2019_2019学年高中数学第二章解析几何初步2.1.2直线的.ppt

合集下载

高中数学第2章平面解析几何2.2直线及其方程2.2.3两条直线的位置关系第2课时两条直线的垂直课件新

高中数学第2章平面解析几何2.2直线及其方程2.2.3两条直线的位置关系第2课时两条直线的垂直课件新

(2)A,B 两点在直线 l 的同侧,P 是直线 l 上的一点, 则||PB|-|PA||≤|AB|, 当且仅当 A,B,P 三点共线时, ||PB|-|PA||取得最大值,为|AB|, 点 P 即是直线 AB 与直线 l 的交点, 又直线 AB 的方程为 y=x-2, 解yx= -x2-y+28,=0, 得xy= =1120, , 故所求的点 P 的坐标为(12,10).
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).

题型四 平行与垂直的综合应用
例 4 已知 A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接 A,B,
C,D 四点,试判定图形 ABCD 的形状.
[解] 由题意知 A,B,C,D 四点在坐标平面内的位置,如图所示,由
斜率公式可得
kAB=2-5--34=13,
kCD=-0- 3-36=13,
mn--02=-2, 则
m+2 n+0 2 -2· 2 +8=0,
解得mn==8-,2,
故 A′(-2,8).

因为 P 为直线 l 上的一点, 则|PA|+|PB|=|PA′|+|PB|≥|A′B|, 当且仅当 B,P,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,点 P 即是直线 A′B 与直线 l 的交点, 解xx= -- 2y+2,8=0, 得xy= =- 3,2, 故所求的点 P 的坐标为(-2,3).

2018-2019学年高中数学 第2章 平面解析几何初步 2.1 直线与方程 2.1.3 两条直

2018-2019学年高中数学 第2章 平面解析几何初步 2.1 直线与方程 2.1.3 两条直

2.1.3 两条直线的平行与垂直[学业水平训练]1.直线l 1,l 2的斜率k 1,k 2是关于k 的方程2k 2-3k -b =0的两根,若l 1⊥l 2,则b =________;若l 1∥l 2,则b =________.解析:l 1⊥l 2时,k 1k 2=-1,由一元二次方程根与系数的关系得k 1k 2=-b 2,∴-b 2=-1,得b =2.l 1∥l 2时,k 1=k 2,即关于k 的二次方程2k 2-3k -b =0有两个相等的实根,∴Δ=(-3)2-4×2·(-b )=0,即b =-98. 答案:2 -982.设a ∈R ,如果直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行,那么a =________.解析:当a =0时,l 1:y =12,l 2:x +y +4=0,这两条直线不平行;当a =-1时,l 1:x -2y +1=0,l 2:x +4=0,这两条直线不平行;当a ≠0且a ≠-1时,l 1:y =-a 2x +12,l 2:y =-1a +1x -4a +1,由l 1∥l 2得-a 2=-1a +1且12≠-4a +1,解得a =-2或a =1. 答案:-2或13.如图,已知△ABC 的三个顶点坐标分别为A (-1,1),B (1,5),C (-3,2),则△ABC 的形状为________.解析:因为k AB =1-5-1-1=-4-2=2,k AC =1-2-1--=-12,所以k AB ·k AC =-1,且A 、B 、C 、D 4点不共点,所以AB ⊥AC ,即∠BAC =90°.所以△ABC 是直角三角形.答案:直角三角形4.已知A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD ,其中正确的序号为________.解析:k AB =-4-26--=-35,k CD =12-62-12=-35,且A 、B 、C 、D 4点不共线,所以AB ∥CD ,k AC =6-212--=14,k BD =12--2-6=-4, k BD ·k AC =-1,所以AC ⊥BD .答案:①④5.已知P (-2,m ),Q (m,4),M (m +2,3),N (1,1),若直线PQ ∥直线MN ,则m =________. 解析:当m =-2时,直线PQ 的斜率不存在,而直线MN 的斜率存在,MN 与PQ 不平行,不合题意;当m =-1时,直线MN 的斜率不存在,而直线PQ 的斜率存在,MN 与PQ 不平行,不合题意;当m ≠-2且m ≠-1时,k PQ =4-m m --=4-m m +2, k MN =3-1m +2-1=2m +1,因为直线PQ ∥直线MN , 所以k PQ =k MN ,即4-m m +2=2m +1,解得m =0或m =1.经检验m =0或m =1时直线MN ,PQ 都不重合.综上,m 的值为0或1.答案:0或16.已知两条直线ax +4y -2=0与直线2x -5y +c =0互相垂直,垂足为(1,b ),则a +c -b =________.解析:∵k 1k 2=-1,∴a =10.∵垂足(1,b )在直线10x +4y -2=0上,∴b =-2.将(1,-2)代入2x -5y +c =0得c =-12,故a +c -b =0.答案:07.(1)求与直线y =-2x +10平行,且在x 轴、y 轴上的截距之和为12的直线的方程;(2)求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程.解:(1)设所求直线的方程为y =-2x +λ,则它在y 轴上的截距为λ,在x 轴上的截距为12λ,则有λ+12λ=12, ∴λ=8.故所求直线的方程为y =-2x +8,即2x +y -8=0.(2)法一:由直线方程2x +3y +5=0得直线的斜率是-23, ∵所求直线与已知直线平行,∴所求直线的斜率也是-23. 根据点斜式,得所求直线的方程是y +4=-23(x -1), 即2x +3y +10=0.法二:设所求直线的方程为2x +3y +b =0,∵直线过点A (1,-4),∴2×1+3×(-4)+b =0,解得b =10.故所求直线的方程是2x +3y +10=0.8.已知在▱ABCD 中,A (1,2),B (5,0),C (3,4).(1)求点D 的坐标;(2)试判断▱ABCD 是否为菱形?解:(1)设D (a ,b ),由▱ABCD ,得k AB =k CD ,k AD =k BC ,即⎩⎪⎨⎪⎧ 0-25-1=b -4a -3,b -2a -1=4-03-5,解得⎩⎪⎨⎪⎧ a =-1,b =6,∴D (-1,6).(2)∵k AC =4-23-1=1,k BD =6-0-1-5=-1, ∴k AC ·k BD =-1,∴AC ⊥BD .∴▱ABCD 为菱形.[高考水平训练]1.已知A (1,-1),B (2,2),C (3,0)三点,若存在点D ,使CD ⊥AB ,且BC ∥AD ,则点D 的坐标为________.解析:设点D 的坐标为(x ,y ).因为k AB =2--2-1=3,k CD =y x -3, 且CD ⊥AB ,所以k AB ·k CD =-1,即3×yx -3=-1. ①因为k BC =2-02-3=-2,k AD =y +1x -1, 且BC ∥AD ,所以k BC =k AD ,即-2=y +1x -1, ② 由①②得x =0,y =1,所以点D 的坐标为(0,1).答案:(0,1)2.△ABC 的顶点A (5,-1),B (1,1),C (2,m ),若△ABC 为直角三角形,则m 的值为________.解析:若∠A 为直角,则AC ⊥AB ,所以k AC ·k AB =-1,即m +12-5·1+11-5=-1,得m =-7; 若∠B 为直角,则AB ⊥BC ,所以k AB ·k BC =-1,即1+11-5·m -12-1=-1,得m =3; 若∠C 为直角,则AC ⊥BC ,所以k AC ·k BC =-1,即m +12-5·m -12-1=-1,得m =±2. 综上可知,m =-7或m =3或m =±2.答案:-7或±2或33.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值. 解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4--m -=2-m +, k CD =3m +2-m 3--m =m +m +3. 因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1.综上,m 的值为1或-1.4.在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t,2+t ),R (-2t,2),其中t >0.试判断四边形OPQR 的形状.解:如图所示,由已知两个点的坐标得:k OP =t -01-0=t , k RQ =+t -2-2t --2t=t , k OR =2-0-2t -0=-1t. k PQ =t -+t 1--2t =-1t, 所以k OP =k RQ ,k OR =k PQ ,所以OP ∥RQ ,OR ∥PQ ,所以四边形OPQR 是平行四边形;又k OP ·k OR =t ·(-1t)=-1, 所以OP ⊥OR ,∠POR 是直角, 所以四边形OPQR 是矩形;过点P 作PA ⊥x 轴,垂足为A , RB ⊥x 轴,垂足为B ,那么由勾股定理得: OP 2=OA 2+AP 2=1+t 2.∴OP =1+t 2,OR 2=OB 2+BR 2=(-2t )2+22=4(1+t 2),∴OR =21+t 2.∴OP ≠OR ,所以四边形OPQR 不是正方形, 综上可知,四边形OPQR 是矩形.。

【数学】2.1.1 直线倾斜角和斜率 课件(北师大必修2)(2)

【数学】2.1.1 直线倾斜角和斜率 课件(北师大必修2)(2)

思考?日常生活中,还有没有表示倾斜程度的量?
如图3.1-3,日常生活中,我们经常用“升高量与前进量 的比”表示倾斜面的“坡度”(倾斜程度),即
D
C 升
设直线的倾斜程度为K
AB k AC AC BD k AD AD
tan
tan
A

前进量
高 量
B
1、直线斜率的定义:
我们把一条直线的倾斜角 用小写字母 k 表示,即:
直线BC的斜率 kBC 直线CA的斜率 kCA
0 (8) 8 2
C
∵ k AB 0 ∴直线AB的倾斜角为零度角。 ∵ kBC 0 ∴直线BC的倾斜角为钝角。 ∵ kCA 0 ∴直线CA的倾斜角为锐角
2 (2) 4 1 40 4
三、小结:
1、直线的倾斜角定义及其范围: 180 0 2、直线的斜率定义: k tan a (a 90 ) 3、斜率k与倾斜角 之间的关系:
y2 y1 y1 y2 4、斜率公式:k (或k ) x2 x1 x1 x2
a 0 k tan0 0 0 a 90 k tan a 0 a 90 tan a(不存在) k不存在 90 a 180 k tana 0

tan60 3 当α是锐角时, tan( a 135 k tan135 180 135 ) tan( 180 ) tan

tan45 1


180 150 ) a 150 k tan150 tan(
A
y
a
C D
x x o
x
o

2019版高中数学第二章平面直角坐标系中的基本公式2.1.1数轴上的基本公式课件

2019版高中数学第二章平面直角坐标系中的基本公式2.1.1数轴上的基本公式课件
思路点拨:依据数轴上两点间的距离公式首先判定不等式或方程表示的点集,然后 在数轴上表示出来. 解:如图 (1)d(x,2)<1表示到点A(2)的距离小于1的点的集合.所以d(x,2)<1表示线段BC(不 包括端点); (2)|x-2|>1表示到点A(2)的距离大于1的点的集合,所以|x-2|>1表示射线BO和射 线CD(不包括端点); (3)|x-2|=1表示到点A(2)的距离等于1的点的集合,所以|x-2|=1表示点B(1)和点 C(3).
(C)AB=AO+OB
(D)AB+AO+BO=0
解析:A正确,因为AB=AO+OB=OB-OA; B正确,因为AO+OB+BA=AB+BA=0; C正确,因为AO+OB=AB; D不正确,因为AB+AO+BO不一定为0,故选D.
4.数轴上A、B两点间的距离是5,点A的坐标是1,则点B的坐标是
.
解析:设B点的坐标为x, 则|x-1|=5,所以x=6或-4. 答案:6或-4
类型二 数轴上的基本公式的应用 【例2】 已知数轴上A,B两点的坐标分别为x1=a+b,x2=a-b.求AB,BA,d(A, B),d(B,A).
解:AB=x2-x1=(a-b)-(a+b)=-2b; BA=x1-x2=(a+b)-(a-b)=2b或BA=-AB=2b; d(A,B)=|x2-x1|=2|b|;d(B,A)=|x1-x2|=2|b|.
方法技巧 (1)记住公式,理解符号的含义是解题的关键;(2)明确向量的 长度及数量的区别与联系;(3)注意区别:|AB|=d(A,B)=|xB-xA|,AB=xB-xA.
变式训练2-1:已知A,B,C是数轴上任意三点: (1)若AB=5,CB=3,求AC; (2)若A(-2),BC=1,AB=2,求C点的坐标;

_新教材高中数学第二章平面解析几何2

_新教材高中数学第二章平面解析几何2

1.设l是平面直角坐标系中的一条直线,且倾斜角为45°,你能写出该直线的方 向向量吗? 提示:(1,1).
2.如果a =(-1,2)是直线l的一个方向向量,你能写出l的一个法向量吗? 提示:(2,1).
已知直线l经过点A(-1,3)与B(2,0),则直线l的一个方向向量为________,斜 率k=________,倾斜角θ=________. 解析:―A→B =(3,-3)=3(1,-1),
知识点一 直线的倾斜角与斜率 1.直线的倾斜角 (1)定义:给定平面直角坐标系中的一条直线,如果这条直线与x轴 相交 ,
将x轴绕着它们的交点按 逆时针 方向旋转到与直线重合时所转的 最小正角 记为 θ,则称θ为这条直线的倾斜角;
(2)范围:直线的倾斜角θ的取值范围是0°~180°,并规定与x轴平行或重合 的直线的倾斜角为0°.
2.2 直线及其方程
2.2.1 直线的倾斜角与斜率
新课程标准解读
核心素养
1.在平面直角坐标系中,结合具体图形,探索确定直线位置 数学抽象
的几何要素
2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直 直观想象
线斜率的过程,掌握过两点的直线斜率的计算公式
3.理解直线的方向向量及法向量,并能利用直线的方向向量 数学运算
求直线的方向向量或法向量
[例4] 已知直线l经过点A(1,2),B(4,5),求直线l的一个方向向量和法向
量,并确定直线l的斜率与倾斜角.
[解]
―→ AB
=(4-1,5-2)=(3,3)是直线l的一个方向向量.由法向量与方
向向量垂直,法向量可以为(-1,1).因此直线的斜率k=1,直线的倾斜角θ满
1.利用斜率公式求直线的斜率应注意的事项

高中数学 第二章 解析几何初步2.1.2.1 直线方程的点斜式

高中数学 第二章 解析几何初步2.1.2.1 直线方程的点斜式

一般式推导
01 已知直线上一点$P_1(x_1, y_1)$和斜率k,则直线 的点斜式为$y - y_1 = k(x - x_1)$。
02 将点斜式展开,得到$y = kx - kx_1 + y_1$。
02 整理后可得一般式:$kx - y + (y_1 - kx_1) = 0$ ,其中A=k,B=-1,C=$y_1 - kx_1$。
已知直线上一点和斜率,可以直接套用点斜式求 出直线方程。
02 判断两直线是否平行
若两直线斜率相等且不重合,则两直线平行。利 用点斜式可以方便地求出两直线的斜率并进行比 较。
03 解决与直线相关的问题
如求点到直线的距离、判断点是否在直线上等, 都可以通过点斜式进行求解。
03
两点式直线方程
两点式定义
直线方程形式
点斜式
已知直线上一点 $(x_1, y_1)$ 和斜率 $m$,则直线方程可 表示为 $y - y_1 = m(x - x_1)$。
斜截式
已知直线斜率 $m$ 和在 $y$ 轴上的截距 $b$,则直线方程可 表示为 $y = mx + b$。
两点式
已知直线上两点 $(x_1, y_1)$ 和 $(x_2, y_2)$,则直线 方程可表示为 $frac{y - y_1}{y_2 - y_1} = frac{x - x_1}{x_2 x_1}$。
直线方程在几何中的应用
平行与垂直判断
平行直线
两条直线的斜率相等且不重合, 则这两条直线平行。
垂直直线
两条直线的斜率互为相反数的倒 数,则这两条直线垂直。
距离计算
点到直线距离
利用点到直线距离公式,可以求出点 到直线的垂直距离。

高中数学第二章平面解析几何2.2直线及其方程2.2.2直线的方程第2课时直线的两点式方程与一般式方程

高中数学第二章平面解析几何2.2直线及其方程2.2.2直线的方程第2课时直线的两点式方程与一般式方程
-2
提示由
7-2
=
-3
,整理得
4-3
5x-y-13=0.
.
)
3.两点式表示直线方程的条件是什么?两点式怎样变形就能适用于所有过
两点的直线了?
提示两点式除了不适用于斜率为0与斜率不存在的直线,其他情况均可表
-1
-1
示;只需将 - = - 变形为(x-x1)(y2-y1)=(y-y1)(x2-x1)的形式,就能适用
x
并化简为
a
+
y
=1 的形式,这一方程形式通常称为直线的截距式方程,其中 a 是
b
直线在 x 轴上的截距,b 是直线在 y 轴上的截距.
(2)若直线 l
x
的方程为a
+
y
=1,则
b
①直线与坐标轴围成的三角形的周长为|a|+|b|+ a2 + b 2 ;
②直线与坐标轴围成的三角形的面积为
1
S=2|ab|;
-5-0
所以得5x-3y-25=0.
=
-5
,
2-5
)
2.过点A(1,2)的直线在两坐标轴上的截距之和为0,则该直线方程为(
A.x-y+1=0
B.x+y-3=0
x-y=0或x+y-3=0
x-y=0或x-y+1=0
)
答案 D
解析 当直线过原点时,可得斜率为
2-0
k= =2,
1-0
所以直线方程为 y=2x,即 2x-y=0;
用两点式方程求直线方程.
2.由于减法的顺序性,一般用两点式方程求直线方程时常会将字母或数字
的顺序错位而导致错误,在记忆和使用两点式方程时,必须注意坐标的对应

【数学】2.1.2 直线的方程 课件(北师大必修2)

【数学】2.1.2 直线的方程 课件(北师大必修2)

思考4:若直线l在两坐标轴上的截距 相等,且都等m,则直线l的方程 如何? x+y=m
知识探究(四):直线方程的一般式
思考1:直线的点斜式、斜截式、两 点式、截距式方程都是关于x,y的 方程,这些方程所属的类型是什么? 思考2:二元一次方程的一般形式是 什么?
Ax+By+C=0
思考3:平面直角坐标系中的任意一 条直线方程都可以写成Ax+By+C=0的 形式吗? 思考4:关于x,y的二元一次方程 Ax+By+C=0(A,B不同时为0), 当B=0时,方程表示的图形是什么? 当B≠0时,方程表示的图形是什么?
第二章 解析几何初步
2.1.2 直线的方程
问题提出
1 5730 p 2
t
1.若两条不同直线的斜率都存在, 如何判定这两条直线互相平行、垂 直?
l1 // l2 k1 k2
l1 l2 k1 k2 1
2.在直角坐标系中,直线上的点 的坐标具有一定的内在联系,如何 通过代数关系反映这种内在联系, 有待我们进行分析和探究.
A1A2+B1B2=0
思考3:当A,B,C分别为何值时,直 线Ax+By+C=0平行于x轴?平行于y轴? 与x轴重合?与y轴重合?过原点?
思考4:过点P(x0,y0),且与直线l: Ax+By+C=0平行的直线方程如何?
思考5:设直线l1、 l2的方程分别为 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0, 在什么条件下有l1⊥l2?
知识探究(三):直线的截距式方程
思考1:若直线l经过点A(a,0),B(0, b),其中a≠0,b≠0,则直线l的方 程如何? 思考2:直线l的方程可化为 其中a,b的几何意义如何?

高中数学第二章平面解析几何初步22直线的方程223两条直线的位置关系课件新人教B版必修2

高中数学第二章平面解析几何初步22直线的方程223两条直线的位置关系课件新人教B版必修2

∴n=-1,
∴所求直线方程为 x+2y-1=0.
2021/4/17
高中数学第二章平面解析几何初步22直线的方
25
程223两条直线的位置关系课件新人教B版必修
【知识点拨】 (1)与定直线 Ax+By+C=0(A2+B2≠0)垂直 的直线方程为 Bx-Ay+m=0;
(2)与定直线 Ax+By+C=0(A2+B2≠0)平行的直线方程为 Ax+By+n=0(n≠C).
已知两直线 l1:x+my+3=0,l2:(m-
1)x+2my+2m=0,若 l1∥l2,则 m 为( )
A.0
B.-1 或12
C.3
D.0 或 3
解析:由 1·2m-m(m-1)=0,得 m=0 或 m=3.
当 m=3 时,l1:x+3y+3=0,l2:2x+6y+6=0,
l1 与 l2 重合,∴m≠3;
根据下列条件,分别求直线方程: (1)经过点 A(3,0)且与直线 2x+y-5=0 垂直的直线方程; (2)经过直线 x-y-1=0 与 2x+y-2=0 的交点,且平行于 直线 x+2y-3=0 的直线方程.
2021/4/17
高中数学第二章平面解析几何初步22直线的方
23
程223两条直线的位置关系课件新人教B版必修
A.2
B.-2
C.12
D.-12
【解析】 由 l1⊥l2,得 m+2×(-1)=0,∴m=2.故选 A.
【答案】 A
2021/4/17
高中数学第二章平面解析几何初步22直线的方
20
程223两条直线的位置关系课件新人教B版必修
直线 y=kx 与直线 y=2x+1 垂直,则 k
等于( )
A.-2

高中数学 第二章 平面解析几何初步 第18课时 2.2.2 直线方程的几种形式——点斜式、斜截式课时

高中数学 第二章 平面解析几何初步 第18课时 2.2.2 直线方程的几种形式——点斜式、斜截式课时

第18课时直线方程的几种形式——点斜式、斜截式
课时目标
1.掌握由直线上一点和斜率导出直线方程的方法.
2.掌握直线方程的点斜式、斜截式.
3.掌握待定系数法求直线方程.
识记强化
1.直线方程的点斜式:过点P(x0,y0),斜率为k的直线方程为y-y0=k(x-x0),而过点P(x0,y0),斜率不存在的直线方程为x=x0.
2.直线方程的斜截式:直线过点(0,b)且斜率为k,则直线的方程为y=kx+b,
其中b叫做直线y=kx+b在y轴上的截距,简称为直线的截距.
课时作业
一、选择题(每个5分,共30分)
1.已知直线的方程是y+2=-x-1,则( )
A.直线经过点(-1,2),斜率为-1
B.直线经过点(2,-1),斜率为-1
C.直线经过点(-1,-2),斜率为-1
D.直线经过点(-2,-1),斜率为1
答案:C
解析:直线y+2=-x-1可化为y-(-2)=-x-(-1)],故直线经过点(-1,-2),斜率为-1.
2.过点(0,1),且倾斜角为45°的直线方程是( )
A.y=-x+1 B.y=-x-1
C.y=x+1 D.y=x-1。

2019版高中数学 第二章 平面解析几何初步 2.2 直线的方程 2.2.3 第1课时 两条直线相交

2019版高中数学 第二章 平面解析几何初步 2.2 直线的方程 2.2.3 第1课时 两条直线相交

第一课时两条直线相交、平行与重合的条件1.下列说法正确的是( C )(A)若两条直线平行,则它们斜率相等(B)若两直线斜率相等,则它们互相平行(C)若两条直线一条直线斜率不存在,另一条斜率存在,则它们一定不平行(D)若两条直线的斜率都不存在,则它们互相平行解析:由两直线位置关系:平行,重合,相交可知,B,D都不正确.而A中可能斜率不存在,故A不正确,故选C.2.直线l1,l2在x轴上的截距都是m,在y轴上的截距都是n,则l1,l2的位置关系是( D )(A)平行(B)重合(C)平行或重合(D)相交或重合解析:当mn≠0时,l1与l2重合;当m=n=0时,l1与l2可能相交,也可能重合,故选D.3.l1经过点A(m,1)、B(-3,4),l2经过点C(1,m),D(-1,m+1),当直线l1与l2平行时,则m的值为( A )(A)3 (B)-1 (C)-3 (D)1解析:显然m≠-3,k AB==,k CD==-.又因为l1∥l2,所以=-,即m=3.故选A.4.与直线2x+3y-6=0关于点(1,-1)对称的直线是( D )(A)3x-2y+2=0 (B)2x+3y+7=0(C)3x-2y-12=0 (D)2x+3y+8=0解析:由中心对称知识可知:所求直线与已知直线2x+3y-6=0平行,则可设所求直线为2x+3y+c=0.在2x+3y-6=0上任取一点(3,0),则(3,0)关于点(1,-1)的对称点(-1,-2)必在所求直线上,所以2×(-1)+3× (-2)+c=0,即c=8,故选D.5.满足下列条件的直线l1与l2,其中l1∥l2的是( D )①l1的斜率为2,l2过点A(1,2),B(4,8);②l1经过点P(3,3), Q(-5,3), l2平行于x轴,但不经过P点;③l1经过点M(-1,0),N(-5,-2),l2经过点R(-4,3),S(0,5).(A)①②(B)②③(C)①③(D)①②③解析:①由l1斜率k1=2,l2斜率k2==2,则l1∥l2;②由k1==0,k2=0,则l1∥l2;③k1==,k2==,则l1∥l2.故选D.6.已知两点A(-2,1),B(4,3),两直线l1:2x-3y-1=0,l2:x-y-1=0.求:(1)过点A且与直线l1平行的直线方程;(2)过线段AB的中点以及直线l1与l2的交点的直线方程.解:(1)设与l1:2x-3y-1=0平行的直线方程为2x-3y+c=0,将A(-2,1)代入,得-4-3+c=0,解得c=7,故所求直线方程是2x-3y+7=0.(2)因为A(-2,1),B(4,3),所以线段AB的中点是M(1,2),设两直线的交点为N,联立解得交点N(2,1),则k MN==-1,故所求直线的方程为y-2=-(x-1),即x+y-3=0.7.已知集合A={(x,y)|x+a2y+6=0},集合B={(x,y)|(a-2)x+3ay+2a=0},若A∩B=∅,则a的值是( D )(A)3 (B)0 (C)-1 (D)0或-1解析:A∩B=∅,即直线l1:x+a2y+6=0与l2:(a-2)x+3ay+2a=0平行,令1×3a=a2(a-2),解得a=0或a=-1或a=3.a=0时,l1:x+6=0,l2:x=0,l1∥l2.a=-1时,l1:x+y+6=0,l2:-3x-3y-2=0.l1∥l2.a=3时,l1:x+9y+6=0,l2:x+9y+6=0,l1与l2重合,不合题意.所以a=0或a=-1.8.如果直线ax+y-4=0与直线x-y-2=0相交于第一象限,则实数a的取值范围是( A )(A)-1<a<2 (B)a>-1(C)a<2 (D)a<-1或a>2解析:法一将直线ax+y-4=0与直线x-y-2=0的方程联立解得(a+1)x=6,要使交点在第一象限,则应使a+1>0,所以a>-1,再由(a+1)y+2a-4=0,y=>0,解得-1<a<2,所以-1<a<2.法二如图由y-4=-ax可知:直线ax+y-4=0表示经过定点(0,4),且斜率k=-a的直线,当直线ax+y-4=0与x-y-2=0在第一象限相交时,即过点(0,4)的直线,从直线l1的位置(过点(2,0)),沿逆时针旋转到直线l2的位置.(平行于x-y-2=0)此时直线的斜率k的取值范围是-2<k<1,又k=-a,所以-2<-a<1,即-1<a<2,故选A.9.P1(x1,y1)是直线l:f(x,y)=0上一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0所表示的直线与l的关系是( B )(A)重合(B)平行(C)垂直(D)位置关系不定解析:因为P1点在直线l上,所以f(x1,y1)=0,又因为P2点不在直线l上,所以f(x2,y2)≠0,所以f(x,y)+f(x1,y1)+f(x2,y2)=0,即f(x,y)+f(x2,y2)=0,所以直线l与方程表示的直线平行.10.已知两直线a1x+b1y+3=0和a2x+b2y+3=0的交点是(2,3),则过两点P(a1,b1),Q(a2,b2)的直线方程是.解析:因为直线a1x+b1y+3=0和a2x+b2y+3=0的交点是(2,3),所以故过P(a1,b1),Q(a2,b2)的直线方程为2x+3y+3=0.答案:2x+3y+3=011.若三条直线l1:4x+y+4=0,l2:mx+y+1=0,l3:x-y+1=0不能构成三角形,求m的值.解:显然l1与l3不平行,当l1∥l2或l2∥l3时不能构成三角形,此时对应m的值分别为m=4,m=-1;当直线l1,l2,l3经过同一点时,也不能构成三角形.由得代入l2的方程得-m+1=0,即m=1.综上可知,m=4或m=-1或m=1.12.已知直线l1:(m-2)x+2y+m-2=0,l2:2x+(m-2)y+3=0,当m为何值时,满足下列条件(1)l1与l2相交;(2)l1∥l2;(3)l1与l2重合.解:(1)A1B2-A2B1=(m-2)(m-2)-2×2=(m-2)2-4≠0,得m≠4且m≠0,所以当m≠4且m≠0时l1与l2相交.(2)由A1B2-A2B1=0得m=0或m=4,当m=0时,两直线方程分别为-2x+2y-2=0,2x-2y+3=0,此时l1∥l2;当m=4时,两直线方程为2x+2y+2=0,2x+2y+3=0,此时l1∥l2,故m=0或m=4,两直线l1∥l2.(3)由(2)知:直线l1与l2不可能重合.。

高中数学 2.1.2直线的方程课件 苏教版必修2

高中数学 2.1.2直线的方程课件 苏教版必修2

学习

目 链
预习

典例
►变式训练
1.已知直线l过点(1,0),且与直线y=(x-1)的夹角为
30°,求直线l的方程.
分析:求出直线l的倾斜角及相应的斜率,再利用点斜式方
学习
程求解.

目 链
预习

典例
解析:∵直线 y= 3(x-1)的斜率为 3, ∴其倾斜角为 60°,且过点(1,0). 又直线 l 与直线 y= 3(x-1)的夹角为 30°,且过点(1,0),由 右图可知,直线 l 的倾斜角为 30°或 90°. ∴直线 l 的方程为 y= 33(x-1)或 x=1.
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
的两点式方程得2y--00=-x-2-33.
学习
整理可得2x+5y-6=0,这就是所求直线AC的方程. 直线AB经过A(-2,2),B(3,2),由于其纵坐标相等, 可知其方程为y=2.

目 链
预习

典例
直线BC经过B(3,2),C(3,0),由于其横坐标相等,可
知其方程为x=3.
规律总结:已知直线上两点坐标,应检验两点的 横坐标不相等,纵坐标也不相等后,再用两点式 方程,本题也可用点斜式方程或斜截式方程求 解.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。

直线的方向向量与法向量课件-2024-2025学年高二数学课件(湘教版2019选择性必修第一册)

直线的方向向量与法向量课件-2024-2025学年高二数学课件(湘教版2019选择性必修第一册)
ON∙PQ = 0 ⇔ (A,B)∙(x-x0,y-y0) = 0 ⇔ A(x-x0)+B(y-y0) = 0.
由此得到直线l的方程: A(x-x0)+B(y-y0) = 0.
当P,Q不重合时,PQ =(x-x0,y-y0),代表了直线l的全体方向向量, 所以向量(A,B)垂直于直线的全体方向向量.
3x+4y-12=0. ②
②-①得 3(x-x0)+4(y-y0) = 0. ③
将③式的左边写出数量积的形式,得 (3,4)∙(x-x0,y-y0) = 0. ④
当PQ不重合时,PQ =(x-x0,y-y0),代表了直线的全体方向向量,
由④可知,PQ与向量(3,4)垂直,因此这条直线与向量(3,4)垂直.
这说明过定点P及任意点Q的线段垂直于n = ON , 动点Q组成的图形就是过定点P且与ON垂直的直线l .
反之,作与直线l垂直的非零有向线段ON我们取向量n = ON =(A,B). 已知直线l上一个定点P(x0, y0),则平面上任一点Q(x,y)在直线上的充分必 要条件为ON⊥PQ.
用向量运算叙述出来就是:
直线的一般式方程 Ax+By+C=0的一次项系数组成的向量(A,B)是直 线的法向量.
反过来,已知直线的法向量(A,B),就知道了一般式方程 Ax+By+ C=0的一次项系数.将直线上任一已知点(x0, y0)的坐标代入该方程,就可 由Ax0+B y0+C=0得到待定常数C=-Ax0-B y0,进而得到直线方程 Ax+By-Ax0-B y0=0.
适用范围 不表示垂直x轴的直线 即斜率不存在的直线 不表示垂直x轴的直线 即斜率不存在的直线
所有直线
不表示垂直于坐标轴 和经过原点的直线
一般式
Ax十By+C=0(A,B不同时为0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档