第三讲 一次函数的应用题(培优答案)

合集下载

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)

稳固练习一、选择题:1.y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为〔〕〔A〕y=8x 〔B〕y=2x+6 〔C〕y=8x+6 〔D〕y=5x+32.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过〔〕〔A〕一象限〔B〕二象限〔C〕三象限〔D〕四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是〔〕〔A〕4 〔B〕6 〔C〕8 〔D〕164.假设甲、乙两弹簧的长度y〔cm〕与所挂物体质量x〔kg〕之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,那么y1与y2的大小关系为〔〕〔A〕y1>y2〔B〕y1=y2〔C〕y1<y2〔D〕不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•那么有一组a,b的取值,使得以下4个图中的一个为正确的选项是〔〕6.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过第〔〕象限.〔A〕一〔B〕二〔C〕三〔D〕四7.一次函数y=kx+2经过点〔1,1〕,那么这个一次函数〔〕〔A〕y随x的增大而增大〔B〕y随x的增大而减小〔C〕图像经过原点〔D〕图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在〔〕〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限9.要得到y=-32x-4的图像,可把直线y=-32x〔〕.〔A〕向左平移4个单位〔B〕向右平移4个单位〔C〕向上平移4个单位〔D〕向下平移4个单位10.假设函数y=〔m-5〕x+〔4m+1〕x2〔m为常数〕中的y与x成正比例,那么m的值为〔〕〔A〕m>-14〔B〕m>5 〔C〕m=-14〔D〕m=511.假设直线y=3x-1与y=x-k的交点在第四象限,那么k的取值范围是〔〕.〔A〕k<13〔B〕13<k<1 〔C〕k>1 〔D〕k>1或k<1312.过点P〔-1,3〕直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作〔〕〔A〕4条〔B〕3条〔C〕2条〔D〕1条13.abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过〔〕〔A〕第一、二象限〔B〕第二、三象限〔C〕第三、四象限〔D〕第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,那么常数a的取值范围是〔〕〔A〕-4<a<0 〔B〕0<a<2〔C〕-4<a<2且a≠0 〔D〕-4<a<215.在直角坐标系中,A〔1,1〕,在x轴上确定点P,使△AOP为等腰三角形,那么符合条件的点P共有〔〕〔A〕1个〔B〕2个〔C〕3个〔D〕4个16.一次函数y=ax+b〔a为整数〕的图象过点〔98,19〕,交x轴于〔p,0〕,交y轴于〔•0,q〕,假设p为质数,q为正整数,那么满足条件的一次函数的个数为〔〕〔A〕0 〔B〕1 〔C〕2 〔D〕无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个18.〔2005年全国初中数学联赛初赛试题〕在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个19.甲、乙二人在如下图的斜坡AB上作往返跑训练.:甲上山的速度是a米/分,下山的速度是b米/分,〔a<b〕;乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t〔分〕,离开点A的路程为S〔米〕,•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t〔分〕与离开点A的路程S〔米〕•之间的函数关系的是〔〕20.假设k、b是一元二次方程x2+px-│q│=0的两个实根〔kb≠0〕,在一次函数y=kx+b 中,y随x的增大而减小,那么一次函数的图像一定经过〔〕〔A〕第1、2、4象限〔B〕第1、2、3象限〔C〕第2、3、4象限〔D〕第1、3、4象限二、填空题1.一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.一次函数y=〔m-2〕x+m-3的图像经过第一,第三,第四象限,那么m的取值范围是________.3.某一次函数的图像经过点〔-1,2〕,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.直线y=-2x+m不经过第三象限,那么m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•那么点P•的坐标为__________.6.过点P〔8,2〕且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年〔b≠a〕,他的退休金比原来的多q元,那么他每年的退休金是〔以a、b、p、•q•〕表示______元.9.假设一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•那么一次函数的解析式为________.10.〔湖州市南浔区2005年初三数学竞赛试〕设直线kx+〔k+1〕y-1=0〔为正整数〕与两坐标所围成的图形的面积为S k 〔k=1,2,3,……,2021〕,那么S 1+S 2+…+S 2021=_______. 11.据有关资料统计,两个城市之间每天的 通话次数T•与这两个城市的人口数m 、n 〔单位:万人〕以及两个城市间的距离d 〔单位:km 〕有T=2kmnd 的关系〔k 为常数〕.•现测得A 、B 、C 三个城市的人口及它们之间的距离如下图,且A 、B 两个城市间每天的 通话次数为t ,那么B 、C 两个城市间每天的 次数为_______次〔用t 表示〕.三、解答题1.一次函数y=ax+b 的图象经过点A 〔2,0〕与B 〔0,4〕.〔1〕求一次函数的解析式,并在直角坐标系内画出这个函数的图象;〔2〕如果〔1〕中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.〔1〕写出y与x之间的函数关系式;〔2〕如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:〔1〕小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;〔不要求写出x的取值范围〕;〔2〕小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,以下图表示他离家的距离y〔千米〕与所用的时间x 〔小时〕之间关系的函数图象.〔1〕根据图象答复:小明到达离家最远的地方需几小时?此时离家多远?〔2〕求小明出发两个半小时离家多远?〔3〕•求小明出发多长时间距家12千米?5.一次函数的图象,交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A〔0,1〕出发,经过x轴上点C反射后经过点B〔3,3〕,求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=232的图象与x轴,y轴,分别交于A、B两点,•点C坐标为〔1,0〕,点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C〔4,0〕作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P〔•0,-1〕,Q〔0,k〕,其中0<k<4,再以Q点为圆心,PQ长为半径作圆,那么当k取何值时,⊙Q•与直线AB相切?11.〔2005年宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.写文章、出幅员书所获得稿费的纳税计算方法是f〔x〕=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f〔x〕表示稿费为x元应缴纳的税额.假设张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购置甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购置甲商品的个数比预定减少10个,总金额多用29元.•又假设甲商品每个只涨价1元,并且购置甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.〔1〕求x、y的关系式;〔2〕假设预计购置甲商品的个数的2倍与预计购置乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付根本费8元和定额损消耗c元(c≤5);假设用水量超过am3时,除了付同上的根本费和损消耗外,超过局部每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.〔1〕设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W〔元〕关于x〔台〕的函数关系式,并求W的最大值和最小值.〔2〕设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W〔元〕,并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为〔1,a+b〕,•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;应选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过〔1,1〕,∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=〔m-5〕x+〔4m+1〕x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①假设a+b+c≠0,那么p=()()()a b b c c aa b c+++++++=2;②假设a+b+c=0,那么p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.〔13,3〕或〔53,-3〕.提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为〔13,3〕或〔53,-3〕.提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P 〔8,2〕代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为〔98,34〕,在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的 通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.〔1〕由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4〔•函数图象略〕.〔2〕∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.〔1〕∵z与x成正比例,∴设z=kx〔k≠0〕为常数,那么y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;〔2〕∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.〔1〕设一次函数为y=kx+b,将表中的数据任取两取,不防取〔37.0,70.0〕和〔42.0,78.0〕代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.〔1〕由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.〔2〕设直线CD的解析式为y=k1x+b1,由C〔2,15〕、D〔3,30〕,代入得:y=15x-15,〔2≤x≤3〕.当x=2.5时,y=22.5〔千米〕答:出发两个半小时,小明离家.〔3〕设过E、F两点的直线解析式为y=k2x+b2,由E〔4,30〕,F〔6,0〕,代入得y=-15x+90,〔4≤x≤6〕过A、B两点的直线解析式为y=k3x,∵B〔1,15〕,∴y=15x.〔0≤x≤1〕,•分别令y=12,得x=265〔小时〕,x=45〔小时〕.答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B〔-2,y B〕,其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B〔-2,-2〕代入正比例函数y=kx,•得k=1.把点A〔-6,0〕、B〔-2,-2〕代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴=.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.2.8.∵点A、B分别是直线y=3x轴和y轴交点,∴A〔-3,0〕,B〔0,∵点C坐标〔1,0〕由勾股定理得,设点D的坐标为〔x,0〕.〔1〕当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为〔52,0〕.设图象过B、D两点的一次函数解析式为y=kx+b,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.〔2〕假设点D在点C左侧那么x<1,可证△ABC∽△ADB,∴AD BDAB CB=22113x+=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D 点坐标为〔-14,0〕,∴图象过B、D〔-14,0〕两点的一次函数解析式为22,综上所述,满足题意的一次函数为222或22.9.直线y=12x-3与x轴交于点A〔6,0〕,与y轴交于点B〔0,-3〕,∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OA OC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为〔0,8〕,设过CD的直线解析式为y=kx+8,将C〔4,0〕代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为〔225,-45〕. 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为〔-3,0〕,〔0,4〕•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′〔如图〕, 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt△BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切.11.〔1〕y=200x+74000,10≤x ≤30〔2〕三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f 〔x 〕=x-x 〔1-20%〕20%〔1-30%〕=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000〔元〕.答:这笔稿费是8000元. 13.〔1〕设预计购置甲、乙商品的单价分别为a 元和b 元,那么原方案是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:〔a+1.5〕〔x-10〕+〔b+1〕y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:〔a+1〕〔x-5〕+〔b+1〕y=1563.5, ③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.〔2〕依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.那么y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2〔9-a〕+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,那么一月份的付款方式应选①式,那么8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.〔1〕由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400〔18-2x〕+800〔10-x〕+700〔10-x〕+500〔2x-10〕=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200〔5≤x≤9,x是整数〕.由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.〔2〕由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800〔10-x〕+300y+700〔10-y〕+•400〔19-x-y〕+500〔x+y-10〕=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩〔x,y为整数〕.W=-200x-300〔x+y〕+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300〔x+y〕+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

一次函数的应用大题专练30题八年级数学上册尖子生培优题典32

一次函数的应用大题专练30题八年级数学上册尖子生培优题典32

2021-2022学年八年级数学上册尖子生同步培优题典【沪科版】专题一次函数的应用大题专练30题〔重难点培优〕姓名:__________________ 班级:______________ 得分:_________________考前须知:本试卷试题共30题,解答30道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题〔本大题共30小题,解答时应写出文字说明、证明过程或演算步骤〕1.〔2021•招远市一模〕烟台苹果享誉全国.某水果超市方案从烟台购进“红富士〞与“新红星〞两种品种的苹果.3箱红富士苹果的进价与4箱新红星苹果的进价的和为396元,且每箱红富士苹果的进价比每箱新红星苹果的进价贵6元〔1〕求每箱“红富士〞苹果的进价与每箱新红星苹果的进价分别是多少元?〔2〕该水果超市方案再次购进100箱苹果,:“红富士〞苹果的售价每箱65元,“新红星〞苹果的售价每箱60元,根据市场的实际需求,“红富士〞苹果的数量不低于“新红星〞苹果数量的4倍.为使该水果超市售完这100箱苹果的总利润最大,该超市应如何进货?并求出最大利润.2.〔2021•河南模拟〕为了净化空气,美化校园环境,某学校方案种植A,B两种树木.购置20棵A种树木和15棵B种树木共花费2680元;购置10棵A种树木和20棵B种树木共花费2240元.〔1〕求A,B两种树木的单价分别为多少元.〔2〕如果购置A种树木有优惠,优惠方案是:购置A种树木超过20棵时,超出局部可以享受八折优惠.假设该学校购置m〔m>0,且m为整数〕棵A种树木花费w元,求w与m之间的函数关系式.〔3〕在〔2〕的条件下,该学校决定在A,B两种树木中购置其中一种,且数量超过20棵,请你帮助该学校判断选择购置哪种树木更省钱.3.〔2021春•长沙期中〕火炬村街道积极响应垃圾分类号召,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,购置3个垃圾箱和2个温馨提示牌花费280元,购置2个垃圾箱和3个温馨提示牌花费270元.〔1〕求垃圾箱和温馨提示牌的单价各多少元?〔2〕购置垃圾箱和温馨提示牌共100个,如果垃圾箱个数不少于温馨提示牌个数的3倍,请你写出总费用w元与垃圾箱个数m个之间的关系式,并说明采用怎样的方案可以使总费用最低,最低为多少?4.〔2021春•正定县期中〕某电脑工程师张先生准备开一家小型电脑公司,欲租一处临街房屋.现有甲、乙两家出租屋,甲家已经装修好,每月租金为2600元;乙家未装修,每月租金为1800元,但假设装修成与甲家房屋同样的规格,那么需要自己支付装修费万元.设租用时间为x个月,所需租金为y元.〔1〕请分别写出租用甲、乙两家房屋的租金y甲、y乙与租用时间x之间的函数关系;〔2〕试判断租用哪家房屋更合算,请写出详细分析过程.5.〔2021春•长沙期中〕由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车〔两次购进同一种型号汽车的每辆的进价相同〕.第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第一次用128万元购进甲型号汽车14辆和乙型号汽车10辆.〔1〕求甲、乙两种型号汽车每辆的进价;〔2〕经销商分别以每辆甲型号汽车万元,每辆乙型号汽车万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;②假设每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?6.〔2021春•岳麓区校级月考〕为增强公民的节水意识,某市制订了如下用水标准:每户每月的用水量不超过10吨时,水价为每吨2元;超过10吨时,超过的局部按每吨3元收费.设该市居民李大妈家某月用水量为x吨,交水费y元,请答复以下问题:〔1〕假设李大妈家5月份用水吨,应交水费多少元?〔2〕假设李大妈家6月份交水费35元,这个月李大妈家用水多少吨?〔3〕请写出y〔元〕与x〔吨〕之间的函数关系式,并填表.用水量x/吨31015水费y/元102638 7.〔2021•秦淮区一模〕“精准扶贫,暖心助力〞.驻村书记通过某平台直播带货,帮助当地百姓脱贫致富.苹果本钱价为每千克5元,销售价为每千克8元;蜜桔本钱价为每千克6元,销售价为每千克10元.通过直播,两种水果共销售5000kg,苹果的销售量不少于2000kg.〔1〕假设销售的苹果和蜜桔的总本钱为27400元,那么销售苹果kg,销售蜜桔kg.〔2〕当苹果的销量为多少时,两种水果的总利润最大?最大利润是多少?8.〔2021•长安区二模〕某商店销售A、B两种型号的打印机,销售5台A型和10台B型打印机的利润和为2000元,销售10台A型和5台B型打印机的利润和为1600元.〔1〕求每台A型和B型打印机的销售利润;〔2〕商店方案购进A、B两种型号的打印机共100台,其中A型打印机数量不少于B型打印机数量的一半,设购进A型打印机a台,这100台打印机的销售总利润为w元,求该商店购进A、B两种型号的打印机各多少台,才能使销售总利润最大?〔3〕在〔2〕的条件下,厂家为了给商家优惠让利,将A型打印机的出厂价下调m元〔0<m<100〕,但限定商店最多购进A型打印机50台,且A、B两种型号的打印机的销售价均不变,请直接写出商店销售这100台打印机总利润最大的进货方案.9.〔2021•坪山区二模〕为响应对口扶贫,深圳某单位和西部某乡结对帮扶,采购该乡农副产品助力乡村振兴.1件A产品价格比1件B产品价格少20元,300元购置A产品件数与400元购置B产品件数相同.〔1〕A产品和B产品每件分别是多少元?〔2〕深圳该对口单位发动职采购该乡A、B两种农副产品,根据统计:职工响应积极,两种预计共购置150件,A的数量不少于B的2倍,求购置总费用的最大值.10.〔2021•天桥区二模〕越野自行车是中学生喜爱的交通工具,市场巨大竞争也剧烈某品牌经销商经营的A 型车去年销售总额为50000元,今年每辆售价比去年降低400元,假设卖出的数量相同,销售总额将比去年减少10000元.A、B两种型号车今年的进货和销售价格表:A型车B型车进货价1100元/辆1400元/辆销售价?元/辆2000元/辆〔1〕今年A型车每辆售价为多少元?〔2〕该品牌经销商方案新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的2倍,请问应如何安排两种型号车的进货数量,才能使这批越野自行车售出后获利最多?11.〔2021•吉安县模拟〕为落实“精准扶贫〞,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B 两种蔬菜,假设种植20亩A种蔬菜和30亩B种蔬菜,共需投入18万元;假设种植30亩A种蔬菜和20亩B种蔬菜,共需投入17万元.〔1〕种植A,B两种蔬菜,每亩各需投入多少万元?〔2〕经测算,种植A种蔬菜每亩可获利万元,种植B种蔬菜每亩可获利万元,村里把50万元扶贫款全部用来种植这两种蔬菜,总获利w万元,设种植A种蔬菜m亩,求w关于m的函数关系式;〔3〕在〔2〕的条件下,假设要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.12.〔2021•怀化模拟〕某商场销售的甲电子产品去年2月份的销售总额为万元,今年经过产品升级后甲电子产品每件销售价比去年增加400元,假设今年2月份与去年2月份卖出的甲电子产品的数量相同,那么今年2月份甲电子产品的销售总额比去年2月份的销售总额增加25%.〔1〕求今年2月份甲电子产品每件销售价多少元?〔2〕该商场方案今年6月份购进一批甲电子产品和乙电子产品共50件,甲电子产品的进货数量不少于乙电子产品进货数量的23,乙电子产品的进货数量不少于10件.〔由于销售前景广阔,这批产品可以销售一空〕甲、乙两种型号电子产品的进货和销售价格表如下:甲电子产品 乙电子产品 进货价格〔元/件〕1100 1400 销售价格〔元/件〕 今年的销售价格 2400①设甲电子产品进货m 件,销售这批产品所获得的总利润为y 元,求y 关于m 的函数关系式,并写出自变量m 的取值范围;②该商场决定举办促销活动:每一件乙电子产品降价a 元〔50≤a ≤200〕,如果要所获得的最大利润为46200元,求a 的值.13.〔2021春•深圳期中〕某羽毛球馆有两种消费方式:一种是交100元办一张会员卡,以后每次打球费用为25元/小时;另一种是不办会员卡,每次打球费用为40元/小时.〔1〕直接写出办会员卡打球的费用y 1〔元〕与打球时间x 〔小时〕之间的关系式;〔2〕直接写出不办会员卡打球的费用y 2〔元〕与打球时间x 〔小时〕之间的关系式;〔3〕小王每月打球时间为10小时,他选用哪种方式更合算?14.〔2021春•灞桥区校级月考〕如图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A 地到B 地时,行驶的路程y 〔千米〕与经过的时间x 〔小时〕之间的函数关系.根据这个行驶过程中的图象完成以下问题:〔1〕电动自行车的速度和汽车的速度分别是多少千米/小时?〔2〕汽车出发多少小时与电动自行车相遇?何时甲在乙的前面?何时甲在乙的后面?〔3〕汽车到达B 地时,电动自行车离B 地还有多少千米.15.〔2021•南开区二模〕工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也参加共同加工零件.设甲组加工时间为t 〔时〕,甲组加工零件的数量为y 甲〔个〕,乙组加工零件的数量为y 乙〔个〕,其函数图象如下图.〔Ⅰ〕根据图象信息填表:加工时间t〔时〕348甲组加工零件的数量〔个〕a=〔Ⅱ〕填空:①甲组工人每小时加工零件个;②乙组工人每小时加工零件个:③甲组加工小时的时候,甲、乙两组加工零件的总数为480个;〔Ⅲ〕分别求出y甲、y乙与t之间的函数关系式.16.〔2021春•正定县期中〕“五一〞节假日期间,小亮一家到某度假村度假,小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发,他爸爸到达度假村后,发现落了东西在家里,于是立即返回家里去取,取到东西后又马上驾车前往度假村,如图是他们离家的距离s〔km〕与小明离家的时间t〔h〕的关系图,请根据图象答复以下问题:〔1〕小亮和妈妈坐公交车的速度为km/h;爸爸自驾的速度为km/h.〔2〕小亮从家到度假村期间,他离家的距离s〔km〕与离家的时间t〔h〕的关系式为;当1≤t≤2时,小亮爸爸离家的距离s〔km〕与离家的时间t〔h〕的关系式为;当2≤t≤3时,小亮爸爸离家的距离s〔km〕与离家的时间t〔h〕的关系式为;〔3〕小亮从家到度假村的路途中,当他与他爸爸相遇时,t=〔h〕;〔4〕整个运动过程中〔双方全部到达会和时,视为运动结束〕,t为多少时小亮和妈妈与爸爸相距8km?17.〔2021•洪泽区二模〕李师傅开着货车从甲地出发匀速驶往距离甲地360千米的乙地,一段时间后,王东开着一辆轿车从乙地出发沿同一条道路匀速驶往甲地.两人在距离乙地160千米处相遇,此后2小时各自到达自己的目的地.图中线段AB表示李师傅离乙地距离y1〔千米〕与他出发时间x〔小时〕的函数关系,根据以上条件答复以下问题:〔1〕李师傅的货车速度为千米/小时;王东在李师傅出发小时后才出发;〔2〕求y1与x之间的函数表达式;〔3〕请在图中画出王东离开乙地的距离y2与x之间的函数图象;该函数图象交AB于点C,请写出点C 坐标,并解释其实际意义.18.〔2021•天门模拟〕随着信息技术的快速开展,“互联网+〞渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦.现有某教学网站筹划了A,B两种上网学习的月收费方式:设每月上网学习时间为x小时,方案A,B的收费金额分别为y A,y B.收费方式月使用费/元包时上网时间/h超时费/〔元/min〕A725B m n〔1〕如图是y B与x之间函数关系的图象,请根据图象填空:m=,n=;〔2〕写出y A与x之间的函数关系式;〔3〕选择哪种方式上网学习合算,为什么?19.〔2021•建华区二模〕甲、乙两地相距480km,一辆货车和一辆轿车先后从甲地出发驶向乙地〔两车速度均保持不变〕.如图,折线ABCD表示轿车离甲地的距离y〔千米〕与时间x〔小时〕之间的函数关系,线段OE表示货车离甲地的距离y〔千米〕与时间x〔小时〕之间的函数关系,请你根据图象信息,解答以下问题:〔1〕线段BC表示轿车在途中停留了小时,a=;〔2〕求线段CD对应的函数解析式;〔3〕轿车从甲地出发后经过多长时间追上货车?〔4〕请你直接写出两车何时相距30千米〔两车均在行驶〕?答:.20.〔2021•前郭县三模〕甲、乙两车分别以各自的速度匀速从A地驶向B地,甲车比乙车早出发2h,并且甲车途中休息了h,如图是甲、乙两车行驶的路程y〔km〕与时间x〔h〕的函数图象.〔1〕m=,A、B两地的路程为km;〔2〕求乙车行驶的路程y〔km〕与时间x〔h〕的函数关系式,并写出相应的x的取值范围;〔3〕当乙车行驶多长时间时,两车恰好相距50km?21.〔2021•长春模拟〕甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快25km/h,甲、乙两人与A地的距离y〔km〕和乙行驶的时间x〔h〕之间的函数图象如下图.〔1〕甲车速度为km/h,a的值为.〔2〕求甲车到达B地后y与x之间的函数关系式.〔3〕求BC两地相距的路程是多少千米.22.〔2021•龙湾区二模〕某游泳馆有以下两种购票方式:一是普通门票每张30元;二是置办年卡〔从购置日起,可持年卡使用一年〕.年卡每张m元〔480≤m≤550,m为整数〕,且年卡持有者每次进入时,还需购置一张固定金额的入场券.设市民在一年中去游泳馆x次,购置普通门票和年卡所需的总费用分别为y1〔元〕和y2〔元〕.〔1〕如图1,假设m=480,当x=20时,两种购票方式的总费用y1与y2相等.①分别求y1,y2关于x的函数表达式.②要使市民办年卡比购置普通门票的总费用至少节省144元,那么该市民当年至少要去游泳馆多少次?〔2〕为增加人气,该游泳馆推出了每位顾客n〔n<30〕次免费体验活动,如图2.某市民发现在这一年进游泳馆的次数到达30次〔含免费体验次数〕时,两种购票方式的总费用y1与y2相等,求所有满足条件的m的值.23.〔2021•前郭县二模〕一辆货车从A地去B地,一辆轿车从B地去A地,两车沿笔直的公路同时出发,匀速行驶,各自到达终点后停止,轿车的速度大于货车的速度.两车之间的距离y〔km〕与货车行驶的时间x〔h〕之间的函数关系如下图.〔1〕观察图象可知,两车行驶小时后相遇;〔2〕轿车的速度为km/h,货车的速度为km/h;〔3〕求两车相遇后,y与x之间的函数关系式;〔4〕直接写出两车相距160km时货车行驶的时间.24.〔2021春•济南期中〕在济南市市中区春季田径比赛中,甲、乙两名运发动的路程S〔米〕与时间t〔分钟〕的关系如下图,根据图象解答以下问题:〔1〕这次比赛的全程是米;先到达终点的人比另一人领先分钟;〔2〕在比赛过程中,甲运发动的速度始终保持为米/分;乙运发动经验丰富,注意运用技巧,比赛过程分起跑、途中跑、冲刺跑三阶段进行,经历了两次加速过程,在第分钟后第一次加速,速度变为米/分,在第分钟后第二次加速;〔3〕假设乙在第一次加速后,始终保持这个速度继续前进,那么甲、乙两人谁先到达终点?谓说明理由.25.〔2021春•龙岗区校级期中〕一直线上有Q、P、M不同三地,甲、乙两人分别从P、Q两地同时同向出发前往距离Q地150米的M地,甲、乙两人距离Q地的距离y〔米〕与行走时间x〔分〕之间的关系图象如下图,假设甲的速度一直保持不变,乙出发2分钟后加速行走,且乙在加速后的速度是甲速度的4倍.〔1〕乙加速之后的速度为米/分;〔2〕求当乙追上甲时两人与Q地的距离;〔3〕当甲出发多少分钟时,两人相距10米?26.〔2021春•中山区期中〕五一假期小明和小强分别从家出发去公园,小明比小强先出发2min,俩人同时到达公园,小明的速度为80m/min,设小明、小强两人相距ym与小明行进行的时间xmin之间的函数关系如下图:〔1〕填空:小明和小强家相距m,a=;〔2〕求线段AB对应的函数表达式,并直接写出自变量x的取值范围.〔3〕设小强离家的距离为y1m,小明行进的时间xmin,求y1与x的函数关系式,并画出函数的图象.27.〔2021春•沙坪坝区校级期中〕货车和轿车分别沿同一路线从甲地出发去乙地,货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的9 10继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y〔米〕与货车出发的时间x〔分钟〕之间的关系的局部图象如下图.〔1〕货车的速度是米/分,轿车故障前的速度是米/分;〔2〕求a的值;〔3〕求货车出发多长时间,两车相距14000米.28.〔2021春•吉安月考〕A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离S〔km〕与时间t〔h〕的关系,结合图象答复以下问题.〔1〕表示甲离A地的距离与时间关系的图象是〔填l1或l2〕乙的速度是km/h;〔2〕求出l2的函数关系式,并注明自变量t的取值范围;〔3〕甲出发后多少时间两人恰好相距15km?29.〔2021•中牟县二模〕2021年春,河南某高校为做好新型冠状病毒感染的防治工作,方案为教职工购置一批洗手液〔每人2瓶〕.学校派王老师去商场购置,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购置量不超过100瓶时,按原价销售;当购置量超过100瓶时,超过的局部打8折.所需费用y〔元〕与购置洗手液的数量x〔瓶〕之间的函数图象如下图.〔1〕根据图象可知,洗手液的单价为元/瓶,请直接写出y与x之间的函数关系式;〔2〕请求出a的值;〔3〕如果该高校共有m名教职工,请你帮王老师设计最省钱的购置方案.30.〔2021•红桥区二模〕4月23日是“世界读书日〞,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店,所有书籍按标价总额的8折出售.在乙书店,一次购书的标价总额不超过100元的按标价总额计费,超过100元后的局部打6折.设在同一家书店一次购书的标价总额为x〔单位:元,x>0〕.〔Ⅰ〕根据题意,填写表格:一次购书的标价总额/元50150300…在甲书店应支付金额/元120…在乙书店应支付金额/元130…〔Ⅱ〕设在甲书店应支付金额y1元,在乙书店应支付金额y2元,分别写出y1,y2关于x的函数关系式;〔Ⅲ〕根据题意填空:在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,那么在同一个书店一次购书的标价总额元;②假设在同一个书店一次购书应支付金额为280元,那么在甲、乙两个书店中的书店购书的标价总额多;③假设在同一个书店一次购书的标价总额120元,那么在甲、乙两个书店中的书店购书应支付的金额少.。

《一次函数》培优题[含答案解析]

《一次函数》培优题[含答案解析]

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)

巩固练习一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______. 11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T=2kmnd 的关系(k 为常数).•现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为_______次(用t 表示).三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=的图象与x轴,y轴,分别交于A、B3两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.10.已知直线y=43x+4与x 轴、y 轴的交点分别为A 、B .又P 、Q 两点的坐标分别为P (•0,-1),Q (0,k ),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当k 取何值时,⊙Q•与直线AB 相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E 市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3).提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为(98,34),在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,y B),其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴=.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.2.8.∵点A、B分别是直线y=3x轴和y轴交点,∴A(-3,0),B(0,∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B 、D 两点的一次函数解析式为y=kx+b,502b k k b b ⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为(2)若点D 在点C 左侧则x<1,可证△ABC ∽△ADB ,∴AD BD AB CB == ② ∴8x 2-18x-5=0,∴x 1=-14,x 2=52,经检验x 1=14,x 2=52,都是方程②的根. ∵x 2=52不合题意舍去,∴x 1=-14,∴D 点坐标为(-14,0),∴图象过B 、D (-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为或. 9.直线y=12x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3), ∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB , ∴cot ∠ODC=cot ∠OAB ,即OD OAOC OB=, ∴OD=463OC OA OB ⨯==8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x ≤30(2)三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f (x )=x-x (1-20%)20%(1-30%)=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000(元).答:这笔稿费是8000元. 13.(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5, ③.由①,②,③得: 1.51044,568.5.x y a x y a +-=⎧⎨+-=⎩ ④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523. 由于y 是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

一次函数的应用:方案问题(重难点培优)八年级数学下册尖子生同步培优题典(原卷版)【人教版】

一次函数的应用:方案问题(重难点培优)八年级数学下册尖子生同步培优题典(原卷版)【人教版】

2020-2021学年八年级数学下册尖子生同步培优题典【人教版】专题19.10一次函数的应用:方案问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019春•德阳期末)某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是()A.月通话时间低于200分钟选B方案划算B.月通话时间超过300分钟且少于400分钟选A方案划算C.月通话费用为70元时,A方案比B方案的通话时间长D.月通话时间在400分钟内,B方案通话费用始终是50元2.(2019•唐县二模)超市有A,B两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A型瓶3个或以上,一次性返还现金5元,设购买A型瓶x (个),所需总费用为y(元),则下列说法不一定成立的是()型号A B单个盒子容量(升)23单价(元)56A.购买B型瓶的个数是(5−23x)为正整数时的值B.购买A型瓶最多为6个C.y与x之间的函数关系式为y=x+30 D.小张买瓶子的最少费用是28元3.(2020•路桥区模拟)甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同4.(2019秋•包河区期中)广宇同学以每千克1.1元的价格从批发市场购进若干千克西瓜到周谷堆市场上销售,在销售了40千克之后,余下的打七五折全部售完,销售金额y(元)与售出西瓜的千克数x(千克)之间的关系如图所示,下列结论正确的是()A.降价后西瓜的单价为2元/千克B.广宇一共进了50千克西瓜C.售完西瓜后广字获得的总利润为44元D.降价前的单价比降价后的单价多0.6元5.(2019•宁德一模)小卖部从批发市场购进一批杨梅,在销售了部分杨梅之后,余下的每千克降价3元,直至全部售完.销售金额y元与杨梅销售量x千克之间的关系如图所示.若销售这批杨梅一共赢利220元,那么这批杨梅的进价是()A.10元/千克B.12元/千克C.12.5元/千克D.14.4元/千克6.(2019秋•连州市期末)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第20天的日销售利润是750元B.第30天的日销售量为150件C.第24天的日销售量为200件D.第30天的日销售利润是750元7.(2020秋•金水区校级期中)甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/千克C.乙园超过5千克后,超过的部分价格优惠是打五折D.若顾客采摘15千克草莓,那么到甲园比到乙园采摘更实惠8.(2019•常州模拟)我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4小时B.4.3小时C.4.4小时D.5小时9.(2019秋•义乌市期末)某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高250元(第6个月末发薪水10000元)但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?()A.方案一B.方案二C.两种方案一样D.工龄短的选方案一,工龄长的选方案二10.(2018秋•武邑县校级期末)为了鼓励居民节约用水,某市决定实行两级收费制度,水费y(元)与用水量x(吨)之间的函数关系如图所示.若每月用水量不超过20吨(含20吨),按政府优惠价收费;若每月用水量超过20吨,超过部分按市场价4元/吨收费,那么政府优惠价是()A.2.2元/吨B.2.4元/吨C.2.6元/吨D.2.8元/吨二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•金平区期末)我国很多城市水资源缺乏,为了加强居民的节水意识,某自来水公司采取分段收费标准,某市居民月交水费y(元)与用水量x(吨)之间的关系如图所示,若某户居民4月份用水20吨,则应交水费元.12.(2019秋•渝中区校级月考)国庆期间,鲁能巴蜀中学团委决定组织同学们观看电影《我和我的祖国》,《中国机长》和《攀登者》,小明准备到电影院提前购票.已知三部电影单价之和为100元,计划购买三部电影票总共不超过135张;其中《攀登者》票价为30元,计划购买35张,《中国机长》至少购买25张,《我和我的祖国》数量不少于《中国机长》的2倍粗心的小明在做预算时将《我和我的祖国》和《中国机长》的票价弄反了,结果实际购买三种电影票时的总价比预算多了112元,若三部电影票的单价均为整数,则小明实际购买这三部电影票最多需要花费元.13.(2016春•历下区校级期末)如图所示,是某电信公司甲、乙两种业务:每月通话费用y(元)与通话时间x(分)之间的函数关系.某企业的周经理想从两种业务中选择一种,如果周经理每个月的通话时间都在100分钟以上,那么选择种业务合算.14.(2020•宝应县二模)如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,如果班级搞一次茶话会,一次购买26千克这种苹果需元.15.(2020•浙江自主招生)某市政府大力扶持大学生创业.小甬在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y=﹣10x+500.根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果小甬想要每月获得的利润不低于2000元,那么他每月的成本最少需要元.(成本=进价×销售量)16.(2020•历下区校级模拟)某快递公司每天上午9:30﹣10:30为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么从9:30开始,经过分钟时,两仓库快递件数相同.17.(2019秋•广饶县期末)如图,l1表示某机床公司一天的销售收入与机床销售量的关系,l2表示该公司一天的销售成本与机床销售量的关系.有以下四个结论:①l1对应的函数表达式是y=x;②l2对应的函数表达式是y=x+1;③当销售量为2件时,销售收入等于销售成本;④利润与销售量之间的函数表达式是w=0.5x﹣1.其中正确的结论为(请把所有正确的序号填写在横线上).18.(2020春•武川县期末)如图2是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是.①第24天的销售量为200件;②第10天销售一件产品的利润是15元;③第12天与第30天这两天的日销售利润相等;④第30天的日销售利润是750元.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•惠安县期末)某中学为了加强学生体育锻炼,准备购进一批篮球和足球.据调查,某体育器材专卖店销售40个足球和60个篮球一共9200元;销售100个足球和30个篮球一共11000元.(1)求足球和篮球的单价;(2)该校计划使用10420元资金用于购买足球和篮球120个,且篮球数量不少于足球数量的2倍.购买时恰逢该专卖店在做优惠活动,信息如表:球类购买数量低于50个购买数量不低于50个足球原价销售八折销售篮球原价销售九折销售问在使用资金不超额的情况下,可有几种购买方案?如何购买费用最少?20.(2020春•文水县期末)为了加强环境保护,进一步提升污水处理能力,我县某污水处理厂决定购买A、B两种型号的污水处理设备共20台,每台A型污水处理设备12万元,每台B型污水处理设备10万元,已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两种型号污水处理设备每周分别可以处理污水多少吨?(2)现要求购买A种型号污水处理设备的台数不少于B种型号污水处理设备台数的2倍,问如何设计购买方案,使购买这两种型号污水处理设备的费用最少,最少费用是多少?21.(2020春•大余县期末)为拓宽学生视野,引导学生主动适应社会,我县某中学决定组织部分班级去丫山开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示,为了安全既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师.甲种客车乙种客车载客量(人/辆)3042租金(元/辆)300400(1)参加此次研学旅行活动的老师和学生各有多少人?(2)设租用两种车共8辆,其中a辆甲种客车,租车总费用为W元.请求出W与a之间的函数关系式(不要求写出a的取值范围).(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,且保证师生都有座位,请问有哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.22.(2020秋•兴化市期末)供销商场购进甲、乙两种洗衣机共80台进行销售,其中乙洗衣机的数量不超过甲洗衣机的3倍,甲洗衣机每台利润为500元,乙洗衣机每台利润为600元.设购进甲洗衣机x(台),这80台洗衣机全部售出的总利润为W(元).(1)求W关于x的函数表达式;(2)当甲洗衣机购进多少台时,销售总利润最大?最大利润是多少?23.(2020秋•余杭区期末)文具店出售书包和文具盒,书包每个定价为30元,文具盒每个定价5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折付款.某班学生需购买8个书包和若干个文具盒(不少于8个),设购买文具盒个数为x(个),付款总金额为y (元).(1)分别写出两种优惠方案中y与x之间的函数关系式;(2)请你通过计算,结合购买文具盒的个数说明哪种方案更省钱?24.(2020秋•蜀山区期末)某童装店近两周A、B两款童装的销售情况如下表所示:(进价、售价均保持不变,利润=售价﹣进价)销售时段销售数量(件)销售收入A款B款第一周452050元第二周492890元(1)求A、B两款童装的销售单价;(2)若A、B两款童装每件的进价分别为190元、170元,该童装店准备在下个月进这两款童装共50件(每款童装至少进1件),并且在当月全部销售完,请求出该童装店下个月销售这两款童装的最大利润.。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

第三讲 一次函数

第三讲     一次函数

第三讲 一次函数函数自变量的取值:分母不为零,2次根号下被开方数大于等于零。

例1求下列函数中,自变量的取值范围(1)、x x y 2112-+-= (2)、21--=x x y (3)、312---=x x y (4)、2)3(50+-+-=x x x y例2:确定下列一次函数的解析式(1)、一次函数的图像平行于正比例函数x y 35=的图像,且过点(6,8) (2)、一次函数的图像经过点(0 , 32),且与坐标轴所围成的图形的面积为3面积单位例3 有一个水池,既有进水管,又有出水管,每单位时间内各管的进出水量是一定的,水池原来无水,设从某时刻开始的5分钟内只进水,不出水,在随后10分钟内,既有进水又出水,得水量y (升)与时间x (分)之间的关系如图(1) 每分钟进水多少 ?(2)155≤≤x 时,y 与x 的函数关系式如何?(3)若15分钟后只放水,求y 的函数表达式。

y例4:一个一次函数的图像与直线49545+=x y 平行, 与x 轴、 y 轴的交点分别是A 、B ,并且过点( - 1 ,- 25 ),则线段AB 上(包括端点A 、B ),横坐标、纵坐标都是整数的点有多少个。

例5、点P 为直线y = - 3 x + 6 上的一点,且点P 到两坐标轴的距离相等,则点P 的坐标为____________________例6:某报摊一个月中每天从报社买进的“××晚报”的数量是确定不变的,进价为0.38元/份,零售价为0.5元/份,卖不掉的报纸可按0.16元/份退回报社,在一个月(按30天计算)中有22天可卖出400份,另8天每天只能卖出300份,为了使赚钱更多,请你给该报摊主计算一下,他在一个月中,每天从报社买进多少报纸才能赚钱更多?最多能赚多少元钱?例7:设b>a ,将一次函数y=bx+a 与y=ax+b 的图像画在平面直角坐标系上,则有一组a ,b 的值,使得下图中的一个是正确的是( )例8:如果一直线L 经过不同的三点A (a ,b ),B (b ,a ),C (a-b ,b-a ),那么直线L 经过()A 、第二、四象限B 、第一、三象限C 、第二、三、四象限D 、第一、三、四象限AB DC作业1.若函数y=(2+m)x32-m 是正比例函数,则常数m 的值是 . 2.y=311-++x x 中x 的取值范围是 . 3.当x= 时,y=2x+2与y=x+1有相同的函数值。

(完整版)一次函数应用题及答案

(完整版)一次函数应用题及答案

(完整版)一次函数应用题及答案一次函数应用题(讲义)一、知识点睛1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函数图象与_实际场景____________对应起来;2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;3.结合实际场景解释所求结果.二、精讲精练1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:(1)直接写出快、慢两车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的函数图象如图中折线所示,该加油站截止至13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)求出线段BC 所对应的函数关系式.3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示槽中水的深度与注水时间之间的关系,线段DE 表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?元/件)(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).甲槽4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于灾情严重,政府部门决定对药品供应方提供价格稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.图1图25.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式.(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.轴、点、线;实际场景2.函数图象二、精讲精练1.(1)快车速度为120km/h,慢车速度为80km/h ,A,B两站间的距离为1200km;(2)PQ:y=-40x+1320 (11≤x≤15);QH:y=-120x+2520(15<x≤21);(3)x=5,7,583时,两车相距200千米.2.(1)x=4;(2)y=1.1x(5≤x≤10).3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2DE:y=-2x+12联立32212 y xy x=+=-+?解得:28 xy=?=?∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.(3)84立方厘米;(4)60平方厘米.4.(1)该药品的稳定价格为36(元/件),稳定需求量为34(万件);(2)当药品每件价格在大于36小于70时,该药品的需求量低于供应量;(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.5.(1)99418821059y x x=-+≤≤();(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)一、选择题:1.y与x+3成正比例,即y=k(x+3),代入x=1,y=8,解得k=2,因此函数关系式为y=2(x+3)=2x+6,选项(C)。

2.直线y=kx+b经过一、二、四象限,说明k和b异号,因此直线y=bx+k经过三象限,选项(C)。

3.直线y=-2x+4与两坐标轴围成的三角形的底边分别为4和2,因此面积为1/2*4*2=4,选项(A)。

4.由于两弹簧的函数解析式分别为y=k1x+a1和y=k2x+a2,因此y1=k1*2+a1,y2=k2*2+a2,无法确定它们的大小关系,选项(D)。

5.两个函数的图象分别为斜率为b和a的直线,当b>a时,y=bx+a的图象在y=ax+b的图象上方,因此选项(D)。

6.同第二题,直线y=bx+k经过三象限,因此不经过第二象限,选项(B)。

7.当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当k=0时,y=2,因此选项(B)。

8.直线y=x+2m与y=-x+4的交点为(-2m+2,2m+2),当m>0时在第一象限,当m<0时在第二象限,因此选项(B)。

9.直线y=-x/2平移下移4个单位得到y=-x/2-4,即y=-33x-4,因此选项(D)。

10.XXX与x成正比例,则k=m-5=0,解得m=5,选项(D)。

11.直线y=3x-1与y=x-k的交点为(1/2,3/2-k/2),当k>1时在第四象限,因此选项(C)。

12.直线可以作4条,分别为y=-5x-2,y=5x-8,x=3,x=-1,选项(A)。

13.由于a+b/c+b/a+c=p,将其化简得到(a+b+c)/bc=p,因此直线y=px+p经过点(1/a,1/b,1/c),选项(D)。

改写后的文章:一、选择题:1.已知y与x+3成正比例,且当x=1时,y=8,求y与x 之间的函数关系式。

答案:y=2x+6.2.若直线y=kx+b经过一、二、四象限,求直线y=bx+k不经过的象限。

一次函数应用题含答案

一次函数应用题含答案

一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。

一次函数培优(完美版)

一次函数培优(完美版)

一次函数培优(完美版)1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,),则不等式ax大于b的解集为()解:根据题意,该函数经过x轴交点为(-2,0),即-2a+b=0,解得b=2a。

由于图像经过一,二,三象限,即函数值同时为正、负、正,因此a的符号为正。

代入不等式ax>b 中,得到ax>2a,即x>2.因此,答案为A。

2、若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是________解:不等式左侧为两个绝对值的和,可以通过分段讨论的方法求解。

当x<1时,2|x-1|=-2x+2,3|x-3|=-3x+9,因此不等式化为-5x+11≤a。

当1≤x<3时,2|x-1|=2x-2,3|x-3|=-3x+9,因此不等式化为-x+7≤a。

当x≥3时,2|x-1|=2x-2,3|x-3|=3x-9,因此不等式化为5x-15≤a。

为了使不等式有解,必须满足-5x+11≤a和5x-15≤a都成立,即a≥11/2且a≥15/2,取最大值a=15/2,因此答案为15/2.3、已知实数a,b,c满足a+b+c≠0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?解:将a/b+c=b/c+a=c/a+b=k代入,得到a=k(b+c),b=k(c+a),c=k(a+b)。

将b+c=a/k代入第一个式子,得到a=k(a/k),即a=c+b。

因此,a,b,c三个数相等,且都不为0.将a=b=c代入直线方程y=kx-3中,得到y=kx-3a。

因为a不为0,所以直线不经过原点,因此必定经过第二、第三、第四象限。

答案为第二、第三、第四象限。

4、已知一次函数y=ax+b的图象过(,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 解:由于图象过(,2)点,因此b=2.又因为图形是等腰直角三角形,所以另外两个交点的横坐标相等,即函数值为0时的横坐标相等。

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)

参考答案
2.(1)100 ; 80 (2) y 40t 20 ,教官们领取装备所用的时间 0.5h ; (3)客车第二次出发时的速度至少是 60km/h .
3 即按原路返回,结果比货车早一个小时到达甲地.如图是两车距各自出发地的距离 y( km ) 与货车行驶时间 x(h)之间的函数图象,结合图象回答下列问题:
(1)图中 a 的值是______;
(2)求轿车到达乙地再返回甲地所花费的时间; (3)轿车在返回甲地的过程中与货车相距 30km ,直接写出货车已经从乙地出发了多长时间? 15.小聪和小慧沿图 1 中的风景区游览,约好在飞瀑见面.小聪驾驶电动汽车从宾馆出发, 小慧也于同一时间骑电动自行车从塔林出发:图 2 中的图象分别表示两人离宾馆的路程 y(km) 与时间 x(h) 的函数关系,试结合图中信息回答:
8.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用 时 30 分钟,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度
为 60km / h .两车之间的距离 y km 与慢车行驶的时间 x h 的函数图象如图所示.
(1)求出图中线段 AB 所表示的函数表达式; (2)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
(1) a ________, b __________; (2)求出姐姐从家出发直到返回家的过程中,姐姐离家的距离 y1 与时间 t 之间的关系式; (3)在姐姐去体育场的过程中,直接写出 t 为何值时,两人相距 400m .
4.港口 A 、 B 、 C 依次在同一条直线上,甲、乙两艘船同时分别从 A 、 B 两港出发,匀速 驶向 C 港,甲、乙两船与 B 港的距离 y (海里)与行驶时间 x (时)之间的关系如图所 示.

(完整版)利用一次函数解决实际问题(含答案)

(完整版)利用一次函数解决实际问题(含答案)

利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。

因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。

第03讲 三步解决一次函数的行程问题(带答案)

第03讲 三步解决一次函数的行程问题(带答案)

第03讲三步解决一次函数的行程问题题型一:每个元素有自己的图像做题步骤:第一步:看看横纵坐标分别表示的意义,这个在题里会给;第二步:找找点,找起点、终点、转折点,并判断出每个点代表的实际意义;第三步:变看图像里的变化趋势,结合题意理解每段图像的实际意义。

解题方法:1.用实际意义,结合追及、相遇等问题列方程或不等式解题;2.用解析式,直接要利用图像的实际意义解题。

1.(2022年黑龙江省牡丹江市中考数学真题)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C 地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为______米/分钟,乙的速度为______米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.2.(2022年山东省烟台市中考数学真题)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为()A.12B.16C.20D.243.(2022年黑龙江省哈尔滨市中考数学真题)一辆汽车油箱中剩余的油量op与已行驶的路程okm)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km1.(2022年黑龙江省牡丹江市中考数学真题)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C 地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为______米/分钟,乙的速度为______米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.【答案】(1)300,800x≤≤)(2)=800−2400(362.(2022年山东省烟台市中考数学真题)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为()A.12B.16C.20D.24路程okm)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35时,那么该汽车已行驶的路程为()A .150kmB .165kmC .125kmD .350km 【答案】A 【分析】根据题意所述,设函数解析式为y =kx +b ,将(0,50)、(500,0)代入即可得出函数关系式.【详解】解:设函数解析式为y =kx +b ,将(0,50)、(500,0)代入得=50500+=0解得:=50=−110∴函数解析式为=−110+50当y =35时,代入解析式得:x =150故选A【点睛】本题考查了一次函数的简单应用,解答本题时要注意细心审题,利用自变量与因变量的关系进行解答. 题型二:两个元素共用一条图像当两个元素只有一条图像时,纵坐标一般表示的是两车或两人之间的距离。

第三讲 一元一次不等式与一次函数(基础训练)(解析版)

第三讲 一元一次不等式与一次函数(基础训练)(解析版)

第三讲 一元一次不等式与一次函数一、单选题1.一次函数y =2x -4与x 轴的交点坐标是(2,0),那么不等式2x -4≤0的解集应是( ) A .x ≤2B .x <2C .x ≥2D .x >2【答案】A【解析】试题解析:因为一次函数y =2x -4与x 轴的交点坐标是(2,0),所以不等式240x -≤ 的解集应是2x ≤;故选A.点睛:考查一元一次不等式与一次函数,不等式的解集就是一次函数的函数值小于等于0的自变量x 的取值范围.2.如图,直线y =kx +b 交坐标轴于A (-3,0)、B (0,5)两点,则不等式-kx -b <0的解集为( )A .x >-3B .x <-3C .x >3D .x <3【答案】A【解析】 观察图象可知,当x >﹣3时,直线y=kx+b 落在x 轴的上方,即不等式kx+b >0的解集为x >﹣3,∵﹣kx ﹣b <0∵kx+b >0,∵﹣kx ﹣b <0解集为x >﹣3.故选A .3.一次函数y kx b =+ (k , b 是常数,k≠0) 的图象如图所示,则当y>0时,x 的取值范围是( )A .x>-2B .x>0C .x<-2D .x<0【答案】A【分析】 观察函数图象可知,k >0且当x=-2时,y=0,进而可得出当x >-2时y>0,此题得解.【详解】由图像可得,k >0,且当x=-2时,y=0,∵x >-2时y >0;故选A.【点睛】本题主要考查了一次函数的图象,一次函数的性质,掌握一次函数的图象,一次函数的性质是解题的关键. 4.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集( )A .2x >-B .0x >C .2x <D .1x <-【答案】C【解析】试题解析:从图像可以观察得出当函数值小于0的时候,自变量x 的取值范围是 2.x <故选C.5.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .0y <D .4y <-【答案】C【解析】试题解析:从图像可以看出当自变量2x <时,y 的取值范围在x 轴的下方,故0.y <故选C.6.如图,直线y kx b =+交坐标轴于A B ,两点,则关于x 的不等式0kx b +>的解集是A .2x >-B .3x >C .2x <-D .3x <【答案】A【解析】 试题分析:kx+b >0可看作是函数y=kx+b 的函数值大于0,然后观察图象得到图象在x 轴上方,对应的自变量的取值范围为x >-2,这样即可得到不等式kx+b >0的解集.kx+b >0即函数y=kx+b 的函数值大于0,图象在x 轴上方,对应的自变量的取值范围为x >-2, 所以不等式kx+b >0的解集是x >-2.故选A .考点:本题考查了一次函数与一元一次不等式点评:对于一次函数y=kx+b ,当y >0时对应的自变量的取值范围为不等式kx+b >0的解集.7.已知关于 x 的不等式 ax +1>0(a ≠0)的解集是 x <1,则直线 y =ax +1 与 x 轴的交点是( ) A .(0,1) B .(﹣1,0) C .(0,﹣1) D .(1,0)【答案】D【解析】试题分析:由于关于x 的不等式ax+1>0(a≠0)的解集是x <1,得到a 小于0,表示出不等式的解集,列出关于a 的方程,求出方程的解得到a 的值,将a 的值代入确定出直线y=ax+1解析式,即可求出与x 轴的交点坐标.∵关于x 的不等式ax+1>0(a≠0)的解集是:x <1,∵a <0,解得:x <,∵=1,即a=-1,即直线解析式为y=-x+1,令y=0,解得:x=1,则直线y=-x+1与x 轴的交点是(1,0).故选D考点:本题考查了一次函数与一元一次不等式点评:解答本题的关键是理解不等式的解集可看作是直线与x 轴的交点的左边或右边的取值.同时认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定【答案】B【分析】 如图,直线l 1:y 1=k 1x+b 与直线l 2:y 2=k 2x 在同一平面直角坐标系中的图像如图所示,则求关于x 的不等式k 1x+b >k 2x 的解集就是求:能使函数y 1=k 1x+b 的图象在函数y 2=k 2x 的上方的自变量的取值范围.【详解】解:能使函数y 1=k 1x+b 的图象在函数y 2=k 2x 的上方的自变量的取值范围是x<-1.故关于x 的不等式k 1x+b >k 2x 的解集为:x<-1.故选B .9.已知函数y =8x -11,要使y >0,那么x 应取( )A .x >B .x <118C .x >0D .x <0【答案】A【解析】试题解析:要使 0y >,即8110x ->, 解得11.8x >故选A.10.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( )A .y >0B .y <0C .-2<y <0D .y <-2【答案】D【解析】试题分析:通过观察图象得到x <0时,图象在y 轴的左边,即可得到对应的y 的取值范围.当x <0时,图象在y 轴的左边,所以对应的y 的取值范围为y <-2,故选D.考点:本题考查了一次函数的图象点评:解答本题的关键是熟记x <0时,图象在y 轴的左边,x >0时,图象在y 轴的右边.二、填空题11.如图,一次函数y =kx +b 的图象如图所示,当y<0时,x 的取值范围是_________【答案】2x >【解析】试题解析:从图像可以知道当y 小于0的时候,x 的取值范围是x 大于2,故答案是2x >. 故答案为2x >.12.直线4y x =+与x 轴交于点()40,-,则0y >时,x 的取值范围是________【答案】x >-4【解析】试题解析:从图像可以观察当y 大于0的时候,x 的取值范围是4x >-,故答案为:4x >-.13.已知2x -y =0,且x -5>y ,则x 的取值范围是________.【答案】x <-5【解析】试题解析:由2x -y =0,可以得到y =2x ,代入5x y ->可已转化为52x x ->,可以解得 5.x <-故答案为 5.x <-14.已知关于x 的不等式kx ﹣2>0(k≠0)的解集是x <﹣3,则直线y =﹣kx+2与x 轴的交点是_____.【答案】(﹣3,0)【解析】试题解析:因为不等式()200kx k ->≠的解集是3x <-,所以可以求得k 的值是23-,将k 的值代入2y kx =-+,得到223y x =+,与x 轴的交点是纵坐标是0,即2023x =+解得3x =- ,所以坐标是()3,0.-故答案为()3,0.-15.若21(2)15m m x +-->是关于x 的一元一次不等式,则m 的值为_____【答案】0【解析】试题解析:一元一次不等式的未知数的次数是1次,所以2m +1=1,即m =0.故答案为:0.16.直线4y x =+与x 轴交于点()40,-,则0y >时,x 的取值范围是________【答案】x>-4【解析】试题解析:从图像可以观察当y大于0的时候,x的取值范围是4x>-,故答案为:4x>-.17.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.【答案】3a<.【解析】∵(a−3)x>1的解集为x<13a-,∵不等式两边同时除以(a−3)时不等号的方向改变,∵a−3<0,∵a<3.故答案为a<3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.18.如果三角形的三边长度分别为3a,4a,14,则a的取值范围是______【答案】2<a<14【解析】试题解析:根据三角形的三边关系可以知道两边之和大于第三边,两边之差小于第三边,可以得到不等式3414,4314a a a a +>-<, 即可以解得214.a <<故答案为214.a <<点睛:本题的关键是三角形的两边之和大于第三边,两边之差小于第三边.19.若a b >,则2ac ________2bc【答案】≥【分析】由c 2≥0,因此分c 2>0与c 2=0两种情况结合不等式的性质进行求解即可.【详解】因为2c 是非负数,即c 2≥0,当c 2>0时,根据不等式的性质可以知道2ac >2bc ;当c 2=0时,2ac =2bc ;故答案为.≥【点睛】本题考查了不等式的性质,涉及了平方的非负性,不等式的基本性质等内容,正确进行分类讨论是解题的关键.20.若()120m m x++>是关于x 的一元一次不等式,则m =________. 【答案】1【解析】【分析】用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式.所以,m =1,且1m +≠0.【详解】因为()120m m x ++>是关于x 的一元一次不等式, 所以,m =1,且1m +≠0,解得m=1故答案为1【点睛】本题考核知识点:一元一次不等式定义. 解题关键点:理解一元一次不等式定义.21.不等式27x -<52x -的正整数解的和是多少?【答案】3【解析】试题分析:根据不等式的性质解不等式为:x <3,所以其正整数解为1、2,则它们的和为3.三、解答题22.已知15y x =-,221y x =+.当12y y >时,x 的取值范围是?【答案】6x <-【解析】试题分析:本题考查两个函数值大小的比较时自变量的取值范围,关键是转化为不等式求解即可.试题解析:因为12y y >,既可以转化为不等式5x ->21x +,经过解得不等式可以得到6x <-.23.已知一次函数23y x =-+当x 取何值时,函数y 的值在1-与2之间变化? 【答案】12<x <2【解析】试题分析:本题解答过程的关键是根据题意把一次函数的函数值介于范围内时候转化为不等式组,然后解决问题试题解析:本题可以转化为不等式1232x -<-+<, 所以本题可以转化为不等式组123232,x x -<-+⎧⎨-+<⎩解得不等式组的解集是1 2.2x << 24.已知y 1=-x +3,y 2=3x -4,交点坐标是(74,54)当x 取何值时,y 1>y 2?观察图像得出答案【答案】x 取小于74的值时,有y 1>y 2 【解析】试题分析:考查一次函数与不等式的结合,注意观察图像试题解析:若12y y ,>那么只需要观察函数y 1的图像在函数y 2的上方即可,当x 取小于74的值时,有12.y y > 25..若两个一次函数:1135x y -=+,22514x y -=-问x 取何值时,1y >2y 【答案】1016x < 【解析】试题分析:注意此题转化成一元一次不等式,求解即可.试题解析:根据题意可知,12531,54x x --+>-去分母,得()()416052520,x x -+>--去括号,得4460102520,x x -+>--移项,得4102520604,x x ->---+合并同类项,得6101,x ->-系数化为1,得101.6x < 即当1016x <时,12.y y >点睛:解一元一次不等式的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.。

一次函数培优及答案

一次函数培优及答案

Oy (微克/毫升) x (时)314 8 4 一次函数培优题一、填空题2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。

5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。

7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-2 第6题 第7题7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1xy-2 y =k 2x +cy =k 1x +bxyO B A 2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?A .B .C .D .2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。

一次函数综合培优(含解答题答案)

一次函数综合培优(含解答题答案)

一次函数综合培优(含解答题答案)-CAL-FENGHAI.-(YICAI)-Company One1A B C D 第6题 第7题 一、选择题(每题3分,共36分) 1、点1(5,)A y -和2(2,)B y -都在直线231--=x y 上,则1y 与2y 的关系是( )A .12y y ≤B .12y y =C .12y y < D. 12y y > 2、若实数a ,b ,c 满足a+b+c=0,且a <b <c ,则函数y=cx+a 的图象可能是( )3、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点在直线y=34x上一点,则点B 与其对应点B ′间的距离为( ) A .94B .3C .4D .54、若直线y=3x -1与y=x -k 的交点在第三象限,则k 的取值范围是( )A .k<13B .13<k<1 C .k>1 D .k>1或k<135、已知函数1225,23,y x y x =-=-+且12y y <,则x 的取值为( )A .0x >B .2x <C .x >2D .0x <6、如图,在平面直角坐标系中,▱OABC 的顶点A 在x 轴上,顶点B 的坐标为(6,4).若直线l 经过点(1,0),且将▱OABC 分割成面积相等的两部分,则直线l 的函数解析式是( )A .y=x+1B .y =13x+1 C .y=3x-3D .y=x-17、如图,直线L1:y=x+3与直线L2:y=ax+b 相交于点A (m ,4),则关于x 的不等式x+3≤ax+b 的解集是( ) A .x ≥4 B .x ≤4 C .x ≥m D .x ≤18、某校高一(1)班40名同学这“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,假设(x ,y )是两个一次函数图象的交点,则这两个一次函数解析式分别是( )A .y=27-x 与y=23x+22B .y=27-x 与y=23x+1003C .y=27-x 与y=32x+33D .y=27-x 与y=23x+339、若直线y=-2x-4与直线y=4x+b 的交点在第三象限,则b 的取值范围是( ) A .-4<b <8 B .-4<b <0 C .b <-4或b >8 D .-4≤b ≤8第3题第10题 第11题5 2 0 xy(1) (2) 第16题 第15题10、如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-211、如图所示,在平面直角坐标系中,直线OM 是正比例函数y=-3x 的图象,点A 的坐标为(1,0),在直线OM 上找点N ,使△ONA 是等腰三角形,符合条件的点N 的个数是( ) A .2个 B .3个 C .4个 D .5个12、如图,在平面直角坐标系中,直线y=23x-23与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是( )A .6B .3C .12D .43二、填空题(每题4分,共16分)13、函数y=ax+b (a >0,b <0)和y=kx (k <0)的图象交于点P ,那么点P 应该位于第 象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 一次函数的应用(培优)1.已知A 、B 两地相距4千米。

上午8:00,甲从A 地出发步行到B 的,8:20乙从B 地出发骑自行车到A 地,甲乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示。

由图中的信息可知,乙到达A 地的时间为 A 、8:30 B 、8:35 C 、8:40 D 、8:452.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的...距离..s (千米)与所用时间t (分)之间的关系( ).3.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图7),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图8),若AB =4,BC =3,则图7和图8中点B 点的坐标为 ,点C 的坐标分4.“五一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的距离S(千米)与时间t (时)的关系可以用图6的折线表示。

根据图象提供的有关信息,解答下列问题:(1) 小刚全家在旅游景点游玩了多少小时?(2) 求出返程途中S(千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围。

图6·→↑··601201808101415S(千米)t(时)5.某住宅小区计划购买并种植500株树苗,某树苗公司提供如下信息:信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等.信息二:如下表:设购买杨树、柳树分别为x 株、y 株. (1) 用含x 的代数式表示y ;(2)若购买这三种树苗的总费用为w 元,要使这500株树苗两年后对该住宅小区的空气净化指数之和不低于...120,试求w 的取值范围.解:⑴4002y x =-.⑵根据题意,得()0.40.10.240029040020x x x x ++-≥⎧⎪⎨-≥⎪⎩解这个不等到式组得:100≤x ≤200 ---------------- (5分) ∵ ()3234002w x x x =++-1200x =- ----------------------------------------------------------------- (6分)(法1) ∴x=1200-w ∴100≤1200-w ≤200解得 1000≤w ≤1100. ----------------------------------------------------------- (8分)(法2). 又 ∵w 随x 的增大而减小,并且100≤x ≤200,∴-200+1200≤w ≤-100+1200,即1000≤w ≤1100 ---------------- (8分) 6. 国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度.某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年试求y 与x 的函数关系式;(2)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元?(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元?解:(1)y=107(x-500)(500<x ≤10000)- (注:不说明范围的不扣分)--2′ (2) 设该农民一年内实际医疗费为x 元则当x ≤500时,不合题意,---------------------3′当(500<x ≤10000)时,有500+(x-500) ×0.3=2600 解之得:x=7500(元),答:(略)----5′(不答不扣分)(3) 设该农民一年内实际医疗费为x 元, ∵500+(10000-500) ×0.3=3350<4100,∴x>10000-----------6′ 根据题意有:500+(10000-500) ×0.3+(x-10000) ×0.2≥4100-----7′解之得:x ≥13750,答:(略),(不答不扣分)----8′7.某厂生产一种零件,每个成本为40元,销售单价为60元。

该厂为了鼓励客户购买,决定当一次购买零件超过100个时,多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元。

(1)当一次购买多少个零件时,销售单价恰为51元?(2)设一次购买零件x 个时,销售单价为y 元,求y 与x 的函数关系式;(3)当客户一次购买500个零件时,该厂获得的利润是多少?当客户一次购买1000个零碎件时,利润又是多少?(利润 = 售价-成本) (1)设当一次购买x 个零件时,销售单价为51元,则(x -100)×0.02 = 60-51,解得 x = 550。

答:当一次购买550个零件时,销售单价为51元。

(2)当0<x ≤100时, y = 60;当100<x ≤550时, y = 62-0.02x ;当x >550时, y = 51。

(3)当x = 500时,利润为(62-0.02×500)×500-40×500 = 6000(元)。

当x = 1000时,利润为1000×(51-40)= 11000(元)。

答:当一次购买500个零件时,该厂获得利润为6000元;当一次购买1000个零件时,该厂获得利润11000元。

8.在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:(1)在如图的直角坐标系内,作出各组有序数对 (x ,y )所对应的点.连接各点并观察所得的图形, 判断y 与x 之间的函数关系,并求出y 与x 之间的函 数关系式;(2)若樱桃进价为13元/千克,试求销售利润 P (元)与销售价x (元/千克)之间的函数关系式, 并求出当x 取何值时,P 的值最大?解:(1)正确描点、连线.由图象可知,y 是x 的一次函数.…………………1′ 设 y =kx +b , ∵点(25,2000),(24,2500)在图象上,∴⎩⎨⎧+=+=.,b k b k 242500252000解之得:⎩⎨⎧=-=.,14500500b k…∴ y =-500x +14500.………4′(2)P =(x -13)·y =(x -13)·(-500 x +14500) =-500 x 2+21000 x -188500 =-500(x -21)2+32000.∴P 与x 的函数关系式为P =-500 x 2+21000 x -188500, 当销售价为21元/千克时,能获得最大利润. 9.如图,在平面直角坐标系中,两个函数621,+-==x y x y 的图象交于点A ,动点P 从点O 开始沿OA 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PQMN ,设它与△OAB 重叠部分的面积为S , (1)求点A 的坐标。

(2分) (2)试求出点P 在线段OA 上运动时,S 与运动时间t (秒)的关系式。

(4分)(3)在(2)的条件下,S 是否有最大值?若有,求出t 为何值时,S 有最大值,并求出最大值;若没有,请说明理由。

(2分)(4分)若点P 经过点A 后继续按原方向、原速度运动,当正方形PQMN 与△OAB 重叠部分面积最大时,运动时间t 满足的条件是____________。

(2分)1)由⎪⎩⎪⎨⎧+-==,621,x y x y 可得⎩⎨⎧==.4,4y x ∴A (4,4)。

(2分)(2)点P 在y = x 上,OP = t ,则点P 坐标为).22,22(t t 点Q 的纵坐标为t 22,并且点Q 在621+-=x y 上。

∴t x x t 212,62122-=+-=, 即点Q 坐标为)22,212(t t -。

t PQ 22312-=。

(4分) 当t t 2222312=-时,23=t 。

当时230≤<t , .2623)22312(222t t t t S +-=-=(5分)当点P 到达A 点时,24=t ,当2423<t<时, 2)22312(t S -= (6分)144236292+-=t t 。

(3)有最大值,最大值应在230≤<t 中, ,12)22(2312)824(232623222+--=++--=+-=t t t t t S当22=t 时,S 的最大值为12。

(8分) (4)212≥t 。

(10分)10.正方形ABCD 的边长为10cm ,今由B 点出发,沿BC 、CD 边到D 点,若由B 到P 时,走了x cm ,2cm y S ABP =∆,求:(1)当P 点在BC 上时,用x 表示y ;(2)当P 点在CD 上时,求x 的取值范围; (3)当P 点在BC 上时,怎样用x 表示y ?(1)y=5x ;(2)2010≤≤x ;(3)y=5011.平面直角坐标系中,P (2,1--)、Q (4,2),取点P (1,m ),当m 为何值时,PR+RQ 有最小值52-=m 12. 设直线2)1(=++y n nx (n 为自然数)与两坐标轴围成的三角形面积为)2000,,2,1( =n S n ,则200021S S S +++ 的值为_____________2001200013. 如图,在直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(15,6),直线b x y +=31恰好将矩形OABC 分成面积相等的两部分,求b2114. 直线133+-=x y 与x 轴、与y 轴的交点分别为A 、B ,以线段AB 为直角边在第一象限内做等腰直角三角形ABC ,oBAC 90=∠,如果在第二象限内有一点P(21,a ),且三角形ABP 的面积与三角形ABC 的面积相等,求a283- 15. A 市与B 市分别有库存某种机器12台和6台,现决定支援给C 市10台和D 市8台,已知从A市调运到C市、D市的运费分别为每台400元和800元,从B市调运到C市、D市的运费分别为每台300元和500元,(1)设B市运往C市机器x台,求运费y(元)关于x的关系式;(2)若总运费不超过9千元,问有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?16.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为21)(+nn,即1+2+3+4+…+n=21)(+nn.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)解:(1)………………………………………………………3′因为组成此平行四边形的小圆圈共有n 行,每行有[(2n -1)+1]个,即2n 个,所以组成此平行四边形的小圆圈共有(n×2n)个,即2n2个.∴1+3+5+7+…+(2n-1)=21 12〕)—〔(+⨯nn=n2.………………6′(2)因为组成此正方形的小圆圈共有n 行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2.…………………。

相关文档
最新文档