻。同时,注重培养学生的逻辑推理能力、数据分析能力和合作交流能力,提高其学科素养。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《鸽巢问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物品分配的问题?”比如,如果你有5双袜子,但是有6个袜子抽屉,你会怎么放?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索鸽巢问题的奥秘。
此外,在小组讨论环节,学生的合作交流能力得到了锻炼,但同时也暴露出一些问题。有的小组在讨论过程中,个别成员发言过于频繁,而其他成员则参与度不高。为了提高小组讨论的实效性,我计划在下次教学中,加强对小组讨论的引导,确保每个学生都能积极参与其中,充分发挥每个人的作用。
在实践活动方面,我发现学生对于实验操作表现出浓厚的兴趣,但动手能力有待提高。在今后的教学中,我将加大实验操作的比重,让学生在实践中掌握鸽巢原理,提高他们的动手能力。
《鸽巢问题》教案
一、教学内容
《鸽巢问题》教案
本节课选自人教版四年级下册《数学》第九单元《数学广角》中的内容。教学内容主要包括:
1.鸽巢原理的基本概念:了解鸽巢问题的背景,理解鸽巢原理的含义。
2.鸽巢问题的应用:通过实际例子,让学生掌握利用鸽巢原理解决实际问题的方法。
3.鸽巢原理的推广:引导学生探讨在更一般的情况下,鸽巢原理的应用及其限制。
(3)探讨鸽巢原理的推广:引导学生理解鸽巢原理在更广泛情况下的应用及其限制。
举例:讨论在n个鸽巢和m个鸽子的情况下,鸽巢原理如何应用,并探讨在m大于n时,如何解决问题。

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

鸽巢问题教案

鸽巢问题教案

鸽巢问题教案鸽巢问题教案3篇鸽巢问题教案1一、教学目标(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

二、教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备多媒体课件。

四、教学过程(一)游戏引入出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。

取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。

同学们相信吗?5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探索新知1.教学例1。

(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。

教师:谁来说一说结果?预设:一个放3支,另一个不放;一个放2支,另一个放1支。

(教师根据学生回答在黑板上画图表示两种结果)教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?教师:这句话里“总有”是什么意思?预设:一定有。

教师:这句话里“至少有2支”是什么意思?预设:最少有2支,不少于2支,包括2支及2支以上。

【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。

且用画图和数的分解来表示上述问题的结果,更直观。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】说教学目标:(一)知识与技能:1、通过观察、猜测、实验等活动,使学生初步了解并找出简单事物的组合数;2、使学生获得一些初步的数学实践活动经验。

(二)过程与方法:1、培养学生初步观察、分析推理能力以及有序地、全面地思考总是的方法和意识;2、感受数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题。

(三)情感、态度和价值观:1、通过活动培养学生学习数学的兴趣和合作意识;2、初步学会表达解决总是的大致过程和结果。

说教学重点:简单的排列组合的方法。

说教学难点:有序的思考问题。

教学任务分析:“实践与综合应用”是数学课程内容标准中的四个领域之一。

在第一学段中,要特别加强实践活动,“搭配中的学问”是本册书的四个专题活动之一。

通过这一专题让学生感受数学与现实生活的联系,培养学生的实践能力。

通过本节课的教学重在训练学生有序思考能力,这种能力对学生今后学习数学乃至其他学科,以及解决生活中的实际问题都起着重要的作用。

说学情分析:学生对新奇的具体的事物感兴趣,爱动、好问,注意力不够稳定,而不善于记忆抽象的内容等。

同时对身边的数学有浓厚的兴趣,乐于探究生活中的数学;有较强的语言表达能力、动手操作能力,初步具备了用所学知识解决实际问题的能力;思维活跃,能多角度思考问题,富有创新精神。

因此我在数学广角这一主题中安排了五个板块进行教学,循序渐进,螺旋上升。

说教学过程:一、创设情况,提出搭配中的问题谈话:今天我感到很高兴,因为有这样难得的机会和大家在一起学习,希望在这节课中我们能够成为好朋友!今天我们初次见面,我给你们先讲个“田忌赛马”的故事,想听吗?(教师讲故事,大屏幕播放连环画)(学生聚精会神地边听故事边看画面。

)谈话:故事讲完了,你知道孙膑是如何帮助田忌反败为胜的吗?田忌赛马是用到了数学中的什么学问,学习了今天的知识,你就能揭开这其中的奥秘,也能成为聪明的军事家孙膑。

鸽巢问题教学设计范文(精选5篇)

鸽巢问题教学设计范文(精选5篇)

鸽巢问题教学设计范⽂(精选5篇)鸽巢问题教学设计范⽂(精选5篇) 作为⼀位兢兢业业的⼈民教师,就有可能⽤到教学设计,教学设计是实现教学⽬标的计划性和决策性活动。

那么写教学设计需要注意哪些问题呢?以下是⼩编为⼤家收集的鸽巢问题教学设计范⽂(精选5篇),供⼤家参考借鉴,希望可以帮助到有需要的朋友。

鸽巢问题教学设计1 本节课是数学⼴⾓内容,也叫“抽屉原理”。

实际上是⼀种解决某种特定结构的数学或⽣活问题的模型,体现了⼀种数学的思想⽅法。

反思如下: 1.从学⽣喜欢的“游戏”⼊⼿,激发学⽣学习的兴趣和求知欲望,从⽽提出需要研究的数学问题。

这样设计使学⽣在⽣动、活泼的数学活动中主动参与、主动实践、主动思考,使学⽣的数学知识、数学能⼒、数学思想、数学情感得到充分的发展,从⽽达到动智与动情的完美结合,全⾯提⾼学⽣的整体素质。

2.引导学⽣在经历猜测、尝试、验证的过程中逐步从直观⾛向抽象。

在例1中针对实验的所有结果,在学⽣总结表征的基础上,进⽽提出“你还可以怎样想?”的问题,组织学⽣展开讨论交流。

我引导学⽣借助平均分即每个笔筒⾥先只放1⽀,这时学⽣看到还剩下1⽀铅笔,这1⽀铅笔不管放⼊其中的哪⼀个笔筒,这个笔筒都会有2⽀铅笔。

进⼀步引导学⽣加深对“⾄少有⼀个笔筒中有2⽀铅笔”的理解。

最后,组织学⽣进⼀步借助直观操作,讨论诸如“5⽀铅笔放进4个笔筒,不管怎么放,总有⼀个笔筒中⾄少有2⽀铅笔,为什么?”的问题,并不断改变数据(铅笔数⽐笔筒数多1),让学⽣继续思考,引导学⽣归纳得出⼀般性的结论:(+1)⽀铅笔放进个笔筒⾥,总有⼀个笔筒⾥⾄少放进2⽀铅笔。

注重让学⽣在观察、实验、猜想、验证等活动中,发展合情推理能⼒,培养学⽣能进⾏有条理的思考,能⽐较清楚地表达⾃⼰的思考过程与结果,经历与他⼈合作交流解决问题的过程。

本节课⾸先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理⽐较简单,但是在实际的题⽬当中,最主要的.是帮助学⽣在不同的题⽬中找出该道题⽬的“鸽巢”是什么,然后要放到“鸽巢”⾥的东西是什么,只有帮助学⽣在解题时有了构建鸽巢问题模型的能⼒,才能使学⽣真正的理解鸽巢问题,以便更好地解决鸽巢问题。

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。

【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。

3.使学生感受数学的魅力,培养学习的兴趣。

【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。

【教学过程】一、开门见山,引入课题。

承接课前谈话内容,直接揭示课题。

二、经历过程,构建模型。

(一)研究“4个小球任意放进3个抽屉”存在的现象。

1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。

让学生说说对这句话的理解。

2.验证结论的正确性。

让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。

3.全班交流。

学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。

从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。

(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。

1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。

学生以小组为单位共同研究:先画出不同的放法。

然后观察分析每种放法,看看哪种猜测是正确的。

3.全班交流。

小组汇报研究结果。

教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。

那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。

《鸽巣问题》教案

《鸽巣问题》教案
《鸽巣问题》教案
一、《鸽巢问题》教案
教学内容:本节课选自人教版五年级数学下册第九单元“数学广角”中的《鸽巢问题》。主要内容包括:
1.理解鸽巢问题的概念,即如果将n个鸽子放入m个巢中(n>m),至少有一个巢里会有两只或以上的鸽子。
2.掌握运用抽屉原理解决实际问题,通过实际操作,让学生感受鸽巢问题的实际意义。
举例解释:
-通过生活中的实际例子(如分配物品、安排座位等),让学生理解鸽巢问题的本质。
-通过具体的数学题目,如“有10个学生,只有9本书,如何分配才能保证至少有一个学生没有书”,来强调抽屉原理的应用。
-引导学生通过具体的数字代入,理解n%m≥1的含义,并能够自主构造类似的数学问题。
2.教学难点
-理解并运用抽屉原理进行问题分析,特别是在抽象问题中的运用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-将实际问题转化为鸽巢问题,并应用抽屉原理求解。
-理解鸽巢问题中的“至少有一个”这个概念,并将其与数学表达式n%m≥1联系起来。
举例解释:
-对于抽屉原理的理解,可以通过动画或者实体物品的演示,让学生直观感受到当物品数量超过抽屉数量时,必然会出现一个抽屉中有多个物品的情况。
-在将实际问题转化为鸽巢问题时,教师需要引导学生识别问题的关键信息,如元素的总数和可供选择的“巢”的数量,并通过实例讲解如何构建数学模型。

第五单元数学广角《鸽巢问题》(教案)

第五单元数学广角《鸽巢问题》(教案)

第五单元数学广角《鸽巢问题》(教案)一、教学目标1.认识和理解鸽巢问题的基本概念和规律;2.培养学生的观察力、分析、归纳和运算能力;3.通过数学游戏的方式激发学生的兴趣,提高学生的数学思维水平。

二、教学重点1.了解鸽巢问题的基本规律;2.学生能够运用基本规律解决实际问题。

三、教学难点1.让学生掌握鸽巢数问题的归纳和推理方法;2.培养学生运用所学知识解决鸽巢数问题的能力。

四、教学过程1.引入教师可以采取游戏的方式引入鸽巢问题,比如出示两个鸟巢和三只鸟,问学生这三只鸟可以分别住在哪两个鸟巢里,从而引出鸽巢问题。

2.巩固知识教师可以通过一些数学游戏和练习来巩固学生的知识,比如让学生组成几个小组,给每组一个数,让学生按照鸽子数量将这个数字分成几份,然后让学生找到其中必定有两份数字的和相同的情况。

3.讲解基本理论教师可以通过讲解和演示的方式让学生了解基本理论和规律,比如鸽巢问题的公式为:若将n+1个物体放到n个盒子中,则其中至少有一个盒子中放有两个物体。

4.解决实际问题教师可以引导学生通过解决实际问题来运用所学知识,比如:班级里有30个同学,请你算一下这个班级中至少有多少人生日是同一天的?5.拓展练习教师可以给学生一些拓展练习来提高学生的综合运用能力,比如:将15个QQ号码分到10个QQ群里,问你有多大几率在一个QQ群里看到两个号码是相同的?6.总结在教学结束时,教师可以让学生对所学知识进行总结,并鼓励学生将所学知识应用到生活中。

五、教学评价1.学生的反应与参与情况;2.学生的思维能力和数学素养;3.学生的作业完成情况。

六、教学方法1.游戏法游戏法是引入鸽巢问题的好方法,通过游戏的方式激发学生的兴趣,帮助学生更好地理解鸽巢问题的基本概念和规律。

2.讲解法教师可以通过讲解和演示的方式,让学生更好地理解鸽巢问题的基本理论和规律,例如引导学生运用公式来解决具体问题。

3.归纳法归纳法是学生掌握鸽巢数问题规律的重要方法,教师可以通过多种例子引导学生对规律进行总结和归纳。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。

这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。

学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。

但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。

你们信吗?2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

《鸽巢问题》教案

《鸽巢问题》教案

《鸽巢问题》教案《鸽巢问题》教案一、教学目标1. 认识鸽巢问题,理解其数学意义。

2. 掌握鸽巢问题的解题方法。

3. 提高数学思维和逻辑推理能力。

二、教学内容和教学重点1.鸽巢问题的概念及解法;2.培养学生的逻辑思维和创新思维。

教学难点培养学生的逻辑思维和创新思维。

三、教学过程1.导入讲解日常生活中的鸽巢问题,例如多人分饭,会出现某些人得饭数量多,有些人得饭数量少的情况。

2.理论引入鸽巢问题是指将n个鸽子放入m个鸽巢中,如果n>m,则至少有一个鸽巢放了两个或以上的鸽子。

让学生自己动手尝试将3个鸽子放入2个鸽巢中,发现至少有一个鸽巢里有两个鸽子。

然后再尝试将4个鸽子放入2个鸽巢中,发现至少有一个鸽巢里有两个鸽子。

3.实例探究将7个鸽子放入3个鸽巢中,可以列出如下的表格:鸽巢1 鸽巢2 鸽巢31 2 34 5 67在这个表格中,可以看到鸽巢1有1、4、7三只鸽子,共有3只;鸽巢2有2、5两只鸽子,共有2只;鸽巢3有3、6两只鸽子,共有2只。

这样可以发现,共有7只鸽子,但只有3个鸽巢,所以至少有一个鸽巢里有2只或以上的鸽子。

4.解题方法根据鸽巢问题的原理可得,当n>m时,至少有一个鸽巢放了两个或以上的鸽子。

如果要求至少有两个鸽巢放了两个或以上的鸽子,可以使用数学归纳法。

5.拓展应用举出实际应用中鸽巢问题的例子,引导学生进一步理解鸽巢问题。

例如一所学校有40个学生,开十个班级,则至少有一个班级有5名或以上的学生。

或者一间教室最多容纳50人,一共有151名学生,那么至少有4个人坐在同一排。

四、教学评价1.定期进行作业讲解和评分,让学生掌握鸽巢问题的解题方法。

2.举办小型比赛,激发学生学习的积极性和兴趣。

3.评价学生数学思维和逻辑推理能力的提高情况。

五、教学资源在鸽巢问题的教学中,可以使用多样的教学资源,如:1.课件:制作一份简单的鸽巢问题课件,直观地展示鸽巢问题的概念和解题方法。

2. ppt:使用PPT演示的方式展示鸽巢问题的概念以及解题思路。

《鸽巢问题》(抽屉原理)(教案)六年级下册数学人教版

《鸽巢问题》(抽屉原理)(教案)六年级下册数学人教版

《鸽巢问题》(抽屉原理)(教案)一、教学内容《鸽巢问题》是六年级下册数学人教版的一节内容,属于“数学广角”单元。

本节课将带领学生探究抽屉原理,理解“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的含义,并能够应用这个原理解决实际问题。

二、教学目标1. 知识与技能:理解抽屉原理的含义,掌握“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的计算方法,并能运用抽屉原理解决简单的实际问题。

2. 过程与方法:通过观察、操作、推理、交流等活动,培养学生分析问题和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

三、教学难点理解“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的含义,并能灵活运用抽屉原理解决实际问题。

四、教具学具准备1. 教具:多媒体课件、实物投影仪。

2. 学具:学习用品、计算器。

五、教学过程1. 导入:利用多媒体课件展示“把4支铅笔放进3个抽屉里”的情景,引导学生观察并思考:至少有一个抽屉里放几支铅笔?3. 应用:出示例题,让学生独立解答,并分享解题过程和答案。

5. 作业布置:让学生完成课后练习题,巩固所学知识。

六、板书设计1. 《鸽巢问题》(抽屉原理)2. 内容:抽屉原理的含义至少数的计算方法:“至少数=物体数除以抽屉数的商+1(有余数的情况下)”抽屉原理的应用七、作业设计1. 基础题:完成课后练习题,巩固抽屉原理的应用。

2. 提高题:联系生活实际,设计一道应用抽屉原理解决的问题,并解答。

八、课后反思本节课通过生动的实例导入,激发了学生的学习兴趣。

在教学过程中,注重学生的观察、操作、推理、交流等能力的培养,使学生在理解抽屉原理的基础上,能够灵活运用所学知识解决实际问题。

但在课堂实践过程中,发现部分学生对“至少数”的理解仍存在困难,需要在今后的教学中加强针对性辅导。

重点关注的细节:教学难点教学难点是教学中学生难以理解或掌握的地方,对于《鸽巢问题》(抽屉原理)这节课来说,教学难点是理解“至少数=物体数除以抽屉数的商+1(有余数的情况下)”的含义,并能灵活运用抽屉原理解决实际问题。

人教版数学六年级下册鸽巢问题教案与反思推荐3篇

人教版数学六年级下册鸽巢问题教案与反思推荐3篇

人教版数学六年级下册鸽巢问题教案与反思推荐3篇〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗教材分析:“鸽巢问题”是人教版小学数学六年级下册第五单元数学广角的内容。

“鸽巢问题”是一类较为抽象的数学问题,难度较大。

“鸽巢问题”实际上是解决生活中某一类数学问题的模型,本课的目的是让学生经历数学化的过程,初步建立“鸽巢问题”的一般模型思想。

教材以学生熟悉的和感兴趣的材料作为学习素材,提高学生学习的积极性,缓解学习难度带来的压力,例题的编排关注细节,循序渐进,培养学生的思维能力和模型思想。

学生分析:经过六年的学习,学生具备了基本的推理能力和语言表达能力,敢于积极的思考和大胆的表达,学生自学能力和小组合作能力较强。

教学目标:1.使学生理解“鸽巢问题”的基本形式,并能初步运用“鸽巢问题”解决相关的实际问题或解释相关的现象。

2.通过操作,观察,比较,说理等数学活动,使学生经历“鸽巢问题”的形成过程,体会和掌握逻辑推理思想和模型思想,提高数学学习的兴趣和信心。

教学重点:在操作中理解“鸽巢问题”的模型。

教学难点:理解并建立“鸽巢问题”的模型。

课前准备:扑克牌,课件。

教学过程一、精彩导入出示刘谦的照片师:同学们,你们见过他吗?做什么的?喜欢看他玩魔术吗?老师也会玩魔术,你信吗?这是一幅扑克牌,取出大王和小王以及花牌,还剩下52张牌。

我请5位同学上来给我当助手,每人随意抽一张,不要把你的牌给我看。

你们抽的牌中,至少有两张牌是同花色的?信吗?这到底是巧合呢?还是隐藏了什么数学奥秘呢?我们今天就一起来研究研究。

我们先从比较小的同类问题开始研究。

【设计意图】通过玩“扑克牌”游戏,让学生体验不管怎么抽,总有同一花色的牌至少有2张,激起学生认识上的兴趣,趁机抓住他们的求知欲,作为新课的切入点,激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。

二、用列举和假设法,初步感知模型结构1.理解“总有”和“至少”两个词的含义(1)师:把3支笔放到2个铅笔盒里,有哪些放法?师:“不管怎么放,总有一个铅笔盒里至少有2支笔”。

六年级数学《鸽巢问题》教学设计范文(精选3篇)

六年级数学《鸽巢问题》教学设计范文(精选3篇)

六年级数学《鸽巢问题》教学设计范文(精选3篇)六年级数学《鸽巢问题》教学设计范文(精选3篇)作为一名优秀的教育工作者,通常需要准备好一份教学设计,教学设计是一个系统化规划教学系统的过程。

那么教学设计应该怎么写才合适呢?以下是小编精心整理的六年级数学《鸽巢问题》教学设计范文(精选3篇),欢迎大家分享。

六年级数学《鸽巢问题》教学设计1 教学内容审定人教版六年级下册数学《数学广角——鸽巢问题》,也就是原实验教材《抽屉原理》。

设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。

“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。

怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。

通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。

我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。

这类问题依据的理论,我们称之为“鸽巢问题”。

《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计作为一位杰出的教职工,就难以避免地要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编收集整理的《鸽巢问题》教学设计,希望对大家有所帮助。

《鸽巢问题》教学设计篇1一、教学内容:教科书第68页例1。

二、教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。

你准备好了吗?好,我们现在开始上课。

(三)民主导学1、请同学们先来看例1。

把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。

我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。

至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。

或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。

鸽巢问题(教案)

鸽巢问题(教案)

鸽巢问题教学内容:P68-70例1、例2;“做一做”第1题及P71第1-2题..教学目标:1、知识与技能:了解“鸽巢问题”的特点;理解“鸽巢原理”的含义..使学生用此原理解决简单的实际问题..2、过程与方法:经历探究“鸽巢原理”的学习过程;体验观察、猜测、实验、推理等活动的学习方法;渗透数形结合的思想..3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题;激发学生的学习兴趣;使学生感受数学的魅力..教学重点:引导学生把具体问题转化成“鸽巢问题”..教学难点:找出“鸽巢问题”的解决窍门进行反复推理..教学准备:课件、铅笔、笔筒..教学过程:一、问题引入师:任意13人中;至少有几个人的出生月份相同任意的367人中;至少有几人在同一天过生日学生先独立思考;再分组讨论..师:解决这一类问题的理论依据就是“鸽巢问题”..今天我们就一起来研究这一类问题..板书课题:鸽巢问题二、探索新知1、教学例1思考:把4支铅笔放进3个笔筒中;不管怎么放;总有一个笔筒里至少有2支铅笔..为什么呢“总有”和“至少”是什么意思1操作发现规律:通过把4支铅笔放进3个笔筒中;可以发现:不管怎么放;总有1个笔筒里至少有2支铅笔..2理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中;不管怎么放;一定有1个笔筒里的铅笔数大于或等于2支..3探究证明方法一:用“枚举法”证明..方法二:用“分解法”证明把4分解成3个数..方法三:用“假设法”证明..小结:把4只铅笔放进3个笔筒中;无论怎么放;总有1个笔筒至少放进2只铅笔..4认识“鸽巢问题”像上面的问题就是“鸽巢问题”;也叫“抽屉问题”..在这里;4支铅笔是要分放的物体;就相当于4只“鸽子”;“3个笔筒”就相当于3个“鸽巢”或“抽屉”;把此问题用“鸽巢问题”的言语描述就是把4只鸽子放进3个笼子;总有1个笼子里至少有2只鸽子..这里“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少;即在所有的方法中;放的鸽子最多的那个“笼子”里鸽子“最少”的个数..小结:只要放的铅笔数比笔筒的数量多;就总有1个笔筒里至少放进2支铅笔..如果放的铅笔数比笔筒的数量多2;那么总有1个笔筒至少放2支铅笔;如果放的铅笔数比笔筒的数量多3;那么总有1个笔筒至少放2支……只要放的铅笔数比笔筒数量多;就总有1个笔筒里至少放2支铅笔..5归纳总结..2、教学例2.思考:1把7本书放进3个抽屉;不管怎么放;总有1个抽屉里至少有3本书..为什么呢2如果有8本书会怎样呢10本书呢解决问题A:1探究证明:方法一:用数的分解法证明..把7分解成3个数的和..把7本书放进3个抽屉里;共有如下8种情况:由图可知;每种情况分得的3个数中;至少有1个数不小于3;也就是每种分法中最多的那个数是3;即有1个抽屉至少放进3本书..方法二:用假设法证明..把7本书平均分成3份;7÷3=2本…1本;若每个抽屉放2本;则还剩1本..如果把剩下的这1本放进任意1个抽屉中;那么这个抽屉里就有3本书..2得出结论:7本书放进3个抽屉中;不管怎么放;总有1个抽屉里至少放进3本书..解决问题B:1用假设法分析..8÷3=2本…2本;剩下2本;分别放进其中2个抽屉中;使其中2个抽屉都变成3本;因此把8本书放进3个抽屉中;不管怎么放;总有1个抽屉里至少放进3本书..10÷3=3本…1本;把10本书放进3个抽屉中;不管怎么放;总有1个抽屉里至少放进4本书..3归纳总结:要把a本书放进3个抽屉里;如果a÷3=b本…1本或a÷3=b本…2本;那么一定有1个抽屉里至少放进b+1本书..鸽巢原理二:古国把多于kn个的物体任意分放进n个空抽屉k是正整数;n是非0自然数;那么一定有一个抽屉中至少放进了k+1个物体..三、巩固练习P70“做一做”第1题、P71页第1-2题..四、课堂总结通过这节课的学习;你有什么收获五、作业1、把8本书分给7位同学;至少有一位同学分得2本书;为什么2、某学校有30名学生是2月份出生的;那么其中至少有两名学生的生日是在同一天..为什么3、把17支铅笔放进4个文具盒里;至少有一个文具盒里放几支4、幼儿园里有80个小朋友;各种玩具共有330件..把这些玩具分给小朋友;是否有人会得到5件或5件以上的玩具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸽巢问题
教学内容:P68-70例1、例2,“做一做”第1题及P71第1-2题。

教学目标:
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”的解决窍门进行反复推理。

教学准备:课件、铅笔、笔筒。

教学过程:
一、问题引入
师:任意13人中,至少有几个人的出生月份相同?任意的367人中,至少有几人在同一天过生日?
学生先独立思考,再分组讨论。

师:解决这一类问题的理论依据就就是“鸽巢问题”。

今天我们就一起来研究这一类问题。

(板书课题:鸽巢问题)
二、探索新知
1、教学例1
思考:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2
支铅笔。

为什么呢?“总有”与“至少”就是什么意思?
(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”与“至少”就是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明
方法一:用“枚举法”证明。

方法二:用“分解法”证明把4分解成3个数。

方法三:用“假设法”证明。

小结:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒至少放进2只铅笔。

(4)认识“鸽巢问题”
像上面的问题就就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔就是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的言语描述就就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里“总有”指的就是“一定有”或“肯定有”的意思;而“至少”指的就是最少,即在所有的方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。

如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔数比笔筒的数量多3,那么总有1个笔筒至少放2支……只
要放的铅笔数比笔筒数量多,就总有1个笔筒里至少放2支铅笔。

(5)归纳总结。

2、教学例2、
思考:(1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。

为什么呢?(2)如果有8本书会怎样呢?10本书呢?
解决问题A:
(1)探究证明:
方法一:用数的分解法证明。

把7分解成3个数的与。

把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就就是每种分法中最多的那个数就是3,即有1个抽屉至少放进3本书。

方法二:用假设法证明。

把7本书平均分成3份,7÷3=2(本)…1本,若每个抽屉放2本,则还剩1本。

如果把剩下的这1本放进任意1个抽屉中,那么这个抽屉里就有3本书。

(2)得出结论:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

解决问题B:(1)用假设法分析。

8÷3=2(本)…2本,剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

10÷3=3(本)…1本,把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

(3)归纳总结:要把a本书放进3个抽屉里,如果a÷3=b(本)…1本或a÷3=b(本)…2本,那么一定有1个抽屉里至少放进(b+1)本书。

鸽巢原理(二):古国把多于kn个的物体任意分放进n个空抽屉(k就是正整数,n就是非0自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、巩固练习
P70“做一做”第1题、P71页第1-2题。

四、课堂总结
通过这节课的学习,您有什么收获?
五、作业
1、把8本书分给7位同学,至少有一位同学分得2本书,为什么?
2、某学校有30名学生就是2月份出生的,那么其中至少有两名学生的生日就是在同一天。

为什么?
3、把17支铅笔放进4个文具盒里,至少有一个文具盒里放几支?
4、幼儿园里有80个小朋友,各种玩具共有330件。

把这些玩具分给小朋友,就是否有人会得到5件或5件以上的玩具?。

相关文档
最新文档