有理数的意义及答案

合集下载

5.1有理数的意义

5.1有理数的意义

5.1有理数的意义一、知识点:例1:根据习惯用正数和负数表述下列具有相反意义的量:1、向东走500米记作_________,则向西走300米记作_________。

2、规定运出320吨记作________,则运进240吨记作__________。

3、规定盈利13万元记作_______,则亏损8千元记作__________。

4、气温上升8度记作_______,则气温下降6度记作_________。

例2:读出下列各数,并指出哪些是正数,哪些是负数?-3,0.5,21,0, 3.1,150,137+-- 例3:观察下列数,探求其规律:111111,,,,,23456---…… (1)填出第7,8,9项三个数(2)第2003个数是什么?(3)如果这一列数无限下去与哪个数越来越接近?例4:把下列有理数填在相应的集合内:1525,13,0.14,0,, 1.6,26+--- (1)负分数集合_________________________________(2)整数集合___________________________________(3)非负数集合_______________________________(4)非正数集合________________________________(5)有理数集合________________________________二、自我检测:1、把下列各数填入它们所在的集合里225,,19,5,0,5.7, 1.2,31%,0.3774---- 负数集合:_______________________________,整数集合:__________________________非负数集合:______________________________,正有理数集合:_________________________2、填空:(1)是正数而不是整数的有理数是__________________________(2)是整数而不是负数的有理数的是________________________(3)既不是分数也不是零的有理数是________________________(4)既不是正数也不是负数的有理数是______________________3、若整数x 满足16.226.5x -<<,则这样的整数有几个?正整数有几个?负整数有几个?非正整数有几个?非负整数有几个?4、下列各数中正数的个数是( ),有理数的个数是( )1123,0.5,,,0,(0)53a a ---< A 、3个 B 、4个 C 、5个 D 、6个5、判断:带正号的数就是正数,带负号的数就是负数 ( )5.2数轴一、知识点:数轴的定义:规定了______、_________、_________、的直线叫做数轴。

有理数的意义

有理数的意义

有理数的意义一:认识正负数知识点一:正负数的概念:比0大的数是正数,比0小的数是负数。

例1 下列各数哪些是正数?哪些是负数? -10.1,-0.5,0,52-,36,15%,-60,31-,22.8,a知识点二:对“0”的理解0不在正、负数的范围内,它是正数和负数的分水岭。

它的意义非常特殊,它既可以表示无意义,也可以表示其他特殊的意义。

例2 下列说法错误的是( )①0是最小的自然数;②0是整数也是偶数;③0既非正数也非负数;④0的意义不仅可以表“没有”还可以表示一个确定的量;⑤负数也叫非正数;⑥一个数不是正数就是负数。

A.1个 B.2个 C.3个 D.4个 知识点三:用正数和负数表示相反意义的量Ⅰ. 相反意义的量必须包含两个因素:1、它们的意义相反;2、它们都具有数量,而且一定是同类量。

Ⅱ.相反意义的量可以人为的规定其正负。

在实际生活中,习惯把零以上的温度、上升的高度、收入、买入物品等规定为正数,而把它们相反意义的量规定为负的,用负数表示。

例3 下列问题中:(1)将水位上升3m 时水位记作+3m ,则水位下降3m 时水位变化记作-3m. (2)某人存进银行1800元,记作+1800元;取出600元,记作-600元. (3)向东走8m 记作+8m ,向西走6 m ,记作-6m.(4)在一个月内,小明的身高增加了3cm ,记作+3cm ;体重下降了4kg ,记作-4kg. 不是同类量的是( )知识点四:实际问题与正、负数例4 某公司股票上周五的收盘价是27元,下表为本周内每日该股票的涨跌情况(上涨为正):每股价格是 元,每股价格是 元。

二:有理数的意义知识点一:有理数的概念整数和分数统称为有理数;正数、负数、零都是有理数。

例1 下列说法正确的是( )A.一个有理数不是正数就是负数B.一个有理数不是正数就是分数C.有理数是指整数、分数(正有理数、0、负有理数)D.以上说法都正确 知识点二:数集的概念把一些数放在一起,就组成一个集合,简称数集。

5.1有理数的意义

5.1有理数的意义

有理数的意义教学目标1、理解负数的学习意义,感受数学来源于现实生活,激发学习数学的兴趣;2、掌握有理数的概念以及有理数的两种分类;3、通过自主探究,发现有理数的分类,形成分析问题,解决问题的能力;4、通过了解负数的历史,渗透德育教育,增强民族自豪感;5、渗透化归、分类的数学思想方法.教学重点有理数的概念以及分类教学难点有理数分类的探究以及分类中对小数的理解.教学过程一、结合实例,回顾旧知数的概念是随着生产和生活的需要而不断发展的,在现实生活中,我们会遇到一些这样的事件.(1)一家商店一月份盈利1000元,2月份出现低谷,亏损了500元.(2)小明家三月份总收入4500元,全家支出了2000元.请同学们来表示其中的相反意义的量.师说明:一般情况下,把盈利、收入等记为“+”,那么亏损、支出等记为“—”.像上面出现1000,4500等数叫正数,在正数前加上“—”号的数叫做负数.如:—500,—2000等,0即不是正数也不是负数,0和正数又可以称为非负数.练习:1、生活中你见过带有“—”号的数吗?与同伴进行交流.2、在知识竞赛中,如果用+20分表示加20分,那么扣20分怎样表示?3、东西为两个相反的方向,如果—4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?二、探究新知,扩张数域问题1:把数—12,71,—2.8,1/6,0,7/1/2,34%,0.67,一3/4,12/7,分别填在正数和负数的圈里问题:0能放在以上的两个圈中吗?生:不能,零既不是正数也不是负数,0是正数和负数的分界我们已经知道:1、正数可分为正整数及正分数,负数可分为负整数和负分数2、整数包括正整数,0和负整数.在这些基础上,我们把整数和分数统称为有理数.利用多媒体演示:师:在这里指出对于一个分数来说,它总可以化为有限小数或循环小数,反之有限小数和循环小数也总可以化为分数.引导学生根据刚才的分类框,探究发现:1、如果我们把整数看作是分母为1的分数,那么在这个意义下所有的有理数都是分数,分数也就是有理数2、有理数还可以这样分类分类2:3整数、分数、正数、负数 有理数问题2:下列各数中8,—3,7/1/2,—1/6,0,0.32,—1/2/5,—3.12112,0.78,211/213,哪些是整数?哪些是分数?哪些是非负数?哪些是有理数?三、巩固新知,形成技能 扩充1、请每个同学编题,要求分别写出5种[正整数、0、正分数(正小数)、负整数、负分数(负小数)]不同类型的数10个,并请同桌分辨,互相交流.2、下列数是否是有理数:3.14,π,3.121121112…(每两个2之间多1个1),5.6172,1/3π,(小组讨论形式,目的让同学理解分数即有限小数和循环小数,那么无限不循环小数不是有理数,这类数我们以后会学习研究)教学设计说明一、注重德育教育本课中负数这一类数,同学们小学里已认识负整数,在本课中负数即负有理数.“负数”的历史同学们不清楚,在这种情况下,通过回归生活、回顾旧知,感受负数来源于现实生活,又为生活服务,负数在生产、生活中有着举足轻重的作用.及时介绍负数的历史,主要涉及我国研究负数的著作,科学家,以此寓民族教育于教学之中.二、注重概念形成本课有理数的概念以及它的两大分类体系均由教师引导,学生自主探究发现、合作交流形成的.使概念的理解落到实处.在这一形成过程中,鉴于学生已有正数,负数的认知基础,运用知识迁移的方法,“有理数”新知的掌握水到渠成.三、注重难点突破有理数的扩张过程利用问题1,再区分具体是什么数?正数里正整数、正分数,负数里负整数、负分数,再确定整数、分数分别包括哪些数,最终出现有理数概念,并在分类中归纳出另一种分法,两种分类是融通的.这样有利于有理数数域分类的理解,在分类中并强调正分数即正小数、负分数即负小数而这里的小数包括有限小数和循环小数,在后面巩固新知形成技能环节练习中出现了π、3.121121112…(每两个2之间多1个1),5.6172这样的小数,抓住小数的区分,并非“小数即分数”精确地说“有限小数和循环小数即分数,而“无限不循环小数”不是分数,当然不是有理数,它们是什么数呢?埋下伏笔,激发学生的可持续学习的热情.。

有理数的意义

有理数的意义

第一节有理数的意义月 日 姓 名【知识要点】1.有理数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0)1( (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 2.数轴:规定了原点、正方向和单位长度的直线叫数轴,数轴上右边的数大于左边的数. 3.相反数(1)代数意义:像3与-3这样只有符号不同的两个数,把其中一个叫做另一个的相反数,0的相反数是0.(2)几何意义:在数轴上原点的两旁,并且到原点的距离相等.(3)求一个数的相反数就是在这个数前添一个负号,如a 的相反数是-a . (4)a 与b 互为相反数等价于0=+b a4.绝对值:数轴上,一个数a 所对应的点与原点的距离为该数的绝对值,记作a .任何一个数的绝对值都是非负数,即0≥a .【典型例题】例1.把下列各数填入它所属的集合.-1、 -2、 0、 +3.4、 32-、 311、 5%、 。

.30-、 -(-4)自然数集:{ }负整数集:{ } 分数集: { } 正数集: { } 整数集: { } 有理数集:{ }例2.用数轴把下列各数表示出来,并用“〈”连接下列各数 -,43 1, 1.7, ,35- -0.04, ,54- 0.01, ,43 0例3.有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品,当他爬到梯子正中间一级时,二楼的窗口喷出火来,他就往下退了三级,等到火过去了,他又爬上了七级;这时顶层有两块砖掉下来,他又退了二级;幸好没有打着他,他又爬上八级,这时他距离最高一层还有一级,问这个梯子有几级?例4.如图在数轴上有六个点,且AB=BC=CD=DE=EF ,求与点C 所表示的最接近的整数.例5.①已知()0342322=++-b b a ,则=a ,=b .②若1999-a 与2000+b 的互为相反数,则()3b a += .例6. 已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab思考:三个互不相等的有理数,既可以表示为1,,a b a +的形式,也可以表示为0,,bb a的形式,试求20082008ab +的值。

有理数的意义-巩固练习

有理数的意义-巩固练习

有理数的意义-巩固练习有理数是指可以表示为两个整数之比的数,包括整数、分数和循环小数。

有理数的定义是数学中的基本概念之一,它在实际生活中有着广泛的应用。

首先,有理数的意义在于能够精确地表示各种数量关系。

对于一些实际问题,我们往往需要准确地描述数量的多少。

例如,我们需要知道一些物品的重量、长度或时间等,这些都是可以用有理数来表示的。

有理数可以准确地表示测量结果,帮助我们更好地理解和解决实际问题。

其次,有理数的意义在于它们可以用于计算和比较。

有理数可以进行四则运算和比较大小,这在我们进行科学计算和数据分析时是必不可少的。

有理数的运算是系统而精确的,它能够满足我们对于运算的准确性要求。

另外,有理数的意义在于它们可以用于解决实际问题。

在日常生活和工作中,我们会遇到各种各样的问题,有理数可以帮助我们分析和解决这些问题。

例如,我们可以用有理数来计算家庭的开支、制定合理的时间安排,或者评估商业中的风险和收益等。

有理数可以为我们提供一个数学模型,帮助我们更好地理解和处理复杂的情况。

此外,有理数的意义还体现在它们可以用于表示和比较分数。

分数是有理数的一个重要子集,它们能够帮助我们更好地理解和处理部分的概念。

例如,在分数中,我们可以表示几分之几的份额,这在日常生活中十分常见。

有理数的分数形式可以简化我们对于比例关系和百分比的理解,帮助我们更好地解决各种实际问题。

最后,有理数的意义还在于它们构成了数学中的一个数域。

数域是指一组满足一定条件的数的集合,有理数是数学中最基本的数域之一、有理数的定义与运算规则奠定了数学中的基础,它们构成了数学体系的基础,包括代数学、数论、几何学等。

有理数的意义不仅体现在日常生活中的应用,还体现在数学研究和教育中的重要性。

综上所述,有理数的意义在于它们能够精确地表示数量关系,在计算和比较中起到重要作用,在解决实际问题中发挥重要的作用,以及构成了数学中的一个基本数域。

有理数的概念和运算规则是数学中的基础,它们不仅在日常生活中有着广泛的应用,还在数学学科的研究和教育中发挥着重要的作用。

有理数知识点梳理

有理数知识点梳理

第一部分有理数知识点梳理一、有理数的意义1、正数和负数知识点1 负数的引入正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。

用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。

知识点2 正数和负数的概念(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。

(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。

负数比0小。

(3)零即不是正数也不是负数,零是正数和负数的分界。

注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+。

(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。

例如:-a一定是负数吗?答案是不一定。

因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。

知识点3 有理数的有关概念(1)有理数:整数和分数统称为有理数。

注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。

但是本讲中的分数不包括分母是1的分数。

(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。

(3)“0”即不是正数,也不是负数,但“0”是整数。

(2)整数包括正整数、零、负整数。

例如:1、2、3、0、-1、-2、-3等等。

有理数的意义及运算

有理数的意义及运算

有理数的意义及运算有理数是数学中一个重要的概念,是在数轴上广泛应用的基本数类之一。

它们不只是简单的数字,还在我们生活的方方面面扮演着重要角色。

从日常的购物算账到工程设计,有理数都显得尤为重要。

有理数的定义是非常明确的。

一个数如果可以表示为两个整数之比(即在形式上为a/b,a和b是整数且b不为零),那么这个数就属于有理数的范畴。

比如,3(可以写成3/1)、-1/2、0都是有理数。

而平方根2、π等则不属于有理数,因为它们无法用整数字表示。

在我们的学习中,对有理数的理解不仅限于其定义。

还需掌握它们的性质和运算。

有理数的集合不仅包括正数和负数,还涵盖了零。

在数轴上,有理数通过分数和小数的方式表现出来,令其在实际问题中更易于使用。

有理数自身具备几个重要的性质。

有理数是稠密的,这意味着在任意两个有理数之间,总是可以找到另一个有理数。

例如,在1和2之间,有1.5、1.25等;在-1和0之间,有-0.5、-0.75等。

这一性质使得有理数能够精准地表示一些功能的变化,尤其在科学和工程中,需对数据进行细致分析时,这一优势极为显著。

在我们实际应用有理数时,运算是不可或缺的一环。

加法、减法、乘法和除法四种基本的数学运算是处理有理数的主要方式。

对于两个有理数进行加法运算,首先需要找到共同的分母,然后再合并分子。

而减法运算与加法类似,通常也是需要统一分母后再进行操作。

乘法和除法相对简单,直接将分子乘以分子,分母乘以分母。

值得注意的是,当进行除法运算时,除数不能为零,因为零在数学中是无法作为分母的。

运算过程中的简化同样重要。

比如,当我们有一项表达式,例如(3/4)+(1/2),要想简化成一个更直接的形式,需要把1/2转换成相同的分母。

1/2可以写成2/4,如此一来,两者相加后的结果就是5/4。

类似地,在减法和乘法时,简化步骤能够提高计算速度并减少错误。

当面对负数时,计算的过程同样适用。

有理数的负数与正数在运算中同样可以灵活应用。

初一有理数的有关概念(含答案)

初一有理数的有关概念(含答案)

有理数的有关概念教学目的:1、了解正负数的概念和学习正负数的意义;2、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力,了解分类的标准与集合的含义;3、掌握数轴概念,理解数轴上的点和有理数的对应关系、会正确地画出数轴,利用数轴上的点表示有理数;4、理解、掌握相反数的意义,掌握求一个已知数的相反数方法;5、理解、掌握绝对值概念.体会绝对值的作用与意义;掌握求一个已知数的绝对值和有理数大小比较的方法.教学重点:有理数的分类;相反数;绝对值。

教学难点:对负数概念的理解;绝对值的几何意义。

一、复习提问我们知道,数是人们在实际生产和生活需要中产生并不断扩充的.人们在数物体的个数时,用正整数1、2、3…表示,为表示没有物体或记数缺位而使用了“0”.测量和计算时不能得到整数的结果,为此出现了分数和小数.请同学们回忆一下:1.小学算术里我们还学过哪几种数?2.看下面例子里的数量,你能用算术中的数表示吗?本市某一天的最高温度是零上5℃,最低温度是零下5℃.总结:显然用算术中的数是不能正确表示上面题目中的数量.而像上面题目中虽然是同一种量,但意义相反的量在现实中大量存在.如盈余与亏损,前进与后退,上升与下降等.为此,我们要对学过的数进行扩充.二、新课讲解(一)正数与负数为了用数表示具有相反意义的量,我们把某种量的一种意义,如零上温度、前进、收入、上升、高出海平面等规定为正的,而把与它相反的一种意义,如零下温度、后退、支出、下降、低于海平面等规定为负的.正的量用算术里学过的数表示,负的量用算术里学过的数前面放上“-”(读作负)号来表示.如:零上5℃记作5℃(读作正5摄氏度).零下5℃记作-5℃(读作负5摄氏度).0既不是正数,也不是负数.几点说明:1、0既不是正数也不是负数,0是正数与负数的分界。

这样0不仅可以用来表示没有,也可以表示一个确定的量,例如0℃就不是没有温度的意思,0℃是一个确定的温度,海拔0表示海平面的平均高度,0的意义已不仅仅是表示没有。

1、有理数的意义、数轴、绝对值-学生版

1、有理数的意义、数轴、绝对值-学生版

一、知识梳理:1、有理数的意义:(1)整数和分数统称为有理数。

(2)有理数的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数;⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 (3)任何一个有理数都可写成分数a b (其中a 、b 为整数,0b ≠)的形式。

如221=,20.45=,所以,所有的有理数都是分数。

2、数轴: (1)数轴:规定了原点、正方向和单位长度的一条直线叫做数轴。

数轴的三要素:原点、正方向、单位长度。

(2)任何一个有理数都可以用数轴上的点来表示;反之不然,数轴上的点不一定都用来表示有理数。

(3)在数轴上,原点左边是负有理数,原点右边是正有理数,原点为0。

3、相反数:(1)相反数:只有符号不同的两个数,我们称其中的一个数为另一个数的相反数,也称这两个数互为相反数。

(2)正数的相反数是负数,负数的相反数是正数。

零的相反数是零。

(3)互为相反数的两数和为0;反之,如果两数和为0,那么这两个数互为相反数。

即如果a 、b 互为相反数,那么0a b +=。

反之,如果0a b +=,那么a 、b 互为相反数。

(4)互为相反数的两个数的几何意义:在数轴上,互为相反数的两个点位于原点两侧且到原点的距离相等。

4、绝对值:(1)绝对值:一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值。

一般用符号a 表示a 的绝对值。

(2)任何一个数的绝对值都大于或等于零,即0a ≥。

(3)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

反过来:绝对值是它本身的数是正数和零,即非负数;绝对值是它相反数的数是负数和零,即非正数;即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(互为相反数的两个数,它们的绝对值相等)5、有理数的大小比较:(1)表示一个数的点离开原点距离越远,绝对值越大;离开原点距离越近,绝对值越小。

第一讲 有理数的意义

第一讲 有理数的意义

有理数学案第一讲:有理数的意义一、 概念1、 思考:为什么引入负数?2、 的数叫正数?3、 正数前面加上负号的数叫 .4、 既不是正数也不是负数。

5、 正整数、0、负整数统称为6、 可以写成两个整数的比的数成为7、 都可以写成m n(m,n 是整数,0n ≠ 8、有理数按大小可分为: 0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数有理数 负有理数 9、 有理数按形式可分为:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数有理数正分数分数 10、把..0.23写成分数的形式 11、 把13写成小数形式二、概念的应用例1、 下面的大括号表示一些数的集合,把下面各数填入相应的大括号里:1,-0.1,325,0,-20,-3.14,10.1,-0.3,-5%,5122,,837-负有理数集:{} 非负整数集:{}例2、下面说法中正确的是()A、非负数一定是正数。

B、有最小的正整数,有最小的正有理数。

C、-a一定是负数D例3、填空题(1)如果以每月生产180个零件为标准,超过的零件数记作正数,不足为零件数记作负数,那么1月生产160个零件记作2月份生产200个零件,记作个。

(2)一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过毫米,最小不小于毫米。

(3)既不是正数也不是负数的有理数是(4)是正数而不是整数的有理数是(5)是整数而不是正数的有理数是例4、观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的两个数,你能说出第2011个数是什么吗?(1)1,-2, 3, -4, 5, -6, 7, -8,,,……..2011,…….(2),1111111,,,,,.234567----, ,,…….. ,…….拓展:因为任何一个有理数写成分数pq(p,q为整数,0p≠的形式),所以将正有理数进行如下排序(可能有重叠):第一列第二列第三列第四列……第一行:(分子分母和为2的1 1第二行:(分子分母和为3的2112第三行:(分子分母和为4的312213第四行:(分子分母和为5的41322314。

有理数的意义-知识讲解

有理数的意义-知识讲解

有理数的意义-知识讲解有理数是数学中一类重要的数,它可以用整数作为分子和分母的比值表示。

有理数的意义体现在其在实际生活中的广泛应用,以下从有理数的定义、特点以及实际应用等方面进行讲解。

首先,有理数的定义是指可以写成两个整数的比值形式的数,其中分母不为零。

有理数包括整数、正整数、负整数、分数等。

例如,2,-3,1/4等都是有理数。

有理数的特点主要体现在以下几个方面:1.有理数包括整数和分数两个主要部分,整数由负整数、零和正整数组成,而分数可以写成两个整数的比值形式。

2.有理数可以进行加减乘除等基本运算,运算结果也仍然是有理数。

这一点在实际应用中十分重要,可以简化运算过程。

3.有理数可以用分数表示小数,并且保持有效位数,在实际应用中更加便于计算和表示。

4.有理数具有有限循环小数和无限循环小数两种形式。

循环小数是指在小数部分中有从一些位置开始重复的数字序列。

有理数在实际生活中有广泛的应用,主要体现在以下几个方面:1.金融领域:有理数广泛应用于金融领域,如贷款利率、股票涨跌等计算中。

利率、股票涨跌等都可以用有理数来表示,便于计算和比较。

2.商业领域:商业中的销售额、成本、利润等也可以用有理数来表示。

商业决策涉及到大量的数值计算,有理数的应用可以方便快捷地进行计算和分析。

3.工程领域:在工程测量和设计中,有理数也有着重要的应用。

例如,建筑物的尺寸、管道的长度等都需要进行精确的测量和计算,有理数可以提供准确的数值。

4.科学领域:有理数常常出现在科学实验和数值模拟中。

例如,在物理实验中,测量得到的各种物理量可以用有理数表示,更方便进行分析和比较。

总结起来,有理数作为一类重要的数,具有重要的意义。

它不仅在数学学科中有着重要的地位,而且在实际生活中也有广泛应用。

通过有理数,我们可以方便地进行各种数值计算,解决实际问题,进一步提高数学能力和解决实际问题的能力。

因此,对有理数的学习和掌握对于每个学生来说都是十分重要的。

初一奥数 第一讲 有理数的意义

初一奥数 第一讲 有理数的意义

第一节 有理数的意义【知识要点】1.整数和分数统称为有理数; 2.有理数还可以这样定义:形如pm(其中m ,p 均为整数,且0m ≠)的数是有理数。

这种表达形式常被用来证明或判断某个数是不是有理数。

3.有理数的数系表:{{{{⎧⎧⎪⎪⎨⎪⎪⎩⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪⎪⎨⎪⎪⎩正整数整数零负整数有理数正有限小数正分数正无限循环小数分数负有限小数负分数负无限循环小数正整数正有理数正分数或 有理数零负整数负有理数负分数4.有理数可以用数轴上的点表示。

数轴的意义:规定了原点、正方向和单位长度的直线叫数轴。

5.零是正数和负数的分界点,也是具有相反意义的量的分界点;零既不是正数也不是负数。

6.如果两个数的和为0,则称这两个数互为相反数。

如果两个数的积为1,则称这两个数互为倒数。

姓名: 日期:【典型例题】一.有理数的基本概念例1、填空。

(1)如果把上升20m 记作+20m ,那么下降15m 记作 。

(2)海平面以上的高度一般用 数表示,比海平面高8848m 的山峰处,它的高度记作海拔 m ,比海平面低11034m 的海沟处,它的高度记作海拔 m 。

(3)粮食产量增产12%,记作+12%,则减产8%记作 。

例2、把下列各数填在相应的大括号里。

-1,0,+0.8,-37, 2.4-,8848,134-,227,80- 整数集合}{;负整数集合}{;正分数集合}{; 负分数集合}{;例3、如果b a ,均为有理数,且0<b ,那么b a b a a +-,,的大小关系是( ) A 、b a b a a -<+< B 、b a b a a +<-< C 、b a a b a -<<+ D 、a b a b a <+<-二.数轴与相反数A BCDEF-511例4 (1)数轴上点A 表示数-3。

在同一数轴上点B 表示数-8,则A 、B 之间的距离是_________;(2)在同一数轴上与点A 相距8个单位的点表示的数是_____; (3)点A 到原点的距离是________。

第二章有理数的意义与运算

第二章有理数的意义与运算

第二章 有理数的意义与运算1、有理数的意义:(1)有理数:整数和分数统称为有理数(2)有理数的分类。

注意①0既不是正数,也不是负数,它是一个中性数,是正数和负数的分界点。

②自然数:自然数是指0和正整数,既0、1、2、3、4、…2、几个概念:(1)数轴:①原点、正方向、单位长度是数轴的三要素,缺一不可。

②数轴的用途:用数轴表示数:所有的实数都可以用数轴上的点来表示,数轴上的任一点都表示一个实数,实数和数轴上的点是一一对应的。

用数轴可以表示两个数大小。

(2)相反数:①定义:只有符号不同的两个数,其中一个是另一个的相反数,0的相反数是0。

②特点:相反数是两个数之间的一种相互关系,是成对出现的,缺一不可。

③性质:㈠ 任何一个数都有一个相反数,并且只有一个相反数。

㈡正数的相反数是负数,负数的相反数是正数,0的相反数是0。

㈢互为相反数的两个数之和为0,和为0的两个数互为相反数。

④求法:求一个数的相反数只需在这个数前面加上一个负号就可以了。

(3)绝对值:①几可意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作a 。

②代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

③数a 的绝对的表示:a = ⎪⎩⎪⎨⎧<-=>)0()(0)0(a a a a a (4)有效数字:①精确度:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

②定义:在近似数中,从左边第一个不是零的数字起,到由四舍五入到的数位止,所有的数字,都叫做这个数的有效数字,一共包含的数字的个数,叫做有效数字的个数。

③用法:在对一个数取近似数时,近似程度经常用保留几个有效数字来表示。

(5)科学记数法:把一个数写成±a ×10n 形式(其中1≤a <10,n 是整数),这种记数法叫科学记数法,具体记数的方法为:①a 是只有一位整数的数。

②当原数≥1时,n是正整数,n 等于原数的整数位数减1,如31400=3.14×104;当原数<1时,n 是负整数,它的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),如0.000035=3.5×10-5。

第一节有理数的意义

第一节有理数的意义

1、再认识负数
像加分与扣分,零上温度与零下温度,收入 与支出,盈利与亏本等都是具有相反意义的量, 为了便于表示相反意义的量,我们把其中一个 量用正数表示,而把与这个量意义相反的量规 定为负的,用负数表示。
2、正数和负数的表示方法
一般地,我们把上升、运进、零上、收入、前进、高出等 规定为正的,而与它相反的量,如:下降、运出、零下、 支出、后退、低于等规定为负的。正的量就用小学里学过 的数表示,有时也在它前面放上一个“+”(读作正)号, 如前面的5、7、50;负的量用小学学过的数前面放上“—” (读作负)号来表示,如上面的—3、—8、—47。 注意:0既不是正数,也不是负数。 正数大于0,负数小于0。
答题情况
第 一 队
第 二 队
如果答对题所得的分用正数表示,那么你能用 正负数表示每个代表队答题得分的情况吗?
试完成下表:
答对题的得分
答错题的得分
未回答题的得 分
第一队
+6
-3
0
第二队
+8
-2
练习:
1.把消费价格比上年上涨4.8%记为+4.8%,那么下跌 0.6%记为 -0.6% . 2.零上温度1℃记为+1℃,零下温度5℃记为 -5℃ . 3.生活中你见过其他用负数表示的量吗?如下图:
负数集合:{ -7, 整数集合:{ 3,-7,0,15 2 . 8 1 分数集合:{ 3 5. 6 4
1 8 4
1 …} 9
…} …}
五、反思小结
1、进一步认识负数,负数与正数表示 相反意义的量; 2、会判断是正数还是负数,明白其应用;
3、对有理数进行分类。
作业:习题2.1
解(1)沿顺时针方向转了12圈记作-12圈;

第1讲 有理数的意义(讲义随堂练习课后作业)

第1讲  有理数的意义(讲义随堂练习课后作业)

第1讲 有理数的意义【知识扫描】 知识点一 正数和负数正数:像5、1.2、37+这样大于0的数,叫作正数。

负数:像-5、-1.2、517-、-2018等在正数前加上“-”号的数,叫做负数。

负数都小于 0。

【注解】判断一个数是不是负数,一是看前面有没有负号,二是看负号后面的数是不是正数。

如果正数表示某种意义,那么负数表示它的相反的意义。

相反意义的量包含两方面:1. 相反意义;2. 相反意义的基础上有量如:收入为正,收入1000元表示为+1000元,那么亏损500元,表示为-500元 知识点二 有理数的分类有理数:整数与分数统称为有理数。

无理数:无限不循环小数,如 π。

(1)按整数、分数的关系分类 (2)按符号分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫分数正分数分数负整数自然数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数负整数正整数正有理数有理数0 【典型例题】考点一 正数与负数【例1】一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作( )A .-10mB .-12mC .+10mD .+12m【例2】下列各数中:32-,0.75,0,-6,-1.2,+3,49,负数有( ) A. 2个 B. 3个 C. 4个 D. 5个【例3】下列说法中,正确的个数有( )① 带正号的数是正数,带负号的数是负数;② 任意一个正数,前面加上负号就是一个负数;③ 0是最小的正数;④ 大于0的数是正数;⑤ 字母a 既是正数,又是负数A. 1个B. 2个C. 3个D. 4个【例4】一种零件的内径尺寸在图纸上是9±0.05(单位:mm ),表示这种零件的标准尺寸是9mm ,加工要求最大不超过_________,最小不小于________考点二 有理数的分类【例5】下列各数中,哪些是有理数,哪些是正整数,哪些是负整数,哪些是正分数,哪些是负分数?46、-4.5、π、-71、0、2.5、+24、-10、32 有理数:________________________正整数:________________________ 负整数:_______________________ 正分数:________________________ 负分数:_______________________【例6】下列说法中正确的是( )A .整数就是正整数和负整数B .负整数的相反数就是非负整数C .有理数中不是负数就是正数D .零是自然数,但不是正整数【例7】观察下列一列数,找出其中的规律后再填空:1,2,-3,-4,5,6,-7,-8,…,________(第2018个数)第1讲 有理数的意义(随堂练习)1. 如果提高15分表示+15分,那么下降5分表示( )A. +5分B. +10分C. -5分D. -10分2. 如果30m 表示“向南走30m ”,那么“向北走30m ”,可表示为( )A. +30mB. -30mC. -60mD. +60m3. 下列各数中,6,-7.5,0,-91,432,0.3,95-,负数有( ) A. 1个 B. 2个 C. 3个 D. 4个4. 一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过________毫米,最小不低于________毫米.5. 下列各有理数中,哪些是正整数?哪些是负整数?哪些是整数?哪些是正分数?哪些是负分数?哪些是分数?-3,+8,21-,0.1,0,31,-10,5,-0.4 正整数:_____________________ 负整数:___________________________ 整 数:_____________________ 正分数:___________________________ 负分数:_____________________ 分 数:___________________________6. 下列说法中,正确的是( )A .整数就是正整数和负整数B .-a 一定是负数C .+5是表示向东走5米D .零既不是正数,也不是负数7. 观察下面的一列数:766154413221,-,,-,,-……请你找出其中的规律,解答: (1)第9个数是多少?第14个数是多少?(2)第2018个数是多少?第1讲 有理数的意义(课后作业)1. 一次象棋比赛用+1表示赢一局,那么输两局用_______表示,不输不赢用______表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的意义及答案主讲沈老师【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】类型一、正数与负数1.若把向北走7km记为-7km,则+10km表示的含义是().A.向北走10km B.向西走10km C.向东走10km D.向南走10km 【答案】D【解析】“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km,所以答案D【总结升华】正负数表示具有相反意义的量.如果一个量为“正数”,则与其相反意义的量就是负数.反之,当如果一个量为“负数”,则与其相反意义的量就是正数,且这两个量的单位相同.举一反三:有理数的意义概念的应用【变式1】一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克 B.50.3千克 C.49.7千克 D.49.1千克【答案】D.解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.【变式2】(1)如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ .(2)若购进50本书,用-50本表示,则盈利30元如何表示?【答案】(1)-500元;既没有收入也没有支出. (2)不是一对具有相反意义的量,不能表示. 【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().A.-20m B.-40m C.20m D.40m【答案】B2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1)这8名男生有百分之几达到标准?(2)他们共做了多少引体向上?【答案与解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:5100%62.5% 8⨯=;答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.【总结升华】一定要先弄清“基准”是什么.类型二、有理数的分类有理数的意义概念的应用例23.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数.D .正整数和正分数统称正有理数.【答案】D【解析】(A)不对,因为非负数还包括0;(B) 最小的正整数为1,但没有最小的正有理数;(C)不对,当a为负数或0时,则a-为正数或0,而不是负数;(D)对【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.举一反三:【变式1】判断题:(1)0是自然数,也是偶数.()(2)0既可以看作是正数,也可以看成是负数.()(3)整数又叫自然数.()(4)非负数就是正数,非正数就是负数.()【答案】√,⨯,⨯,⨯【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【答案】D4.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【答案】正整数: 1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,;负分数: -3.88,7 23 -;分数:0.0708,3.14159265,,-3.88,7 23 -;非负数: 1,0.0708, 3.14159265,0,;非正数:-700, -3.88, 0,7 23 -【解析】【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数.举一反三:【变式】在有理数、﹣5、3.14中,属于分数的个数共有 个.【答案】2. 类型三、探索规律5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,.按此规律,那么请你推测第n 组应该有种子是 粒.【答案】12+n【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:1123+⨯=,1225+⨯=,1327+⨯=,1429+⨯=,,按此规律,第n 组应该有种子数(12+n )粒.【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关.举一反三:【变式1】有一组数列:2,-3,2,-3,2,-3,,根据这个规律,那么第2010个数是: 【答案】-3【变式2】观察下列有规律的数:,,301,201,121,61,21 根据其规律可知第9个数是: 【答案】901【巩固练习】一、选择题1. 下列语句正确的( )个(1)带“﹣”号的数是负数;(2)如果a 为正数,则﹣a 一定是负数;(3)不存在既不是正数又不是负数的数;(4)0℃表示没有温度.A. 0B. 1C. 2D. 32.关于数“0”,以下各种说法中,错误的是 ( )A .0是整数B .0是偶数C .0是正整数D .0既不是正数也不是负数3.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是 ( )A .前进-18米的意义是后退18米B .收入-4万元的意义是减少4万元C .盈利的相反意义是亏损D .公元-300年的意义是公元后300年4.一辆汽车从甲站出发向东行驶50千米,然后再向西行驶20千米,此时汽车的位置是 ( )A .甲站的东边70千米处B .甲站的西边20千米处C .甲站的东边30千米处D .甲站的西边30千米处5.在有理数中,下面说法正确的是( )A .身高增长cm 2.1和体重减轻kg 2.1是一对具有相反意义的量B .有最大的数C .没有最小的数,也没有最大的数D .以上答案都不对6.下列各数是正整数的是 ( )A .-1B .2C .0.5D . 2二、填空题1.如果用+4米表示高出海平面4米,那么低于海平面5米可记作 .2.在数中,非负数是______________;非正数是 __________.3.把公元2008年记作+2008,那么-2008年表示 .4.既不是正数,也不是负数的有理数是 .5.是正数而不是整数的有理数是 .6.是整数而不是正数的有理数是 .7.既不是整数,也不是正数的有理数是 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米.三、解答题1.说出下列语句的实际意义.(1)输出-12t (2)运进-5t (3)浪费-14元 (4)上升-2m (5)向南走-7m2.下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置. ﹣28%,,﹣2014,3.14,﹣(+5),﹣0.3.甲地海拔高度是40m ,乙地海拔高度为30m ,丙地海拔高度是-20m ,哪个地方最高?哪个地方最低?最高的地方比最低的地方高多少?4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的两个数,你能说出第2011个数是什么吗?(1)1,-2,3,-4,5,-6,7,-8, , ,... ,... (2)-1,21,-31,41,51-,61,71-, , ,... ,... 【答案与解析】 一、选择题1.【答案】B【解析】(1)带“﹣”号的数不一定是负数,如﹣(﹣2),错误;(2)如果a 为正数,则﹣a 一定是负数,正确;(3)0既不是正数也不是负数,故不存在既不是正数又不是负数的数此表述错误;(4)0℃表示没有温度,错误.综上,正确的有(2),共一个.2.【答案】C【解析】0既不是正数也不是负数,但0是整数,是偶数,是自然数.3. 【答案】D【解析】D 错误,公元-300年的意义应该是公元前300年.4. 【答案】 C【解析】画个图形有利于问题分析,向东50千米然后再向西20千米后显然此时汽车在甲站的东边30千米处.5. 【答案】C【解析】A 错误,因为身高与体重不是具有相反意义的量;B 错误,没有最大的数也没有最小数;C 对.6. 【答案】B二、填空题1.【答案】﹣5米2.【答案】0.5,100,0,112 ;122-,0,-45 【解析】正数和零统称为非负数,负数和零统称为非正数,零既不是正数也不是负数.3.【答案】公元前2008年【解析】正负数表示具有相反意义的量.4.【答案】0【解析】既不是正数也不是负数的数只有零.5.【答案】正分数【解析】正数包括正分数和正整数,因为不是整数,所以只能是正分数.6.【答案】负整数和0【解析】整数包括正整数和负整数,又因为不是正数,所以只能是负整数和0.7.【答案】负分数【解析】不是整数,则只能是分数,又不是正数,所以只能是负分数.8.【答案】10,10.03,9.98【解析】03.002.010+-表示的数的范围为:大于-(100.02),而小于(10+0.03),即大于9.98而小于10.03.三、解答题1. 【解析】(1)输出-12t 表示输入12t ;(2)运进-5t表示运出5t;(3)浪费-14元表示节约14元;(4)上升-2m表示下降2m;(5)向南走-7m表示向北走7m.提示:“-”表示相反意义的量.2.【解析】3.【解析】甲地海拔高度是40m,表示甲地在海平面以上40m处;乙地海拔高度为30m,表示乙地在海平面以上30m处;丙地海拔高度是-20m,表示丙地在海平面以下20m处;所以,最高是甲地,最低是丙地,最高的地方比最低的地方高:40+20=60 (m). 4.【解析】(1)9,-10,…,2011,…(2)111 ,,...,,... 892011 --。

相关文档
最新文档