麦盖提县实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

2018-2019学年上学期高二数学12月月考试题含解析(1722)

2018-2019学年上学期高二数学12月月考试题含解析(1722)

图木舒克市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .2. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部3. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定4. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->”C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥ 5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .96. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( ) A .{﹣1,0,1,2,4} B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}7. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M的变化而变化8. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( ) A .2017 B .﹣8 C .D .10.已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x11.在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .12.设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.15.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).16.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .17.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,3cos()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3.20.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.21.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.22.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.23.若函数f(x)=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,求a的值.24.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.图木舒克市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键2.【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部.读结构图的顺序是按照从上到下,从左到右的顺序.故选C.【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.3.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f (x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A .【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.4. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 5. 【答案】B【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B .6. 【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4}, ∴A ∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}. 故选:A .【点评】本题考查并集及其运算,是基础的会考题型.7. 【答案】B 【解析】考点:棱柱、棱锥、棱台的体积.8.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.9.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.10.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C 的焦距为12,∴12=2,即a 2+b 2=36,②联立①、②,可得a 2=16,b 2=20,∴渐近线方程为:y=±x=±x ,故选:A .【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.11.【答案】B【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11.又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B .12.【答案】B. 【解析】232()4()()44a b abab a b a-=⇒+=+,故11a ba b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B. 二、填空题13.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.14.【答案】 【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1,∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -1 15.【答案】③④ 【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM 与ED 是异面直线,所以是错误的;②DN 与BE 是平行直线,所以是错误的;③从图中连接,AN AC ,由于几何体是正方体,所以三角形ANC 为等边三角形,所以,AN AC 所成的角为60 ,所以是正确的;④DM 与BN 是异面直线,所以是正确的.考点:空间中直线与直线的位置关系.16.【答案】 25【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km ,由正弦定理可得AC==25km,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.17.【答案】2016.【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.18.【答案】【解析】三、解答题19.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键..20.【答案】(1)3;(2)623【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD C 均为矩形,2(11112)6S =⨯++⨯=+.1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 21.【答案】【解析】解:∴z 1=2﹣i 设z 2=a+2i (a ∈R ) ∴z 1z 2=(2﹣i )(a+2i )=(2a+2)+(4﹣a )i∵z 1z 2是实数 ∴4﹣a=0解得a=4 所以z 2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.22.【答案】【解析】解:设双曲线方程为(a >0,b >0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C :c=2. 又y=x 为双曲线C 的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.23.【答案】【解析】解:由题意可得:∵当a>1时,函数f(x)在区间[1,2]上单调递增,∴f(2)﹣f(1)=a2﹣a=a,解得a=0(舍去),或a=.∵当0<a<1时,函数f(x)在区间[1,2]上单调递减,∴f(1)﹣f(2)=a﹣a2=,解得a=0(舍去),或a=.故a的值为或.【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.24.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.。

2018-2019学年上学期高二数学12月月考试题含解析.doc

2018-2019学年上学期高二数学12月月考试题含解析.doc

玛多县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D . 2. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 303. 设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,4. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB5. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?6. 实数x ,y满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3) C.(,2) D.(,0)7. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>8. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( ) A .[3,+∞) B .(3,+∞) C .[﹣∞,3] D .[﹣∞,3)9. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为( )C.1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 10.已知数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12111.如图,该程序运行后输出的结果为( )A .7B .15C .31D .6312.为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位D.向右平移个长度单位二、填空题13.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 14.S n=++…+= .15.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .16.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).17.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .18.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB 的距离是 .三、解答题19.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值; (Ⅱ)若,且,求a 和c 的值.20.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.21.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.22.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos ty =1+sin t(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.(1)求C 1,C 2的极坐标方程;(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.23.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.24.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.(1)证明:BC 1∥平面ACD 1.(2)当时,求三棱锥E ﹣ACD 1的体积.玛多县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法. 2. 【答案】C【解析】解:an ==1+,该函数在(0,)和(,+∞)上都是递减的, 图象如图, ∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a 10,a 9.故选:C .【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.3. 【答案】C【解析】解:函数f (x )的定义域为R ,关于原点对称.又f (﹣x )===f (x ),所以f (x )为偶函数.而f ()===﹣=﹣f (x ),故选C .【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.4. 【答案】D 【解析】解:∵A=2B ,∴sinA=sin2B ,又sin2B=2sinBcosB , ∴sinA=2sinBcosB ,根据正弦定理==2R 得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D5.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.6.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.7.【答案】A【解析】考点:棱锥的结构特征.8.【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.9. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则221212122()4()P FP F P FP F P ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.由题意,得12c c =,整理,得2()4ca=+,∴双曲线的离心率1e =,故选D.10.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =.1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)52222n +++==,∴120n =,选C .11.【答案】如图,该程序运行后输出的结果为( ) D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3; 判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4; 判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5; 判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m 值应是5. 故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.12.【答案】A【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题.二、填空题13.【答案】(-【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,解得01x ?,综上所述,不等式2(2)()f x f x ->的解集为(-. 14.【答案】【解析】解:∵ ==(﹣),∴S n =++…+= [(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)=,故答案为:.【点评】本题主要考查利用裂项法进行数列求和,属于中档题.15.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.16.【答案】【解析】【知识点】空间几何体的三视图与直观图 【试题解析】该几何体是半个圆柱。

麦盖提县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

麦盖提县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

麦盖提县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±32. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( )A .①B .②C .③D .④3. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)4. 函数是周期为4的奇函数,且在上的解析式为,则()()f x x R Î02[,](1),01()sin ,12x x x f x x x ì-££ï=íp <£ïî( )1741()()46f f +=A . B . C . D .71691611161316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.5. 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、22(0)y px p =>F 2218-=y x A 两点,若,且,则抛物线方程为( )B >AF BF ||3AF =A .B .C .D .2y x =22y x =24y x =23y x=【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.6. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>07. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .48. 已知为的三个角所对的边,若,则,,a b c ABC ∆,,A B C 3cos (13cos )b C c B =-sin :sin C A =()A .2︰3B .4︰3C .3︰1D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.9. 已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( )A .8B .﹣8C .11D .﹣1110.已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是()A .B .C .D .11.圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .22512.已知全集,,,则( ){}1,2,3,4,5,6,7U ={}2,4,6A ={}1,3,5,7B =()U A B = ðA .B .C .D .{}2,4,6{}1,3,5{}2,4,5{}2,5二、填空题13.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .14.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .15.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是 . 16.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示. x ﹣1045f (x )1221下列关于f (x )的命题:①函数f (x )的极大值点为0,4;②函数f (x )在[0,2]上是减函数;③如果当x ∈[﹣1,t]时,f (x )的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y=f (x )﹣a 有4个零点;⑤函数y=f (x )﹣a 的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .17.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是 .18.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .三、解答题19.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣4≤0,x ∈R ,m ∈R}(1)若A ∩B=[0,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.20.(本小题满分10分)选修4-5:不等式选讲已知函数.()()f x x a a R =-∈(1)当时,解不等式;1a =()211f x x <--(2)当时,,求的取值范围.(2,1)x ∈-121()x x a f x ->---21.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留22⨯95%守儿童有关?幸福感强幸福感弱总计留守儿童非留守儿童总计1111](2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20()P K k ≥0.0500.0100k 3.8416.63522.已知复数z 的共轭复数是,且复数z 满足:|z ﹣1|=1,z ≠0,且z 在复平面上对应的点在直线y=x 上.求z 及z 的值.23.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).243x ty t=-+⎧⎨=⎩(1)写出曲线的参数方程,直线的普通方程;C (2)求曲线上任意一点到直线的距离的最大值.C麦盖提县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.2.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础. 3.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.4.【答案】C5.【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,=y 00(,)A x y 02>px 0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px 解得或,因为,故,故,所以抛物线方程为.2=p 4=p 322->p p03p <<2=p 24y x =6. 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2﹣2x+3≤0.故选:C . 7. 【答案】C【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称,因为P (x 1<3)=P (x 2≥a ),所以3﹣2=4﹣a ,所以a=3,故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解. 8. 【答案】C【解析】由已知等式,得,由正弦定理,得,则3cos 3cos c b C c B =+sin 3(sin cos sin cos )C B C C B =+,所以,故选C .sin 3sin()3sin C B C A =+=sin :sin 3:1C A =9. 【答案】D【解析】解:设{a n }是等比数列的公比为q ,因为a 2=2,a 3=﹣4,所以q===﹣2,所以a 1=﹣1,根据S 5==﹣11.故选:D .【点评】本题主要考查学生运用等比数列的前n 项的求和公式的能力,本题较易,属于基础题. 10.【答案】B【解析】解:∵y=f (|x|)是偶函数,∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题. 11.【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y =0得,x =-1±,5∴|MN |=|(-1+)-(-1-)|=2,选D.55512.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.二、填空题13.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1),∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3,又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,∴d2=1,解得:d=1或d=﹣1(舍去)∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.∴a1=﹣1,∴S10=10a1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.14.【答案】 .【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.15.【答案】 ③ .【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③16.【答案】 ①②⑤ .【解析】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f (0)=2,f (4)=2,要使当x ∈[﹣1,t]函数f (x )的最大值是4,当2≤t ≤5,所以t 的最大值为5,所以③不正确;由f (x )=a 知,因为极小值f (2)未知,所以无法判断函数y=f (x )﹣a 有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f (2)<1或1≤f (2)<2两种情况,由图象知,函数y=f (x )和y=a 的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键. 17.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.18.【答案】 (x ﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a ,b ),半径为r ,∵点A (2,1)关于直线x+y=0的对称点A ′仍在这个圆上,∴圆心(a ,b )在直线x+y=0上,∴a+b=0,①且(2﹣a )2+(1﹣b )2=r 2;②又直线x ﹣y+1=0截圆所得的弦长为,且圆心(a ,b )到直线x ﹣y+1=0的距离为d==,根据垂径定理得:r 2﹣d 2=,即r 2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x ﹣1)2+(y+1)2=5.故答案为:(x ﹣1)2+(y+1)2=5. 三、解答题19.【答案】【解析】解:由已知得:A={x|﹣1≤x ≤3},B={x|m ﹣2≤x ≤m+2}.(1)∵A ∩B=[0,3]∴∴,∴m=2;(2)∵p 是¬q 的充分条件,∴A ⊆∁R B ,而C R B={x|x <m ﹣2,或x >m+2}∴m ﹣2>3,或m+2<﹣1,∴m >5,或m <﹣3. 20.【答案】(1);(2).{}11x x x ><-或(,2]-∞-【解析】试题解析:(1)因为,所以,()211f x x <--1211x x -<--即,1211x x ---<-当时,,∴,∴,从而;1x >1211x x --+<-1x -<-1x >1x >当时,,∴,∴,从而不等式无解;112x ≤≤1211x x --+<-33x -<-1x >当时,,∴,从而;12x <1211x x -+-<-1x <-1x <-综上,不等式的解集为.{}11x x x ><-或(2)由,得,121()x x a f x ->---121x x a x a -+->--因为,1121x x a x a x x a -+-≥-+-=--所以当时,;(1)()0x x a --≥121x x a x a -+-=--当时,(1)()0x x a --<121x x a x a -+->--记不等式的解集为,则,故,(1)()0x x a --<A (2,1)A -⊆2a ≤-所以的取值范围是.(,2]-∞-考点:1.含绝对值的不等式;2.分类讨论.21.【答案】(1)有的把握认为孩子的幸福感强与是否留守儿童有关;(2).95%35【解析】试题解析:(1)列联表如下:幸福感强幸福感弱总计留守儿童6915非留守儿童18725总计241640∴.2240(67918)4 3.84115252416K ⨯⨯-⨯==>⨯⨯⨯∴有的把握认为孩子的幸福感强与是否留守儿童有关.95%(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:,;幸福感强的孩子3人,记作:,,1a 2a 1b 2b .3b “抽取2人”包含的基本事件有,,,,,,,,12(,)a a 11(,)a b 12(,)a b 13(,)a b 21(,)a b 22(,)a b 23(,)a b 12(,)b b ,共10个.13(,)b b 23(,)b b 事件:“恰有一人幸福感强”包含的基本事件有,,,,,A 11(,)a b 12(,)a b 13(,)a b 21(,)a b 22(,)a b 23(,)a b 共6个.故.63()105P A ==考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.22.【答案】【解析】解:∵z 在复平面上对应的点在直线y=x 上且z ≠0,∴设z=a+ai ,(a ≠0),∵|z ﹣1|=1,∴|a ﹣1+ai|=1,即=1,则2a 2﹣2a+1=1,即a 2﹣a=0,解得a=0(舍)或a=1,即z=1+i , =1﹣i ,则z =(1+i )(1﹣i )=2.【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键. 23.【答案】【解析】解:(1)函数f (x )=1+=,(2)函数的图象如图:.(3)函数值域为:[1,3). 24.【答案】(1)参数方程为,;(2).1cos sin x y θθ=+⎧⎨=⎩3460x y -+=145【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方C 22(1)1x y -+=程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,C 用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,∴,C 22cos ρρθ=2220x y x +-=∴,所以参数方程为,22(1)1x y -+=1cos sin x y θθ=+⎧⎨=⎩直线的普通方程为.3460x y -+=(2)曲线上任意一点到直线的距离为C (1cos ,sin )θθ+,所以曲线上任意一点到直线的距离的最大值为.33cos 4sin 65sin()914555d θθθϕ+-+++==≤C 145考点:1.极坐标方程;2.参数方程.。

麦盖提县民族中学2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县民族中学2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12B .10C .9D .82. 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种3. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( ) A .3B .6C .7D .84. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种5. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π6. 二项式(1)(N )n x n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.7.若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为()A.0 B.1 C.﹣1 D.28.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA.1 B.2 C.3 D.49.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.10.全称命题:∀x∈R,x2>0的否定是()A.∀x∈R,x2≤0 B.∃x∈R,x2>0 C.∃x∈R,x2<0 D.∃x∈R,x2≤011.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()A .x=﹣ B .x= C .x=﹣ D .x=12.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)二、填空题13.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________. 14.已知i是虚数单位,复数15.设O 为坐标原点,抛物线C :y 2C相交于A ,B 两点,直线AO 与l 16.以点(1,3)和(5,﹣117.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1②若x 0为函数y=f (x )的不动点,则③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 18.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .三、解答题19.已知抛物线C :x 2=2py (p >0),抛物线上一点Q (m ,)到焦点的距离为1. (Ⅰ)求抛物线C 的方程(Ⅱ)设过点M (0,2)的直线l 与抛物线C 交于A ,B 两点,且A 点的横坐标为n (n ∈N *)(ⅰ)记△AOB 的面积为f (n ),求f (n )的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.20.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.21.已知正项数列{a n}的前n项的和为S n,满足4S n=(a n+1)2.(Ⅰ)求数列{a n}通项公式;(Ⅱ)设数列{b n}满足b n=(n∈N*),求证:b1+b2+…+b n<.22.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.2.072 2.7063.841 5.024(参考公式:,其中n=a+b+c+d)23.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.24.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数.若p ∨q为真,p∧q为假.求实数a的取值范围.麦盖提县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:∵函数y=f (x )为 偶函数,且满足f (x+2)=﹣f (x ), ∴f (x+4)=f (x+2+2)=﹣f (x+2)=f (x ), ∴偶函数y=f (x ) 为周期为4的函数, 由x ∈[0,2]时,f (x )=1﹣x ,可作出函数f (x )在[﹣10,10]的图象,同时作出函数f (x )=log 8|x|在[﹣10,10]的图象,交点个数即为所求. 数形结合可得交点个为8, 故选:D .2. 【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 3. 【答案】B【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8, ∴2a 4=a 3+a 5=8,解得a 4=4,∴公差d==,∴a7=a1+6d=2+4=6故选:B.4.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.5.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.6. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 7. 【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.8. 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A .【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.9.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题10.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.11.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.12.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则a ≤1.故答案为:C二、填空题13.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程序结束.14.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.15.【答案】.【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F , 过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,∴直线AB 的方程为y=(x ﹣),l 的方程为x=﹣,联立,解得A (﹣,P ),B (,﹣)∴直线OA 的方程为:y=,联立,解得D (﹣,﹣)∴|BD|==,∵|OF|=,∴ ==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.16.【答案】x﹣y﹣2=0.【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,故答案为x﹣y﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.17.【答案】①②⑤【解析】解:对于①,令g(x)=x,可得x=或x=1,故①正确;对于②,因为f(x0)=x0,所以f(f(x0))=f(x0)=x0,即f(f(x0))=x0,故x0也是函数y=f(x)的稳定点,故②正确;对于③④,g(x)=2x2﹣1,令2(2x2﹣1)2﹣1=x,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x﹣1)(2x+1)(4x2+2x﹣1)=0还有另外两解,故函数g(x)的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0))=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0>y0,因为y=f(x)是增函数,则f(x0)>f(y0),即y0>x0,与假设矛盾;假设x0<y0,因为y=f(x)是增函数,则f(x0)<f(y0),即y0<x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.18.【答案】.【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q+=+=1,解得p=1,∴抛物线C的方程为x2=2y;(Ⅱ)(ⅰ)∵直线l与抛物线C交于A、B两点,∴直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x2﹣2kx﹣4=0,此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,由韦达定理,得:x1+x2=2k,x1x2=﹣4,∴S△AOB=|OM|•|x1﹣x2|=×2==2(*)又∵A点横坐标为n,∴点A坐标为A(n,),又直线过点M(0,2),故k==﹣,将上式代入(*)式,可得:f(n)=2=2=2=n+(n∈N*);(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:m﹣n=﹣=,又∵m≠n,即m﹣n≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.20.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…21.【答案】【解析】(Ⅰ)解:由4S n=(a n+1)2,令n=1,得,即a1=1,又4S n+1=(a n+1+1)2,∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,∴a n=1+2(n﹣1)=2n﹣1;(Ⅱ)证明:由(Ⅰ)可知,b n==,则b1+b2+…+b n===.22.【答案】【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,(每算对一个结果给1分)∴E(X)=3×=2.(Ⅱ)假设生二胎与年龄无关,K2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.23.【答案】【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立.…记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.0 100 400所以甲按AB顺序获得奖品价值的数学期望.…记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,η0 300 400所以甲按BA顺序获得奖品价值的数学期望.…因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.24.【答案】【解析】解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,∴函数g(x)的图象开口向上且与x轴没有交点,故△=4a2﹣16<0,∴﹣2<a<2.又∵函数f(x)=(3﹣2a)x是增函数,∴3﹣2a>1,得a<1.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则,得1≤a<2;(2)若p假q真,则,得a≤﹣2.综上可知,所求实数a的取值范围为1≤a<2,或a≤﹣2.。

麦盖提县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

麦盖提县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

麦盖提县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .32. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .B .C .D .3. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.4. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .B .C .(﹣,)D .5. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A.(﹣,﹣a 2)∪(a 2,) B.(﹣,a 2)∪(﹣a 2,) C.(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)6. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f <<C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 7. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点8. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-549. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.10.如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.11.已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.12.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数二、填空题13.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.15.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想. 16.已知i是虚数单位,复数的模为 .17.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .18.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.三、解答题19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.20.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程. (2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.21.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.22.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.23.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.麦盖提县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】D【解析】考点:简单线性规划.2.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.3.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.4.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x≥0时,f(x)为增函数,则当x≤0时,f(x)为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.5.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f (x )<0的解集为(﹣b ,﹣a 2),g (x )<0的解集为(﹣,﹣),则不等式f (x )g (x )>0等价为或,即a 2<x <或﹣<x <﹣a 2,故不等式的解集为(﹣,﹣a 2)∪(a 2,),故选:A . 【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f (x )<0和g (x )<0的解集是解决本题的关键.6. 【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111] 7. 【答案】D 【解析】试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论. 8. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.9. 【答案】B【解析】10.【答案】B第11.【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 12.【答案】C【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.二、填空题13.【答案】 180【解析】解:由二项式定理的通项公式T r+1=C n r an ﹣r b r可设含x 2项的项是T r+1=C 7r (2x )r可知r=2,所以系数为C 102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.14.【答案】33(,33-【解析】()233310,f x x x ⎛⎫=-+>⇒∈- ⎝'⎪⎪⎭ ,所以增区间是33,⎛⎫- ⎪ ⎪⎝⎭15.【答案】D 【解析】16.【答案】.【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.17.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力. 由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确;由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x yλμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为25,∴⑤错误.18.【答案】3-【解析】作出可行域如图所示:作直线0l :30x y +=,再作一组平行于0l 的直线l :3x y z a +=-,当直线l 经过点5(,2)3M 时,3z a x y -=+取得最大值,∴max 5()3273z a -=⨯+=,所以max 74z a =+=,故3a =-.三、解答题19.【答案】 【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,20.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.21.【答案】【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,则P(B)=.【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.22.【答案】【解析】解:由p:⇒﹣1≤x<2,方程x2﹣(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|>1,则q:1<x<a2,此时应满足a2≤2,解得1<|a|≤,当|a|=1,q:x∈∅,满足条件,当|a|<1,则q:a2<x<1,此时应满足|a|<1,综上﹣.【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.23.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,24.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。

麦盖提县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

麦盖提县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

麦盖提县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828A.25% B.75% C.2.5% D.97.5%2.为了得到函数的图象,只需把函数y=sin3x的图象()A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度3.集合U=R,A={x|x2﹣x﹣2<0},B={x|y=ln(1﹣x)},则图中阴影部分表示的集合是()A.{x|x≥1} B.{x|1≤x<2} C.{x|0<x≤1} D.{x|x≤1}4.函数f(x)=sinωx(ω>0)在恰有11个零点,则ω的取值范围()A. C. D.时,函数f(x)的最大值与最小值的和为()A.a+3 B.6 C.2 D.3﹣a5.若命题“p或q”为真,“非p”为真,则()A.p真q真B.p假q真C.p真q假D.p假q假6.已知复数z满足(3+4i)z=25,则=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i7.下列函数在(0,+∞)上是增函数的是()A.B.y=﹣2x+5 C.y=lnx D.y=8.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7 B.6 C.5 D.49.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案10.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π11.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 12.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .240二、填空题13.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值; ③若m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 .16.不等式()2110ax a x +++≥恒成立,则实数的值是__________.17.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .18.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是 度.三、解答题19.已知点(1,)是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )﹣c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n ﹣S n ﹣1=+(n ≥2).记数列{}前n项和为T n ,(1)求数列{a n }和{b n }的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.20.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。

麦盖提县高级中学2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县高级中学2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .42. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?3. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( ) A .30° B .60° C .120° D .150°4. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.5. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A.B.C .πD .2π6. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=7. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.8. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞9. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣2 10.已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .1611.已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( ) A.124+ B.124- C. 34 D .012.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)二、填空题13.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 . 16.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .18.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .三、解答题19.已知椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为.(1)求椭圆C 的方程;(2)直线l 1,l 2是椭圆的任意两条切线,且l 1∥l 2,试探究在x 轴上是否存在定点B ,点B 到l 1,l 2的距离之积恒为1?若存在,求出点B 的坐标;若不存在,请说明理由.20.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(∁U A)∩B;(3)求∁U(A∩B).21.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.(Ⅰ)求实数a的取值集合A(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.22.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,,x2,x3的值,并写出函数f(x)的解析式;1(Ⅱ)将f (x)的图象向右平移个单位得到函数g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N,求向量与夹角θ的大小.23.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.24.已知椭圆C:+=1(a >b >0)的短轴长为2,且离心率e=,设F 1,F 2是椭圆的左、右焦点,过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△F 2PQ 面积的最小值.麦盖提县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.2.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.3.【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,可得a2=7c2,所以cosA===﹣,∵0<A<180°,∴A=120°.故选:C.【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.4.【答案】B第5.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f ′(0)=a=﹣3, 故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x 2+y 2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB =﹣,k OA =,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D 内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.6. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 7. 【答案】B【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 8. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩,∴2a <,选A .9. 【答案】A【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22=﹣2y 2. 两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2) ∴直线AB 的斜率k=1,∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4. 故选A ,10.【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去), 即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D .11.【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.12.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.二、填空题13.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.14.【答案】120【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据A B C=,根据正弦定理,可设3,5,7sin:sin:sin3:5:7===,即可利用余弦定理求解最大角的余弦,a b熟记正弦、余弦定理的公式是解答的关键.15.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].16.【答案】[1,)+∞ 【解析】解析:不等式,1,x y a x y +≥⎧⎨-≤-⎩表示的平面区域如图所示,由z ax y =-得y ax z =-,当01a ≤<时,平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处z 取得最大值,综上所述,1a ≥.17.【答案】 (1,2) .【解析】解:∵f (x )=log a x (其中a 为常数且a >0,a ≠1)满足f (2)>f (3), ∴0<a <1,x >0,若f (2x ﹣1)<f (2﹣x ), 则,解得:1<x <2, 故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.18.【答案】 150【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m . 在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°, 由正弦定理得,,因此AM=100m .在RT △MNA 中,AM=100m ,∠MAN=60°,由得MN=100×=150m.故答案为:150.三、解答题19.【答案】【解析】解:(1)∵椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为,∴=,解得,∴椭圆C的方程为.…(2)①当l1,l2的斜率存在时,设l1:y=kx+m,l2:y=kx+n(m≠n),△=0,m2=1+2k2,同理n2=1+2k2m2=n2,m=﹣n,设存在,又m2=1+2k2,则|k2(2﹣t2)+1|=1+k2,k2(1﹣t2)=0或k2(t2﹣3)=2(不恒成立,舍去)∴t2﹣1=0,t=±1,点B(±1,0),②当l1,l2的斜率不存在时,点B(±1,0)到l1,l2的距离之积为1.综上,存在B(1,0)或(﹣1,0).…20.【答案】【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)A∪B={1,2,3,4,5,7}(2)(∁U A)={1,3,6,7}∴(∁U A)∩B={1,3,7}(3)∵A∩B={5}∁U(A∩B)={1,2,3,4,6,7}.【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.21.【答案】【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,则(|x﹣10|+|x﹣20|)min<10a+10,根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,即(|x﹣10|+|x﹣20|)min=10,所以,10<10a+10,解得a>0,所以,实数a的取值集合为A=(0,+∞);(2)∵a,b∈(0,+∞)且a≠b,∴不妨设a>b>0,则a﹣b>0且>1,则>1恒成立,即>1,所以,a a﹣b>b a﹣b,将该不等式两边同时乘以a b b b得,a ab b>a b b a,即证.【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.22.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,∴,∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.23.【答案】【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,当0m =时,直线l 与x轴垂直,21||2b MF a ==,由212c b a=⎧⎪⎨=⎪⎩解得1a b ⎧=⎪⎨=⎪⎩C 的方程为2212x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知12121122||3||MF F NF F S MF y S NF y ∆∆===.联立方程22112x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22(2)210m y my +--=,解得y =∴1y =,同样可求得2y =, (11分) 由123y y =得123y y =3=,解得1m =,直线l的方程为10x y -+=. (13分) 24.【答案】【解析】解:(Ⅰ)∵椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,∴,解得a 2=4,b 2=3,∴椭圆C 的方程为=1.(Ⅱ)设直线MN 的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t 2+4)y 2+6ty ﹣9=0,∴,,设M (x 1,y 1),N (x 2,y 2),又F 1(﹣1,0),F 2(1,0), 则直线F 1M :,令x=4,得P (4,),同理,Q (4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.。

麦盖提县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种2. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>03. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1] C .(﹣∞,0) D .(﹣∞,0]4. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.45. 设a ,b为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .26. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π7. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 28. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 9. 若某程序框图如图所示,则该程序运行后输出的值是( ) A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件. 10.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到D .向左右平移个单位得到 11.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形12.已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( ) A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭ B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭ C 、16t t ⎧⎫>-⎨⎬⎩⎭ D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭二、填空题13.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .14.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .15.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .16.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .17x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.18.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .三、解答题19.已知过点P (0,2)的直线l 与抛物线C :y 2=4x 交于A 、B 两点,O 为坐标原点. (1)若以AB 为直径的圆经过原点O ,求直线l 的方程;(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.20.如图,椭圆C :+=1(a >b >0)的离心率e=,且椭圆C 的短轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P ,M ,N 椭圆C 上的三个动点.(i )若直线MN 过点D (0,﹣),且P 点是椭圆C 的上顶点,求△PMN 面积的最大值;(ii )试探究:是否存在△PMN 是以O 为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.21.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.22.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.23.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.24.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.麦盖提县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 2. 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2﹣2x+3≤0.故选:C .3. 【答案】D 【解析】解:如图,M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅, 则a ≤0.∴实数a 的取值范围为(﹣∞,0]. 故选:D .【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.4. 【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.5.【答案】C【解析】解:,因此.a﹣b=1.故选:C.6.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.7.【答案】A【解析】解:设x<0时,则﹣x>0,因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A .8. 【答案】A【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 9. 【答案】A【解析】运行该程序,注意到循环终止的条件,有n =10,i =1;n =5,i =2;n =16,i =3;n =8,i =4;n =4,i =5;n =2,i =6;n =1,i =7,到此循环终止,故选 A. 10.【答案】C【解析】解:y=sin2x+cos2x=sin (2x+),y=sin2x ﹣cos2x=sin (2x ﹣)=sin[2(x ﹣)+)],∴由函数y=sin2x ﹣cos2x 的图象向左平移个单位得到y=sin (2x+),故选:C.【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.11.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.12.【答案】A【解析】考点:函数的性质。

麦盖提县实验中学2018-2019学年高二上学期第二次月考试卷数学

麦盖提县实验中学2018-2019学年高二上学期第二次月考试卷数学

麦盖提县实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .2. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .3. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .134. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥5. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)6. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,267. 若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i8. 把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x9. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点10.已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .kB .﹣kC .1﹣kD .2﹣k11.已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到12.已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .56二、填空题13.的展开式中的系数为 (用数字作答).14.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .16.如图,在矩形ABCD 中,AB =3BC =, E 在AC 上,若BE AC ⊥,则ED 的长=____________17.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.18.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .三、解答题19.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm 之间的概率;(Ⅲ)从样本中身高在180~190cm 之间的男生中任选2人,求至少有1人身高在185~190cm 之间的概率.20.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于 点D ,过B 作O 的切线交AD 的延长线于点E .(Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.21.设函数f (x )=|x ﹣a|﹣2|x ﹣1|. (Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.22.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 32=,且0=⋅. (1)求曲线C 的方程;(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为23,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.23.2008年奥运会在中国举行,某商场预计2008年从1日起前x 个月,顾客对某种奥运商品的需求总量p (x )件与月份x 的近似关系是且x ≤12),该商品的进价q (x )元与月份x 的近似关系是q (x )=150+2x ,(x ∈N*且x ≤12). (1)写出今年第x 月的需求量f (x )件与月份x 的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?24.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.麦盖提县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A ,B当|a|<1时且a ≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C .故选:D .2. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l 与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k 2,解得﹣≤k ≤.∴直线l 的斜率k 的取值范围是[﹣,].故选:D .【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.3. 【答案】A【解析】解:∵x+x ﹣1=3,则x 2+x ﹣2=(x+x ﹣1)2﹣2=32﹣2=7.故选:A .【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.4. 【答案】C 【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.5.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B6.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5,只有选项C中编号间隔为5,故选:C.7.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.8.【答案】D【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.9.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.10.【答案】D【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,∴f(2016)=20163a+2016b+1=k,∴20163a+2016b=k﹣1,∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.故选:D.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.11.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f (x )的图象关于直线对称,B 正确;对于C ,当x ∈(﹣,)时,2x ﹣∈(﹣,),函数f (x )=3cos (2x ﹣)不是单调函数,C 错误;对于D ,函数y=3co s2x 的图象向右平移个单位长度,得到函数y=3co s2(x ﹣)=3co s (2x ﹣)的图象,这不是函数f (x )的图象,D 错误. 故选:B .【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.12.【答案】C【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】20【解析】【知识点】二项式定理与性质 【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:14.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.15.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.16.【答案】212【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.因为BE ⊥AC ,AB =3,所以AE =32,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =212.17.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x )y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.18.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1), ∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3,又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,∴d2=1,解得:d=1或d=﹣1(舍去)∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.∴a1=﹣1,∴S10=10a1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)样本中男生人数为2+5+13+14+2+4=40,由分层抽样比例为10%估计全校男生人数为=400;(Ⅱ)∵样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,样本容量为70,∴样本中学生身高在170~185cm之间的频率,故可估计该校学生身高在170~180cm之间的概率p=0.5;(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190cm之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:∴从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~190cm之间的可能结果数为9,∴所求概率p2=.【点评】抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以知二求一.这是一个统计综合题,可以作为一个解答题出在文科的试卷中.20.【答案】【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分 又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分 所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分 (Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠,BDE ∆∽ABE ∆,所以ABBDAE BE =,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠,所以DBC BCD ∠=∠,CD BD =.……………………8分所以ABCDAB BD AE BE ==,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分21.【答案】【解析】解:(Ⅰ)f (x )≥1,即|x ﹣3|﹣|2x ﹣2|≥1 x时,3﹣x+2x ﹣2≥1,∴x ≥0,∴0≤x ≤1;1<x <3时,3﹣x ﹣2x+2≥1,∴x ≤,∴1<x ≤;x ≥3时,x ﹣3﹣2x+2≥1,∴x ≤﹣2∴1<x ≤,无解,…所以f (x )≥1解集为[0,].…(Ⅱ)当x ∈[1,2]时,f (x )﹣|2x ﹣5|≤0可化为|x ﹣a|≤3, ∴a ﹣3≤x ≤a+3,…∴,…∴﹣1≤a ≤4.…22.【答案】【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x -=-==,∴),31(y x E 则)1,(-=y x QM ,)1,31(+=y x PE …………2分∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即1322=+y x ∴曲线C 的方程为1322=+y x …………4分23.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.24.【答案】【解析】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.。

麦盖提县高中2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县高中2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A .B .C .D .2. 函数f (x )=﹣x 的图象关于()A .y 轴对称B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称3. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x4. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)5. 已知函数f (x )=若f (-6)+f (log 26)=9,则a 的值为( ){log 2(a -x ),x <12x ,x ≥1)A .4B .3C .2D .16. 某程序框图如图所示,该程序运行输出的k 值是()A .4B .5C .6D .77. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n8. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.9. 已知全集,集合,集合,则集合为R U ={|||1,}A x x x R =≤∈{|21,}xB x x R =≤∈U AC B ( ) A.B.C.D.]1,1[-]1,0[]1,0()0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.10.已知△ABC 中,a=1,b=,B=45°,则角A 等于()A .150°B .90°C .60°D .30°11.设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2) 12.如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .2二、填空题13.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .14.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 . 15.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.16.抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则24x y =F y Q P FPQ ∆外接圆的标准方程为_________.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC ②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .18.设,记不超过的最大整数为,令.现有下列四个命题: x R ∈x []x {}[]x x x =-①对任意的,都有恒成立;x 1[]x x x -<≤②若,则方程的实数解为;(1,3)x ∈{}22sincos []1x x +=6π-③若(),则数列的前项之和为;3n n a ⎡⎤=⎢⎥⎣⎦n N *∈{}n a 3n 23122n n -④当时,函数的零点个数为,函数的0100x ≤≤{}22()sin []sin1f x x x =+-m {}()[]13xg x x x =⋅--零点个数为,则.n 100m n +=其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

麦盖提县三中2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县三中2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2. α是第四象限角,,则sin α=( )A .B .C .D .3. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .564. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2- 5. 若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x6. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .37. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π8. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种9. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]10.已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)11.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.2312.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .4二、填空题13.若等比数列{a n }的前n 项和为S n ,且,则= .14.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .15.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .16.若函数y=ln (﹣2x )为奇函数,则a= .17.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.18.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .三、解答题19.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;20.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由. 2.0722.7063.8415.024(参考公式:,其中n=a+b+c+d )21.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.22.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.23.(本小题满分10分)求经过点()1,2P 的直线,且使()()2,3,0,5A B -到它的距离相等的直线 方程.24.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.麦盖提县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:A={x|2x≤4}={x|x ≤2}, 由x ﹣1>0得x >1∴B={x|y=lg (x ﹣1)}={x|x >1} ∴A ∩B={x|1<x ≤2} 故选D .2. 【答案】B【解析】解:∵α是第四象限角,∴sin α=,故选B .【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.3. 【答案】D 【解析】考点:1.斜率;2.两点间距离. 4. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 5. 【答案】A 【解析】试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性. 6. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1 ∴a 2=1,b 2=3, ∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2. 故选:B .【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.7. 【答案】A 【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.9.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.10.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.11.【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.12.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.二、填空题13.【答案】.【解析】解:∵等比数列{a n}的前n项和为S n,且,∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,∴(S4﹣S2)2=S2(S6﹣S4),∴(5S2﹣S2)2=S2(S6﹣5S2),解得S6=21S2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.14.【答案】.【解析】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))=,f3(x)=f(f2(x))==,…f n+1(x)=f(f n(x))=,故f2015(x)=故答案为:.15.【答案】.【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.16.【答案】4.【解析】解:函数y=ln (﹣2x )为奇函数, 可得f (﹣x )=﹣f (x ),ln (+2x )=﹣ln (﹣2x ).ln (+2x )=ln ()=ln ().可得1+ax 2﹣4x 2=1,解得a=4.故答案为:4.17.【答案】31λ-<<【解析】由2211111123(1)2222n n n S n n--=+⨯+⨯++-⋅+,211112222n S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以1242n n n S -+=-,于是由不等式12|142n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<.18.【答案】 ±(7﹣i ) .【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.又ω===,|ω|=,∴.把a=3b 代入化为b 2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i ).故答案为±(7﹣i ).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.三、解答题19.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分20.【答案】【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X ~B (3,),P (X=0)==, P (X=1)==, P (X=2)==,P (X=3)==,∴E (X )=3×=2.(Ⅱ)假设生二胎与年龄无关, K 2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.21.【答案】【解析】(1)证明:由函数f (x )的图象关于直线x=1对称, 有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.22.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)6.【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()11448244666224ADP b S a a b a b a b ∆==+-=+-=-+-+≥=, ∴当4a b ==+时, 面积最小, 最小值为6.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.23.【答案】420x y --=或1x =. 【解析】24.【答案】(1)0.3a =;(2)3.6万;(3)2.9. 【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.。

麦盖提县外国语学校2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县外国语学校2018-2019学年上学期高二数学12月月考试题含解析

麦盖提县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )AD → DB → CD →A .1 B.43C. D .2532. 已知平面向量,,若与垂直,则实数值为( )(12)=,a (32)=-,b k +a b a k A . B . C . D .15-1191119【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.3. =()A .﹣iB .iC .1+iD .1﹣i4. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( )A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β5. 圆()与双曲线的渐近线相切,则的值为( )222(2)x y r -+=0r >2213y x -=rA B . C . D .2【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.6. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±967. 已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 的一个交点,若y x 82=l l ,则( )FQ PF 2==QF A .6B .3C .D .3834第Ⅱ卷(非选择题,共100分)8. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°9. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于()A .22B .21C .20D .1310.在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=H AB A .2 B .3C.1D .411.在ABC ∆中,若60A ∠=,45B ∠=,BC =,则AC =( )A.B.C.D12.已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.二、填空题13.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 . 14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx - (m ∈R )在区间[1,e]上取得mx最小值4,则m =________.15.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .16.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .17.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .18.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .三、解答题19.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.20.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?21.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f (x )≤2的解集为[0,4],求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若∃x 0∈R ,使得f (x 0)+f (x 0+5)﹣m 2<4m ,求实数m 的取值范围.22.已知曲线(,)在处的切线与直线21()f x e x ax=+0x ≠0a ≠1x =2(1)20160e x y --+=平行.(1)讨论的单调性;()y f x =(2)若在,上恒成立,求实数的取值范围.()ln kf s t t ≥(0,)s ∈+∞(1,]t e ∈23.(本小题满分10分)选修4-1:几何证明选讲选修:几何证明选讲41-如图,为上的三个点,是的平分线,交,,A B C O A AD BAC ∠O A 于点,过作的切线交的延长线于点.D B O A AD E (Ⅰ)证明:平分;BD EBC ∠(Ⅱ)证明:.AE DC AB BE ⨯=⨯24.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:22⨯患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断心肺疾病与性别是否有关?2K 下面的临界值表供参考:)(2k K P ≥15.010.005.0025.0010.0005.0001.0k 2.0722.7063.841 5.024 6.6357.879828.10(参考公式:,其中)))()()(()(22d b c a d c b a bc ad n K ++++-=d c b a n +++=麦盖提县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ),∵A (0,1),B (3,2),=2,AD → DB →∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴即x =2,y =,{x =6-2x ,y -1=4-2y )53∴=(2,)-(2,0)=(0,),CD → 5353∴||==,故选C.CD → 02+(53)2532. 【答案】A3. 【答案】 B【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力. 4. 【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误;在B 选项中,可能有n ⊂α,故B 错误;在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. 5. 【答案】C6. 【答案】B【解析】解:∵在等比数列{a n }中,a 1=3,公比q=2,∴a 2=3×2=6,=384,∴a 2和a 8的等比中项为=±48.故选:B . 7. 【答案】A解析:抛物线C :的焦点为F (0,2),准线为:y=﹣2,y x 82l 设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .8. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题. 9. 【答案】A【解析】解:∵P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,|PF 1|等于4,∴|PF 2|=2×13﹣|PF 1|=26﹣4=22.故选:A .【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用. 10.【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -= 2OA OB OD +=D AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC何意义等.11.【答案】B 【解析】考点:正弦定理的应用.12.【答案】C【解析】画出可行域如图所示,,要使目标函数取得最大值时有唯一的最优解,则需)3,1(A mx y z -=)3,1(直线过点时截距最大,即最大,此时即可.l A z 1>l k二、填空题13.【答案】 6 .【解析】解:∵ =(2x ﹣y ,m ),=(﹣1,1).若∥,∴2x ﹣y+m=0,即y=2x+m ,作出不等式组对应的平面区域如图:平移直线y=2x+m ,由图象可知当直线y=2x+m 经过点C 时,y=2x+m 的截距最大,此时z 最大.由,解得,代入2x ﹣y+m=0得m=6.即m 的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m 的几何意义结合数形结合,即可求出m 的最大值.根据向量平行的坐标公式是解决本题的关键. 14.【答案】-3e 【解析】f ′(x )=+=,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递1x 2m x 2x m x 减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3 (-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-,令1-=4,得m =-3e ,符合题意.综上所述,m e mem =-3e.15.【答案】 (﹣∞,﹣1) .【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)16.【答案】 .【解析】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1),由,消去x得.设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4①.∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,消去y2得k2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题. 17.【答案】20【解析】考点:棱台的表面积的求解.18.【答案】 9 .【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:9三、解答题19.【答案】【解析】解:(1)f(1)=1+k=2;∴k=1,,定义域为{x∈R|x≠0};(2)为增函数;证明:设x1>x2>1,则:==;∵x1>x2>1;∴x1﹣x2>0,,;∴f (x 1)>f (x 2);∴f (x )在(1,+∞)上为增函数.20.【答案】【解析】解:(1)…=…定义域是(0,7]…(2)∵,…当且仅当即x=6时取=…∴y ≥80×12+1800=2760…答:当侧面长度x=6时,总造价最低为2760元.…21.【答案】【解析】解:(Ⅰ)∵|x ﹣a|≤2,∴a ﹣2≤x ≤a+2,∵f (x )≤2的解集为[0,4],∴,∴a=2.(Ⅱ)∵f (x )+f (x+5)=|x ﹣2|+|x+3|≥|(x ﹣2)﹣(x+3)|=5,∵∃x 0∈R ,使得,即成立,∴4m+m 2>[f (x )+f (x+5)]min ,即4m+m 2>5,解得m <﹣5,或m >1,∴实数m 的取值范围是(﹣∞,﹣5)∪(1,+∞).22.【答案】(1)在,上单调递增,在,上单调递减;(2)()f x 1(,)e -∞-1(,)e +∞1(,0)e -1(0,)e .1[,)2+∞【解析】试题解析:(1)由条件可得,∴,221'(1)1f e e a=-=-1a =由,可得,21()f x e x x =+2222211'()e x f x e x x -=-=由,可得解得或;'()0f x >2210,0,e x x ⎧->⎨≠⎩1x e >1x e <-由,可得解得或.'()0f x <2210,0,e x x ⎧-<⎨≠⎩10x e -<<10x e <<所以在,上单调递增,在,上单调递减.()f x 1(,e -∞-1(,)e +∞1(,0)e -1(0,e(2)令,当,时,,,()ln g t t t =(0,)s ∈+∞(1,]t e ∈()0f s >()ln 0g t t t =>由,可得在,时恒成立,()ln kf s t t ≥ln ()t t k f s ≥(0,)x ∈+∞(1,]t e ∈即,故只需求出的最小值和的最大值.max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦()f s ()g t 由(1)可知,在上单调递减,在上单调递增,()f s 1(0,e 1(,)e+∞故的最小值为,()f s 1(2f e e=由可得在区间上恒成立,()ln g t t t ='()ln 10g t t =+>(1,]e 所以在上的最大值为,()g t (1,]e ()ln g e e e e ==所以只需,122e k e ≥=所以实数的取值范围是.1[,)2+∞考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).23.【答案】【解析】【解析】(Ⅰ)因为是⊙的切线,所以…………2分BE O BAD EBD ∠=∠又因为………………4分CAD BAD CAD CBD ∠=∠∠=∠,所以,即平分.………………5分CBD EBD ∠=∠BD EBC ∠(Ⅱ)由⑴可知,且,BAD EBD ∠=∠BED BED ∠=∠∽,所以,……………………7分BDE ∆ABE ∆ABBD AE BE =又因为,DBC DBE BAE BCD ∠=∠=∠=∠所以,.……………………8分DBC BCD ∠=∠CD BD =所以,……………………9分ABCD AB BD AE BE ==所以.……………………10分BE AB DC AE ⋅=⋅24.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.。

麦盖提县高中2018-2019学年高二上学期第一次月考试卷数学

麦盖提县高中2018-2019学年高二上学期第一次月考试卷数学

麦盖提县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .2. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( ) A .16π B .12π C .8π D .4π 3. “x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <44. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对5. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)6. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( )A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=07. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.48. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数a 的取值范围是( )A .B .C .D .9. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=10.已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .1611.已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞ 12.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A .B .C .1D .二、填空题13.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .14.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .15.已知x 是400和1600的等差中项,则x= .16.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.17.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .18.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.三、解答题19.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.20.已知向量=(,1),=(cos,),记f (x )=.(1)求函数f (x )的最小正周期和单调递增区间;(2)将函数y=f (x)的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k在的零点个数.21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t ay -=(a 为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

麦盖提县高中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县高中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. △ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .32. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣13. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞) C .(﹣∞,﹣1) D .(﹣∞,﹣2)4. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .95. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .6. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π7. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .8. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.9. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-5410.过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=011.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+ 12.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰D .直角二、填空题13.当时,4x<log a x ,则a 的取值范围 .14.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .15.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.17.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC.20.在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2csinA=a .(1)求角C 的大小;(2)若c=2,a 2+b 2=6,求△ABC 的面积.21.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.22.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA为1km,为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由圆弧CD AO,设AOCθ∠=.AC、线段CD及线段BD组成.其中D在线段OB上,且//(1)用θ表示CD的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?23..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.24.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC在矩阵N应对的变换作用下得到矩形区域OA′B′C′,如图所示.(1)求矩阵M;(2)求矩阵N及矩阵(MN)﹣1.麦盖提县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C.【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.2.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.3.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.4.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,若a m等于0,显然S2m﹣1==(2m﹣1)a m=38不成立,故有a m=2,∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10.故选C5.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键6.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.7. 【答案】D【解析】解:不等式组表示的平面区域如图, 结合图象可知|AM|的最小值为点A 到直线2x+y ﹣2=0的距离,即|AM|min =.故选:D .【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.8. 【答案】A.【解析】在ABC ∆中2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>A B ⇔>,故是充分必要条件,故选A.9. 【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.10.【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.11.【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.12.【答案】B【解析】 因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B二、填空题13.【答案】 .【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1)14.【答案】D.【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.15.【答案】.【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.16.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:1-17.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.18.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.三、解答题19.【答案】(1)详见解析;(2)详见解析. 【解析】试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.20.【答案】【解析】(本小题满分10分)解:(1)∵,∴,…2分在锐角△ABC中,,…3分故sinA≠0,∴,.…5分(2)∵,…6分∴,即ab=2,…8分∴.…10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题.21.【答案】【解析】解:(1)∵P 为等腰直角三角形PBC 的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC 中,由余弦定理得:PA 2=AC 2+PC 2﹣2AC •PC •cos=5,整理得:PA=;(2)在△PBC 中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得: ==,∴PB=sin θ,PC=sin (﹣θ),∴△PBC 的面积S (θ)=PB •PCsin =sin (﹣θ)sin θ=sin (2θ+)﹣,θ∈(0,),则当θ=时,△PBC 面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.22.【答案】(1)cos ,0,3CD πθθθ⎛⎫=+∈ ⎪⎝⎭;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO==∠∠∠2cos 333CD πθθθ⎛⎫∴=-=+ ⎪⎝⎭,3OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,3CD πθθθ⎛⎫∴=∈ ⎪⎝⎭(2)设观光道路长度为()L θ,则()L BD CD AC θ=++弧的长= 1cos 33θθθθ-+++= cos 13θθθ-++,0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=-+' 由()0L θ'=得:sin 6πθ⎛⎫+= ⎪⎝⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴= 列表:∴当6πθ=时,()L θ取得最大值,即当6πθ=时,观光道路最长.考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。

麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学

麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学

麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化2. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题 3. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )A .B .C .D .4. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥5. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .46. 已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .87. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .8. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .24259. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( )A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的1610.设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥β C .若b ⊂α,b ∥c ,则c ∥α D .若c ∥α,c ⊥β,则α⊥β11.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=012.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥11二、填空题13.若实数x,y满足x2+y2﹣2x+4y=0,则x﹣2y的最大值为.14.已知函数f(x)=,若f(f(0))=4a,则实数a=.15.17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.16.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.17.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.18.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率是.三、解答题19.已知关x 的一元二次函数f (x )=ax 2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q 中随机取一个数a 和b 得到数对(a ,b ).(1)列举出所有的数对(a ,b )并求函数y=f (x )有零点的概率;(2)求函数y=f (x )在区间[1,+∞)上是增函数的概率.20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.21.已知等差数列{a n }满足a 2=0,a 6+a 8=10. (1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.22.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.23.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;24.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.麦盖提县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】考点:棱柱、棱锥、棱台的体积. 2. 【答案】C 【解析】]试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;()()p q ⌝∨⌝是假命题.故选C.考点:命题真假判断.3. 【答案】 C【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|,∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C .【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用. 4. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2b aab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .5. 【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y 2=2px 的焦点为(2,0), ∴=2, ∴p=4. 故选D .【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.6. 【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0∴f (f (﹣2))=f (0) ∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .7. 【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x 值为∴=,其中k ∈Z取k=1,得φ=因此,f (x )的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.8. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 9. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 10.【答案】D【解析】解:对于A ,设正方体的上底面为α,下底面为β,直线c 是平面β内一条直线 因为α∥β,c ⊂β,可得c ∥α,而正方体上底面为α内的任意直线b 不一定与直线c 平行 故b ⊂α,c ∥α,不能推出b ∥c .得A 项不正确;对于B ,因为α⊥β,设α∩β=b ,若直线c ∥b ,则满足c ∥α,α⊥β, 但此时直线c ⊂β或c ∥β,推不出c ⊥β,故B 项不正确; 对于C ,当b ⊂α,c ⊄α且b ∥c 时,可推出c ∥α.但是条件中缺少“c⊄α”这一条,故C项不正确;对于D,因为c∥α,设经过c的平面γ交平面α于b,则有c∥b结合c⊥β得b⊥β,由b⊂α可得α⊥β,故D项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.11.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.12.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.二、填空题13.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.14.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.15.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.16.【答案】(3,1).【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得即(2x+y﹣7)m+(x+y﹣4)=0,∴2x+y﹣7=0,①且x+y﹣4=0,②∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)17.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.18.【答案】.【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.三、解答题19.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.20.【答案】(1)证明见解析;(2)1 8 .【解析】试题解析:(1)证明:取PD中点R,连结MR,RC,∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以4ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 21.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,∵a 2=0,a 6+a 8=10.∴,解得,∴a n ﹣1+(n ﹣1)=n ﹣2.(2)=.∴数列{}的前n 项和S n =﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n =.22.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.23.【答案】(1)证明见解析;(2.【解析】试题解析:(2)在三角形AMC 中,由22,3,cos 3AM AC MAC ==∠=,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD平面PAD AD =,∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。

麦盖提县第一中学校2018-2019学年高二上学期第二次月考试卷数学

麦盖提县第一中学校2018-2019学年高二上学期第二次月考试卷数学

麦盖提县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y+7=0相交于A,B两点,且•=4,则实数a 的值为()3或5则几何体的体积为()4意在考查学生空间想象能力和计算能()C的一个顶点为圆心,为半径的圆)DC.5f()的值为()A .B .0C .D .6. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .57. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .48. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥19. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.10.△ABC 的外接圆圆心为O ,半径为2, ++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .311.已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限12.若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=( )A .B .C .D .0二、填空题13.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .14.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 15.函数y=lgx 的定义域为 .16.设x ,y 满足的约束条件,则z=x+2y 的最大值为 .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e e xxf x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.18.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.三、解答题19.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .20.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(Ⅰ)求出f (5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f (n+1)与f (n )的关系式,并根据你得到的关系式求f (n )的表达式.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.22.已知函数f(x)=sinx﹣2sin2(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.麦盖提县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C.2.【答案】D【解析】3.【答案】A【解析】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.【答案】B考点:双曲线的性质.5.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.6.【答案】B【解析】考点:三角恒等变换.7.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.8.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.9.【答案】B10.【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C.【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.11.【答案】A【解析】解:==1+i,其对应的点为(1,1),故选:A.12.【答案】B【解析】解法一:∵,∴(C为常数),取x=1得,再取x=0得,即得,∴,故选B.解法二:∵,∴,∴,故选B.【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用.二、填空题13.【答案】(2,2).【解析】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.14.【答案】②④【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.15.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法.16.【答案】 7 .【解析】解:作出不等式对应的平面区域,由z=x+2y ,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B 时,直线y=﹣的截距最大,此时z 最大.由,得,即B (3,2),此时z 的最大值为z=1+2×3=1+6=7, 故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.17.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0xxf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 18.【答案】15(,)43-三、解答题19.【答案】(1)102n a n =-;(2)229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.【解析】试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .当5n ≤时,12||||||n n S a a a =++2129n a a a n n =+++=-∴229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1考点:等差数列的通项公式;数列的求和.20.【答案】【解析】解:(Ⅰ)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (2)﹣f (1)=4=4×1. f (3)﹣f (2)=8=4×2, f (4)﹣f (3)=12=4×3, f (5)﹣f (4)=16=4×4 ∴f (5)=25+4×4=41.…(Ⅱ)由上式规律得出f (n+1)﹣f (n )=4n .… ∴f (2)﹣f (1)=4×1, f (3)﹣f (2)=4×2,f (4)﹣f (3)=4×3, …f (n ﹣1)﹣f (n ﹣2)=4•(n ﹣2), f (n )﹣f (n ﹣1)=4•(n ﹣1)…∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…21.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.22.【答案】【解析】解:(1)∵f(x)=sinx﹣2sin2=sinx﹣2×=sinx+cosx﹣=2sin(x+)﹣∴f(x)的最小正周期T==2π;(2)∵x∈[0,],∴x+∈[,π],∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],∴可解得f(x)在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.23.【答案】【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin(2x﹣),∴函数的周期为T==π,由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.24.【答案】【解析】【分析】(Ⅰ)连接FO,则OF为△BDE的中位线,从而DE∥OF,由此能证明DE∥平面ACF.(Ⅱ)推导出BD⊥AC,EC⊥BD,从而BD⊥平面ACE,由此能证明BD⊥AE.【解答】证明:(Ⅰ)连接FO,∵底面ABCD是正方形,且O为对角线AC和BD交点,∴O为BD的中点,又∵F为BE中点,∴OF为△BDE的中位线,即DE∥OF,又OF⊂平面ACF,DE⊄平面ACF,∴DE∥平面ACF.(Ⅱ)∵底面ABCD为正方形,∴BD⊥AC,∵EC⊥平面ABCD,∴EC⊥BD,∴BD⊥平面ACE,∴BD⊥AE.。

麦盖提县三中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县三中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .212. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x3. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-4. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i5. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形6. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种7. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为( )A .30°B .45°C .60°D .90°8. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关9. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A .(11,12)B .(12,13)C .(13,14)D .(13,12)10.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.11.已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 12.集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==二、填空题13.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ . 14.运行如图所示的程序框图后,输出的结果是15.在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应16,3),则l17.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.18.在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为.三、解答题19.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.20.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.21.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).22.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.23.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.24.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=,曲线C的参数方程为.(1)写出直线l与曲线C的直角坐标方程;(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA|•|MB|=,求点M轨迹的直角坐标方程.麦盖提县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B.2.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.3.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选4.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.5.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.6.【答案】 C【解析】排列、组合及简单计数问题.【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C.【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.7.【答案】C【解析】解:因为几何体是棱柱,BC ∥B 1C 1,则直线A 1C 与BC 所成的角为就是异面直线A 1C 与B 1C 1所成的角.直三棱柱ABC ﹣A1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,BA 1=,CA 1=,三角形BCA 1是正三角形,异面直线所成角为60°.故选:C .8. 【答案】C【解析】解:根据茎叶图中的数据,得; 甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b .故选:C .9. 【答案】 A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2, 当n=2时,满足进行循环的条件,故x=9,y=10,n=3, 当n=3时,满足进行循环的条件,故x=11,y=12,n=4, 当n=4时,不满足进行循环的条件, 故输出的数对为(11,12), 故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 11.【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆的面积为1||2AB d '⋅=,选C . 12.【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.1二、填空题13.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义 14.【答案】 0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin +sin+…+sin的值,由于sin 周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.15.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键.16.【答案】【解析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:。

麦盖提县一中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县一中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>2. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1B .y=lnxC .y=x 3D .y=|x|3. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 4. 已知实数x ,y满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .75. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.46. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.DABCO7. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .8. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:19. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]10.执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .3611.复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i12.已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523 D .201522二、填空题13.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________① ② ③ ④ ⑤14.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .15.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.16.设p :实数x 满足不等式x 2﹣4ax+3a 2<0(a <0),q :实数x 满足不等式x 2﹣x ﹣6≤0,已知¬p 是¬q 的必要非充分条件,则实数a 的取值范围是 .17.已知函数f (x )=sinx ﹣cosx ,则= .18.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .三、解答题19.平面直角坐标系xOy 中,圆C 1的参数方程为(φ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4sin θ. (1)写出圆C 1的普通方程及圆C 2的直角坐标方程;(2)圆C 1与圆C 2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.20.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.21.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=﹣.(1)求椭圆E的方程;(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.22.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))23.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.24.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.麦盖提县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 C【解析】22212'()x f x x x x-=-+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-2217()24x x-+=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e e e =+->,2222()20g e e e=+-<,所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x xh x x x x==+,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()f x k x<,()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草图可看出(0,2)的时候递减的更快,所以124x x +>2. 【答案】D【解析】解:选项A :y=在(0,+∞)上单调递减,不正确;选项B :定义域为(0,+∞),不关于原点对称,故y=lnx 为非奇非偶函数,不正确;选项C :记f (x )=x 3,∵f (﹣x )=(﹣x )3=﹣x 3,∴f (﹣x )=﹣f (x ),故f (x )是奇函数,又∵y=x 3区间(0,+∞)上单调递增,符合条件,正确;选项D :记f (x )=|x|,∵f (﹣x )=|﹣x|=|x|,∴f (x )≠﹣f (x ),故y=|x|不是奇函数,不正确. 故选D3. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性. 4. 【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A (3,5),当直线z=x ﹣y 平移到点A 时,直线z=x ﹣y 在y 轴上的截距最大,即z 取最小值, 即当x=3,y=5时,z=x ﹣y 取最小值为﹣2. 故选A .5. 【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.6. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 7. 【答案】D【解析】解:∵|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a=6,|AF 2|+|BF 2|的最大值为8,∴|AB|的最小值为4,当AB ⊥x 轴时,|AB|取得最小值为4,∴=4,解得b 2=6,b=.故选:D .【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.8. 【答案】D【解析】解:设球的半径为R ,圆锥底面的半径为r ,则πr 2=×4πR 2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为: =1:3.故选:D .9. 【答案】B【解析】解:由M 中y=2x,x ≤1,得到0<y ≤2,即M=(0,2],由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0, 解得:﹣1<x ≤1,即N=(﹣1,1], 则M ∩N=(0,1],故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.10.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是, 则输出的36。

麦盖提县二中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县二中2018-2019学年高二上学期第二次月考试卷数学

麦盖提县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)2. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )A .B .C .D .3. 已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π 4. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(5. 若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或6. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 117. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 8. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥09. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A.AC⊥BEB.EF∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值10.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为()A.3 B.4 C.5 D.611.已知点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,双曲线C的焦距为12,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x12.已知点P(1,﹣),则它的极坐标是()A.B.C.D.二、填空题13.函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.15.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种.16.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.17.在直角坐标系xOy中,已知点A(0,1)和点B(﹣3,4),若点C在∠AOB的平分线上且||=2,则=.18.已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(﹣1)=.三、解答题19.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.20.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD=122b2+2c2-a2;(2)若A=120°,AD=192,sin Bsin C=35,求△ABC的面积.21.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.22.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.23.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.24.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD . (1)求证:A ′C ∥平面BDE ;(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.麦盖提县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f (﹣1)f (0)<0,可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.2. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

麦盖提县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.2. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅3. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <34. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 5. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA BA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.6. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°7. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( )A .S 10B .S 9C .S 8D .S 78. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2 C .3 D .49. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 10.由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .36011.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC .16πD .48π12.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( ) A .1B.C .2D .4二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.14.设函数()()()31321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____.16()23k x =-+有两个不等实根,则的取值范围是 .17.在(x 2﹣)9的二项展开式中,常数项的值为 . 18.(文科)与直线10x -=垂直的直线的倾斜角为___________.三、解答题19.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD , 平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点. (Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.20.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.22.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.23.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.24.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n 人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. (1)求n 的值;(2)把在前排就坐的高二代表队6人分别记为a ,b ,c ,d ,e ,f ,现随机从中抽取2人上台抽奖.求a 和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.麦盖提县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .2. 【答案】B【解析】解:∵A={1,2,3,4},B={3,4,5,6},∴A ∩B={3,4},∵全集I={1,2,3,4,5,6}, ∴∁I (A ∩B )={1,2,5,6}, 故选B . 【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.3. 【答案】A【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是, x <1是x >2的既不充分也不必要条件, x >3是x >2的充分条件,x <3是x >2的既不充分也不必要条件, 故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.4. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±ba x ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.5. 【答案】D.第Ⅱ卷(共110分)6. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.7. 【答案】C【解析】解:∵S 16<0,S 17>0, ∴=8(a 8+a 9)<0,=17a 9>0,∴a 8<0,a 9>0, ∴公差d >0. ∴S n 中最小的是S 8. 故选:C .【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.8. 【答案】C【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a ,所以a=3, 故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.9. 【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A B =ð{}|21x x -≤<,故选B.10.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C 62C 42C 22=90个不同的六位数,故选:B .【点评】本题考查了分步计数原理,关键是转化,属于中档题.11.【答案】B 【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.12.【答案】B【解析】解:设圆柱的高为h ,则V 圆柱=π×12×h=h ,V 球==,∴h=.故选:B .二、填空题13.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,) 【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,). 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 14.【答案】11[3)32⎡⎤+∞⎢⎥⎣⎦,,【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对()3x g x a =-于轴的交点个数进行分情况讨论,特别注意:1.在1x <时也轴有一个交点式,还需31a ≥且21a <;2. 当()130g a =-≤时,()g x 与轴无交点,但()h x 中3x a =和2x a =,两交点横坐标均满足1x ≥.15.【答案】22,3⎛⎫- ⎪⎝⎭【解析】16.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键. 17.【答案】 84 .【解析】解:(x 2﹣)9的二项展开式的通项公式为 T r+1=•(﹣1)r •x 18﹣3r ,令18﹣3r=0,求得r=6,可得常数项的值为T 7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.18.【答案】3π 【解析】,故倾斜角为3π. 考点:直线方程与倾斜角.三、解答题19.【答案】【解析】(本小题满分12分)(Ⅰ)证明:因为AE=AF ,点G 是EF 的中点, 所以AG ⊥EF .又因为EF ∥AD ,所以AG ⊥AD .…因为平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD=AD , AG ⊂平面ADEF , 所以AG ⊥平面ABCD .…(Ⅱ)解:因为AG ⊥平面ABCD ,AB ⊥AD ,所以AG 、AD 、AB 两两垂直. 以A 为原点,以AB ,AD ,AG 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系 则A (0,0,0),B (4,0,0),C (4,4,0), 设AG=t (t >0),则E (0,1,t ),F (0,﹣1,t ), 所以=(﹣4,﹣1,t ),=(4,4,0),=(0,1,t ).…设平面ACE 的法向量为=(x ,y ,z ),由=0,=0,得,令z=1,得=(t ,﹣t ,1).因为BF 与平面ACE 所成角的正弦值为,所以|cos <>|==,…即=,解得t 2=1或.所以AG=1或AG=.…【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-.试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->,设2()31g x x x m =-+-,则只要min ()0g x >,而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.21.【答案】(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.【解析】试题分析:(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1,14b c ==; (3)函数()g x的导函数()()2132444g x x a x a⎛⎫=+--+⎪⎝⎭',结合导函数的性质可得当1a<-或0a>时,()g x在()0,4有两个零点;当10a-≤≤时,()g x在()0,4有一个零点.试题解析:(1)由题意()()01{440f cf b c=+=-+=,解得1{41bc==;(2)由(1)可知()()324f x x a x=+--1414a x⎛⎫++⎪⎝⎭,∴()()2132444f x x a x a⎛⎫=+--+⎪⎝⎭';假设存在x满足题意,则()()2000132444f x x a x a⎛⎫=+--+⎪⎝⎭'是一个与a无关的定值,即()2000124384x a x x-+--是一个与a无关的定值,则240x-=,即2x=,平行直线的斜率为()1724k f==-';(3)()()()324g x f x a x a x=+=+-1414a x a⎛⎫-+++⎪⎝⎭,∴()()2132444g x x a x a⎛⎫=+--+⎪⎝⎭',其中()21441244a a⎛⎫∆=-++=⎪⎝⎭()224166742510a a a++=++>,设()0g x'=两根为1x和()212x x x<,考察()g x在R上的单调性,如下表1°当0a>时,()010g a=+>,()40g a=>,而()152302g a=--<,∴()g x在()0,2和()2,4上各有一个零点,即()g x在()0,4有两个零点;2°当0a=时,()010g=>,()40g a==,而()15202g=-<,∴()g x仅在()0,2上有一个零点,即()g x在()0,4有一个零点;3°当0a <时,()40g a =<,且13024g a ⎛⎫=-> ⎪⎝⎭, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫⎪⎝⎭上各有一个零点,即()g x 在()0,4有两个零点;②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫⎪⎝⎭上有一个零点, 即()g x 在()0,4有一个零点;综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. 22.【答案】【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+ 由题意得2042a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分(Ⅱ)03a ≤≤,∴112a -≤-≤,∴12a -≤,()()2f ax af x ax a a x a ax a ax a -=---=---()()2212ax a ax a a a a a a ≤---=-=-≤()()()2222f x a f x a x a x x a x a a -++=-+≥--==,∴()()()()f x a f x a f ax af x -++≥-.…… 10分23.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x 轴上的截距,最后根据a 的正负以及基本不等式求截距的取值范围. 试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.24.【答案】【解析】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.。

相关文档
最新文档