小学奥数和差、和倍、差倍问题
小学奥数:和倍、差倍问题
【总结公式】【和倍问题公式】和÷(倍数+1)=较小数较小数×倍数=另一数或 和-一较小数=另一数【差倍问题公式】差÷(倍数-1)=较小数 较小数×倍数=较大数或 较小数+差=较大数【例 1】 根据线段图列式:【巩固】 小敏有14元,小花有10元,小花给小敏几元,小敏的钱数就是小花的2倍?【例 2】 有两盘苹果,如果从第一盘中拿2个放到第二个盘里,那么两盘的苹果数相同(条件A);如果从第二个盘中拿2个放到第一盘里,那么第一盘的苹果数是第二盘的2倍(条件B).第一盘有苹果多少个?【巩固】 一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米?例题精讲知识概要 第一讲倍数问题【例 3】师、徒两人共加工105个零件,师傅加工的个数比徒弟的3倍还多5个,师傅和徒弟各加工零件多少个?【巩固】两组学生参加义务劳动,甲组学生人数是乙组的3倍,而乙组的学生人数比甲组的3倍少40人,求参加义务劳动的学生共有多少人?【例 4】实验小学三、四年级的同学们一共制作了318件航模,四年级同学制作的航模件数是三年级的2倍,三、四年级的同学各制作了多少件航模?【巩固】一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?【例 5】某镇上有东西两个公交车站,东站有客车84辆,西站有客车56辆,每天从东站到西站有7辆车,从西站到东站有11辆车,几天后,东站车辆是西站的4倍?【巩固】光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?【巩固】红、黄、蓝三个纸盒里共有彩票56张.其中红色纸盒里的彩票是黄色纸盒的2倍,蓝色纸盒里的彩票是红色纸盒的2倍,红、黄、蓝三个纸盒里各有多少张彩票?【例 6】有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔支数的2倍,铅笔支数是钢笔支数的3倍,只有一只盒里放的是水彩笔.这盒水彩笔共有多少支?【巩固】(第五届小数报数学竞赛初赛)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.【例 7】(2008第四届“IMC国际数学邀请赛”(新加坡)四年级复赛)甲、乙、丙三个小朋友共有73块巧克力,如果丙吃掉3块,那么乙和丙的巧克力就一样多;如果乙给甲2块巧克力,那么甲的巧克力就是乙的2倍,丙原有块巧克力.【巩固】甲、乙、丙三所小学学生人数的总和为1999,已知甲校学生人数的2倍,乙校学生人数减3,丙校学生人数加4都是相等的,问:甲、乙、丙各校的人数是多少?【巩固】学校买来一些乒乓球和羽毛球共40个,乒乓球的个数是羽毛球的4倍.买来的乒乓球和羽毛球各多少个?【巩固】某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍.如果评出一、二、三等奖各2人,那么每个一等奖的奖金是308元.如果评出1个一等奖,2个二等奖,3个三等奖,那么一等奖的奖金是多少元?【例 8】甲、乙、丙三所小学的学生人数的总和为1999。
小学奥数和差倍问题
小学奥数和差倍问题小学数学练题:和倍问题和差倍问题一、和倍问题和倍问题是指已知两个数的和与它们的倍数关系,求这两个数的大小。
为了更好地理解题意,我们通常采用画线段图的方法来表示两种量间的关系,以便于找到解题的途径。
解题公式如下:和÷(倍数+1)=小数(1倍数)小数×倍数=大数或:和-小数=大数例如,甲班和乙班共有图书160本,甲班的图书本数是乙班的3倍,求甲班和乙班各有多少本?解析:160÷(3+1)=40本…乙40×3=120本…甲二、差倍问题差倍问题是指已知两个数的差与它们的倍数关系,求这两个数的大小。
解题思路与和倍问题类似,需要在题目中找到1倍量,再画图确定解题方法。
解题公式如下:差÷(倍数-1)=小数(1倍数)小数×倍数=大数或:小数+差=大数例如,参加跳绳比赛的人数是踺子人数的3倍,比踢踺子的多36人,参加跳绳和踢踺子比赛的各有多少人?解析:36÷(3-1)=18人18×3=54人。
注意:在解题过程中,需要注意排除一些明显有问题的段落,例如“例6”的答案缺失。
3×3=9.5.甲、乙两桶油重量相等。
甲桶取走16千克油,乙桶加入14千克油后,乙桶油的重量是甲桶油的重量的4倍。
求甲桶原来有多少千克油。
解析:设甲桶原有x千克油,则乙桶原有x千克油。
加入14千克油后,乙桶有x+14千克油,且x+14=4(x-16)。
解方程得到x=26,所以甲桶原来有26千克油。
6.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍。
求每块布原有多少米。
解析:设每块布原来有x米,则第一块卖出25米后还剩x-25米,第二块卖出14米后还剩2(x-14)米。
根据题意得到方程x-25=2(x-14),解得x=36,所以每块布原来有36米。
7.某文化用品商店,在一天中售出的小横线本比田格本的3倍还多4本,售出的大横线本比小横线本的2倍少6本。
奥数问题(和倍、差倍、和差问题)
除法应用姓名:一、和倍问题。
小的数量=和十(倍数+1)大的数量=小的数量X倍数或大的数量=和一小的数量1、小明家养鸡和兔共有36只,鸡的只数是兔的3倍,小明家的鸡和兔各有多少只?2、学校购进篮球和足球共有56个,其中篮球的个数是足球的3倍学校购进的篮球和足球各有多少个?3、一支钢笔和一支铅笔共21元,已知钢笔的单价是铅笔的6倍钢笔和铅笔每支各需要多少元?4、甲、乙两个仓库共有粮食60吨,甲仓库的粮食是乙仓库的4倍。
甲、乙两个仓库各存粮多少吨?5、在一个除法算式中,被除数、除数和商的和是185,若商是5求被除数和除数各是多少?6、有大、小两个数,它们的和是56,它们的商是7。
则它们的积是多少?7、弟弟有课外书20本,哥哥有25本。
哥哥送给弟弟多少本后,弟弟的书正好是哥哥的2倍?8、有两筐苹果,第一筐有16千克,第二筐有24千克,从第一筐中拿多少千克到第二筐中,第二筐的苹果就会是第一筐的3倍?8、小明有36元钱,小亮有24元钱,小明给小亮多少元后,小亮的钱就是小明的3倍?9、一车间有45名工人,二车间有75名工人,一车间调入二车间多少人后,二车间的人数才是一车间的3倍?10、棋盘上有白棋与黑棋两种棋子,白棋67枚,黑棋有53枚。
从白棋中拿多少枚到黑棋,就能使黑棋是白棋的2倍?例:春风小学共有学生760人,男生比女生的3倍多40人,春风小学的男、女生各有多少人?女生多40人、共760人男生由上面线段图可知:女生:(760—40)一(3+1)=720-4男生:180x3+40=580(人)=180(人)或:760—180=580(人)答:春风小学有男生580人,女生180人。
1、两筐梨共重76千克,其中第一筐比第二筐的2倍少14千克,那么这两筐梨各有多少千克?2、小明的叔叔和小明的年龄之和是38岁,叔叔的年龄是小明的3倍多2岁,叔叔和小明各多少岁?3、果园里有苹果树与桃树一共340棵,桃树的棵数是苹果树的3倍多20棵,果园里这两种树各有多少棵?4、商店里有红花和黄花共123朵,当红花卖出7朵后,红花的朵数就正好是黄花的3倍,那么商店里原有红花与黄花各多少朵?5、学校原有足球和排球共58个,王老师又买来5个足球,这时的足球正好是排球的6倍,求学校现有足球和排球各多少个。
三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题
三年级奥数:和倍问题,和差问题,差倍问题,周期问题,时间问题和倍问题,就是已知几个数的和与这几个数之间的倍数关系,求这几个数各是多少的应用题。
解和倍问题的关键是要找准“和”与“倍”,并能借助线段图来解决问题。
解和倍问题的一般思路是:(1)读题,找出最小的一个数,把它看成1倍量;(2)画图,用线段图表示出数与数之间的倍数关系;(3)比较,观察图形准确判断“和”里面一共是几倍或几倍多几(几倍少几),即判断“和”相当于几个1倍量,并求出1倍量;(4)代入,根据1倍量与几个数之间的倍数关系求出其他的数。
已知两个数的倍数关系,把较小的数看成1份,较大的数就是较小数的几倍,较大的数就是几份。
下面我们来看例题1。
例题1解决这类和倍问题时,首先根据倍数关系画出线段图,以较小量为一段,先画出较小的的量,然后找到和相当于多少份,求出一份数。
一份的数知道了,其他的问题也就好解决了。
例题2我们知道,平均数(每份数)=总数÷总份数。
师傅和徒弟的总份数根据题意可以看成是和徒弟加工个数一样的4份。
当两个量的和与倍数关系不对应时,先求出与倍数关系对应的和,再画线段图求出两个量。
例题3求三个量的和倍问题时,先比较三个数的大小,再找出1倍量,画出线段图,然后通过“剪尾巴”或“填坑”找到三个数的和相当于多少份,求出1份数。
通过以上的例子,详细大家已经对和倍问题有了一定的了解,下面我就给大家出一些相关的练习1、甲乙两人共有150张画片,甲的张数比乙的2倍多30张。
两人各有多少张画片?2、四、五年级共有165人,四年级学生比五年级学生人数的2倍少6人。
四五年级各有学生多少人?3、小丽有红、黄、白三种颜色的珠子54粒,红珠子是黄珠子的2倍,白珠子是黄珠子的3倍。
三种颜色的珠子各有多少粒?和差问题与和倍问题、差倍问题一起统称“和差倍问题”,是小学阶段尤其是中年级常见的典型应用题。
和差问题的特点是已知几个数的和与这几个数的差,求这几个数各是多少的应用题。
四年级下册奥数试题-和差问题、和倍问题、差倍问题
和差问题、和倍问题、差倍问题一、和差问题:已知两个数的和与差,求出这两个数各是多少的应用题,叫做和差应用题。
基本数量关系是:(和+差)÷2=大数(和-差)÷2=小数解答和差应用题的关键是选择合适的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
例1:有甲乙两堆煤,共重52吨,已知甲比乙多4吨,两堆煤各重多少吨?分析:根据公式,我们要找出两个数的和与差,就能解决问题。
由题意:堆煤共重52吨知:两数和是52;甲比乙多4吨知:两数差是4。
甲的煤多,甲是大数,乙是小数。
故解法如下:甲:(52+4)÷2=28(吨)乙:28-4=24(吨)例2:两只笼子里共有15只鸡,从甲笼提出3只后,甲笼比乙笼还多2只,两只笼子原来各有多少只鸡?分析:从题意知:甲比乙多5只,所以,两数和是15,两数差是5.甲是大数。
甲:(15+5)÷2=10(只)乙: 15-10=5(只)练习:1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。
长和宽各是多少厘米?二、和倍问题已知两个数的和,又知两个数的倍数关系,求这两个数分别是多少,这类问题称为和倍问题。
解决和倍问题的基本方法:将小数看成1份,大数是小数的n倍,大数就是n份,两个数一共是n+1份。
基本数量关系:小数=和÷(n+1)大数=小数×倍数或和-小数=大数例1 :甲班和乙班共有图书160本,甲班的图书是乙班的3倍,甲乙两班各有图书多少本?分析:从题目中知,乙班的图书数较少,故乙是小数,占1份,甲占(3+1)份。
乙:160÷(3+1)=40(本)甲:160-40=120(本)例2:果园里有梨树和桃树共165棵,桃树棵数比梨树棵数的2倍少6棵,梨树和桃树各多少棵?分析:由题意,桃树增加6棵,桃树正好是梨树的2倍,这时总数就是:165+6=171,这样就转化成标准和倍问题,将梨树看成1份,一共是3份。
五年级奥数和差、和差倍问题
一、和差问题
例1:张明在期末考试时,语文、数
学两门功课的平均分是95分,数学 比语文多得8分,张明这两门功课 的成绩各是多少分?
(95×2+8)÷2 =198÷2 =99(分)99-8=91(分) 答:语文91分,数学99分。
例2:在一个减法算式里,被减
数、减数和差这三个数的和是 388,减数比差大16,求减数。
388÷2= 194 (194+16)÷2=105——减数 答:减数是105。
例3:用100元购买钢笔和圆珠笔,
各买5支还多余5元;如果买7支钢 笔、3支圆珠笔就缺5元。问:钢笔、 圆珠笔每支价格各是多少元?
(100-5)÷5=19(元)单价和 (100+5 - 19×3)÷(7-3) =12(元) ——钢笔单价 19—12=5(元)——圆珠笔单价 答:钢笔每支12元,圆珠笔每支5元。
(x+12)×3=7x+12 3x+36=7x+12 X=6 白笔:6×7=42 答:彩笔的6盒,白笔有42盒。
例3:有大、中、小三筐菠萝,小 筐装的是中筐的一半,中筐比大 筐少装16千克,大筐装的是小筐 的4倍。小筐装菠萝多少千克?
解:设小筐装菠萝x千克。 4x—2x=16 2x=16 X=8 答:小筐装菠萝8千克。
4 x+x= 45+5+5 5x=55 X=11 11—5=6(岁) 答:今年女儿6岁 。
练习3:今年父亲与儿子的年龄和是 66岁,父亲的年龄比儿子的年龄的3 倍少10岁,那么多少年前父亲的年 龄是儿子的5倍?解:设今年儿子x岁。
x+3x—10= 66 4x=76 X=19 66—19=47(岁的4倍少3岁,甲在3年后的年龄 等于乙9年后的年龄,问乙今年几 岁? 解:设乙今年x岁。
(完整)六年级奥数_和倍、差倍、和差问题
第二十三讲和倍问题【知识概述】:已知两个数的和与它们之间的倍数关系,求这两个数各是多少的应用题,叫做和倍应用题。
要想顺利解决和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确的列式计算。
解答和倍应用题的关键是找出两数的和以及与其对应的倍数和。
解答和倍应用题的基本数量关系是:和÷(倍数+1)=小数;小数×倍数=大数(几倍数)或者:两数和-小数=大数如果遇到三个或三个以上的数的倍数关系,也可用这个公式。
(首先找最小的一个数,再找出另几个数是最小数的倍数即可)【经典例题】:例1.幼儿园的老师和小朋友共有81人在做游戏,小朋友们总是跟着自己的老师转,每位老师身边都有8个小朋友,问:小朋友有多少个?老师有多少人?练习1:1、学校有科技书和故事书共480本科技书的本数是故事书的3倍,两种书各多少本?2、一个养鸡场有675只鸡,其中母鸡是公鸡的4倍,这个养鸡场有公鸡、母鸡各多少只?3、学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?4、爸爸要把140张邮票分给弟弟和妹妹,已知弟弟分得的邮票张数比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?例2、甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?解析:乙数加上4就是丙数的2倍,甲数减少7就是丙数的3倍。
而总数也就应该加上4,再减去7。
丙数1倍数,乙是2倍数。
甲是3倍数,先求丙。
丙数=(183+4-7)÷(1+2+3)=30,乙数=30×2-4=56,甲数=30×3+7=97。
练习2、1、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗.第三堆糖果有多少颗?2. 甲、乙、丙三个粮仓一共存有109吨粮食.其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍.问:甲粮仓比丙粮仓多存粮多少吨?5.果园里有桃树、、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?(☆☆☆)6.某驻军有三个坦克连,共有115辆坦克,一连坦克数量比二连的2倍多2,而二连的坦克数量比三连的3倍多1.请问:一连比三连多几辆坦克?(★★★)【重难点例题】:甲组的图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍,甲组原来有图书多少本?解析:甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18(本),则甲组仍是乙组的3倍。
三年级奥数和倍和差倍问题
和倍问题与差倍问题1.小白兔有5只,小灰兔的只数是小我能行倍,小灰兔有多少只?2.学校进行风筝比赛、第一组做5个风筝,第二组做的是第一组的2倍,两组一共做了多少个风筝?3.有两袋大米,甲袋9千克,乙袋是甲袋的3倍,要使两袋大米重量相等,还应在甲袋中装入多少千克大米?4.一些小朋友去划船,每条船只能乘坐6人,现有8条船可供同学们租用,可仍多出4 人,问一共有多少个小朋友?5.用5根小棒摆一个图案,摆了8个相同的图案,还剩3根小棒,一共有多少根小棒?6.学校买来一些书,平均分给5个班,每班分得4本,还剩2本,学校一共买来多少本书?例1纺织厂有职工480人,其中女职工人数是男职工人数的3倍。
请问:男、女职工各几人?【练习】|| 二 ~ ———— - - ———— - - ———— - -1、和墨莫参加学校组织的植树活动,两人一共种了 160棵树,其中墨莫种的棵数是小II高的3倍,墨莫一共种了几棵树?2、学有学生工1500名,其中男生人数是女生的2倍。
请问:男、女生各有多少人?ik某交通协管员七月份开出78张罚单。
这些罚单分为两种:一种是违章停车,另一种是I 闯红灯。
违章停车的罚单较多,比闯红灯罚单数量的4倍还多3张。
违章停车的罚单有多少张?【练习】1、两堆货物一共160件,已知甲堆货物比乙堆货物的3倍还多40件,甲乙两堆各有多II少件货物?II ”II ”2、和小山羊一共有92颗糖,卡卡的糖果数量比小山羊的3倍多4颗,请问:卡卡有多II II少颗糖?例3_ ■■■■■果园中梨树和苹果树共有67棵,梨树比苹果树的2倍少2棵,苹果树有多少棵?【练习】1、放着一些童话小说和科幻小说,一共有47本,童话小说的数量比科幻小说的数量的4倍少3本,书架上放着多少本科幻小说?IIII2、店里有圆珠笔和钢笔共76支,圆珠笔比钢笔的3倍少4支,圆珠笔有多少支?学校合唱团成员中,女生人数是男生的3倍,而且女生比男生多80人。
奥数问题(和倍、差倍、和差问题)
除法应用姓名:一、和倍问题。
小的数量=和÷(倍数+1)大的数量=小的数量×倍数或大的数量=和—小的数量1、小明家养鸡和兔共有36只,鸡的只数是兔的3倍,小明家的鸡和兔各有多少只?2、学校购进篮球和足球共有56个,其中篮球的个数是足球的3倍,学校购进的篮球和足球各有多少个?3、一支钢笔和一支铅笔共21元,已知钢笔的单价是铅笔的6倍,钢笔和铅笔每支各需要多少元?4、甲、乙两个仓库共有粮食60吨,甲仓库的粮食是乙仓库的4倍。
甲、乙两个仓库各存粮多少吨?5、在一个除法算式中,被除数、除数和商的和是185,若商是5,求被除数和除数各是多少?6、有大、小两个数,它们的和是56,它们的商是7。
则它们的积是多少?7、弟弟有课外书20本,哥哥有25本。
哥哥送给弟弟多少本后,弟弟的书正好是哥哥的2倍?8、有两筐苹果,第一筐有16千克,第二筐有24千克,从第一筐中拿多少千克到第二筐中,第二筐的苹果就会是第一筐的3倍?8、小明有36元钱,小亮有24元钱,小明给小亮多少元后,小亮的钱就是小明的3倍?9、一车间有45名工人,二车间有75名工人,一车间调入二车间多少人后,二车间的人数才是一车间的3倍?10、棋盘上有白棋与黑棋两种棋子,白棋67枚,黑棋有53枚。
从白棋中拿多少枚到黑棋,就能使黑棋是白棋的2倍?例:春风小学共有学生760人,男生比女生的3倍多40人,春风小学的男、女生各有多少人?由上面线段图可知:女生:(760—40)÷(3+1)=720÷4男生:180×3+40=580(人)=180(人)或:760-180=580(人)答:春风小学有男生580人,女生180人。
1、两筐梨共重76千克,其中第一筐比第二筐的2倍少14千克,那么这两筐梨各有多少千克?2、小明的叔叔和小明的年龄之和是38岁,叔叔的年龄是小明的3倍多2岁,叔叔和小明各多少岁?3、果园里有苹果树与桃树一共340棵,桃树的棵数是苹果树的3倍多20棵,果园里这两种树各有多少棵?4、商店里有红花和黄花共123朵,当红花卖出7朵后,红花的朵数就正好是黄花的3倍,那么商店里原有红花与黄花各多少朵?5、学校原有足球和排球共58个,王老师又买来5个足球,这时的足球正好是排球的6倍,求学校现有足球和排球各多少个。
小学四年级奥数周长和和差和倍差倍问题
小学四年级奥数周长和和差和倍差倍问题
什么是周长?
周长是指一个封闭曲线图形的边界长度。
在初等数学中,学生
需要研究如何计算不同形状的图形的周长。
什么是和差和倍差倍?
和差和倍差倍是指一种数学运算方法,被广泛应用于奥数(奥
林匹克数学竞赛)中。
这种方法常用于解决关于面积和周长的问题。
周长和和差问题
在四年级奥数中,周长和和差问题是常见的考点。
这类问题通
常要求求解某个图形的周长,并通过给出的条件计算相关的和或差。
例子:
假设一个矩形的长为12,宽为8,求其周长。
解:
根据矩形的定义,周长等于长与宽的和的两倍,即:周长 = (12 + 8)× 2 = 40。
周长和倍差倍问题
周长和倍差倍问题要求解决一个相似图形的周长问题,并利用其与原图形的长度比例,计算相关的倍差倍。
例子:
若已知一个矩形的周长为36,长度与宽度的比值为3:2,求原图形的周长。
解:
设原图形的长为3x,宽为2x。
根据矩形的定义,周长等于长与宽的和的两倍,即:36 = (3x + 2x)× 2。
解方程可得:x = 4。
因此,原图形的长为12,宽为8,周长为40。
小学四年级奥数中的周长和和差和倍差倍问题涉及到了基本的数学知识和逻辑思维,可以通过多练习和实际问题的应用来提高解题能力。
六年级奥数-和倍、差倍、和差问题
5、某专业户养鸡、鸭、鹅共有960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。这个专业户养鸡、鸭、鹅各多少只?
6、甲、乙、丙三个数之和是400,又知甲是乙的3倍,丙是甲的4倍。求这三个数。
例2、甲、乙、丙3数和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?
练习2、
1、三堆糖果共有105颗,其中第一堆糖果的数量是第二堆的3倍,而第三堆糖果的数量又比第二堆的2倍少3颗.第三堆糖果有多少颗?
2.甲、乙、丙三个粮仓一共存有109吨粮食.其中甲粮仓的粮食总量比乙粮仓的3倍多1吨,而乙粮仓的粮食总量则是丙粮仓的2倍.问:甲粮仓比丙粮仓多存粮多少吨?
2、菜场运来的西红柿是黄瓜的3倍,卖出西红柿950千克,黄瓜120千克后,剩下的两种蔬菜重量相等,菜场运来西红柿和黄瓜各多少千克?
3、两袋盐的重量相等,甲袋取出24千克,乙袋装入28千克,这时乙袋的重量是甲袋的3倍,甲乙两袋原来各有盐多少千克?
4、甲、乙两数的和是112.甲数除以乙数的商是6,甲、乙两数各是多少?
11、被除数、除数与商的和是79,已知商是4。被除数和除数各是多少?
12、两数相除商是5,没有余数,已知被除数、除数与商的和是59。被除数和除数各是多少?
第二类:和差问题练习题
公式:(和-差)÷2=较小数(和+差)÷2=较大数
例1、王师傅一天生产的零件比他的徒弟一天生产的零件多128个,且是徒弟的3倍。师徒二人一天各生产多少个零件?
7、三块钢板共重621千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍。三块钢板各是多少千克?
五年级奥数和差和差倍问题
▪ 4x—3+3 = x+9
▪
3x=9
▪
X=3
▪ 答:乙今年3岁。
练习2:今年母女年龄和是45岁,5 年后母亲的年龄正好是女儿的4倍, 今年女儿多少岁?
▪ 解:设5年后女儿x岁。
▪
4 x+x= 45+5+5
▪
5x=55
▪
X=11
▪
11—5=6(岁)
▪ 答:今年女儿6岁 。
练习3:今年父亲与儿子的年龄和是
▪ 和÷(倍数+1)=一倍数
▪
(即较小数)
▪ 和—较小数=较大数,来自▪ 或较小数×倍数=较大数
例1:甲、乙两人共有168张画片, 甲的张数比乙的2倍多30张,两人 各有几张画片?
(168 -30) ÷ (2+1) =138 ÷ 3
=46 168 -46=122 答:甲有122张,乙有46张。
例2:水果店运来水果380千克, 其中苹果比梨的3倍还少40千克, 运来的苹果和梨各多少千克?
▪
7X=280
▪
x=40
▪ 答:买来公鸡40只。
例5:父亲今年比儿子大36岁,5 年后父亲的年龄是儿子的4倍,今 年儿子几岁?
▪ 36÷( 4-1 ) ▪ =36÷3
▪ =12 (岁) ▪ 12-5=7 (岁)
▪ 答:今年儿子7岁。
练习1:甲今年的年龄比乙的年龄 的4倍少3岁,甲在3年后的年龄
等于乙9年后的年龄,问乙今年几 岁▪?解:设乙今年x岁。
例4:小明用21.4元去买两种贺卡,甲卡 每张1.5元,乙卡每张0.7元,钱恰好用完。 可是售货员把甲卡张数算作乙卡张数,把 乙卡张数算作甲卡张数,要找还小明3.2
元。问:小明买了甲、乙卡各几张?
小学四年级奥数和差、和倍、差倍问题
【导语】解奥数题时,如果能合理的、科学的、巧妙的借助点、线、⾯、图、表将奥数问题直观形象的展⽰出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。
以下是整理的《⼩学四年级奥数和差、和倍、差倍问题》,希望对你有所帮助。
【和差】 1、学校有排球、⾜球共50个,排球⽐⾜球多4个,排球、⾜球各多少个? 2、甲、⼄两车间共有⼯⼈260⼈,甲车间⽐⼄车间少30⼈,甲、⼄两车间各有⼯⼈多少⼈? 3、甲⼄两个⼯程队合挖⼀条长48千⽶的⽔渠,甲队⽐⼄队多挖了6千⽶,求甲、⼄⼯程队各挖了多少千⽶? 4、⼩宁与⼩芳今年的年龄和是28岁,⼩宁⽐⼩芳⼩2岁,⼩芳今年多少岁? 5、⼩敏和他爸爸的平均年龄是29岁,爸爸⽐他⼤26岁。
⼩敏和他爸爸的年龄各是多少岁? 6、⼩兰期末考试时语⽂和数学的平均分是96分,数学⽐语⽂多4分。
⼩兰语⽂、数学各得多少分? 7、四个⼈年龄之和是77岁,最⼩的10岁,他和的⼈的年龄之和⽐另外⼆⼈年龄之和⼤7岁,的年龄是⼏岁? 8、⼩诺沿长与宽相差30⽶的游泳池跑了5圈,做下⽔前的准备活动。
已知⼩诺共跑了700⽶,问:游泳池的长和宽各是多少⽶? 9、曾⽼师⽐琪晗重30千克,曾⽼师⽐陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克? 10、苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵?【和倍】 1.如果三个⼈的平均年龄是22岁,且没有⼩于18岁的,那么年龄的可能是多少岁? 2..如果四个⼈的平均年龄是25岁,且没有⼩于16岁的,且这四个⼈的年龄互不相等,那么年龄的可能是多少岁?年龄最⼩的可能是多少岁? 3.在⼀次登⼭活动中,梓涵上⼭每分钟⾏50⽶,然后按原路下⼭,每分钟⾏75⽶。
梓涵上⼭和下⼭平均每分钟⾏多少⽶? 4.⼀个同学读⼀本故事书,前4天每天读25页,以后每天读40页,⼜读了6天正好读完。
四年级和差倍思维训练奥数题
四年级和差倍思维训练奥数题一、和差问题1. 题目四年级甲、乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解析已知两班人数的和是98人,差是6人。
我们可以先求出较大数(甲班人数),根据公式:大数=(和 + 差)÷2。
所以甲班人数=(98 + 6)÷2 = 104÷2 = 52(人)乙班人数 = 甲班人数 6 = 52 6 = 46(人)2. 题目两个数的和为36,差为22,求这两个数。
解析同样根据和差问题的公式,大数=(和+差)÷2,小数=(和差)÷2。
大数=(36+22)÷2 = 58÷2 = 29小数=(36 22)÷2 =14÷2 = 7二、和倍问题1. 题目学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三年级各分得多少本图书?解析已知两个年级图书总数是360本,三年级本数是二年级的2倍。
我们把二年级分得的图书本数看作1份,三年级就是2份,总共就是1+2 = 3份。
那么二年级分得的图书数量为:360÷(1 + 2)=360÷3 = 120(本)三年级分得的图书数量为:120×2 = 240(本)2. 题目被除数与除数的和是320,商是7,被除数和除数各是多少?解析因为商是7,说明被除数是除数的7倍。
把除数看作1份,被除数就是7份,总共8份。
除数为:320÷(1 + 7)=320÷8 = 40被除数为:40×7 = 280三、差倍问题1. 题目四年级学生参加课外活动,做游戏的人数比打球人数的3倍多2人,已知做游戏的比打球的多38人,打球和做游戏的各有多少人?解析设打球的人数为x人,那么做游戏的人数就是3x+2人。
又因为做游戏的比打球的多38人,所以可列方程:(3x + 2)-x=382x+2 = 382x=36x = 18(人),即打球的人数是18人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:A袋比B袋多的颗数:10×2+8=28颗
A袋: (200+28)÷2=114颗
B袋:200-114=86颗
ppt课件
13
(3)实验小学和育才小学共有教师210人, 由于工作需要从实验小学调走30人,育才 小学调进10人,这时实验小学比育才小学 还多8人。原来两学校各有多少人?
解:两校原来相差人数:30+10+8=48(人)
ppt课件
22
例2:学校食堂里运来大米和面粉共1450千克,其 中大米比面粉重量的3倍少150千克,求运来大米 和面粉各多少千克?
解:现在每层书数:270÷3=90本
第一层:90+20=110本
第二层:90-20=70本
第三层:90+17=107本
ppt课件
16
和倍问题
方法教学: 让解题过程变得清晰可见。
ppt课件
17
专题简析:
• 已知两个数的和与两个数间的倍数关系,求 这两个数分别是多少,像这样的应用题,通 常叫做和倍问题。要想顺利地解答和倍应用 题,最好的方法就是根据题意,画出线段图, 使数量关系一目了然,从而正确列式解答。
和差倍问题
ppt课件
1
和差问题
方法教学: 让解题过程变得清晰可见。
ppt课件
2
已知大小两个数的和及它们的差,求这两个数 各是多少,这类问题我们称为和差问题。 解答和差问题通常用假设法,同时结合线段图 进行分析。可以假设小数增加到与大数同样多, 先求大数,再求小数;也可以假设大数减少到 与小数同样多,先求小数,再求大数。
ppt课件
3
两筐水果共重128千克,第二筐比第一筐多4千克。 两筐水果各重多少千克?
ppt课件
4
•
解题思路
此题已知两个数的和与大小两个数的差,求两数
各是多少,是标准的和差问题。我们用假设法结 合线段图进行分析,再利用公式进行解答
解:根据题意画出线段图:
第一筐 第二筐
?千克
4千克
128 千克
?千克
(1)原来两筐相差质量:
7×2+2=16(千克)
(2)第一筐西瓜质量:
(80+16)÷2=48(千克)
(3)第二筐西瓜的质量:
80-48=32(千克)
(4)综合算式:
(80+7×2+2) ÷2=48(千克)(第一筐)
80-48=32(千克)
ppt课件
12
•
练一练
(1)A、B两袋有水果糖共200颗,如果从A袋中取 10颗放到B袋,这时A袋比B袋还多8颗。求A、B 两袋原来各有多少颗水果糖?
ppt课件
18
学校将360本图书分给二、三两个年级,已知三年
级所分得的本数是二年级的2倍,问二、三两个年
级各分得多少本图书?
• 思路导航:将二年级所得图书的本数看作1倍
数,则三年级所得本数是这样的2倍。
• 如图所示: 二年级 1倍数
•
?本
共360本
•
三年级
?本
ppt课件
19
学校将360本图书分给二、三两个年级,已知三 年级所分得的本数是二年级的2倍,问二、三两 个年级各分得多少本图书?
• 由图可知,二、三年级所得图书本数的和360本相
当于二年级的(1+2)倍。
• 二年级所得图书本数为360÷(1+2)=120(本),
• 三年级为120×2=240(本)
ppt课件
20
解答和倍应用题,关键是要找出两数的和 以及与其对应的倍数和,从而先求出1倍数, 再求出几倍数。 数量关系可以这样表示:
两数和÷(倍数+1)=小数(1倍数) 小数×倍数=大数(几倍数) 两数和-小数=大数
ppt课件
21
练一练
• 1,小红和小明共有压岁钱800元,小红的钱数是 小明的3倍。小红和小明各有压岁钱多少元?
• 2,学校将360本图书分给二、三年级,已知三年 级所得本数是二年级的2倍。二、三年级各得图书 多少本?
解:衣服(144+24)÷2=84元 裤子: 84-2)学校的长方形操场一圈有400米,长 和宽相差80米。长和宽各是多少米?
解:长:(400÷2+80)÷2=140米 宽: 140-80=60米
ppt课件
9
两筐西瓜共重80千克,如果从第一筐取出7千克放 入第二筐中后,第一筐还比第二筐多2千克。两筐 西瓜原来各重多少千克?
ppt课件
10
• 解题思路
这道题告诉了我们两数的和,两数的差没有直接告 诉。关键是通过线段图找出两数之差,问题就迎 刃而解了。
解:根据题意画出线段图
第一筐
2千克 7千克
第二筐
7千克
80千 克
ppt课件
11
• 从图中可知,第一筐取出7千克,第二筐放入7千克,第一 筐还比第二筐多2千克,可求出原来第一筐比第二筐多 7×2+2=16(千克)。根据和差公式求出原来第一筐和第 二筐的质量。
出当这三个数相等时的和,再由此算出标准量。
解:根据题意画出线段图:
妈妈花的钱:
爸爸
多10元
(90-10+4)÷3=28(元)
妈妈
爸爸花的钱:28+10=38(元)
90
少4元
元 小刚花的钱:
小刚
28-4=24(元)
ppt课件
15
(2)一个书架有3层书,共270本,从第一层拿出 20本放到第二层,从第三层拿17本放到第二层, 这时三层书架中的书的数量相等。原来每层各有 几本书?
解:第一筐重量:(128-4)÷2=62千克 第二筐重量: 128-62=66千克
ppt课件
6
可以用下面的公式: (1)(和+差)÷2=大数
大数-差=小数 和-大数=小数 (2)(和-差) ÷2=小数 小数+差=大数 和-小数=大数
ppt课件
7
• 练一练: (1)小明妈妈给小明买了一套衣服,共花 了144元,裤子比衣服便宜24元。衣服和裤 子各多少元?
实验小学:(210+48)÷2=129(人)
育才小学:210-129=81(人)
ppt课件
14
爸爸、妈妈和小刚去商店买东西,他们一共花了
90元,爸爸比妈妈多花10元,小刚比妈妈少花4元。 他们三个人各花了多少元?
• 解题思路
知道了三个数的和与这三个数中每两个数的相差关系,就
可以以其中一个数为标准,从他们的和当中移多补少,算
从线段图上可以看出,假如 把两筐水果共重128千克加 上4千克,那么得到的和就是 第二筐重量的2倍,所以可以 先求出第二筐的重量,再求 出第一筐的重量。
第二筐重量: (128+4)÷2=66千克
第一筐重量:
66-4=62千克
ppt课件
5
• 此题还可以假设把第二筐减少4千克,可以 先求出第一筐的质量,再求出第二筐的质 量。你能试一试吗?