第4讲 直接证明与间接证明
直接证明和间接证明
直接证明和间接证明例如,我们要证明一个分数小于1的正数与其倒数相乘的结果一定小于1、我们可以直接证明如下:设分数为a/b,其中a和b均为正整数。
则有a<b,因此,a/b<b/b,即a/b<1又因为倒数的定义为1/a,即倒数为1除以该数,所以可知a/b *1/a = a/ba = 1/b,而1/b小于1因此,我们可以得出结论:一个小于1的正数与其倒数相乘的结果一定小于1间接证明是通过反证法(或称间接推理)推导出结论的证明方法。
它包括以下步骤:首先,假设要证明的结论不成立;其次,根据该假设推导出与已知事实矛盾的结论;最后,得出假设的结论非真,因此原结论为真。
间接证明的特点是通过推理和推导推翻假设,从而得到结论。
例如,我们要证明根号2是无理数。
假设根号2是有理数,即可表示为a/b的形式,其中a和b是整数,且a和b没有公因数。
则根号2=a/b,即2=(a/b)^2,即2b^2=a^2根据等式两边平方数的性质可知,a^2必为偶数。
那么,根据整数的性质可知,a也必为偶数,即a=2c,其中c为整数。
将a=2c代入等式2b^2=a^2中,得到2b^2=(2c)^2,化简得到b^2=2c^2依据同样的推理,b也是偶数,与假设a和b之间没有公因数相矛盾。
因此,假设根号2是有理数的假设不成立,根号2是无理数。
总结来说,直接证明是通过逻辑推理和数学定义直接得出结论,而间接证明是通过反证法推导出结论。
这两种证明方法在数学中应用广泛,可以灵活运用于各类数学问题的证明中。
无论是选择直接证明还是间接证明,重要的是要严谨、清晰地阐述证明的过程和推理的逻辑,以确保结论的正确性。
数学证明中的直接证明与间接证明
数学是一门严谨的学科,其核心在于推理与证明。
在进行数学证明时,有直接证明和间接证明两种方法。
直接证明是通过逻辑推理直接得出结论,而间接证明则是通过反证法或者归谬法,通过推翻事实的否定来得出结论。
本文将分别介绍直接证明和间接证明,并分析它们在数学证明中的应用。
首先,我们来讨论直接证明。
直接证明是最常见、最直接的证明方法。
其核心思想是根据已知条件和数学定理,一步一步地推导出结论。
直接证明通常包括假设、推理和结论三个步骤。
首先,我们根据题目给出的条件假设一些前提条件,然后利用已知的定理和公理进行推理,最后根据这些推理得出结论。
直接证明的优点是逻辑性强、直观明了,容易让读者明白推理的过程。
此外,对于一些简单的数学问题,直接证明能够很快得出结论,省去了许多繁琐的步骤。
然而,直接证明的弊端是有时难以找到合适的定理进行推理,或者推导过程中的中间步骤比较复杂。
在遇到这种情况时,我们就需要采用间接证明的方法。
其次,我们来讨论间接证明。
间接证明有两种形式,一种是反证法,另一种是归谬法。
反证法的基本思想是通过假设反命题的真假进行推导,如果得出一个恒真的结论,则原命题成立。
归谬法则是通过假设原命题为真进行推导,最后得出一个恒假的结论,从而推翻了原命题。
间接证明的优点是可以处理一些复杂的数学问题,特别是那些直接证明困难的问题。
间接证明可以通过假设反命题的真假或者假设原命题的真假,利用反证法或归谬法的推导过程将问题的复杂性降低,从而得出结论。
然而,间接证明的过程通常较为繁琐,需要较高的抽象思维能力和逻辑推理能力。
在实际的数学证明中,常常需要根据题目的要求和限制条件选择合适的证明方法。
有时,我们可以通过观察和归纳总结出一些数量关系或性质,然后用直接证明进行推导。
而对于一些性质复杂的数学问题,我们可能需要采用间接证明的方法。
因此,掌握直接证明和间接证明的技巧对于解决数学问题至关重要。
总之,数学证明中的直接证明和间接证明是两种常用的推理方法。
直接证明与间接证明
直接证明与间接证明直接证明和间接证明是数学中常用的两种证明方法。
直接证明是通过逻辑推理和已知的真实前提,以直接的方式推出所要证明的结论。
间接证明则是采用反证法或者假设推理的方式,通过说明对立假设或者逻辑矛盾来推出所要证明的结论。
直接证明的思路是从已知条件出发,逐步运用数学定义、性质、定理等等,直接推导到所要证明的结论。
这种证明方法通常比较直观,步骤清晰,容易理解。
下面来看一个简单的例子。
假设我们要证明:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
直接证明的思路是从正整数是3的倍数这个已知条件出发,即假设正整数n可以写为3k,其中k为整数。
那么正整数n的平方可以写为(3k)^2=9k^2,即n^2=9k^2、由此可知,正整数n^2也可以写为3的倍数,因为9k^2可以写为3的倍数。
因此,根据直接证明的逻辑推理,我们得出结论:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
间接证明的思路是通过反证法或者假设推理的方式,假设所要证明的结论不成立,然后通过推理说明这个假设是不可能的或者导致矛盾的。
下面来看一个简单的例子。
假设我们要证明:不存在两个整数的和等于3的倍数,且差等于5的倍数。
间接证明的思路是先假设存在这样的两个整数,分别为a和b。
那么根据条件,我们可以得到以下两个等式:a+b=3k,其中k为整数;a-b=5m,其中m为整数。
然后我们将这两个等式相加,得到:2a=3k+5m。
由于3k+5m是整数,所以2a也是整数。
但是,由于2是偶数,所以2a是偶数,而3k+5m是奇数。
因此,2a和3k+5m不能同时成立,即假设不成立。
因此,不存在两个整数的和等于3的倍数,且差等于5的倍数。
以上是直接证明和间接证明的简单例子,实际的证明可能需要更多的推理和步骤。
两种证明方法各有优点和适用范围。
直接证明通常通过展示清晰的推理过程来达到证明目的,适合于结论的证明比较明显和直观的情况。
而间接证明则通过反证法或者假设推理来达到证明目的,适合于结论的证明比较困难或者复杂的情况。
直接证明与间接证明
第4讲直接证明与间接证明讲义讲义一、导入【教学建议】我们知道,合情推理所得结论的正确性是需要证明的,这正是数学区别于其他学科的显著特点,数学结论的正确性必须通过逻辑推理的方式加以证明.综合法和分析法是直接证明中最基本的两种方法,反证法是间接证明的一种直接方法.C先生上了公交车却发现没带钱包,售票员不由分说让他下车,一位小伙子微笑着递过一块钱,C 先生很感激.车上的人开始小声议论C 先生是骗钱的,就在C先生生气准备甩票下车的时候,借钱给他的小伙子大声问:“能不能借一下您的手机?”C先生递过手机,小伙子拨了个号码,说了两三分钟的话,C先生想这下可以证明我的清白了.下车后C先生打开手机愣住了,原来小伙子根本没有拨通电话,但是直接证明了他的清白.二、知识讲解知识点1 综合法1.用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键.2. 综合法证明数学命题的步骤第一步:分析条件,选择方向.认真发掘题目的已知条件,特别是隐含条件,分析已知与结论之间的联系,选择相关的公理、定理、公式、结论,确定恰当的解题方法.第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.知识点2 分析法1.分析法的推理过程也属于演绎推理,每一步推理都是严密的逻辑推理.2.分析法证明不等式的依据、方法与技巧.(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.知识点3 反证法1.反证法证明数学命题的一般步骤第一步:分清命题“p→q”的条件和结论;第二步:作出与命题结论q相矛盾的假定⌝q(反设);第三步:由p和⌝q出发,应用正确的推理方法,推出矛盾结果(归谬);第四步:断定产生矛盾结果的原因,在于开始所作的假定⌝q不真,于是原结论q成立,从而间接地证明了命题p→q为真.第三步中所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知条件矛盾,与临时假定矛盾以及自相矛盾等各种情况.2.反证法的适用对象作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题;(3)关于唯一性、存在性的命题;(4)结论以“至多”、“至少”等形式出现的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.三、例题精析【教学建议】分析法和综合法是对立统一的两种方法.一个命题用何种方法证明,要能针对具体问题进行分析,灵活地运用各种证法.当不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目更是行之有效的方法.用反证法证题时,必须把结论的否定作为条件使用,否则就不是反证法.【题干】(1)设A =12a +12b ,B =2a +b(a >0,b >0),则A 、B 的大小关系为________. 【答案】A ≥B【解析】A -B =a +b 2ab -2a +b =)(24)(2b a ab ab b a +-+≥0. 【题干】(2)若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】 A【解析】 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .【题干】(3)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【答案】 1和3【解析】 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.【题干】(4)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是 例题1“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.【解析】(1)由已知,a n +1=S n +1-S n =2n +1-2n =2n .于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n =a m .所以{a n }是“H 数列”.(2)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *).令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *).下面证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 【题干】(1)欲证2−√5<√6−√7成立,只需证( )A .(2−√5)2<(√6−√7)2B .(2−√6)2<(√5−√7)2C .(2+√7)2<(√5+√6)2D .(2−√5−√6)2<(−√7)2【答案】C【解析】由分析法知,欲证2−√5<√6−√7,只需证2+√7<√6+√5,即证(2+√7)2<(√6+√5)2,故选C .【题干】(2)分析法又称执果索因法,已知x >0,用分析法证明1+x <1+x 2时,索的因是( ) A .x 2>1B .x 2>4C .x 2>0D .x 2>1【答案】 C【解析】 因为x >0,所以要证1+x <1+x 2,只需证(1+x )2<⎝⎛⎭⎫1+x 22, 即证0<x 24,即证x 2>0,因为x >0,所以x 2>0成立,故原不等式成立. 【题干】(3)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .【求证】1a +b +1b +c =3a +b +c . 例题2证明:要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立. 【题干】(1)用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.【答案】 x ≠-1且x ≠1【解析】 “x =-1或x =1”的否定是“x ≠-1且x ≠1”.【题干】(2)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤【答案】 C【解析】 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.【题干】(3)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不可能成等差数列.【解析】假设1a ,1b ,1c 成等差数列,则2b =1a +1c ,所以2ac=bc+ab.① 因为a ,b ,c 成等差数列,所以2b=a+c.②把②代入①,得2ac=b (a+c )=b ·2b.所以b 2=ac.③由②平方,得4b 2=(a+c )2.④把③代入④,得4ac=(a+c )2,所以(a-c )2=0.所以a=c.例题3代入②,得b=a,故a=b=c,所以数列a,b,c的公差为0.这与已知矛盾,因此假设错误.故1a ,1b,1c不可能成等差数列.。
第四节 直接证明与间接证明
考点突破 栏目索引
考点突破 栏目索引
规律总结 1.利用分析法证明问题的思路 先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判 断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命 题的已知条件时,命题得证. 2.分析法证明问题的适用范围 当已知条件与结论之间的联系不够明显,或证明过程中所需知识不太明 确时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考 虑用分析法.
教材研读 栏目索引
(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展 现解决问题的过程. ( √ ) (6)证明不等式 2 + 7 < 3+ 6 最合适的方法是分析法. ( √ ) 答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√
教材研读 栏目索引
2.命题“对任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θsin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了 ( B ) A.分析法 B.综合法 C.综合法、分析法综合使用 D.间接证明法
教材研读 栏目索引
6.(教材习题改编)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,
C成等差数列,a,b,c成等比数列,则△ABC的形状为
.
答案 等边三角形
解析 由题意知2B=A+C,又A+B+C=π,所以B= ,易知b2=ac,所以b2=a2+c2
3
-2acos B=a2+c2-ac,所以a2+c2-2ac=0,即(a-c)2=0,所以a=c,所以A=C,所以A=
栏目索引
直接证明与间接证明课件
基础知识梳理
2.间接证明 反证法:假设原命题 不成立 ,经 过正确的推理,最后得出 矛盾 ,因此 说明假设错误,从而证明了原命题成 立,这样的证明方法叫反证法.
三基能力强化
用反证法证明命题:若整系数一元 二次方程ax2+bx+c=0(a≠0)有有理数 根,那么a、b、c中至少有一个是偶数 时,下列假设中正确的是( ) A.假设a、b、c都是偶数 B.假设a、b、c都不是偶数 C.假设a、b、c至多有一个偶数 D.假设a、b、c至多有两个偶数 答案:B
基础知识梳理
综合法和分析法有什么区别与联系? 分析法的特点是:从“未知”看“需知”, 逐步靠拢“已知”,其逐步推理,实际上是寻 求它的充分条件; 综合法的特点是:从“已知”看“可知”, 逐步推向“未知”,其逐步推理,实际上是寻 找它的必要条件. 分析法与综合法各有其特点,有些具体 的待证命题,用分析法或综合法均能证明出 来,往往选择较简单的一种.
直接证明与间接证明
基础知识梳理
1.直接证明 (1)综合法 ①定义:利用已知条件和某些数学定义、公 理、定理等,经过一系列的推理证明 ,最后推导 出所要证明的结论 成立 ,这种证明方法叫综合 法. ②框图表示:
P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其 中 P 表示条件,Q 表示要证结论).
课堂互动讲练
一般地,含有根号、绝对值的等式 或不等式,若从正面不易推导时,可以 考虑用分析法.
课堂互动讲练
反证法体现了正难则反的思维方法,用反证 法证明问题的一般步骤是: (1)分清问题的条件和结论; (2)假定所要证的结论不成立,而设结论的反 面成立(否定结论); (3)从假定和条件出发,经过正确的推理,导 出与已知条件、公理、定理、定义及明显成立的 事实相矛盾或自相矛盾(推导矛盾); (4)因为推理正确,所以断定产生矛盾的原因 是“假设”错误.既然结论的反面不成立,从而证 明了原结论成立(结论成立).
直接证明和间接证明
证明:由A,B,C成等差数列,所以 2B=A+C. ①
由A,B,C为△ABC的内角,所以 A+B+C=180° ②
由① ②,得 B = π . ③ 由a,b,c成等比数列,有
3
由余弦定理及③ ④ ,可得
b2 = ac. ④
b2 = a2 + c2 - 2accosB 即a2 + c2 - ac = ac,
3.反证法(归谬法)
一般地,假设原命题不成立,经过正 确的推理,最后得出矛盾, 因此说明假 设错误,从而证明了原命题成立,这样 的证明方法叫做反证法
注:反证法是最常用的间接证法
1. 反证法的步骤:
否定结论——推出矛盾——肯定结论, 即分三个步骤:反设—归谬—存真
反设——假设命题的结论不成立; 即假定原命题的反面为真;
2
1 4
同理: (1 b)b ≤ 1 (1 c)c ≤ 1
4
4
以上三式相乘:(1 a)a•(1 b)b•(1 c)c≤
1 64
与①矛盾 ∴假设不成立,原结论成立
语言就是2B=A+C;
•A,B,C为△ABC的内角,这是一个隐含 条件,即A+B+C=180°;
•a,b,c成等比数列转化为符号语言就是
b2 = ac.
此时,如果能把角和边统一起来,那么就可以 进一步寻找角和边之间的关系,进而判断三角形的 形状,余弦定理正好满足要求.于是,可以用余弦定 理进行证明.
2.2 直接证明与间接证明
2.2.1 综合法和分析法 反证法
综合法和分析法,是直接证明中最基 本的两种证明方法,也是解决数学问题时 常用的思维方式.
1.综合法:(顺推证法或由因导果法)
2014届高考江苏专用(理)一轮复习第十四章第4讲直接证明与间接证明
(3)分析法定义: 保证前一个结论成立 从求证的结论出发,一步一步地探索__________________ 的充分条件 ___________,直到归结为这个命题的条件,或者归结为
定义、公理、定理等.这样的思维方法称为分析法.
(4)框图表示: Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 得到一个明显成立的条件 .
考向二
分析法的应用
【例2】 (2011· 湖北卷)已知数列{an}的前n项和为Sn,且满足: a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠-1,r≠0).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断: 对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差 数列,并证明你的结论.
数列”?若是,指出它对应的实常数p、q,若不是,请说明
理由; (2)已知数列{an}满足a1=2,an+an+1=3·n(n∈N*).若数列 2 {an}是“优美数列”,求数列{an}的通项公式. 解 (1)∵an=2n,则有an+1=an+2,n∈N*.
∴数列{an}是“优美数列”,对应的p、q值分别为1、2;
而an+an+1=3·n(n∈N*), 2 且an+1+an+2=3·n+1(n∈N*), 2 则有3·n+1=3·np+2q对于任意n∈N*都成立, 2 2 即3·n(2-p)=2q对于任意n∈N*都成立, 2
∴p-2=0,即p=2,q=0.此时,an+1=2an,
又∵a1=2,∴an=2n(n∈N*).
(2)证明
4 3 用反证法证明.
4 3
4 3
假设数列{bn}存在三项 br, s, t(r<s<t)按某种顺序成等差数列, b b 1 2 由于数列{bn}是首项为 , 公比为 的等比数列, 于是有 br>bs>bt, 4 3 则只可能有 2bs=br+bt 成立. 12 s- 1 12 r-1 12 t-1 ∴2· = + , 43 43 43 两边同乘 3t- 121- r,化简得 3t- r+2t- r=2·s- r3t- s. 2 由于 r<s<t,所以上式左边为奇数,右边为偶数,故上式不可 能成立,导致矛盾. 故数列{bn}中任意三项不可能成等差数列.
直接证明与间接证明_知识讲解
直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
直接证明与间接证明_分析法
直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。
直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。
下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。
首先,直接证明是一种简洁明确的证明方法。
它通过逐步展示事实和推理过程,直接地得出结论。
直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。
直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。
对于一些简单的问题,直接证明是最常见和最有效的证明方法。
其次,直接证明适用于一些直观的、已知的情况。
例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。
我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。
这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。
然而,直接证明也有一定的局限性。
对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。
有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。
在这种情况下,间接证明就可以派上用场。
间接证明是一种通过反证法推导出结论的方法。
它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。
间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。
它可以避免直接证明中的复杂推理和繁琐的计算。
间接证明适用于一些复杂、难以直接证明的问题。
例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。
费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。
然而,这个定理的直接证明非常困难。
数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。
总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。
形式推理的直接证明与间接证明方法
形式推理的直接证明与间接证明方法形式推理作为数理逻辑的重要分支,通过严密的推理方法,可以从已知的前提推导出合理的结论。
在形式推理中,直接证明和间接证明是两种常见的证明方法。
本文将就这两种方法进行详细探讨,并分析其适用场景和特点。
一、直接证明方法直接证明方法是一种简单直接的推理方式,通过从已知的前提出发,逐步推导到目标结论,以达到证明的目的。
下面以一个具体的例子来说明直接证明的思路和步骤。
假设要证明一个命题P蕴含命题Q,即P→Q。
首先,我们可以从已知P的前提出发,通过逻辑推理得到Q的结论,即推导出Q。
在直接证明中,推导过程中的每一步都必须建立在已知的前提和已证明的结论之上,每一步都要经过严格的逻辑推导,确保推导过程的准确性和有效性。
直接证明方法的优点是简单直观,容易理解和掌握,推理过程清晰明了。
然而,直接证明适用于简单明了的命题,对于复杂或者繁琐的命题,推导过程可能会非常冗长和复杂,不利于推理的简化和提高效率。
二、间接证明方法间接证明方法是一种通过反证法来证明命题的推理方式。
当我们希望证明一个命题P时,可以先假设P不成立,即假设非P为真,然后从这一假设出发,推导出矛盾的结论,再通过排除法得出非P为假,即P成立的结论。
反证法的基本思想是,通过假设命题的反面来推导出矛盾,从而可以得出命题成立。
这种方法在一些特定的证明中非常有效,特别是当直接证明非常困难或者不可行时。
与直接证明方法相比,间接证明方法的优点在于,可以简化复杂的推理过程,通过将问题转化为矛盾的形式,更容易找到解决方案。
然而,间接证明的缺点是需要注意推导步骤的准确性,避免出现漏洞或者错误的推理过程。
三、直接证明与间接证明的比较分析直接证明和间接证明是形式推理中常用的两种方法,它们各有优劣,适用于不同的推理场景。
直接证明方法适用于简单清晰的命题,推导过程相对直接明了,容易理解和掌握。
对于直接证明适用的命题,我们可以通过逐步推导的方式来得到结论。
数学证明中的直接证明与间接证明
数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。
数学证明通常可以分为直接证明和间接证明两种形式。
本文将介绍直接证明和间接证明的含义、特点以及应用。
一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。
直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 列出已知条件和前提条件。
3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。
4. 分析并验证证明过程中的每一步是否严谨、正确。
5. 结束证明,得出所要证明的命题。
直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。
因此,直接证明在数学证明中广泛应用于各个领域。
例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。
定理:若a和b为偶数,则a+b为偶数。
证明:设a=2m,b=2n,其中m和n为整数。
则a+b=2m+2n=2(m+n)。
由于m和n为整数,所以m+n也是整数。
因此,a+b=2(m+n)为偶数。
证毕。
二、间接证明间接证明是一种通过反证法推导出结论的证明方法。
它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。
间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 假设所要证明的命题为假。
3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。
4. 推断出所要证明的命题为真。
5. 结束证明,得出所要证明的命题。
间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。
它常常用于证明一些与质数、无理数、等级等有关的命题。
例如,我们来证明一个著名的数学定理:根号2是一个无理数。
定理:根号2是一个无理数。
证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。
直接证明与间接证明优质课件ppt
间接证明(习题1)
1.求证:若一个整数的平方是偶数,则这个数也是偶数.
证: 假设这个数是奇数,可以设为 2k+1, 则有
(2k 1)2 4k 2 4k 1
k Z.
而
4k 2 4k 1 (k Z)不是偶数
这与原命题条件矛盾.
2、用反证法证明: 如果a>b>0,那么 a > b 证:假设 a > b不成立,则 a ≤ b
(1)结论以否定形式出现; (2)结论以“至多-------,” ,“至少------”
形式出现; ( 3)唯一性、存在性问题; (4) 结论的反面比原结论更具体更容易
研究的命题。
间接证明(例题1)
求证:正弦函数没有比2小的正周期.
思路
先求出周期
用反证法证明 2 是最小正周期.
间接证明(例题1)
直接证明(学生活动)
思考:在《数学(5 必修)》中,我们如何证明
基本不等式 ab a b (a 0,b 0)? 2
证法1 对于正数a,b, 有
( a b)2 0 a b 2 ab 0 a b 2 ab
a b ab 2
1、 概念
直接证明
直接从原命题的条件逐步推得结论 成立,这种证明方法叫直接证明。
若 a = b,则a = b,与已知a > b矛盾,
若 a < b,则a < b, 与已知a > b矛盾, 故假设不成立,结论 a > b成立。
3、已知a≠0,求证关于x的方程ax=b有且只 有一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
不妨设其中的两根分别为x1,x2且x1 ≠ x2 则ax1 = b,ax2 = b ∴ ax1 = ax2 ∴ ax1 - ax2 = 0 ∴a(x1 - x2)= 0 ∵ x1 ≠ x2,x1 - x2 ≠ 0 ∴a = 0 与已知a ≠ 0矛盾, 故假设不成立,结论成立。
直接证明与间接证明
趣味 数学
求证: 2 是无理数。
证:假设 2是有理数,
则存在互质的整数m,n使得 2 = m , n
∴ m = 2n ∴ m2 = 2n2
正难则反!
牛顿曾经说过:“反证法是数学家最精当的武器之一”
归纳总结:
三个步骤:反设—归谬—存真
反设: 注意原结论的反面要全面、正确、准确
归缪矛盾: (1)与已知条件矛盾; (2)与已有公理、定理、定义矛盾; (3)与假设自相矛盾。
存真: 格式规范不能少
趣味 数学
证明:素数有无穷多个
证明:假设素数是有限的,假设素数只有 有限的n个,最大的一个素数是p, 设q为所有素数之积加上1,那么,
一般地,假设原命题不成立(即在原命题的条件 下,结论不成立),经过正确的推理,最后得出矛盾。 因此说明假设错误,从而证明了原命题成立,这样的 证明方法叫做反证法。
反证法是最常见的间接证法
反证法的一般步骤:
(1)假设命题的结论不成立,即假 反设 设结论的反面成立;
(2)从这个假设出发,经过推理 论证,得出矛盾;
反设
则 y1(x1 y1) x1(x1 y1) x1 y1 ,
∴
x12
y12
x1 y1
0 ,即 (x1
y1 )2 2
3 4
y12
0,
但是
y1
0
,即 (x1
y1 )2 2
3 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲直接证明与间接证明◆高考导航·顺风启程◆[知识梳理]1.直接证明[知识感悟]1.辨明两个易误点(1)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论.(2)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.2.证题的三种思路 (1)综合法证题的一般思路用综合法证明命题时,必须首先找到正确的出发点,也就是能想到从哪里起步,我们一般的处理方法是广泛地联想已知条件所具备的各种性质,逐层推进,从而由已知逐步推出结论.(2)分析法证题的一般思路分析法的思路是逆向思维,用分析法证题必须从结论出发,倒着分析,寻找结论成立的充分条件.应用分析法证明问题时要严格按分析法的语言表达,下一步是上一步的充分条件.(3)反证法证题的一般思路反证法证题的实质是证明它的逆否命题成立.反证法的主要依据是逻辑中的排中律,排中律的一般形式是:或者是A ,或者是非A ,即在同一讨论过程中,A 和非A 有且仅有一个是正确的,不能有第三种情况出现.[知识自测]1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( ) (4)反证法是指将结论和条件同时否定,推出矛盾.( )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )(6)证明不等式2+7<3+6最合适的方法是分析法.( ) [答案] (1)× (2)× (3)× (4)× (5)√ (6)√ 2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0[解析] 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. [答案] D3.如果a a+b b>a b+b a,则a、b应满足的条件是______.[解析]∵a a+b b-(a b+b a)=a(a-b)+b(b-a)=(a-b)(a-b)=(a-b)2(a+b).∴当a≥0,b≥0且a≠b时,(a-b)2(a+b)>0.∴a a+b b>a b+b a成立的条件是a≥0,b≥0且a≠b.[答案]a≥0,b≥0且a≠b题型一综合法的应用(高频考点题、多角突破)考向一与立体几何有关的证明1.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2AD=2CD=2,E是PB的中点.(1)求证:EC∥平面P AD;(2)求证:平面EAC⊥平面PBC.[证明](1)作线段AB的中点F,连接EF,CF(图略),则AF=CD,AF∥CD,∴四边形ADCF是平行四边形,则CF∥AD.又EF∥AP,且CF∩EF=F,∴平面CFE∥平面P AD.又EC⊂平面CEF,∴EC∥平面P AD.(2)∵PC⊥底面ABCD,∴PC⊥AC.∵四边形ABCD是直角梯形,且AB=2AD=2CD=2,∴AC=2,BC= 2.∴AB2=AC2+BC2,∴AC⊥BC,∵PC∩BC=C,∴AC⊥平面PBC,∵AC⊂平面EAC,∴平面EAC⊥平面PBC.考向二 与数列有关的证明2.(2016·天津高考)已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =∑k =12n(-1)k b 2k ,n ∈N *,求证:∑k =1n1T k <12d 2. [证明] (1)由题意得b 2n =a n a n +1, c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1.因此c n +1-c n =2d (a n +2-a n +1)=2d 2, 所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=2d (a 2+a 4+…+a 2n )=2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =1n1T k =12d 2∑k =1n 1k (k +1)=12d 2∑k =1n ⎝⎛⎭⎫1k -1k +1=12d 2·⎝⎛⎭⎫1-1n +1<12d 2.考向三 与三角解三角形有关的证明3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.(1)求证:a ,b ,c 成等差数列. (2)若C =2π3,求证5a =3b .[证明] (1)由已知得sin A sin B +sin B sin C =2sin 2B , 因为sin B ≠0,所以sin A +sin C =2sin B ,由正弦定理,有a +c =2b ,即a ,b ,c 成等差数列. (2)由C =2π3,c =2b -a 及余弦定理得(2b -a )2=a 2+b 2+ab ,即5ab -3b 2=0, 所以a b =35,即5a =3b .考向四 与函数、方程、不等式结合的证明题4.已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b 的值; (2)证明:f (x )≤g (x ).[解] (1)f ′(x )=11+x,g ′(x )=b -x +x 2, 由题意得⎩⎪⎨⎪⎧g (0)=f (0),f ′(0)=g ′(0),解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x ) =ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +3.h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数.h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).方法感悟综合法证题的思路【针对补偿】1.(上饶调研)已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 是正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A[解析] ∵a +b 2≥ab ≥2aba +b ,又f (x )=⎝⎛⎭⎫12x在R 上是减函数. ∴f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b ,即A ≤B ≤C . [答案] A2.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若1a +b +1b +c =3a +b +c,试问A ,B ,C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.[解] A ,B ,C 成等差数列,下面用综合法给出证明: ∵1a +b +1b +c =3a +b +c ,∴a +b +c a +b +a +b +c b +c =3, ∴c a +b +ab +c=1,∴c (b +c )+a (a +b )=(a +b )(b +c ), ∴b 2=a 2+c 2-ac .在△ABC 中,由余弦定理,得 cos B =a 2+c 2-b 22ac =ac 2ac =12,∵0°<B <180°,∴B =60°,∴A +C =120°=2B , ∴A ,B ,C 成等差数列.题型二 分析法的应用(重点保分题、共同突破)已知函数f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. [证明] 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.方法感悟(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.[注意] 注意书写格式的规范性. 【针对补偿】 3.已知a >0,证明 a 2+1a 2-2≥a +1a-2.[证明] 要证 a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 22≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42,只需证a +1a ≥2. 因为a >0,a +1a ≥2显然成立⎝⎛⎭⎫当且仅当a =1a =1时等号成立,所以要证的不等式成立. 题型三 反证法的应用(重点保分题、共同突破)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.[解] (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p 、q 、r ∈N *,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴⎝⎛⎭⎫p +r 22=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不能成为等比数列.方法感悟应用反证法证明数学命题,一般有以下几个步骤: 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.【针对补偿】4.(2018·济南模拟)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[解] (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得a =1或b =3.因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾,故不存在.◆牛刀小试·成功靠岸◆课堂达标(五十八)[A 基础巩固练]1.(2018·太原模拟)命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关[解析] 因为S n =2n 2-3n ,所以n =1时a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=2n 2-3n -2(n -1)2+3(n -1)=4n -5,n =1时适合a n ,且a n -a n -1=4,故{a n }为等差数列,即命题成立.[答案] B2.(2018·宁波模拟)分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0[解析]b 2-ac <3a ⇔b 2-ac <3a 2,⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0 ⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. [答案] C3.(2018·上饶月考)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2[解析] 因为⎝⎛⎭⎫y x +y z +⎝⎛⎭⎫z x +z y +⎝⎛⎭⎫x z +x y =⎝⎛⎭⎫y x +x y +⎝⎛⎭⎫y z +z y +⎝⎛⎭⎫z x +x z ≥6, 当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,故选C. [答案] C4.(2018·山西质量监测)对累乘运算∏有如下定义:∏k =1na k =a 1×a 2×…×a n ,则下列命题中的真命题是( )A.∏k =11 0072k 不能被10100整除B.∏k =12 015 (4k -2)∏k =12 014 (2k -1)=22 015C.∏k =11 008(2k -1)不能被5100整除D.∏k =11 008 (2k -1)∏k =11 0072k =∏k =12 015k[解析] 因为∏k =11 008 (2k -1)∏k =11 0072k =(1×3×5×…×2 015)×(2×4×6×…×2 014)=1×2×3×…×2 014×2 015=∏k =12 015k ,故选D.[答案] D5.(2016·浙江卷)已知实数a ,b ,c ( )A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 [解析] 举反例排除法:A .令a =b =10,c =-110,排除此选项,B .令a =10,b =-100,c =0,排除此选项,C .令a =100,b =-100,c =0,排除此选项.故选D. [答案] D6.设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2; ⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③D .③④⑤[解析] 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.[答案] C7.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是______.[解析] 取a =2,b =1,得m <n .再用分析法证明:a -b <a -b ⇐a <b +a -b⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立.[答案] m <n8.凸函数的性质定理为如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为______.[解析] ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π),∴f (A )+f (B )+f (C )3≤f ⎝⎛⎭⎫A +B +C 3=f ⎝⎛⎭⎫π3,即sin A +sin B +sin C ≤3sin π3=332, 所以sin A +sin B +sin C 的最大值为332. [答案] 3329.(2018·湖南省郴州市三模)已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -ma n -m.类比上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =__________.[解析] 通过等差数列的结论类比推理可得:若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =n -m d nc m. 证明如下:设等比数列的首项为b 1,公比为q ≠0.则b m =c =b 1q m -1,b n =b 1q n -1, 化为d n c m =b n -m 1·q (n -m )(n +m -1),∴n -m d n cm =b 1q n +m -1=b m +n . [答案] n -m d nc m10.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b ||a +b |≤ 2. [证明] a ⊥b ⇔a ·b =0,要证|a |+|b ||a +b |≤ 2. 只需证|a |+|b |≤2|a +b |,只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2),只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2,只需证|a |2+|b |2-2|a ||b |≥0,即(|a |-|b |)2≥0,上式显然成立,故原不等式得证.[B 能力提升练]1.(2018·福州模拟)设0<x <1,a >0,b >0,a ,b 为常数,a 2x +b 21-x的最小值是( ) A .4abB .2(a 2+b 2)C .(a +b )2D .(a -b )2[解析] ⎝⎛⎭⎫a 2x +b 21-x (x +1-x ) =a 2+a 2(1-x )x +b 2x 1-x +b 2≥a 2+b 2+2ab =(a +b )2.当且仅当x =a a +b 时,等号成立. [答案] C2.(2016·北京卷)袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多[解析] 取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a 个,则a 个红球,a 个黑球,甲中球的总个数为a ,其中红球x 个,黑球y 个,x +y =a .则乙中有x 个球,其中k 个红球,j 个黑球,k +j =x ;丙中有y 个球,其中l 个红球,i 个黑球,i +l =y ;黑球总数a =y +i +j ,又x +y =a ,故x =i +j ,由于x =k +j ,所以可得i =k ,即乙中的红球等于丙中的黑球.故选B.[答案] B3.(2016·全国Ⅱ卷)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是__________.[解析] 设三张卡片分别为A (1,2),B (1,3),C (2,3),由丙得数字和不是5,则丙的卡片可能为A 或B .若丙为A (1,2),则乙为C (2,3),甲为B (1,3)合题,若丙为B (1,3),则甲、乙为相同数字2,不合题.[答案] 1和34.(2018·广东实验中学段考)已知点A (x 1,ax 1)、B (x 2,ax 2)是函数y =a x (a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A 、B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1)、B (x 2,sin x 2)是函数y =sin x [x ∈(0,π)]图象上的不同两点,则类似地有______成立.[解析] 由题意知,点A 、B 是函数y =a x (a >1)的图象上任意不同两点,函数y =a x (a>1)图象下凸,线段AB 总是位于A 、B 两点之间函数图象的上方,因此有结论ax 1+ax 22<a x 1+x 22成立;而函数y =sin x (x ∈(0,π))图象上凸,线段AB 总是位于A 、B 两点之间函数图象的下方,因此可类比得到结论sin x 1+sin x 22<sin x 1+x 22. [答案] sin x 1+sin x 22<sin x 1+x 225.(2018·杭州模拟)已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.[证明] (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1·ax 2-x 1-1>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0, 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数. (2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾,故方程f (x )=0没有负数根.[C 尖子生专练]已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.[解] (1)证明:∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a, ∴x 2=1a ⎝⎛⎭⎫1a ≠c ,∴1a是f (x )=0的一个根. (2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0, 知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾,∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明:由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a ,即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.。