人教版九年级上册数学《实际问题与一元二次方程》 同步测试(含答案)

合集下载

初中数学 人教版九年级上册 21.3 实际问题与一元二次方程 同步练习(含答案)

初中数学 人教版九年级上册   21.3 实际问题与一元二次方程 同步练习(含答案)

实际问题与一元二次方程同步练习一.选择题(共12小题)1.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降低至1.21%,设平均每次降息的百分率为x,则x满足方程()A.2.25%(1-2x)=1.21%B.1.21%(1+2x)=2.25%C.1.21%(1+x)2=2.25%D.2.25%(1-x)2=1.21%2.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x个参赛棋手,则可列方程为()A.0.5x(x-1)=45B.0.5x(x+1)=45C.x(x-1)=45D.x(x+1)=453.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4424.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()B.15C.16D.255.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.816.2017年底,全国铁路营业里程为12.7万公里,其中高铁2.5万公里;截至2019年底,中国高铁运营里程突破3.5万公里(按3.5万公里计算),约占全球高铁网的七成,若这两年我国高铁里程的增长率相同,在保持年增长率不变的前提下,预计2021年中国高铁里程为多少万公里()A.4.5B.4.7C.4.9D.5.17.疫情期间,某口罩厂一月份的产量为100万只,由于市场需求量不断增大,三月份的产量提高到121万只,该厂二、三月份的月平均增长率为()A.12.1%B.20%D.10%8.近几年来安徽省各地区建立了比较完善的经济困难学生资助体系.某地区在2017年给每个经济困难学生发放的资助金额为800元,2019年发放的资助金额为1250元,则该地区每年发放的资助金额的平均增长率为()A.10%B.15%C.20%D.25%9.三角形两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()A.24B.24或C.48D.10.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10mB.4mC.10mD.8m11.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.1012.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.0.5B.0.6C.2-D.4-2二.填空题(共5小题)13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.14.如图,在一个长20m,宽10m的矩形草地内修建宽度相等的小路(阴影部分),若剩余草地(空白部分)的面积171m2,则小路的宽度为m.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.17.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有人.三.解答题(共5小题)18.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?19.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.20.受疫情影响,某种蔬菜的价格快速上涨,是原价的1.5倍,同样用48元能买到的蔬菜比原来少了2千克.(1)求这种蔬菜的原价是每千克多少元?(2)政府采取增加采购渠道、财政补贴等多种措施,降低价格,方便老百姓的生活.这种蔬菜的批发价两次下调后,由每千克10元降为每千克6.4元.求平均每次下调的百分率.21.甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?22.乐高积木是儿童喜爱的玩具.这种塑胶积木一头有凸粒,另一头有可嵌入凸粒的孔,形状有1300多种,每一种形状都有12种不同的颜色,以红、黄、蓝、白、绿色为主.它靠小朋友自己动手动脑,可以拼插出变化无穷的造型,令人爱不释手,被称为“魔术塑料积木”.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价;(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降m(m>0)元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润为5760元。

人教版九年级上册数学实际问题与一元二次方程同步训练(含答案)

人教版九年级上册数学实际问题与一元二次方程同步训练(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程同步训练一、单选题1.有一人患了流感,经过两轮传染后,共有225人患了流感,设每轮传染中平均每人传染的人数为x 人,则可列方程( ) A .225x x x +⋅=B .(1)225x x x ++=C .()1(1)225x x x +++=D .1(1)(1)225x x x ++++=2.某种药品原价为64元/盒,经过连续两次降价后售价为49元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .264(1)6449x -=- B .64(12)49x -=C .264(1)49x -=D .()264149x -=3.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为( ) A .5B .6C .7D .84.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程 ( )A .500(12)720x +=B .2500(1)720x +=C .2720(1)500x +=D .2500(1)720x +=5.某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( ) A .30(1+x )2=50 B .30(1﹣x )2=50 C .30(1+x 2)=50D .30(1﹣x 2)=506.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分比率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .()25601315x += B .()256012315x += C .()256012315x -=D .()25601315x -=7.已知某企业2019年年营业收入为2500万元,2021年年营业收入达到3600万元,求这两年该企业年营业收入的平均增长率.设这两年年营业收入的平均增长率为x ,根据题意列方程为()A.2500x2=3600B.2500(1+x)=3600C.2500(1+x)2=3600D.2500[1+(1+x)+(1+x)2]=3600 8.如图,一农户要建议个矩形花圃,花圃的一边利用长为12 m的墙,另外三边用25 m长的篱笆围成,为方便进出,在垂直于墙的一边留一个1 m宽的门,花圃面积为80 m2,设于墙垂直的一边长为x m,则可以列出方程是()A.x(26-2x)=80B.x(24-2x)=80C.(x-1)(26-2x)=80D.x(25-2x)=80二、填空题9.某学习小组的成员互赠新年贺卡,共用去72张贺卡,则该学习小组________有名成员;10.由于受疫情影响,某市高铁站客流量已连续两周下降,由每周50万人次下降至每周32万人次,设平均下降率为x,则根据题意列方程为________________.11.目前以5G等为代表的战略性新兴产业蓬勃发展,某市2021年底有5G用户20万户,计划到2023年底该市5G用户数累计达到33.8万户,设该市5G用户数年平均增长率为x,则x的值是______.12.第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有______个队参加比赛.13.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是28,求每个枝干长出多少个小分支.设每个枝干长出x个小分支,则方程为_________(只列方程,不解答).14.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为_______.15.直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.16.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.三、解答题17.如图,一长方形草坪长50米,宽30米,在草坪上有两条互相垂直且宽度相等的长方形小路(阴影部分),非阴影部分的面积是924米2.(1)求小路的宽度;(2)每平方米小路的建设费用为200元,求修建两条小路的总费用.18.为了满足初中学业水平体育与健康考试的需求,某体育用品专卖店从厂家以单价40元进购了一种排球,如果以单价60元出售,那么每月可售出400个,根据销售经验,销售单价每提高1元,销售量相应减少5个.(1)设销售单价提高x元,则每个排球获得的利润是_____元;这种排球这个月的销售量是_____个;(2)若该专卖店准备在这种排球销售上一月获利10500元,同时又要使顾客得到实惠,则售价应定为多少元?19.某口置生产厂生产的口置一月份平均日产量为40000个,一月底因突然爆发新冠肺炎疫情,市场对口置需求量大增,为满足市场需求,工厂决定从二月份起扩大产能,使三月份平均日产量达到48400个(1)求口罩日产量的月平均增长率:(2)按照这个增长率,预计四月份平均日产量为多少?20.某商店以每件60元的价格购进一种小电器,标价150元,经过两次降价,以每件96元出售,结果一个月售出200台.根据以往销售经验,销售单价每降价1元,每月销售量就会增加5台.(1)求平均每次降价的百分率;(2)商店希望一个月内销售该种小电器能获得利润6900元,则该种小电器的销售单价应再降价多少元?答案第1页,共1页参考答案:1.C 2.C 3.C 4.D 5.A 6.D 7.C 8.A 9.910.()250132x -= 11.30% 12.1013.2128x x ++= 14.2m##2米 15.(12)864x x -= 16.()()402021200x x -+= 17.(1)小路的宽为8米;(2)修建两条小路的总费用为115200元. 18.(1)(20+x ),(400-5x ) (2)售价应定为70元19.(1)口罩日产量的月平均增长率为10%. (2)预计四月份平均日产量为53240个. 20.(1)平均每次降价的百分率为20% (2)该种小电器的销售单价应再降价6元。

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章实际问题与一元二次方程》同步练习题及答案(人教版)姓名班级学号一、单选题1.已知△ABC是等腰三角形,BC=8,AB,AC的长是关于x的一元二次方程x2-10x+k=0的两根,则()A.k=16 B.k=25C.k=-16或k=-25 D.k=16或k=252.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%3.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A.4元B.6元C.4元或6元D.5元4.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()A.10% B.15% C.20% D.25%5.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为()A.5人B.6人C.7人D.8人6.一个两位数,它的十位数字比个位数字大3,且十位数字与个位数字的积是28,求这个两位数.设这个两位数的个位数字为x,则可列方程()A.x2+3x−28=0B.x2−3x−28=0C.x2+3x+28=0D.x2−3x+28=07.如图,要设计一幅宽20cm、长30cm的图案,其中有两横两竖的彩条即图中的阴影部分,横竖彩条的,则竖彩条宽度为()宽度比为2:1.如果要使阴影所占面积是图案面积的1975A.1 cm B.2 cm C.19 cm D.1 cm或19 cm8.欧几里得的《几何原本》中记载了用图解法求解一元二次方程的方法,小南读了后,想到一个可以求,BC=a,以A为圆心,作AE=AB,解方程x2-bx+a2=0的图解方法:如图,在矩形ABCD(AB>BC)中,AB= b2交DC于点E,则该方程的其中一个正根是( )A.BE的长B.CE的长C.AB的长D.AD的长二、填空题9.方程√5−x=3的根是10.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.11.在一次同学聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了380份礼物,则参加聚会的同学的人数是.12.某小组有若干人,新年大家互相发一条微信视福,已知全组共发微信56条,则这个小组的人数为人.13.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价.三、解答题14.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?15.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?16.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?17.宜城市某楼盘准备以每平方米4000元的均价对外销售,由于国务院“新国五条”出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?18.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?19.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖多少块,白色瓷砖有多少块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?参考答案1.D2.B3.B4.A5.B6.A7.A8.B9.x=﹣410.25%11.2012.813.10元或20元14.解:设邀请x个球队参加比赛依题意得1+2+3+…+x-1=21即x(x−1)=212∴x2-x-42=0∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.15.解:设每盆兰花售价定为x元,可以达到1200元的利润,则据题意得, (x-100)[20+2(140-x)]=1200,解得x=120或x=130,因为为扩大销量,增加利润,所以x=130(舍去)答:要使刚刚利润达到1200元,每盆兰花售价为120元16.解:设每个支干长出的小分支的数目是x个根据题意列方程得:x2+x+1=91解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支.17.解:(1)设平均每次下调的百分率是x,依题意得,4000(1﹣x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)所以,平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240﹣100×80=316000元∵317520>316000∴方案②更优惠18.(1)2x;50﹣x(2)解:由题意得:(50﹣x)(30+2x)=2100(0≤x<50)化简得:x2﹣35x+300=0,即(x﹣15)(x﹣20)=0解得:x1=15,x2=20∵该商场为了尽快减少库存∴降的越多,越吸引顾客∴选x=20答:每件商品降价20元,商场日盈利可达2100元19.解:(1)通过观察图形可知,当n=1时,黑色瓷砖有8块,白瓷砖2块;当n=2时,黑色瓷砖有12块,白瓷砖6块;当n=3时,黑色瓷砖有16块,用白瓷砖12块;则在第n个图形中,黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n(n+1)当n=6时,黑色瓷砖的块数有4×(6+1)=28块,白色瓷砖有6×(6+1)=42块;故答案为:28,42;(2)设白色瓷砖的行数为n,根据题意,得:0.52×n(n+1)+0.5×0.25×4(n+1)=68解得n1=15,n2=﹣18(不合题意,舍去)白色瓷砖块数为n(n+1)=240黑色瓷砖块数为4(n+1)=64所以每间教室瓷砖共需要:20×240+10×64=5440元.答:每间教室瓷砖共需要5440元.。

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练(含答案)

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程 同步训练一、单选题1.某商店将进货价格为20元的商品按单价36元售出时,能卖出200个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x 元时,获得的利润为1200元,则下列关系式正确的是( ) A .()()1620051200x x +-=B .()()1620051200x x ++=C .()()1620051200x x -+=D .()()1620051200x x --= 2.某县2020年人均可支配收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ) A .()22.71 2.36x +=B .()22.361 2.7x += C .()22.71 2.36x -= D .()22.361 2.7x -= 3.在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a 小时,经过去年下半年和今年上半年两次调整后,现在平均每周作业时长为b 小时,设每半年平均每周作业时长的下降率为x ,则可列方程为( ) A .()1a x b -=B .()21a x b -= C .()1b x a += D .()21a x b += 4.某种药品的原来价格是每盒220元,准备进行两次降价,若每次降价的百分率都为x ,且第二次降价后每盒价格为168元,则可列方程( )A .()()222012201x x -=-B .()2201168x x -=C .()22201168x -=D .()2202201x x x =-5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共相互赠送标本72件,若全组有x 名同学,则根据题意列出方程是( )A .()1722x x -=⨯B .()172x x +=C .()2172x x +=D .()172x x -= 6.某超市经销一种水果,每千克盈利10元,每天可售出500千克,经市场调查发现,在进价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该超市要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价( )元A .5元B .5元或10元C .10元或15元D .15元7.活动选在一块长40米、宽28米的矩形空地上,如图,空地被划分出6个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为128平方米,小路的宽应为多少米?设小路宽为x 米,则可列方程为( )A .()()402281286x x --=⨯B .()()40228128x x --=C .()()402821286x x --=⨯D .()()40282128x x --=8.小李去参加聚会,每两人之间都互相赠送礼物,最终参加聚会的所有人的礼物总数共20件,则参加聚会的人数为( )A .4人B .5人C .6人D .7人二、填空题9.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5,6月份每个月的平均增长率为x ,则x 的值为________.10.某商品原价100元,经过连续两次涨价,现价为225元,则这个平均价格增长率为______.11.参加足球联赛的两支球队之间都要进行两场比赛,总共比赛110场,则共有________支球队.12.如图,某单位准备在院内一块长30m 、宽20m 的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的部分种植花草.如图,要使种植花草的面积为2532m ,则小道进出口的宽度为______m .13.某工厂一月份的产值是100万元,预计三月份的产值要达到121万元,如果每月产值的增长率相同,设这个增长率为x ,那么根据题意可列方程为___________.14.某年级举行篮球比赛,每一支球队都和其他球队进行了一场比赛,已知共举行了21场比赛,那么共有________支球队参加了比赛.15.2022年世界女子冰壶锦标赛有若干支队伍参加了单循环比赛(每两支队伍之间进行一场比赛),共进行了55场,则参赛的队伍有___________支.16.已知一人得了流感,经过两轮传染后,患病总人数为121人,设平均每人传染了x 个人,则列出关于x的方程为______.三、解答题17.要建一个面积为2250m的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用围栏围成.(1)若围栏的总长为45m,墙足够长,则与墙平行的围栏长为多少m?(2)若围栏的总长为60m,墙长为15m,则与墙垂直的围栏长为多少m?18.某校九年级一班的一个数学综合实践小组去超市调查某种商品“双十一”期间的销售情况,下面是调查后小阳与其他两位同学交流的情况:小阳:据调查,该商品的进价为11元/件;小佳:该商品定价为20元时,每天可售400件;小欣:在定价为20元的基础上,每涨价1元,每天少售20件.根据他们的对话,若销售的商品每天能获利3800元时,为尽快减少库存,应该怎样定价更合理?19.新华商场销售某种彩电,每台进价为3500元,调查发现,当销售价为3900元时,平均每天能售出8台,而当销售价每降低75元,平均每天能多卖6台.(1)若每台彩电降价x元,则每天彩电的销量为多少?(请用含有x的式子表示)(2)商场要想使这种彩电的销售利润平均每天达到5000元,则每台彩电应降价多少元?a.20.现有可建筑60m围墙的材料,准备依靠原有旧墙围成如图所示的仓库,墙长为ma ,能否围成总面积为225m的仓库?若能,求AB的长为多少?(1)若50(2)能否围成总面积为2400m的仓库?请说说你的理由.参考答案:。

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练 (含答案)

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练  (含答案)
A. B. C. D.
二、填空题
9.为了让农民能种植高产、易发芽的种子,某农科ห้องสมุดไป่ตู้验基地大力开展种子实验.该实验基地两年前有150种种子,经过两年不断地努力,现在已有216种种子.若培育的种子平均每年的增长率为x,则x的值为______.
10.在元旦庆祝活动中,每个参加活动的同学都给其余参加活动的同学各送1张贺卡,共送贺卡42张,设参加活动的同学有 人,根据题意,可列方程是______
(1)若销售单价定为每件45元,求每天的销售利润;
(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?
19.如图,老李想用长为 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈 ,并在边 上留一个 宽的门(建在 处,另用其他材料).
(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640 的羊圈?
A. B. C. D.
7.据省统计局发布,2022年我省有效发明专利数比2021年增长23%.假定2023年的年增长率保持不变,2021年和2023年我省有效发明专利分别为a万件和b万件,则()
A. B.
C. D.
8.如图,在一块长为 ,宽为 的矩形 空地内修建四条宽度相等,且与矩形各边垂直的道路,四条道路围成的中间部分恰好是一个正方形,且边长是道路宽的4倍,道路占地总面积为 ,设道路宽为 ,则以下方程正确的是()
11.某次聚会,每两个人握手一次,总共握手 次,那么有___________人参加聚会.
12.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程___________.

人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案

人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案

人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案一、选择题1.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x 名,据题意可列方程为()A.x(x+1)=253B.x(x−1)=253C.12x(x+1)=253D.12x(x−1)=2532.某小区内的一家快递驿站第一天共收到225件快递,第三天共收到324件快递,设该快递驿站收件量的日平均增长率为x,则下列方程正确的是()A.225(1+x2)=324B.225(1+x)2=324C.225(1+2x)=324D.225+225(1+x)=3243.有一个人患流感,经过两轮传染后共有64个人患流感.设每轮传染中平均一个人传染x个人,则第三轮传染后共有()个人患流感。

A.7 B.8 C.448 D.5124.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干,支干和小分支的总数是157,则每个支干长出多少个小分支?设每个支干长出x个小分支,所列方程是()A.x2=157B.(1+x)2=157C.1+x+x2=157D.x+x2=1575.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“健身杯”足球比赛,赛制为单循环形式(每两个队之间赛一场),现计划安排21场比赛,则邀请的参赛队数是()A.5 B.6 C.7 D.86.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则所列方程正确的为()A.(30−2x)(40−2x)=600B.(30+2x)(40+2x)=600C.30×40−2×30x−2×40x=600D.30×40+2×30x+2×40x=6007.某公司年报显示,该公司2023年的利润为6600万元,受市场波动影响,2023年利润增长率为2022年利润增长率的一半,若该公司2021年的利润为5000万元,则该公司2023年利润增长率为()A.5%B.10%C.15%D.20%8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210二、填空题9.10月8号到校前,帅童收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,帅童给个同学发了短信10.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,设每只病鸡传染健康鸡的只数为x只,则可列方程为.11.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为.12.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角形点阵中前4行的点数和,则300个点是前行的点数和.13.如图,某小区要在长为16m,宽为12m的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m.三、解答题14.西瓜经营户以3元/千克的价格购进一批小型西瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克这种小型西瓜的售价降低多少元?15.现今网购已经成为消费的新常态,某快递公司今年8月份的投递快递总件数为10万件,由于改进分拣技术,增加投递业务人员,10月份的投递快递总件数达到12.1万件,假设该公司每个月的投递快递总件数平均增长率相同.(1)求该公司的投递快递总件数月平均增长率;(2)如果继续保持上面的月平均增长率,平均每个业务员每月最多可投递快递0.7万件,那么20名投递业务员能否完成今年11月份的快递投递任务?说明理由.16.每年暑假是游泳旺季,今年我市某商店抓住商机,销售某款游泳服.6月份平均每天售出100件,每件盈利40元.为了扩大销售、增加盈利,7月份该店准备采取降价措施,经过市场调研,发现销售单价每降低1元,平均每天可多售出10件.(1)若降价5元,求平均每天的销售数量;(2)当每件游泳服降价多少元时,该商店每天销售利润为6000元?参考答案1.D2.B3.D4.C5.C6.A7.B8.A9.1210.(1+x)2=16911.20%12.2413.214.解:设应将每千克这种小型西瓜的售价降低x元.)−24=200根据题意,得(4−3−x)(200+40x0.1原式可化为:50x2−25x+3=0,解这个方程,得x1=0.2,x2=0.3.∵为了促销,故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克这种小型西瓜的售价降低0.3元.15.(1)解:设该公司的投递快递总件数月平均增长率为x依题意得:10(1+x)2=12.1解得:x1=﹣2.1(不符合题意,舍去),x2=0.1=10%答:该公司的投递快递总件数月平均增长率为10%;(2)解:该公司现有的20名投递业务员能完成今年11月份的快递投递任务,理由如下:由题意可知,11月份的快递投递总件数:12.1×(1+10%)=13.31 (万件)∵0.7×20=14(万件),14>13.31∴该公司现有的20名投递业务员能完成今年11月份的快递投递任务.16.(1)解:∵销售单价每降低1元,平均每天可多售出10件,降价5元∴平均每天可多售出5×10=50(件)∴若降价5元,平均每天的销售数量为100+50=150(件).(2)解:设每件商品降价x元,则每件盈利(40−x)元,平均每天可售出(100+10x)件∵商店每天销售利润为6000元∴(40−x)(100+10x)=6000解得:x1=10,x2=20答:每件游泳服降价10元或20元时,该商店每天销售利润为6000元.。

人教版九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程 同步训练题 含答案

人教版九年级数学上册 第21章 一元二次方程  21.3 实际问题与一元二次方程 同步训练题 含答案

人教版九年级数学上册第21章一元二次方程 21.3 实际问题与一元二次方程同步训练题含答案人教版九年级数学上册 第21章 一元二次方程 21.3 实际问题与一元二次方程同步训练题1. 小明家前年的日常开支为3.26万元,去年提高了x%,如果今年的提高率与去年相同,那么预计今年的日常开支为( )A .3.26(1+2x)万元B .3.26(1+2x%)万元C .3.26(1+x)2万元D .3.26(1+x%)2万元2. 某果园2019年水果产量为100吨,2019年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1-x)2=100B .100(1-x)2=144C .144(1+x)2=100D .100(1+x)2=1443. 某中学九年级(1)班在七年级时植树400棵,计划到今年毕业时,使植树总数达到1324棵,该班植树平均每年的增长率是( )A .10%B .100%C .20%D .231%4. 在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -10)=10 B.x x -12=10 C .x(x +1)=10 D .x x +12=105. 一个多边形共有14条对角线,则这个多边形的边数是( )A .6B .7C .8D .96. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队有( )A .5个B .6个C .7个D .8个7. 某校九年级毕业时,每个同学都将自己的相片向全班其他同学各送一张留念,全班共送了2550张相片.如果全班有x 名同学,根据题意列方程为 .18. 看下列一组数据:直线l上有2个点,共有1条构成的线段.直线l上有3个点,共有3条构成的线段.直线l上有4个点,共有6条构成的线段.(1)直线l上有n个点(n为正整数,n≥2),共有12n(n-1)条构成的线段;(2)若直线l上有n个点构成的线段的条数为36条,则直线l上有多少个点?参考答案:1---6 DDABB C7. x(x-1)=25508. 20%9. 1+a+a210. 1+x+x(1+x)=225或(1+x)2=22511. 50+50(1+x)+50(1+x)2=19612. 913. 解:设一台电脑每轮感染给x台电脑,由题意得:(1+x)2=81,解得x1=8,x2=-10(不合题意,舍去)故每轮感染中平均一台电脑会感染8台电脑.∵(1+x)3=(1+8)3=729>700,∴若病毒得不到有效控制,三轮感染后,被感染的电脑会超过700台.14. 设3月份到5月份营业额的月平均增长率为x,由题意,得:400×(1+10%)(1+x)2=633.6.解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:3月份到5月份营业额的月平均增长率为20%.15. 解:设该市这两年(从2019年底到2019年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.16. 解:设该厂今年产量的月增长率为x ,根据题意,得:5(1+x)2-5(1+x)=1.2,整理得:25x 2+25x -6=0,解得:x 1=15=20%,x 2=-65(不合题意,舍去) 答:该厂今年产量的月增长率为20%.17. 解:设南瓜亩产量的增长率为x ,则种植面积的增长率为2x ,依题意,得 10(1+2x)·2019(1+x)=60000解这个方程,得x 1=0.5,x 2=-2(不合题意,舍去)答:南瓜亩产量的增长率为50%.18. 解:依题意有12n(n -1)=36即n 2-n -72=0解得n 1=9,n 2=-8(舍去)答:直线l 上有9个点.。

人教版九年级上册 21.3 实际问题与一元二次方程 同步练习(含答案)

人教版九年级上册  21.3 实际问题与一元二次方程 同步练习(含答案)

实际问题与一元二次方程同步练习一.选择题(共12小题)1.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x,可列得方程为()A.5(1+x+1.5x)=7.8B.5(1+x×1.5x)=7.8C.7.8(1-x)(1-1.5x)=5D.5(1+x)(1+1.5x)=7.82.如图,某小区规划在一个长40m、宽26m的长方形场地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草,要使每一块草坪的面积都为144m2,那么通道的宽x应该满足的方程为()A.(40+2x)(26+x)=40×26B.(40-x)(26-2x)=144×6C.144×6+40x+2×26x+2x2=40×26D.(40-2x)(26-x)=144×63.某年级举行篮球比赛,赛制为单循环赛,即每一个球队都和其它的球队进行一场比赛,已知共举行了21场比赛,那么共有()支队伍参加了比赛.A.5B.6C.7D.84.某村2017年的人均收入为1.2万元,2019年的人均收入为1.452万元,则人均收入的年平均增长率为()A.5%B.10%C.15%D.19%5.2017年底,全国铁路营业里程为12.7万公里,其中高铁2.5万公里;截至2019年底,中国高铁运营里程突破3.5万公里(按3.5万公里计算),约占全球高铁网的七成,若这两年我国高铁里程的增长率相同,在保持年增长率不变的前提下,预计2021年中国高铁里程为多少万公里()A.4.5B.4.7C.4.9D.5.16.矩形菜地的面积是120m2,如果它的长减少2m,菜地就变成正方形,原菜地的长是()A.10B.12C.13D.147.若一个直角三角形的两条直角边长之和为14,面积为24,则其斜边的长是()A.B.C.8D.108.一个两位数,十位数字与个位数字之和为9,且这两个数字之积等于它们两个数字和的2倍,这个两位数是()A.36B.63C.36或63D.-36或-639.如图Rt△ABC中,△ABC=90°,AB=6cm,BC=8cm,动点P从点A出发沿AB边以1cm/秒的速度向点B匀速移动,同时,点Q从点B出发沿BC边以2cm/秒的速度向点C匀速移动,当P、Q两点中有一个点到达终点时另一个点也停止运动.运动()秒后,△PBQ 面积为5cm2.A.0.5B.1C.5D.1或510.有一块长28cm、宽20cm的长方形纸片,要在它的四角截去四个全等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,为了有效利用材料,则截去的小正方形的边长是()cm.A.3cm B.4cm C.5cm D.6cm11.如图是一张月历表,在此月历表上用一个长方形任意圈出2×2个数(如17,18,24,25),如果圈出的四个数中最小数与最大数的积为153,那么这四个数的和为()A.40B.48C.52D.5612.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图△放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图△放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图△放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.5cm2B.6cm2C.7cm2D.8cm2二.填空题(共5小题)13.某工厂去年10月份机器产量为500台,12月份的机器产量达到720台,设11、12月份平均每月机器产量增长的百分率为x,则根据题意可列方程.14.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.15.已知两个数的差等于2,积等于15,则这两个数中较大的是.16.某农场的粮食产量,若两年内从25万公斤,增加到30.25万公斤,则平均每年的增长率为%.17.现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m2,那么小道的宽度应是m.三.解答题(共5小题)18、某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.19.如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.20.2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元销售了256袋,三、四月该口罩十份畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?21.公园原有一块矩形的空地,其长和宽分别为120米,80米,后来公园管理处从这块空地中间划出一块小矩形,建造一个矩形小花园,并使小花园四周的宽度都相等(四周宽度最多不超过30米).(1)当矩形小花园的面积为3200平方米时,求小花园四周的宽度.(2)若建造小花园每平方米需资金100元,为了建造此小花园,管理处最少要准备多少资金?此时小花园四周的宽度是多少?22.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?参考答案1-5:DDVBV 6-10:BDCBC 11-12:CC13、14、815、5或-316、1017、218、答:这个茶园的长和宽分别为30m、20m19、:(1)纸盒底面长方形的长为17cm,宽为14cm.(2)若纸盒的底面积是150cm2,纸盒的高为5cm.20、(1)三、四这两个月销售量的月平均增长率为25%;(2)当口罩每袋降价2元时,五月份可获利1920元.21、:(1)设小花园四周的宽度为xm,由于小花园四周小路的宽度相等,则根据题意,可得(120-2x)(80-2x)=3200,即x2-100x+1600=0,解之得x=20或x=80.由于四周宽度最多不超过30米,故舍去x=80.△x=20m.答:小花园四周宽度为20m.(2)当矩形四周的宽度最大的时,小花园面积最小,从而投入的建造资金最少,此时最少资金为100(120-2x)(80-2x)=100×(120-2×30)×(80-2×30)=120000(元).答:为了建造此小花园,管理处最少要准备120000元,此时小花园四周的宽度是30m.22、:(1)设年平均增长率为x,由题意得:20(1+x)2=28.8,解得:x1=20%,x2=-2.2(舍去).答:东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率为20%.(2)设每杯售价定为a元,由题意得:(a-6)[300+30(25-a)]=6300,解得:a1=21,a2=20.△为了能让顾客获得最大优惠,故a取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额。

人教版九年级上册数学实际问题与一元二次方程同步练习(含答案)

人教版九年级上册数学实际问题与一元二次方程同步练习(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程同步练习一、单选题1.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排36场比赛,则八年级班级的个数为( )A .6B .9C .7D .8 2.随着国内新冠疫情逐步得到控制,人们的口罩储备逐渐充足,市场的口罩需求量在逐渐减少,某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到64万只,则该厂七八月份的口罩产量的月平均减少率为( ) A .18% B .20% C .36% D .40% 3.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .35×20-35x -20x +2x 2=600B .35×20-35x -2×20x =600C .(35-2x )(20-x )=600D .(35-x )(20-x )=6004.把一个边长为40cm 的正方形硬纸板的四周按如图所示的方式剪掉一些长方形,将剩余部分折成一个有盖的长方体盒子,折成的一个长方体盒子的表面积为550cm 2,则此时长方体盒子的体积为( )A .750cm 3B .1536cm 3C .2000cm 3D .2304cm 3 5.在 “双减政策” 的推动下, 我校学生课后作业时长有了明显的减少. 2021 年第三季度平均每周作业时长为 630 分钟, 经过 2021 年第四季度和 2022 年第一季度两次整改后, 现䢎平均每周作业时长为 450 分钟,设每季度平均每周作业时长的季度平均下降率为 a , 则可列方程为 ( )A .()6301450-=aB .()4501630+=aC .()26301450-=aD .()24501630+=a6.如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子(纸板的厚度忽略不计)若该无盖盒子的底面积为900cm2,盒子的容积是()A.34500cm D.39000cm4000cm C.33600cm B.37.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,此肺炎具有人传人的特性,若一人携带病毒未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,设每轮传染中平均每个人传染了x人,则根据题意可列出方程()A.x(1+x)=256B.x+(1+x)2=256C.x+x(1+x)=256D.1+x+x(1+x)=2568.如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x的值是()A.3米B.3.2米C.4米D.4.2米二、填空题9.金滩商场4月份的利润是28万元,预计6月份的利润将达到40万元,设每月利润的平均增长率为x,则根据题意所列方程是__________________.10.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百九十一步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为891平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多_________步.11.新冠肺炎全球蔓延,为防控疫情,做到有“礼”有“距”,“碰肘礼”逐渐流行起来.某次会议上,每两个参加会议的人都相互一次“碰肘礼”,经统计所有人共碰肘36次,则这次会议到会人数是_____人.12.某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,问增加了_________行或_________列.13.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x步,则可列方程______.14.襄阳市要组织一次少年足球联赛,要求参赛的每两队之间都要进行两场比赛,共要比赛90场,则共有______个队参加比赛.15.某地区加大教育投入,2021年投入教育经费2000万元,以后每年逐步增长,预计2023年,教育经费投入为2420万元,则该地区教育经费投入年平均增长率为______.16.2022年春季,新一轮的新冠病毒的传染性极强,莱市某社区因1人患了新冠肺炎没有及时隔离治疗,经过两轮的传染后,共有25人患了新冠肺炎,每轮平均1人感染了_____________个人.三、解答题17.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.若平均每年的增产率相同,求平均每年的增产率.18.如图,学校课外生物小组的试验园地是长30米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为532平方米,求小道的宽.19.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和6.05万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率:(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年8月份的投递任务?20.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算.该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校.若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?参考答案:1.B2.B3.C4.A5.C6.C7.D8.C9.()2x+=2814010.611.912.3313.x(x+12)=86414.1015.10%16.417.平均每年的增产率为10%18.小道宽1米.19.(1)该快递公司投递的快递件数的月平均增长率为10%(2)不能完成今年8月份的投递任务,理由见解析20.(1)该市这两年投入基础教育经费的年平均增长率为20% (2)2021年最多可购买电脑880台。

人教版九年级上册数学21 3实际问题与一元二次方程同步练习(含答案)

人教版九年级上册数学21 3实际问题与一元二次方程同步练习(含答案)

人教版九年级上册数学21.3实际问题与一元二次方程同步练习一、单选题1.我国南宋数学家杨辉所著《田亩算法》中记载了这样一个问题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:矩形面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形宽为x 步,可列出方程为( ) A .()12864x x -= B .()12864x x -=C .()12864x x +=D .()()1212864x x +-=2.在长为18m ,宽为15m 的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,则其中一个小长方形花圃的面积为( )A .210mB .212mC .218mD .228m 3.某工厂由于管理水平提高,生产成本逐月下降.原来每件产品的成本是1600元,两个月后降至900元,若产品成本的月平均降低率为x ,下面所列方程正确的是( ) A .()216001900x -=.B .()160012900x -=.C .()216001900x -= D .()16001900x -= 4.某种品牌运动服经过两次降价,每件零售价由1280元降为720元.已知两次降价的百分率都是%x ,则x 的值是( )A .25%B .25C .20%D .20 5.要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x 个队参赛,则根据题意所列方程正确的是( )6.某机械厂七月份生产零件50万个,第三季度共生产零件196万个.设该厂八,九月份平均每月的增长率为x ,则可以得到关于x 的方程是( ) A . ()250501196x ++=B . ()()505015012196x x ++++=C . ()2501196x +=D . ()()250501501196x x ++++= 7.如图,有一面积为2240m 的长方形鸡场,鸡场的一边靠墙(墙长23m ),另三边用竹篱笆围成,如果竹篱笆的长为44m ,设鸡场的垂直于墙的边长为m x ,则下列方程正确的是( )442402x x -=()442x -232402x x -=8.在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为m 分钟,经过去年下半年和今年上半年两次调整后,现在平均每周作业时长比去年上半年减少了80%,设每半年平均每周作业时长的下降率为x ,则可列方程为( )A .2(1)80%m x m -=B .2(1)80%m x m +=C .2(1)20%m x m -=D .220%(1)x m m +=二、填空题9.某品牌运动服原来每件售价640元,经过两次降价,售价降低了280元.已知两次降价的百分率相同,设每次降价的百分率为x,依题意可列出关于x的方程为______.10.有一个两位数,如果个位上的数比十位上的数大1,并其十位上的数的平方比个位上的数也大1,那么这个两位数是__________.11.某品牌新能源汽车的某款车型售价为30万元,连续两次降价后售价为24.3万元,假知每次平均降价的百分率都为x,那么可列方程为______.12.某款新能源车在两年内价格从25万元降至16万元,如果设每年降价的百分率均为x ),则由题意可列方程:______.x(013.某药店一月份销售口罩500包,三月份销售口罩605包,设该店二、三月份销售口罩的月平均增长率为x,则可列方程______.14.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是__15.如图,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,竖彩条的宽度是______cm.16.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为___________.三、解答题17.某商场销售一批服装,平均每天可售出20件,每件盈利40元,经市场调查发现,每件服装每降价1元,商场平均每天就可以多售出2件,若使商场每天盈利1200元,每件服装应降价多少元?18.某厂经过两次工艺改进降低了某种产品的成本,每件产品的成本从250元降低到了每件160元,求平均每次降低成本的百分率.19.某商店将甲、乙两种糖果混合销售,已知甲种糖果单价为20元/千克,乙种糖果单价为18元/千克,现将12千克乙种糖果和一箱甲种糖果混合销售,售出5千克后,又在混合糖果中加入3千克甲种糖果再出售时,混合糖果的单价为19元/千克.问这箱甲种糖果有多少千克?20.今年春季是甲流病毒的高发期.为了遏制甲流病毒的传播,建议市民朋友们在公共场合要佩戴口罩,现在,有一个人患了甲流,经过两轮传染后共有81个人患了甲流.(1)每轮传染中平均一个人传染了几个人?N医用口罩的数量不超过普通医用口罩(2)某药房最近售出了100盒口罩.已知售出的95N医用口罩的单价为15元,每盒普通医用口罩的价格为10元,则售出的4倍,每盒95N医用口罩和普通医用各多少盒时,总销售额最多?请说明理由.95参考答案:20.(1)每轮传染中平均一个人传染了8个人(2)售出95N医用口罩80盒,普通医用20盒时,总销售额最多,理由见解析。

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题含答案(人教版)姓名 班级 学号一、选择题:1.为防治雾霾,保护环境,某市掀起“爱绿护绿”热潮,经过两年时间,绿地面积增加了21%,则这两年的绿地面积的平均增长率是( )A .10%B .11.5%C .12%D .21%2.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。

而立之年督东吴,早逝英年两位数。

十位恰小个位三,个位平方与寿同。

哪位学子算得快,多少年华数周瑜?”假设周瑜去世时年龄的十位数字是 x ,则可列方程为( )A .210(3)(3)x x x +-=-B .210(3)x x x ++= C .210(3)(3)x x x ++=+ D .210(3)(3)x x x ++=+ 3.从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x 个站点,根据题意,下面列出的方程正确的是( )A .()1132x x +=B .()1132x x -=C .1(1)1322x ⨯+=D .1(1)1322x x -= 4.(古代数学问题)直田积八百六十四步,只云长阔共六十步,问长多阔几何.——摘自古代数学家杨辉的《田亩比类乘除捷法》译文:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,则它的长比宽多( )A .6B .12C .24D .365.一个两位数比它的个位数字的平方小2.并且个位数字比十位数字大3.下列的各数中,是符合要求的两位数的是( )A .25B .36C .47D .596.若三角形的两边长5和12,第三边是方程 的根,则它的周长为( ).A .30B .15C .30或34D .57.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为 ( )A .7B .8C .9D .108.如图,要设计一幅宽20cm 、长30cm 的图案,其中有两横两竖的彩条即图中的阴影部分,横竖彩条的宽度比为2:1.如果要使阴影所占面积是图案面积的 1975,则竖彩条宽度为( )A .1 cmB .2 cmC .19 cmD .1 cm 或19 cm二、填空题:9.某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡156张,设这个小组的同学共有x人,可列方程:.10.学校秋季运动会上,九年级准备队列表演,一开始排成8行12列,后来又有84名同学积极参加,使得队列增加的行数比增加的列数多1.现在队列表演时的列数是.11.已知某工厂经过两年的时间把某种产品从现在的年产量100万台提高到121万台,那么每年的年平均增产百分率为,按此年平均增长率,预计第四年该工厂的年产量为。

人教版九年级上册数学同步练习《实际问题与一元二次方程》(习题+答案)

人教版九年级上册数学同步练习《实际问题与一元二次方程》(习题+答案)

21.3 实际问题与一元二次方程内容提要1.列一元二次方程解应用题应注意各类应用题中常见的等量关系,注意挖掘题目中隐含的等量关系.2.本节主要讨论增长率问题、几何图形面积问题、传播类型问题.应用一元二次方程解决实际问题时,也像以前学习一元一次方程一样,注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决.3.求得方程的解后,注意检验其结果是否符合题意,然后得到原问题的解答. 基础训练(1)二次增长类型1.某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( )A .()22001%148a +=B .()22001%148a -=C .()2200%148a +=D .()2200%148a -=2.某地区2013年投入教育经费2500万元,预计2015年投入教育经费3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .225003600x =B .()2250013600x +=C .()225001%3600x +=D .()()225001250013600x x +++= 3.由于国家出台对房屋的限购令,某地房屋价格原价为2400元/平方米,通过连续两次降价%a 后,售价变为2000元/平方米,下列方程中正确的是( )A .()224001%2000a -=B .()220001%2400a -=C .()224001%2000a +=D .()224001%2400a -=4.某商场在促销活动中,将原价36元的商品,连续两次降价%m 后现价为25元.根据题意可列方程为 .5.某地区以旅游业为龙头的服务业将成为推动该区经济发展的主要动力.2013年全区全年旅游总收入大约1000亿元,如果到2015年全区全年旅游总收入要达到1440亿元,那么年平均增长率应为 .6.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为.7.据报道,某市农作物秸秆的资源巨大,但合理利用量十分有限,2013年的利用率只有30%,大部分秸秆被直接焚烧了,假定该市每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使2015年的利用率提高到60%,求每年的增长率. 1.41)8.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工需比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队单独做a天后,再由甲、乙两工程队合作多少天(用含a的代数表示)可完成此项工程?(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使总施工费不超过64万元?基础训练1.某中学准备建一个面积为2375m的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.()10375x x+=x x-=B.()10375C.()2210375x x+=x x-=D.()22103752.在一幅长60cm,宽40cm的矩形中学生书画作品的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个作品的面积是22816cm,设金色纸边的宽为xcm,那么x满足的方程是()A.()()++=6024022816x xB .()()60402816x x ++=C .()()602402816x x ++=D .()()604022816x x ++=3.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问二月、三月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意列得方程为( )A .()2501175x +=B .()250501175x ++=C .()()2501501175x x +++=D .()()250501501175x x ++++=4.一块正方形钢杆上截去3cm 宽的长方形钢条,剩下的面积是254cm ,则原来这块钢板的面积是 2cm .5.某小区准备在每两幢楼房之间开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .6.如图,为美化校园环境,某校计划在一块长为60米、宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.7.思思家有一块长8m 、宽6m 的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,思思设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮思思求出图中的x 值.基础训练(3)传播类型1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人2.一月份某地发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出方程正确的是( )A .()21001250x +=B .()()210011001250x x +++=C .()21001250x -=D .()1001x +3.要某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .()110x x -=B .()1102x x -= C .()110x x += D .()1102x x +=4.有4支球队要进行篮球比赛,赛制为单循环形式(每两队之间都赛一场),则一共需比赛场.5.2011年甲型H1N1流感病毒在某地有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为.6.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降,由原来每千克16元下调到每千克9元.设平均每次下调的百分率为x,则根据题意可列方程为.7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮传染后就会有81台电脑被感染,请你用学过的知识分析,每轮传染中平均一台电脑会传染几台电脑?若病毒得不到有效控制,3轮传染后,被传染的电脑会不会超过700台?8.一种电脑病毒NHK传播速度极快,每台带NHK病毒的电脑一天能传染若干台.(1)现有一台电脑感染上这种NHK病毒,开始两天共有225台电脑感染上NHK病毒,每台电脑每天平均传染了几台?(2)两天后,启用新的杀毒软件“小北毒霸”,平均一天一台带NHK病毒电脑以少传染5台的速度在递减,再过两天,共有多少台电脑感染上NHK病毒?能力提高1.在一幅长为80cm,宽为50cm的矩形中学生书画作品的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个作品的面积是25400cm,设金色纸边的宽为xcm,那么x满足的方程是()A.213014000x x+-=+-=B.2653500x xC.213014000--=x xx x--=D.26535002.关于x 的方程的两根分别为13x =-,22x =,则这个方程可以为( )A .()()320x x --=B .()()320x x ++=C .()()320x x -+=D .()()320x x +-= 3.根据下列表格的对应值: x 3.233.24 3.25 3.26 2ax bx c ++0.06- 0.02- 0.03 0.07 判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是( )A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<4.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地,根据图中数据,计算耕地的面积为 .5.填空:22x x ++( )()22_______x =+.6.跳水运动员李玲从10米高台上跳水,她跳下的高度h (单位:米)与所用时间t (单位:秒)的关系是()()521h t t =--+,她从起跳到入水所用的时间是 .7.用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为()217x cm +,正六边形的边长为()22x x cm +(其中0x >).求这两段铁丝的总长.8.某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?9.某火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)10.为了倡导节能低碳的生活,某公司对集体宿舍用电作如下规定:一间宿舍一个月用电量若不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交100a 元.某宿舍3月份用电80千瓦时,交电费35元. (1)求a 的值; (2)该宿舍5月份交电费为45元,那么该宿舍当月用电量为多少千瓦时?拓展探究1.思思和同桌聪聪在课后复习时,对一道思考题进行了探索:一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 底端的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将思思对思考题的解答补充完整:解:设点B 将向外移动x 米,即1BB x =,10.7B C x =+,2211 2.50.70.42AC AC AA =--=. 而11 2.5A B =,在11Rt A B C ∆中,由2221111B C A C A B +=,得方程 ,解方程得1x =,2x = . ∴点B 将向外移动米. (2)解完思考题后,聪聪提出:①在思考题中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?②在思考题中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?2.把一边长为40cm 的正方形硬纸板进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.①要使折成的长方体盒子的底面积为2484cm ,那么剪掉的正方形的边长为多少? ②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分拆成一个有盖的长方体盒子,若折成的一个长方体盒子的表面积为2550cm ,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).3.某校为培养青少年科技创新能力,举办了动漫制作活动,思思设计了点做圆周运动的一个雏形.如图所示,甲、乙两点分别从直径的两端点A ,B 以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l (cm)与时间t (s)满足关系:()213022l t t t =+≥,乙以4/cm s 的速度匀速运动,半圆的长度为21cm.(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运用了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?4.低碳生活的理念已逐步被人们所接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18千克;一个人平均一年少买的衣服,相当于减排二氧化碳约6千克.问题解决:甲、乙两校分别对本校师生提出“节约用电”“少买衣服”的倡议.2012年两校响应本校倡议的人数共60人,因此而减排的二氧化碳总量为600千克.(1)2012年两校响应本校倡议的人数分别为多少?(2)2012年到2014年,甲校响应本校倡议的人数每年增加相同的数量;乙校响应本校倡议的人数每年按相同的百分率增长.2013年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍;2014年两校响应本校倡议的总人数比2013年两校倡议的总人数多100人.求2014年两校因响应本校倡议减排二氧化碳的总量.数学应用请阅读下列材料:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =.把2y x =代入已知方程,得21022y y ⎛⎫+-= ⎪⎝⎭.化简,得2240y y +-=,故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程220x x +-=,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为 ;(2)已知关于x 的一元二次方程20ax bx c ++=有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.应用2构造一元二次方程解决较复杂的几何问题:如图,等腰直角三角形ABC的直角边AB=,点P从A点出发,沿射线AB运动,点Q从点C出发,以相同的速度沿BC的延长2线运动,PQ与直线AC交于点D.当AP的长为何值时,PCQ∆的面积相等?∆与ABC数学应用1.解一元二次方程要观察方程的特点,灵活选取适当的方法来解.一般地,用配方法可以解任意一个一元二次方程.但对形如20a≠的一元二次方程,采用因式分解法+=()0ax bx求解更为简便.2.本章中还渗透了一些重要的数学思想方法,如在利用配方法解题过程中,体现了一种重要的数学思想方法——化归,即把一个一般的一元二次方程转化为“()2+=”的形x a b式;用配方法、公式法和因式分解法解一元二次方程时,抓住“降次”这一基本策略.在学习过程中,同学们应多加体会.3.列一元二次方程解应用题应注意各类应用题中常见的等量关系:(1)与几何图形有关的问题:这类应用题经常用到的几何知识有:①面积公式;②勾股定理.(2)有关增长率(或降低率)的问题:①若原有值为a,平均增长率为x,则一次增长后的值为()+,二次增长后的值为()2a x1+;②若原有值为b,平均降低率为y,则一a x1次降低后的值为()b y-,二次降低后的值为()21-;③解决这类问题时,如果原有值没b y1有具体给出,那么我们通常把它设为单位1.4.方程是一种重要的数学模型,许多代数、几何问题以及实际问题可以通过构造一元二次方程来解决.数学文化塔塔利亚发现的一元三次方程的解决1494的,意大利数学家帕西奥利对三次方程进行过艰辛的探索后作出极其悲观的结论.他认为在当时的数学中,求解三次方程,犹如化圆为方问题一样,是根本不可能的.费罗在帕西奥利作出悲观结论不久,大约在1500年左右,得到了3x mx n +=这样一类缺项三次方程的求解公式.大约1510年左右,帕西奥利将这一成果传给他的学生菲奥尔.1534年塔塔利亚宣称自己已得到了形如32x mx n +=这类没有一次项的三次方程的解的方法.菲奥尔与塔塔利亚二人相约在米兰进行公开比赛.双方各出三十个三次方程的问题,约定谁解出的题目多谁就获胜.塔塔利亚在1535年2月13日,在参加比赛前夕经过多日的苦思冥想后终于找到了多种类型三次方程的解法.于是在比赛中,他只用了两个小时的时间就轻而易举地解出了对方出的所有题目,而对方对他出的题目却一题都做不出来,这样他以30:0的战绩大获全胜,这次辉煌的胜利为塔塔利亚带来轰动一时的荣誉,塔塔利亚为这次胜利所激励,更加热心于研究一般三次方程的解法.到1541年,终于完全解决了三次方程的求解问题,卡尔达诺在此之前对三次方程求解问题已进行过长时间的研究,却没有得到结果.于是多次向塔塔利亚求教,开始都被塔塔利亚拒绝了.但最终在卡尔达诺立下永不泄密的誓言后,他于1539年3月25日向卡尔达诺公开了自己的秘密.但卡尔达诺并没有遵守自己的诺言,1545年他出版《大术》一书,将三次方程解法公之于众,从而使自己在数学界声名鹊起.由于卡尔达诺最早发表了求解三次方程的方法,因而数学上三次方程的解法至今仍被称为“卡达尔诺公式”,塔塔利亚之名反而湮没无闻了.一元三次方程的一般形式是320x sx tx u +++=,如果作一个横坐标平移3s y x =+,那么我们就可以把方程的二次项消去,所以我们只要考虑形如3x px q =+的三次方程.假设方程的解x 可以写成x a b =-的形式,这里a 和b 是待定的参数.代数方程,我们就有()322333a a b ab b p a b q -+-=-+,整理得()()333a b a b p ab q -=-++,由二次方程理论可知,一定可以适当选取a 和b ,使得在x a b =-的同时30ab p +=,这样上式就成为33a b q -=,两边各乘以327a ,就得到6333272727a a b qa -=,由3p ab =-可知6332727a p qa +=.这是一个关于3a的二次方程,所以可以解得a.进而可解出b和根x.学业评价21.3 参考答案:基础训练(1)1.B 2.B 3.D 4.()2361%25m -= 5.20% 6.90%7.设每年产出的农作物秸秆总量为a ,合理利用量的增长率是x ,由题意得()230%160%a x a ⋅⋅+=⋅,即()212x +=.所以10.41x ≈,2 2.41x ≈-(不合题意,舍去).故0.41x ≈,即每年秸秆合理利用量的增长率约是41%.8.(1)设乙单独做x 天完成此项工程,由题意得1120130x x ⎛⎫+= ⎪+⎝⎭,整理得2106000x x --=,解得130x =,220x =-,经检验:130x =,220x =-都是分式方程的解,但220x =-不符合题意舍去. 答:甲、乙两工程队单独完成此项工程各需要60天、30天.(2)设甲独做a 天后,甲、乙再合做203a ⎛⎫- ⎪⎝⎭天,可以完成此项工程. (3)由题意得()11 2.520643a a ⎛⎫⨯++-≤ ⎪⎝⎭,解得36a ≥. 答:甲工程队至少要独做36天后,再由甲、乙两工程队合作完成剩下的工程,才能使总施工费不超过64万元.基础训练(2)1.A 2.A 3.D 4.81 5.()10300x x +=6.(1)()()402602a a -- (2)57.方案一:根据题意,得()()186862x x --=⨯⨯,解得112x =,22x =.112x =不合题意,舍去,∴2x =,其他方案略.基础训练(3) 1.B 2.B 3.B 4.6 5.()1181x x x +++=或()2181x += 6.()21619x -=7.设每轮传染中平均每一台电脑会传染x 台电脑,依题意得()1181x x x +++=,()2181x +=,19x +=或19x +=-,18x =或210x =-(舍去),()()23118729700x +=+=>.答:每轮传染中平均每一台电脑会传染8台电脑,3轮传染后,被传染的电脑会超过700台.8.(1)设每台感染NHK 病毒电脑每天传染x 台,依题意得()11225x x x +++=,()21225x +=,115x +=±,114x =,216x =-(不合题意,舍去). 答:每台每天平均传染了14台.(2)第三天感染上NHK 病毒电脑有:()2252251452250+-=,第四天感染上NHK 病毒电脑有:()22502250145511250+--=答:第四天共有11250台电脑感染上NHK 病毒.能力提高1.B 2.D 3.C 4.2551m 5.18 146.2秒 7.由已知得,正四边形周长为()2517x +cm ,正六边形周长为()262x x +cm ,因为正五边形和正六边形的周长相等,所以()()2251762x x x +=+.整理得212850x x +-=,解得15x =,217x =-(舍去),故正五边形的周长为()25517210⨯+=(cm),又因为两段铁丝等长,所以这两段铁丝的总长为420cm .8.(1)解:设每千克核桃应降价x 元.根据题意,得()60401002022402x x ⎛⎫--⋅+⨯= ⎪⎝⎭.解得14x =,26x =.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为60654-=(元),54100%90%60⨯=. 答:该店应按原售价的九折出售.9.(1)设甲队单独完成这项工程需要x 个月,则乙队单独完成这项工程需要()5x -个月.由题意得()()565x x x x -=+-,解得12x =,215x =,因为12x =不合意,舍去,故15x =,510x -=. 答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.(2)设在完成这项工程中甲队做了m 个月,则乙队做了2m 个月,由题意知:乙队每月的施工费为150万元,根据题意列不等式得10015015002m m +⨯≤,解得487m ≤,∵m 为正整数,∴m 的大整数值为8.答:完成这项工程,甲队最多施工8个月.10.(1)()802035100a a -+=.解得150a =,230a =.∵45a ≥,230a =不合题意,舍去.∴50a =. (2)设宿舍5月份用电量为x 千瓦时,()50502045100x -⨯+=,解得100x =, 答:该宿舍5月份用电量为100千瓦时.拓展探究 1.(1)()2220.72 2.5x ++= 0.8 2.2-(舍去) 0.8(2)①不会是0.9米 ②有可能.设梯子顶端从A 处下滑x 米,则有()()2220.7 2.4 2.5x x ++-=,解得 1.7x =或0x =(舍去). 2.(1)①设剪掉的正方形的边长为x cm ,则()2402484x -=,解得131x =(不合题意,舍去),29x =,∴剪掉的正方形的边长为9cm . ②侧面积有最大值.设剪掉的小正方形的边长为x cm ,盒子的侧面积S 为()4402x x -2cm ,即()2810800S x =--+,∴当10x =时,即当剪掉的正方形的边长为10cm 时,长方形盒子的侧面积最大为2800cm .(2)在如图的一种剪裁图中,设剪掉的长方形盒子的高为x cm .()()()()2402202202402550x x x x x x --+-+-=,解得135x =-(不合题意,舍去),215x =.∴剪掉的正方形的边长为15cm .此时长方体盒子的长为15cm ,宽为10cm ,高为5cm .3.(1)当4t =时,()213441422l cm =⨯+⨯=.答:甲运动4s 后的路程是14cm .(2) 设它们运动了ms 后第一次相遇,根据题意,得21342122m m m ⎛⎫++= ⎪⎝⎭,解得13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了ns 后第二次相遇,213421322n n n ⎛⎫++=⨯ ⎪⎝⎭,解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s .4.(1)设2012年甲校响应本校倡议的人数为x 人,乙校响应本校倡议的人数为y 人,依题意得60,186600.x y x y +=⎧⎨+=⎩解得20x =,40y =. ∴2012年甲、乙两校应倡议的人数分别是20人和40人.(2)设2012年到2014年,甲校响应本校倡议的人数每年增加m 人;乙校响应本校倡议的人数每年增长的百分率为n .依题意得()()()()()()2202401,20240120401100.m n m n m n ⎧+⨯=+⎪⎨+++=++++⎪⎩由①得20m n =,代入②并整理得22350n n +-=,解之得11n =,2 2.5n =-(负值舍去). ∴20m =,∴2014年两校响应本校倡议减排二氧化碳的总量:()()22022018401162040+⨯⨯++⨯=(千克). 答:2014年两次响应本校倡议减排二氧化碳的总量为2040千克.数学应用应用1 (1)2390y y +-=(2)设所求方程的根为y ,则()10y x x =≠,于是()10x y y=≠. 把1x y =代入方程20ax bx c ++=,得2110a b c y y ⎛⎫+⋅+= ⎪⎝⎭.去分母,得20a by cy ++=. 若0c =,有20ax bx += ,于是方程20ax bx c ++=有一个根为0,不符合题意.∴0c ≠. 故所求方程为()200cy bx a c ++=≠.应用2 设AP x =,当点P 在线段AB 上时,PCQ ∆与ABC ∆的面积不相等;当点P 在AB 的延长线上时,有()1222PCQ S x x ∆=-=,解得11x =,21x =-(舍去),即1AP =。

人教版九年级上册数学 22 3实际问题与一元二次方程 同步练习(含答案)

人教版九年级上册数学 22 3实际问题与一元二次方程 同步练习(含答案)

人教版九年级上册数学22.3 实际问题与一元二次方程同步练习一、单选题1.粮食是人类赖以生存的重要物质基础.某农业基地现有杂交水稻种植面积30公顷,计划两年后将杂交水稻种植面积增至36.3公顷,设该农业基地杂交水稻种植面积的年平均增长率为x ,根据题意列出方程正确的是( ) A .230(1)36.3x -= B .230(1)36.3x += C .()236.3130x -=D .236.3(1)30x +=2.广东春季是流感的高发时期,某校4月初有一人患了流感,经过两轮传染后,共25人患流感,假设每轮传染中平均每人传染x 人,则可列方程( ) A .2125x x ++= B .225x x += C .()2125x +=D .()125x x x ++=3.某中学连续3年开展植树活动,已知第一年植树500棵,第三年植树720棵,若设该校这两年植树棵数的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .()5001720x += B .()25001720x += C .()50012720x +=D .()25001720x -=4.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地95号汽油价格三月底是7.1元/升,五月底是9.4元/升.设该地95号汽油价格这两个月平均每月的增长率为x ,根据题意列出方程,正确的是( ) A .()27.119.4x += B .()29.417.1x +=C .()27.119.4x+=D .()()27.117.119.4x x +++=5.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元.如果平均每月增长率为x ,则由题意列方程应为( ) A .()220011000x +=B .20020021000x +⨯=C .()()2200120011000x x +++=D .()()2200200120011000x x ++++=6.随着中考结束,初三某毕业班的每一个同学都向其他同学赠送一张自己的照片留作纪念,全班共送了2862张照片,若该班有x 名同学,则根据题意可列出方程为( )A .()12862x x -=B .()12862x x +=C .()212862x x -=D .()128622x x -=⨯7.某种药品原来售价200元,连续两次降价后售价为162元,若每次下降的百分率相同,则这个百分率是( ) A .10%B .9%C .19%D .10%或19%8.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1560张相片,如果全班有x 名学生,根据题意,列出方程为( )二、填空题9.目前以5G 等为代表的战略性新兴产业蓬勃发展,某市2020年底有5G 用户2万户,计划到2022年底全市5G 用户数达到13.52万户,设全市5G 用户数年平均增长率为x ,则x 值为___________.10.某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,问增加了_________行或_________列.11.电影《长津湖之水门桥》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达10亿元,若把增长率记作x ,则方程可以列为___________.12.“疫情”期间,某商场积压了一批商品,现欲尽快清仓.老板决定在抖音直播间降价促销,据调查发现,若每件商品盈利50元,可售出500件,商品单价每下降1元,则可多售出20件,设每件商品降价x 元若要使销售该商品的总利润达到28000元,并能尽快清仓,则每件商品应降价 _____元.13.受疫情影响,某快递公司的投递业务锐减,已知今年1月份与3月份完成的快递总件数分别为25万件和16万件,若假设快递量平均每月降低率为x ,则可列出方程________.14.阅读理解:给定一个矩形,如果存在一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍矩形”,当矩形的长和宽分别为2和1时,其“加倍矩形”的外接圆半径为____.15.一个长方体包装盒的表面展开图如图所示,若此包装盒的容积为1500cm 3,则该长方体最短的棱的长为_________________cm .16.某学区房房价连续两次上涨,由原来的每平方米10000元涨至每平方米12100元,设每次涨价的百分率相同,则涨价的百分率为______.三、解答题17.某儿童玩具店销售一种玩具,每个进价为60元,现以每个100元销售,每天可售出20个,为了迎接六一儿童节,店长决定采取适当的降价措施,经市场调查发现:若每个玩具每降价1元,则每天多售出2个.(1)未降价之前,该商场的总盈利为多少元?(2)为了增加盈利,减少库存,且日销售利润要达到1200元,销售单价应定为多少元?18.某小区为了改善绿化环境,计划购买A、B两种树苗共100棵,其中A树苗每棵40元,B树苗每棵35元.经测算购买两种树苗一共需要3800元.(1)计划购买A B、两种树苗各多少棵?(2)在实际购买中,小区与商家协商:两种树苗的售价均下降a元(10a ),且每降低1元,小区就多购买A树苗2棵,B树苗3棵.小区实际购买这两种树苗的费用比原计、树苗共多少棵?划费用多了300元,则该小区实际购买A B19.“绿化校园,书香开州”,今年三月份,开州区某校计划购买梧桐树苗和杉树苗共100棵,其中梧桐树苗每棵40元,杉树苗每棵35元,经预算,此次购买两种树苗一共至少需要3800元.(1)计划购买梧桐树苗最少是多少棵?(2)在实际购买中,因受树苗积压以及市场影响,为此商家降低了两种树苗的售价,且降价相同,但降价金额不得高于10元/棵,经统计发现,两种树苗的售价每降低1元,梧桐树苗的销售量会增加2棵,杉树苗的销售量会增加3棵.若该校实际购进这两种树苗一共所需费用比计划购买的最低费用多了300元,则两种树苗都降低多少元?20.如图,在Rt ABC △中,90B ,6cm AB =,8cm BC =.点P 从点A 出发,沿AB 向点B 以1cm/s 的速度移动,同时点Q 从点B 出发,沿BC 向点C 以2cm /s 的速度移动.(1)经过多少秒后,PBQ 的面积为28cm ?(2)线段PQ 能否将ABC 分成面积相等的两部分?若能,求出移动时间;若不能,请说明理由.(3)若点P 从点A 出发,沿射线AB 方向以1cm/s 的速度移动,同时点Q 从点C 出发,沿射线CB 方向以2cm /s 的速度移动,经过多少秒后PBQ 的面积为21cm参考答案:不能将ABC分成面积相等的两部分。

实际问题与一元二次方程 人教版九年级数学上册同步练习(含解析)

实际问题与一元二次方程 人教版九年级数学上册同步练习(含解析)

人教版数学九年级上册《21.3实际问题与一元二次方程》同步练习一、单选题(本大题共15小题,共45分)1.(3分)一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为( )A. 25B. 36C. 25或36D. -25或-362.(3分)芳芳有一个无盖的收纳箱,该收纳箱展开后的图形(实线部分)如图所示,将该图形补充四个边长为10cm的小正方形后,得到一个矩形,已知矩形的面积为2000c m2,根据图中信息,可得x的值为()A. 10B. 20C. 25D. 303.(3分)某服装店原计划按每套200元的价格销售一批保暖内衣,但上市销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A. 8%B. 18%C. 20%D. 25%4.(3分)经过调查研究,某工厂生产一种产品的总利润L(元)与产量x(件)的关系式为L=-x2+2000x-10000(0<x<1900),要使总利润达到99万元,则这种产品应生产()A. 1000件B. 1200件C. 2000件D. 10000件5.(3分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A. 16(1+2x)=25B. 25(1﹣2x)=16C. 16(1+x)2=25D. 25(1﹣x)2=166.(3分)一名跳水运动员从10m高台上跳水,他每一时刻所在高度h(单位:m)与所用时间t(单位:s)的关系是:h=-5•(t-2)(t+1),则该运动员从起跳到入水所用的时间是()A. 5 sB. 2 sC. 3 sD. 1 s7.(3分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工量需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. B.C. D.8.(3分)某商品计划以每件600元的均价对外销售,后来为加快资金周转,对价格经过两次下调后,决定以每件486元的均价销售.则平均每次下调的百分率是()A. 30%B. 20%C. 15%D. 10%9.(3分)某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( )A. 5个B. 6个C. 7个D. 8个10.(3分)某厂今年一月份的产量为20吨,第一季度的总产量共85吨,设平均每月增长率是x,根据题意所列的方程为()A. 20x2=85B. 20(1+x)=85C. 20(1+x)2=85D. 20+20(1+x)+20(1+x)2=8511.(3分)某鞋厂从商交会接到一宗生产13万双运动鞋的业务,在生产完4万双后,接到买方急需货物的通知,为能及时满足买方要求,该厂改进了操作方法,每月能多生产1万双,一共用5个月完成了这宗业务,求改进操作方法后每月能生产多少万双运动鞋?设改进操作方法后每月能生产x万双运动鞋,则列方程为()A. B.C. D.12.(3分)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A. 6.3(1+2x)=8B. 6.3(1+x)=8C. 6.3(1+x)2=8D. 6.3+6.3(1+x)+6.3(1+x)2=813.(3分)某电视机厂计划用两年时间把某种型号的电视机成本降低19%,若每年下降的百分比相同,则这个百分数是()A. 19%B. 10%或9%C. 10%D. 9%14.(3分)某果园原计划种100棵树,一棵树平均结1000个桃子,现准备多种一些套数以提高产量,试验发现,每多种1棵桃树,每棵桃树的产量就会减少2个,但多种的桃树不能超过100棵,如果要使产量增加15.2%,那么应该多种()棵桃树.A. 20B. 25C. 30D. 3515.(3分)如图,在宽为20米,长为32米的矩形地面上,修筑平行于矩形两边的同样宽的两条互相垂直的道路,余下的部分作为耕地,要使耕地的面积为540平方米,道路的宽应是()A. 1米B. 2米C. 3米D. 4米二、填空题(本大题共5小题,共15分)16.(3分)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,则这个百分率为____.17.(3分)已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是_____%.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.18.(3分)某超市l月份的营业额为200万元,3月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为____.19.(3分)某企业2012年底缴税40万元,2014年底缴税48.4万元,设这两年该企业缴税的年平均增长率为____.20.(3分)某校图书馆去年底有图书5万册,预计到明年年底增加到7.2万册,则这两年的年平均增长率为____.三、解答题(本大题共5小题,共40分)21.(8分)某公司向银行贷款20万元资金,约定两年到期时一次性还本付息,年贷款利率为12%.该公司利用这笔贷款经营,两年到期时除还清贷款的本金和利息外,还盈利9万元.若在经营期间每年比上一年资金增长的百分数相同,试求这个百分数.22.(8分)据媒体报道,我国2010年公民出境旅游总人数约5000万人次,2012年公民出境旅游总人数约7200万人次.若2011年、2012年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2013年仍保持相同的年平均增长率,请你预测2013年我国公民出境旅游总人数约多少万人次?23.(8分)某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元.(1)若该商店两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?24.(8分)如图1,某小区的平面图是一个占地400×300平方米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形.如果要使四周的空地所占面积是小区面积的36%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为18000平方米,请算出小区道路的宽度.25.(8分)某公司2016年的生产成本是100万元,由于改进技术,生产成本逐年下降,2018年的生产成本是81万元,若该公司2017、2018年每年生产成本下降的百分率都相同.(1)求平均每年生产成本下降的百分率;(2)假设2019年该公司生产成本下降的百分率与前两次相同,请你预测2019年该公司的生产成本.答案和解析1.【答案】C;【解析】设这个两位数的十位数字为x,则个位数字为x+3.依题意,得10x+x+3=(x+3)2,解得x1=2,x2=3.∴这个两位数为25或36.故答案为:C。

九年级数学上册《第二十一章 实际问题与一元二次方程》同步训练题及答案(人教版)

九年级数学上册《第二十一章 实际问题与一元二次方程》同步训练题及答案(人教版)

九年级数学上册《第二十一章实际问题与一元二次方程》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.2021年是中国共产党成立100周年,山西某中学发起了“热爱祖国,感恩共产党”说句心里话征集活动,学校学生会主席要求征集活动在微信朋友圈里进行传递,规则为:将征集活动发在自己的朋友圈,再邀请n个好友转发征集活动,每个好友转发朋友圈,又分别邀请n个互不相同的好友转发征集活动,以此类推,已知经过两轮传递后,共有1641人参与了传递活动,则方程列为()A.(1+n)2=1641B.1+(n+1)+(n+1)2=1641C.n+n2=1641D.1+n+n2=16412.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为20平方米提高到28.8平方米.若每年的年增长率相同,则年增长率为()A.20% B.10% C.2% D.0.2%3.为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元B.36元C.64元D.80元4.若两个连续奇数的积为63,则这两个数的和为()A.16 B.17 C.±16 D.±175.参加一次绿色有机农产品交易会的每两家公司都签订了一份合同,所有公司共签订了45份合同,参加这次交易会的公司共有()A.9家B.10家C.10家或9家D.19家6.有一个两位数,个位数字与十位数字之和为8,把它的个位数字与十位数字对调,得到一个新数,新数与原数之积为1855,则原两位数是()A.35 B.53 C.62 D.35或537.《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为5x的矩形,得到大正方形的面积为239+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为( )A.6 B.3 √5 -3 C.3 √5 -2 D.3 √5−328.如图是某朋的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22),若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144二、填空题:(本题共5小题,每小题3分,共15分.)9.若长方形的长是宽的3倍,面积是6,则它的宽是.10.有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.设每个支干长出x个小分支,根据题意可列方程为.11.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有人. 12.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 m(可利用的围墙长度超过6m).13.如图所示,点阵M的层数用n表示,点数总和用S表示,当S=66时,则n=. n层点阵的点数S=.三、解答题:(本题共5题,共45分)14.已知三个连续正整数的平方和为50 ,求这三个正整数.15.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.16.已知A、B两地的高速公路总长为348km,货物运输车的行驶速度为80kmℎ⁄ .(1)若货物的公路运输费用包括运输成本和时间成本,已知某车货物从A地经高速公路运输到B地,运输成本为每千米2元,总运输费用为870元,那么它的时间成本是每小时多少元?(2)“大升”快递公司有一批货物(不超过10车)需要先从A地经高速公路运输到B地,再从B地经铁路运输到C市,共需运费9720元.其中从A地到B地的每车运输费用与(1)相同,从B地到C市的铁路运输费用对不超过10车的货物计费为:一车900元,当货物增加一车时,每车的运费减少30元.问这批货物有几车?17.果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小刘选择哪种方案更优惠,请说明理由.18.如图,在Rt△ABC中,∠B=Rt∠,直角边AB、BC的长(AB<BC)是方程x2-7 x+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边 A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上时,试求出使AP长为√10时运动时间t的值;(3)点P在运动的过程中,是否存在点P,使△ABP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.参考答案:1.D 2.A 3.D 4.C 5.B 6.D 7.B 8.D9.√210.1+x+x2=7311.812.113.11;n(n+1)214.解:设中间的数为x(x是正整数),其他两个数为x−1和x+1根据题意得:(x−1)2+x2+(x+1)2=50整理得:x2=16解得x1=4,x2=−4(不合题意,舍去).x=4时,x−1=3和x+1=5 .答:这三个连续正整数为3,4,5.15.解:设截去正方形的边长为x厘米,由题意得,长方体底面的长和宽分别是:(60﹣2x)厘米和(40﹣2x)厘米所以长方体的底面积为:(60﹣2x)(40﹣2x)=800即:x2﹣50x+400=0解得x1=10,x2=40(不合题意舍去).答:截去正方形的边长为10厘米.16.(1)解:总运输成本为:348×2=696(元)则总的时间成本为:870−696=174(元)行驶时间为:348÷80=4.35(小时)所以,时间成本为:174÷4.35=40(元/小时)答:它的时间成本是每小时40元.(2)解:设这批货有x车,根据题意得870x+x×[900−30(x−1)]=9720整理得解得,x1=6和x2=54∵x≤10∴x=6答:这批货物有6车.17.解(1)设平均每次下调的百分率为x.由题意,得15(1﹣x)2=9.6.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小刘选择方案一购买更优惠.理由:方案一所需费用为:9.6×0.9×3000=25920(元)方案二所需费用为:9.6×3000﹣400×3=27600(元).∵25920<27600∴小刘选择方案一购买更优惠.18.(1)∵x2-7x+12=(x-3)(x-4)=0 ∴x1=3或x2=4.则AB=3,BC=4.(2)由题意得AB2+BP2=AP2,则32+(t-3)2=10解得t1=4,t2=2(舍).即t=4时,AP=√10.(3)存在点P,使△ABP是等腰三角形.①当AP=AB=3时,P在CC,则 t=3+4+5-3=9(秒).(秒)②当BP=BA=3时,当P在AC上时, t=425当P在BC上时, t=3+3=6 (秒),③当BP=AP (即P为AC中点)时,∴t=3+4+2.5=9.5(秒).(秒)时,△ABP是等腰三角形可知当t为9秒或9.5秒或6 (秒)或425。

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习及答案-人教版

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习及答案-人教版

九年级数学上册《第二十一章实际问题与一元二次方程》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.某市一中初三年级要组织一场篮球联赛,每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛()A.9 B.10 C.11 D.82.已知直角三角形的两条边长分别是方程x2-14x+48=0的两个根,则此三角形的第三边是()A.6或8 B.10或2√7C.10或8 D.2√73.某药品经过两次降价,每瓶零售价由180元降为100元.已知两次降价的百分率相同,设每次降价的进分率为x,根据题意列方程正确的是()A.180(1+x)2=100 B.180(1﹣x2)=100C.180(1﹣2x)=100 D.180(1﹣x)2=1004.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的分支,若主干、支干和小分支的总数是57,则每个支干长出()根小分支A.5根B.6根C.7根D.8根5.某超市一月份的营业额为200万元,一季度的营业额为728万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A.20% B.45% C.65% D.91%6.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,则这个百分数为()A.10% B.20% C.120% D.180%7.要在某正方形广场靠墙的一边开辟一条宽为4米的绿化带,使余下部分面积为140平方米,则原正方形广场的边长是()A.10米B.12米C.14米D.16米8.某医院内科病房有护士x人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要的天数是70天,则x=()A.15B.18C.21D.35二、填空题9.已知某两个连续自然数的积比它们的和大109,则1这两个自然数为.10.一次会议上,每两个参加会议的人都互相握手一次,有人统计一共握了66次手,则这次会议到会人数是人.11.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有人.12.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2−b−1,例如把(3,−2)放入其中,就会得到32+(−2)−1=6 .现将实数对(m,−2m)放入其中,得到实数2,则m= .13.校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是米.三、解答题14.有一幅长20 cm、宽16 cm的照片,现要为这幅照片配一个四条边宽度相同的相框,且相框边所占面积为照片面积的二分之一,求相框边宽.15.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?16.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点P从点A开始沿AB边向B以1cm/s的速度移动(不与点B重合);动点Q从B点开始沿BC边向点C以2cm/s的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,出发多少秒后,四边形APQC的面积为16cm2?17.某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图l、图2和图3所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图1,设计草坪的总面积为600平方米.②乙方案设计图纸为图2,设计草坪的总面积为600平方米.③丙方案设计图纸为图3,设计草坪的总面积为540平方米.18.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).19.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?参考答案1.B2.B3.D4.C5.A6.B7.C8.C9.11,1210.1211.812.3或-113.214.解:设相框边的宽度为x cm,则可列方程:×20×16,解得x1=2,x2=-20(舍去).(20+2x)(16+2x)=32答:相框边的宽度为2 cm15.解:设销售单价为x元由题意,得:(x﹣360)[160+2(480﹣x)]=20000整理,得:x2﹣920x+211600=0解得:x1=x2=460答:这种玩具的销售单价为460元时,厂家每天可获利润20000 16.解:设t秒后,四边形APQC的面积为16cm21×6×8=24(cm2)2•2t(6﹣t)=1624﹣12解得:t1=2,t2=4当t=4时,BQ=2×4=8∵Q不与点C重合∴t=4不合题意舍去所以2秒后,四边形APQC的面积为16cm217.解:①设道路的宽为x米.依题意得:(35﹣2x)(20﹣2x)=600;②设道路的宽为x米.依题意得:(35﹣x)(20﹣x)=600;③设道路的宽为x米.依题意得:(35﹣2x)(20﹣x)=540.18.(1)解:设甲服装的进价为x元,则乙服装的进价为(500﹣x)元根据题意得:90%•(1+30%)x+90%•(1+20%)(500﹣x)﹣500=67解得:x=300500﹣x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)解:∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元∴设每件乙服装进价的平均增长率为y则200(1+y) 2=242解得:y1=0.1=10%,y2=﹣2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%(3)解:∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a元时0.9a﹣266.2>0.解得:a>26629故定价至少为296元时,乙服装才可获得利润.19.(1)解:设该品牌电动自行车销售量的月均增长率为x根据题意列方程:150(1+x)2=216解得x1=﹣220%(不合题意,舍去),x2=20%.答:该品牌电动自行车销售量的月均增长率20%(2)解:二月份的销量是:150×(1+20%)=180(辆).所以该经销商1至3月共盈利:(2800﹣2300)×(150+180+216)=500×546=273000元。

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题含答案(人教版)

九年级数学上册《第二十一章实际问题与一元二次方程》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若两个连续整数的积是56,则它们的和是()A.±15 B.15 C.-15 D.112.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,则本次比赛共有参赛队伍()A.8支B.9支C.10支D.11支3.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%4.华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得()A.(40﹣x)(20+2x)=1200 B.(40﹣x)(20+x)=1200C.(50﹣x)(20+2x)=1200 D.(90﹣x)(20+2x)=12005.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%,若每年下降的百分数相同,则这个百分数为()A.10% B.20% C.120% D.180%6.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为()A.8人B.9人C.10人D.11人7.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.√5−12B.√5+12C.√5+32D.√2+18.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.已知耕地的面积为551m2则道路的宽为()A.1m B.2m C.1.5 m D.4m二、填空题9.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出.10.一个小组有若干人,新年互送贺卡。

人教版初三数学九年级上册第21章一元二次方程实际问题与一元二次方程同步检测题含答案

人教版初三数学九年级上册第21章一元二次方程实际问题与一元二次方程同步检测题含答案

人教版初三数学九年级上册第21章一元二次方程实际问题与一元二次方程同步检测题含答案1. 衡阳油菜花欣赏人数逐年添加,据有关部门统计,2021年约为20万人次,2021年约为28.8万人次,设欣赏人数年均增长率为x,那么以下方程中正确的选项是( )A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.82. 一个面积为35m2的矩形苗圃,它的长比宽多2m,那么这个苗圃的长为( ) A.5m B.6mC.7m D.8m3.往年我市方案扩展城区绿空中积,现有一块长方形绿地,它的短边长为60m,假定将短边增大到与长边相等(长边不变),使扩展后的绿地的外形是正方形,那么扩展后的绿空中积比原来添加1600m2.设扩展后的正方形绿地边长为xm,下面所列方程正确的选项是( )A.x(x-60)=1600 B.x(x+60)=1600C.60(x+60)=1600 D.60(x-60)=16004. 据调查,2021年5月兰州市的房价均价为7600m2,2021年同期将到达8200m2,假定这两年兰州市房价的平均增长率为x,依据题意,所列方程为( ) A.7600(1+x%)2=8200 B.7600(1-x%)2=8200C.7600(1+x)2=8200 D.7600(1-x)2=82005. 某机械厂七月份消费零件50万个,第三季度消费零件196万个.设该厂八、九月份平均每月的增长率为x,那么满足的方程是( )A.50(1+x)2=196 B.50+50(1+x)2=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196 6. 要织一次组排球约请赛,参赛的每个队之间都要竞赛一场,依据场地和时间等条件,赛程方案布置7天,每天布置4场竞赛.设竞赛组织者应约请x个队参赛,那么x 满足的关系式为( )A. 12x(x +1)=28 B .12x(x -1)=28 C .x(x +1)=28 D .x(x -1)=287. 一个两位数等于它的个位数的平方,且个位数比十位数大3,那么这个两位数是( )A .25B .36C .25或36D .-25或368.生物兴味小组的先生,将自己搜集的标本向本组其他成员各赠送一件,全组共互赠了182件,假设全组有x 名同窗,那么依据题意列出的方程是( )A .x(x +1)=182B .x(x -1)=182C .2x(x +1)=182D .x(x -1)=182×29. 假定两个延续整数的积是20,那么这两个整数的和是( )A .9B .-9C .9或-9D .12或-1210. 直角三角形的周长12,其斜边长为5,那么两条直角边长区分为 , .11. 用一条长40cm 的绳子围成一个面积为64cm 2的矩形,设矩形的一边长为xcm ,那么可列方程为 .12. 假定在a 的基础上平均降低率为x ,经过2次降低后到b ,那么b = .13. 某种药品原来售价100元,延续两次降价后售价为81元,假定每次下降的百分率都为x ,那么可列方程为 .14. 有一人患了流感,经过两轮传染后,共有100人患了流感,假定每轮传染中,平均一团体传染了x 人,那么依据题意可列方程为 .15.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位上的数字为x ,那么方程为 .16. 如图,邻边不等的矩形花圃ABCD,它的边AD应用已有的围墙,另外三边所围的栅栏的总长度是6m.假定矩形的面积为4m2,那么AB的长度是 m.(可应用的围墙长度超越6m.)17. 一球以15m/s的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)近似地满足关系式:h=15t-5t2,那么小球在什么时辰的高度为10m?18. 为进一步开展基础教育,自2021年以来,某县加大了教育经费的投入,2021年该县投入教育经费6000万元.2021年投入教育经费8640万元.假定该县这两年投入教育经费的年平均增长率相反.(1)求这两年该县投入教育经费的年平均增长率;(2)假定该县教育经费的投入还将坚持相反的年平均增长率,请你预算2021年该县投入教育经费多少万元?19. 如图,是上海世博园内的一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个异样大小的正方形观光休息亭,周围建有与观光休息亭等宽的观光小道,其他局部(图内阴影局部)种植的是不同花草.种植花草局部的面积为3600平方米2,那么花园各角处的正方形观光休息亭的边长为多少米?20. 如图,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,假设要使一切彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?参考答案:1---9 CCACC BCBC10. 3 411. x(20-x)=6412. a(1-x)213. 100(1-x)2=8114. 1+x+x(x+1)=10015. x 2+(x +4)2=10(x +4)+x -416. 117. 解:由题意知,10=15t -5t 2,解得t =1或t =2,所以小球在1秒或2秒时的高度为10m.18. 解:(1)设年平均增长率为x.那么6000(1+x)2=8640,(1+x)2=1.44,1+x =1.2或1+x =-1.2,x 1=0.2=20%,x 2=-2.2(舍去).答:这两年该县投入教育经费的年平均增长率为20%;(2)8640×(1+20%)=10368(万元).答:2021年该县投入教育经费10368万元.19. 解:设正方形观光休息亭的边长为x 米.依题意得(100-2x)(50-2x)=3600.整理得x 2-75x +350=0.解得x 1=5,x 2=70.∵x 2=70>50(不合题意,舍去),所以在花园各角处的正方形观光休息亭的边长为5米.20. 解:设每个横彩条的宽为2x ,那么每个竖彩条的宽为3x.依据题意,得(20-6x)(30-4x)=(1-13)×20×30.整理,得6x 2-65x +50=0.解方程,得x 1=56,x 2=10(不合题意,舍去).那么2x =53,3x =52.答:每个横、竖彩条的宽度区分为53cm 、52cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与一元二次方程 同步测试
一、选择题
1.在一幅长80cm 、宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要
使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).
A .x 2+130x-1400=0
B .x 2
-65x-350=0 C .x 2-130x-1400=0 D .x 2+65x-350=0
2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x ) B .100(1+x )2 C .100(1+x 2) D .100(1+2x )
3.某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长
率为x ,那么x 满足的方程是( ).
A .50(1+x)2=182
B .50+50(1+x)+50(1+x)2=182
C .50(1+2x)=182
D .50+50(1+x)+50(1+2x)=182
4.一个矩形的长是宽的3倍,若宽增加3cm ,它就变成正方形.则矩形面积是( ).
A .24cm 3
B .29cm
C .227cm 4
D .227cm 5.为执行“两免一补”政策,某地区2019年投入教育经费2500万元,预计2021年投入3600万元.设
这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( ).
A .2500(1+x)2=3600
B .2500x 2=3600
C .2500(1+x%)=3600
D .2500(1+x)+2500(1+x)2=3600
6.用一条长为40cm 的绳子围成一个面积为acm 2的长方形,a 的值不可能为( )
A .20
B . 40
C . 100
D .120
二、填空题
7.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x ,根据题意可列方程为 .
8.若两数的和是2,两数的平方和是74,则这两数为________.
9.大连某小区准备在每两幢楼房之间开辟面积为300m 2的一块长方形绿地,并且长比宽多10m ,设长方形
绿地的宽为xm ,则可列方程为________.
10.菱形ABCD 的一条对角线长6,AB 的长是方程x 2-7x+12=0的一个根,则菱形ABCD 的周长为________.
11.有一人发了某内容的短信,经过两轮发送后共有196人的手机上有了该短信,则每轮发送中平均一个人发送了 人.
12.小明家为响应节能减排号召,计划用两年时间,将家庭每年人均碳排放量由目前的3125kg 降至
2000kg(全球人均目标碳排放量),则小明家未来两年人均碳排放量平均每年需降低的百分率是________.
13.用长12m的一根铁丝围成长方形.
(1)如果长方形的面积为5m2,那么此时长方形的长是多少?宽是多少?如果面积是8m2呢?
(2)能否围成面积是10m2的长方形?为什么?
(3)能围成的长方形的最大面积是多少?
14. 从一块长80cm,宽60cm的长方形铁片中间截去一个小长方形,使剩下的长方形四周宽度一样,并且
小长方形的面积是原来铁片面积的一半,求这个宽度.
15.白溪镇2018年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2020年达到82.8公顷.(1)求该镇2018至2020年绿地面积的年平均增长率;
(2)若年增长率保持不变,2021年该镇绿地面积能否达到100公顷?
一、选择题
1.【答案】D ;
【解析】可列方程(80+2x)(50+2x)=5400,化简即可.
2.【答案】B .
3.【答案】B ;
【解析】四、五、六月份产量之和为182.
4.【答案】C ;
【解析】设矩形的宽为xcm ,则矩形的长为3xcm ,依题意得x+3=3x .
5.【答案】A ;
【解析】由平均增长率公式为2(1)a x b += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后
的量)可列方程.
6.【答案】D ;
【解析】解:设围成面积为acm 2的长方形的长为xcm ,则宽为(40÷2﹣x )cm ,依题意,得
x (40÷2﹣x )=a ,整理,得
x 2﹣20x+a=0,
∵△=400﹣4a≥0,
解得a≤100,
故选:D .
二、填空题
7.【答案】10(1+x )2=13.
【解析】解:设该厂加工干果重量的月平均增长率为x ,
根据题意,可列方程为:10(1+x )2=13.
8.【答案】-5和7;
【解析】设两数中一个数为x ,则另一个数为2-x .
根据题意得x 2+(2-x)2=74,解得x 1=-5,x 2=7.
当x =-5时,另一个数为7;当x =7时,另一个数为-5,所以这两个数为-5和7.
9.【答案】 x(x+10)=300;
【解析】因为宽为xm ,则长为(x+10)m ,可列方程x(x+10)=300.
10.【答案】16;
【解析】x 2-7x+12=0的两根为x 1=3,x 2=4,AB 不可能等于3,因为有一条对角线长为6,
所以AB =4,菱形周长为16.
11.【答案】13;
【解析】设每轮发送中平均一个人发送了x 人,由题意得:
1+x+x (1+x )=196,
解得:x 1=13,x 2=﹣15(不合题意舍去).
即每轮发送中平均一个人发送了13人.
12.【答案】20% ;
【解析】设降低的百分率为x ,则3125(1-x)2=2000,195x =(舍去),2120%5
x ==.
三、解答题
13.【答案与解析】
122x -
根据题意,得x(6-x)=5,即x 2
-6x+5=0,x 1=1,x 2=5(舍去).
∴ 当长方形的宽为1m ,长为6m-1m =5m 时,面积为5m 2.
同样,当面积为8m 2时,有x(6-x)=8,即x 2-6x+8=0,x 1=2,x 2=4(舍去).
∴ 当长方形的宽为2m ,长为6-2=4m 时,面积为8m 2.
(2)当面积为l0m 2时,x(6-x)=10,即x 2-6x+10=0,此时b 2-4ac =36-40=-4<0,
故此方程无实数根,所以这样的长方形不存在.
(3)设围成的长方形的面积为k ,则有x(6-x)=k ,即x2-6x+k =0,要使该方程有解,
必须有(-6)2-4k ≥0,即k ≤9.
∴ 最大的k 只能是9,即最大的面积为9m 2,此时x =3m ,6-x =3(m).
这时所围成的图形是正方形.
14. 【答案与解析】
设这个宽度为xcm ,根据题意有:(80-2x)(60-2x)=80×60÷2.
解这个方程得x 1=10,x 2=60.
因为截去的小长方形的宽60-2x 必须大于0,
即 60-2x >0,亦即x <30,所以x =10.
答:宽度为10cm 时,截去的小长方形面积是原来铁片面积的一半.
15.【答案与解析】
解:(1)设绿地面积的年平均增长率为x ,根据意,得
57.5(1+x )2=82.8
解得:x 1=0.2,x 2=﹣2.2(不合题意,舍去)
答:增长率为20%;
(2)由题意,得
82.8(1+0.2)=99.36万元
答:2021年该镇绿地面积不能达到100公顷.
1、最困难的事就是认识自己。

20.7.37.3.202010:1010:10:09Jul-2010:10
2、自知之明是最难得的知识。

二〇二〇年七月三日2020年7月3日星期五
3、越是无能的人,越喜欢挑剔别人。

10:107.3.202010:107.3.202010:1010:10:097.3.202010:107.3.2020
4、与肝胆人共事,无字句处读书。

7.3.20207.3.202010:1010:1010:10:0910:10:09
5、三军可夺帅也。

Friday, July 3, 2020July 20Friday, July 3, 20207/3/2020
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。

10时10分10时10分3-Jul-207.3.2020
7、人生就是学校。

20.7.320.7.320.7.3。

2020年
7月3日星期五二〇二〇年七月三日 8、你让爱生命吗,那么不要浪费时间。

10:1010:10:097.3.2020Friday, July 3, 2020 亲爱的用户: 烟雨江南,画屏如展。

在那桃花盛开的地方,在这醉
人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。

相关文档
最新文档