高三联考理科数学试卷及答案

合集下载

河南省普高联考2022-2023学年高三下学期测评(四)理科数学试题PDF版含解析

河南省普高联考2022-2023学年高三下学期测评(四)理科数学试题PDF版含解析

河南省普高联考2022-2023学年高三下学期测评(四)理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合,,则( ){24}A xx =<<∣{(6)(3)0}B x x x =--≥∣A .B .C .D .2A B∈ 3A B∈⋂4A B∈ 5A B∈ 2.若复数z 的共轭复数为,且,则z 的虚部为( )z (2i)35i z z -+=-+A .B .C .D .22i-2i2-3.已知等比数列的前n 项和为,且,,则( ){}n a n S 123nn S m =⨯-m ∈R 4S =A .B .5C .D .1331732234.塔是一种在亚洲常见的,有着特定的形式和风格的中国传统建筑.最初是供奉或收藏佛骨、佛像、佛经、僧人遗体等的高耸型点式建筑,称“佛塔”.如图,为测量某塔的总高度AB ,选取与塔底B 在同一水平面内的两个测量基点C 与D ,现测得,,米,在C 点测得塔顶A 的仰角为60°,则塔的总30BCD ∠=︒45BDC ∠=︒30CD =高度约为( ))1.4≈ 1.7≈A .13米B .24米C .39米D .45米5.函数的大致图象是( )3sin ||x xy x -=A .B .C .D.6.某学校为落实“双减”政策,在课后服务时间开展了“绘画、书法、围棋、舞蹈、武术”五项兴趣拓展活动,小明计划从这五项活动中选择三项,则书法、舞蹈这两项活动至多有一项被选中的概率为( )A .B .C .D .0.90.70.60.37.记不等式组的解集为D ,现有下面四个命题:30,10,30x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,;,;1:(,)p x y D ∀∈280x y -+≥2:(,)p x y D ∃∈240x y -+>,;,.3:(,)p x y D ∀∈30x y ++>4:(,)p x y D ∃∈330x y +-≤其中真命题的个数是( )A .1B .2C .3D .48.已知抛物线的焦点为F ,过点F 的直线与抛物线交于点A ,B ,与2:2(0)C x py p =>抛物线的准线交于点M ,且点A 位于第一象限,F 恰好为AM 的中点,,AF BM λ=()λ∈R 则( )λ=A .B .CD32439.任意写出一个正整数,并且按照以下的规律进行变换:如果是个奇数,则下一m m 步变成,如果是个偶数,则下一步变成,无论是怎样一个数字,最终必31+m m 12m m 进入循环圈,这就是数学史上著名的“冰雹猜想”.它可以表示为数列1421→→→(为正整数),,若,则的所有可能{}1:n a a m =m 131,1,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩当为奇数时当为偶数时72a =m 取值之和为( )A .B .C .D .18819019220110.在菱形ABCD 中,,,AC 与BD 的交点为G ,点M ,N 分别在线段5AB =6AC =AD ,CD 上,且,,将沿MN 折叠到,使13AM MD =13CN ND =MND MND '△的外接球的表面积为( )GD '=D ABC '-A .B .C .D .1203π16627π16289π840π11.设双曲线的左、右焦点分别为,,B 为双曲线E 上:E 22221x y a b-=(0,0)a b >>1F 2F 在第一象限内的点,线段与双曲线E 相交于另一点A ,AB 的中点为M ,且1F B ,若,则双曲线E 的离心率为( )2F M AB ⊥1230AF F ∠=︒AB .2C D 12.已知,,,其中e 为自然对数的底数,则( )0.618e 1a =-ln1.618b =tan 0.618c =A .B .c a b >>a b c >>C .D .b a c>>a c b>>二、填空题13.二项式的展开式中的系数为________.523x x ⎛⎫+ ⎪⎝⎭4x 14.如图,在矩形ABCD 中,,AC 与BD 的交点为M ,N 为边AB 上任22AB BC ==意点(包含端点),则的最大值为________.MB DN ⋅15.圆与x 轴交于A ,B 两点(A 在B 的左侧),点N 满足22:280M x y x ++-=,直线与圆M 和点N 的轨迹同时相切,则直线l 的斜率为||2||NA NB =:(0)l y kx m k =+>________.16.先将函数的图象向左平移个单位长度,再将所得图象上所有点的横()cos f x x =2π3坐标变为原来的,纵坐标不变,所得图象与函数的图象关于x 轴对称,1(0)ωω>()g x 若函数在上恰有两个零点,且在上单调递增,则的取值范围是()g x 2π0,3⎡⎤⎢⎥⎣⎦ππ,1212⎡⎤-⎢⎥⎣⎦ω________.三、解答题17.在中,角A ,B ,C 的对边分别为a ,b ,c .ABC cos )sin b a C c A -=(1)求A ;(2)若D 在线段AC 上,且,求BD 的最小值.ABC 13AD AC =18.如图,在四棱锥中,底面ABCD 是平行四边形,,M ABCD -4AB =AD =,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD MC ==45ADC ∠︒上的点(含端点).(1)若E 为线段AD 的中点,证明:平面平面MAD ;MOE ⊥(2)若,求二面角的余弦值.3AE DE =D ME O --19.某公司为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,统计了近5年的年营销费用和年销售量,得到的散点图如图所示,对i x (1,2,3,4,5)i y i =数据进行初步处理后,得到一些统计量的值如下表所示.51ii u=∑51ii v=∑()()51iii u u v v =--∑()521ii u u =-∑16.1026.020.40 1.60表中,,,.已知可以作为年销售量y 关ln i i u x =ln i i v y =5115i i u u ==∑5115i i v v ==∑b y a x =⋅于年营销费用x 的回归方程.(1)求y 关于x 的回归方程;(2)若公司每件产品的销售利润为4元,固定成本为每年120万元,用所求的回归方程估计该公司每年投入多少营销费用,才能使得该产品一年的收益达到最大?(收益销售=利润营销费用固定成本)--参考数据:.4.399e 81≈139≈参考公式:对于一组数据,其回归直线的斜率和截()()()1122,,,,,,n n u v u v u v v u αβ=+距的最小二乘估计分别为,.()()()`121ˆniii ni i u u v v u u β==--=-∑∑ˆˆv u αβ=-20.已知椭圆的右焦点为F ,离心率为,且点在㮋圆上.2222:1(0)x y C a b a b+=>>1231,2⎛⎫ ⎪⎝⎭(1)求椭圆C 的标准方程;(2)过右焦点F 且斜率不为0的直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为Q ,经过坐标原点O 和点Q 的直线m 与椭圆C 交于M ,N 两点,求四边形AMBN 的面积的取值范围.21.已知函数.()2cos sin ()f x mx mx x x m =--∈R (1)当时,求在点处的切线方程;1m =()f x ()()π,πf (2)当时,,求实数m 的取值范围.0x >()0f x >22.在直角坐标系中,直线l 的参数方程为其中t 为参数,以坐标原点为xOy 1,1,x t y t =+⎧⎨=-⎩极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为,其中为参数.2|sin |2|cos |ρθθ=+θ(1)求直线l 的普通方程和曲线C 的直角坐标方程,并画出曲线C 的简图(无需写出作图过程);(2)直线与曲线C 相交于A ,B 两点,且的值.:m θα=π0,2α⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭||AB =α23.已知函数的最小值为m .()2|1||1|4f x x x =++--(1)在直角坐标系中画出的图象,并求出m 的值;()y f x =(2)a ,b ,c 均为正数,且,求的最小值.1a b c m ++=-+222a b c b c a++参考答案:1.B【分析】根据二次不等式解法求出集合B ,求出及,根据元素和集合的关系即A B ⋂A B ⋃可逐项判断.【详解】由题可知或,则,或{6B xx =≥∣3}x ≤{23}A B x x ⋂=<≤∣{4A B x x ⋃=<∣,依据选项可知B 正确.6}x ≥故选:B .2.D【分析】先根据条件求出复数,然后可得虚部.z 【详解】设复数,a ,,则,i z a b =+b ∈R i (2i)(i)a b a b +-+-()(3)i a b b a =-++-35i =-+即,解得,则,故z 的虚部为2.()335a b b a -+=-⎧⎨-=⎩12a b =⎧⎨=⎩12z i =+故选:D .3.B【分析】先根据的定义依次求出,再由等比数列的定义即可得到关于的关系式,n S 123,,a a a m 解之即可得出答案.【详解】因为,123nn S m =⨯-当时,,1n =1123a S m ==-当时,,则,2n =21243m a S a =+=-223a =当时,,则,3n =312383a m a a S +=+-=343a =因为是等比数列,所以,则,{}n a 322a q a ==2113a a q ==所以,解得,2133m -=13m =则,11233n n S =⨯-则.45S =故选:B.4.C【分析】在Rt △ABC 根据∠ACB 的正切得AB 与BC 的关系,在△BCD 中利用正弦定理列式即可求解.【详解】设,则,AB m=tan 60m BC ==︒在中,,由正弦定理得,BCD △105CBD ∠=︒sin105sin 45CD BC=︒︒因为,()sin105sin 4560︒=︒+︒sin 45cos 60cos 45sin 60=︒︒+︒︒=代入数据,解得(米),90m =-9030 1.739≈-⨯=故选:C .5.A【分析】先判断函数的奇偶性即可排除选项;再利用特殊值即可排除选项,进而求解.B,D C 【详解】函数的定义域为,3sin ()xx xy f x -==(,0)(0,)-∞+∞ 且,3sin()3sin ()()x x x xf x x x f x-----+-===-所以是奇函数,图象关于原点对称,排除选项,()f x B,D 只需研究的图象,当时,,则,排除选项.0x >π6x =πππ33sin 06662-=-<π06f ⎛⎫< ⎪⎝⎭C 故选:.A 6.B【分析】方法一:根据排列组合结合分类加法法则得出答案;方法二:先求出“书法、舞蹈这两项活动都被选中”的概率,即可根据对立事件的概率求法得出答案.【详解】方法一:“书法、舞蹈这两项活动至多有一项被选中”分两种情况:①都没有被选中,有种情况;②两项活动只有一项被选中,有种情况,33C 1223C C 则所求概率为,故选B .31232335C C C 70.7C 10P +===方法二:“书法、舞蹈这两项活动至多有一项被选中”的对立事件是“书法、舞蹈这两项活动都被选中”,故所求概率为,123235C C 710.7C 10P =-==故选:B .7.C【分析】作出不等式组所表示的区域,再逐项的作出对应直线,观察所作直线与可行域的关系,再利用存在命题与全称命题的概念进行判断即可求解.【详解】不等式组的解集D 表示的可行域如图中阴影部分所示,依据图(1)知命题为真1p 命题,依据图(2)知命题为真命题,2p 依据图(3)知命题为假命题,依据图(4)知命题为真命题.所以真命题有3个,3p 4p故选:C .8.A【分析】过点A ,B 分别作准线的垂线,垂足分别为N ,E ,根据抛物线的定义,又F 恰好为AM 的中点,可得到比例,进一步推导得到的值.||||AF BM λ【详解】如图,过点A ,B 分别作准线的垂线,垂足分别为N ,E ,根据抛物线的定义得,,||||AF AN =||||BF BE =因为F 为AM 的中点,所以,又||||||||1||||||AF BF BM BF BM BM BM +==+||||||||BF BE BM BM ==,所以,所以.||||1||||2AN AF AM AM ==||||1311||||22AF BF BM BM =+=+=32λ=故选:A 9.B【分析】列举出的可能情况,可得出的所有可能取值,1234567a a a a a a a →→→→→→m 相加即可得解.【详解】由题意,的可能情况有:1234567a a a a a a a →→→→→→①;②;2142142→→→→→→16842142→→→→→→③;④;2010516842→→→→→→310516842→→→→→→⑤;⑥;128643216842→→→→→→21643216842→→→→→→所以,的可能取值集合为,的所有可能取值之和为m {}2,16,20,3,128,21m .21620312821190+++++=故选:B.10.B【分析】设MN 与BD 的交点为H ,连接,证明平面ABC .设的外接圆圆D H 'D G '⊥ABC 心为,的外接圆圆心为,过,分别作平面ABC ,平面的垂线,设1O AD C ' 2O 1O 2O AD C '两垂线交于点O ,则O 是三棱锥外接球的球心,先求出,再求出三棱锥D ABC '-12,r r 的外接球的半径即得解.D ABC '-R 【详解】如图所示,因为,,13AM MD =13CN ND =所以,设MN 与BD 的交点为H ,连接,//MN AC 'D H 因为,,所以,则,,5AD CD AB ===3GA GC ==4DG =1GH =3DH =所以.又,则.又,3D H '=GD '=222D G GH D H ''+=D G GH '⊥D G AC '⊥,平面ABC ,故平面ABC .AC HG G ⋂=AC HG ⊂,D G '⊥设的外接圆圆心为,的外接圆圆心为,过,分别作平面ABC ,平ABC 1O AD C ' 2O 1O 2O 面的垂线,设两垂线交于点O ,则O 是三棱锥外接球的球心,且四边形AD C 'D ABC '-为矩形.设的外接圆半径为,在中,由,解得12O OO G ABC 1r ABC ()2221143r r -+=,同理可得的外接圆半径的1258r =AD C ' 2r =2GO =D ABC '-外接球半径为R ,则,则三棱锥的外接球的表面22212R O A GO =+6252627646464=+=D ABC '-积.26274π16S R π==故选:B .11.D【分析】连结连接、.设,根据双曲线的定义可推得,即2AF 2BF 2AF =2BF m =||4AB a =.进而在直角三角形中,根据勾股定理可得.结合已知条件,即可2m a =2F 得出,从而得出离心率.222c a =【详解】如图,连接、.2AF 2BF 因为M 为AB 的中点,,所以.2F M AB ⊥22AF BF =设,2AF =2BF m =因为,所以.212AF AF a -=12AF m a =-又因为,所以,122B F B F a -=1BF =2m a +则.11||4AB BF AF a =-=因为M 为AB 的中点,所以,则.||||2AM BM a ==1F M m =设,在中,122FF c =12Rt F F M △2F在中,2Rt AF M△2F ,整理可得,所以.=22222m a c =+2F 当时,,则,1230AF F ∠=︒12sin AF F ∠=212FMF F =12=222c a =所以离心率为ce a==故选:D .12.D【分析】构造函数,,利用导数判断其单调性即可判断的大()1tan x f x x =--e π04x <<,a c 小;,可构造函数判断与的大小,ln1.618ln(10.618)b ==+()ln(1)h x x x =+-ln1.618b =0.618构造函数判断与的大小,从而可判断的大小.()tan k x x x =-0.618tan 0.618,b c 【详解】令,,()1tan xf x x =--e e cos cos sin cos x x x xx--=π04x <<令,()e cos x g x x =-cos sin x x -则,()(sin cos )e x g x x x '=-+sin cos x x +-()e 1(cos sin )xx x =--当时,,则在上单调递增,π04x <<()0g x '>()g x 0,4π⎛⎫⎪⎝⎭又,所以当时,,又,所以在上恒(0)110g =-=04x π<<()0g x >cos 0x >()0f x >0,4π⎛⎫⎪⎝⎭成立,又,所以,即.00.6184π<<(0.618)0f >a c >令,则,()ln(1)h x x x =+-1()111x h x x x -=-=++'当时,,所以在上单调递减,02x π<<()0h x '<()h x 0,2π⎛⎫⎪⎝⎭所以当时,,即.02x π<<()(0)0h x h <=ln(1)x x +<令,则,在上单调递减,()tan k x x x =-21()10cos k x x '=-≤()k x 0,2π⎛⎫⎪⎝⎭所以当时,,即,02x π<<()(0)0k x k <=tan x x <所以在上恒成立.ln(1)tan x x x +<<0,2π⎛⎫⎪⎝⎭令,则,所以.0.618x =ln(0.6181)0.618tan 0.618+<<c b >综上所述,.a c b >>故选:D .【点睛】构造函数比较大小主要方法有:1.通过找中间值比较大小,要比较的两个或者三个数之间没有明显的联系,这个时候我们就可以通过引入一个常数作为过渡变量,把要比较的数和中间变量比较大小,从而找到他们之间的大小;2.通过构造函数比较大小,要比较大小的几个数之间可以看成某个函数对应的函数值,我们只要构造出函数,然后找到这个函数的单调性,就可以通过自变量的大小关系,进而找到要比较的数的大小关系.有些时候构造的函数还需要通过放缩法进一步缩小范围.13.90【分析】由二项式展开式通项公式可求.【详解】由题知,当时,,故的系数为90.()52153C rrrr T xx -+⎛⎫= ⎪⎝⎭1035C 3r r rx -=⋅⋅2r =4390T x =4x 故答案为:90.14.##522.5【分析】以点A 为坐标原点,,的方向为x 轴,y 轴正方向建立平面直角坐标系,写ABAD 出对应点的坐标,设,根据平面向量数量积的坐标运算即可求解.(,0)N m (02)m ≤≤【详解】以点A 为坐标原点,,的方向为x 轴,y 轴正方向,建立平面直角坐标系,ABAD 则,,,设,11,2M ⎛⎫⎪⎝⎭(2,0)B (0,1)D (,0)N m (02)m ≤≤所以,,则,11,2MB ⎛⎫=- ⎪⎝⎭ (,1)DN m =- MB DN ⋅= 12m +因为,所以,即的最大值为.02m ≤≤1522MB DN ≤⋅≤ MB DN ⋅ 52故答案为:.5215【分析】求出A 、B 坐标,设N (x ,y ),求出N 的轨迹圆E 的方程,作出图象,利用圆的公切线的几何性质即可求其斜率.【详解】对于圆,令,得,解得或,22:280M x y x ++-=0y =2280x x +-=4x =-2x =则,.()4,0A -()2,0B 设,∵,∴,(,)N x y 2NANB=2NA NB =,整理得,=22(4)16x y -+=则点N 的轨迹是圆心为,半径为的圆.()4,0E 4R =又圆M 的方程为,则圆M 的圆心为,半径为.22(1)9x y ++=(1,0)-3r =∵,∴两圆相交,434(1)43-<--<+设直线l 与圆M 和点N 轨迹圆E 切点分别为C ,D ,连接CM ,DE ,过M 作DE 的垂线,垂足为点F ,则四边形CDFM 为矩形,∵,,∴5ME =431EF DE DF R CM =-=-=-=MF =则tan FME ∠则两圆公切线CD 的斜率即为直线FM16.11,44⎡⎤⎢⎥⎣⎦【分析】先根据题目的要求平移伸缩对称变换得到的解析式,然后结合函数在()g x 2π0,3⎡⎤⎢⎥⎣⎦上恰有两个零点以及在上单调递增,列出不等式组,即可求得本题答案.ππ,1212⎡⎤-⎢⎥⎣⎦【详解】函数的图象向左平移个单位长度,得到的图象,()f x 2π32πcos 3y x ⎛⎫=+ ⎪⎝⎭再将图象上所有点的横坐标变为原来的,纵坐标不变,得到的图象,因1ω2πcos 3y x ω⎛⎫=+ ⎪⎝⎭为函数的图象与的图象关于x 轴对称,()g x 2πcos 3y x ω⎛⎫=+ ⎪⎝⎭所以,2π()cos 3g x x ω⎛⎫=-+ ⎪⎝⎭2ππsin 32x ω⎛⎫=+-= ⎪⎝⎭πsin 6x ω⎛⎫+ ⎪⎝⎭因为,所以,20π3x ≤≤ππ2ππ6636x ωω≤+≤+又因为在恰有2个零点,且,,π()sin 6g x x ω⎛⎫=+ ⎪⎝⎭2π0,3⎡⎤⎢⎥⎣⎦()sin π0k =Z k ∈所以,解得,2π2ππ3π36ω≤+<1117<44ω≤令,,得,,令,22πππ2π2π262k x k ω-+≤+≤+2k ∈Z 222π2π2ππ33k k x ωωωω-+≤≤+2k ∈Z 20k =得在上单调递增,所以,()g x 2ππ,33ωω⎡⎤-⎢⎥⎣⎦ππ,1212⎡⎤-⎢⎥⎣⎦2ππ,33ωω⎡⎤⊆-⎢⎥⎣⎦所以,又,解得.2ππ312ππ312ωω⎧-≤-⎪⎪⎨⎪≥⎪⎩0ω>04ω<≤综上所述,,故的取值范围是.1144ω≤≤ω11,44⎡⎤⎢⎥⎣⎦故答案为:11,44⎡⎤⎢⎥⎣⎦17.(1);π3A =【分析】(1)根据正弦定理,结合三角恒等变换化简可推得tan A =(2)由已知可推得.在中,由余弦定理可推得,然后根据9bc =ABD △2221193c bbc BD =+-基本不等式,即可得出BD 的最小值.【详解】(1,sin cos )sin sin B A CC A -=又,πA B C ++=]sin()sin cossin sin A C A C C A +-=.sin A C sin sin C A =又,则.sin 0C >sin A A =tan A =因为,所以.(0,π)A ∈π3A =(2)由(1)知,则的面积为.π3A =ABC 1πsin 23S bc ===9bc =在中,,ABD △13AD b =由余弦定理得2222cos BD AB AD AB AD A =+-⋅2211π2cos933c b c b =+-⨯⨯⨯,221193c b bc =+-≥13bc 133bc ==当且仅当,即2219c b =b =c =所以BD 18.(1)证明见解析【分析】(1)在△ADO 中,利用勾股定理证明ED ⊥EO ,再结合ED ⊥MO 即可证明平面MOE ,AD ⊥从而可证明平面平面MAD ;MOE ⊥(2)连接OA ,证明,以O 为坐标原点,建立空间直角坐标系,利用空间向量即可DO OA ⊥求解二面角的余弦值.【详解】(1)∵平面ABCD ,平面ABCD ,∴.AD ⊂MO ⊥MO AD ⊥∵O 为线段CD 的中点,E 为线段AD 的中点,∴,2DO =DE =∵,由余弦定理得,=45ADC ∠︒2222222EO =+-⨯=则,则.222EO DE DO +=DE EO ⊥∵,平面MOE ,∴平面MOE ,MO EO O ⋂=,MO EO ⊂AD ⊥又∵平面MAD ,∴平面平面MAD .AD ⊂MOE ⊥(2)连接OA ,由(1)知当E 为线段AD 的中点时,AE DE EO ===则A 、O 、D 三点在以AD 为直径的圆上,故.DO OA ⊥故以O 为原点,建立如图所示的空间直角坐标系,又,MC =2MO =∴,,,.(0,0,0)O (2,0,0)D (0,2,0)A (0,0,2)M 又,则,3AE DE =13,,022E ⎛⎫⎪⎝⎭∴,,,.(0,0,2)OM = (2,0,2)DM =- (2,2,0)DA =-13,,022OE ⎛⎫= ⎪⎝⎭设平面MAD 的法向量为,则解得()111,,m x y z = 1111220220DM m x z DA m x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,,1111x z x y =⎧⎨=⎩,,取,则平面MAD 的一个法向量为.11x =(1,1,1)m =设平面MEO 的法向量为,则解得()222,,x n y z = 2221302220OE n x y OM n z ⎧⋅=+=⎪⎨⎪⋅==⎩,,22230x y z =-⎧⎨=⎩,,取,则平面MEO 的一个法向量为.23x =(3,1,0)n =-则,cos m n m n m n ⋅⋅===⋅则二面角D ME O --19.(1)1481y x =(2)该公司每年投入351万元营销费用时,该产品一年的收益达到最大【分析】(1)根据题目要求可知,y 关于x 的回归方程为非线性的,设,可得b y a x =⋅,代入已知条件所给的数据,计算即可.(2)列出年收益与营销费用的关系式,ln ln ln y a b x =+通过求导来求得最值.【详解】(1)由得,,令,,,则b y a x =⋅ln ln()ln ln b y a x a b x =⋅=+ln u x =ln v y =lnc a =.v c bu =+由表中数据可得,,()()()515210.4ˆ0.251.6iii ii u u v v bu u ==--===-∑∑则,所以.26.0216.1ˆˆ0.25 4.39955cv bu =-=-⨯=ˆ 4.3990.25v u =+即,因为,所以,ˆln 4.3990.25ln y x =+14.3994ln e x ⎛⎫=⋅ ⎪⎝⎭ 4.399e 81≈14ˆ81y x =故所求的回归方程为.1481y x =(2)设年收益为W 万元,则,144120324120W y x x x =--=--对求导,得,()W f x =34'()811f x x -=-令,解得,348110x --=132433519x =≈⨯=当时,,单调递增,当时,,单调递减,(0,351)x ∈'()0f x >()f x (351,)x ∈+∞'()0f x <()f x 因此,当时W 有最大值,即该公司每年投入351万元营销费用时,该产品一年的收351x =益达到最大.20.(1);22143xy +=(2).[6,【分析】(1)由题得到关于的方程,解方程即得解;,,a b c (2)设直线l 的方程为,联立椭圆C 的方程得到韦达定理,设线段AB 的中点为1x ky =+,求出它的坐标,求出、点M ,N 到直线l 的距离,再化简求出()00,Q x y ||AB 12,d d 即得解.S =【详解】(1)设椭圆右焦点的坐标为,则,即,(,0)(0)c c >12c a =2a c =又,则,222a b c =+223b c =因为点在椭圆上,31,2⎛⎫ ⎪⎝⎭所以,即,解得,221914a b +=2213144c c +=1c =则,C 的标准方程为.2a =b =22143x y +=(2)由(1)知,因为直线l 的斜率不为0,所以可设直线l 的方程为,(1,0)F 1x ky =+代入椭圆C 的方程,消去x 化简得,22143x y +=()2234690k y ky ++-=设,,则,.()11,A x y ()22,B x y 122634ky y k -+=+122934y y k -=+设线段AB 的中点为,则,,()00,Q x y 12023234y y k y k +-==+200231134k x ky k -=+=++2434k =+即,则直线m 的方程为,2243,3434k Q k k -⎛⎫ ⎪++⎝⎭34k y x =-代入椭圆C 的方程可得,x =M.N⎛ ⎝||AB =-=,=()2212134k k +=+点M ,N 到直线l 的距离分别为1d 2d 则四边形AMBN 的面积为1211||||22S AB d AB d =⨯⨯+⨯⨯()121|2ABd d =⨯⨯+∣1||2AB =⨯⨯因为点M ,N 在直线l 的两侧,所以1|2S AB =⨯1||2AB ⨯⨯1||2AB ⨯()221211234k k +=⨯+=,==因为,所以2110344k <≤+6S ≤<因此,四边形AMBN 的面积的取值范围为.[6,21.(1)4πy x =-(2)[1,)+∞【分析】(1)由导数法求切线;(2)法一:对m 分类讨论,由导数法研究函数单调性及符号即可判断,其中时,由作1m ≥差法说明,将问题转化为判断的符号;()2cos sin f x x x x x ≥--()2cos sin g x x x x x =--法二:不等式等价为,由导数法研究图象性质,由数形结合判sin 2cos xmx x >-sin ()2cos x g x x=-断范围.【详解】(1)因为,所以,()2cos sin f x x x x x =--()22cos sin f x x x x '=-+因为,,所以切线方程为,即.()π4f '=()π3πf =()3π4πy x -=-4y x π=-(2)方法一:i.若,1m ≥由,2cos sin (2cos sin )mx mx x x x x x x -----2(1)(1)cos m x m x x =---(1)(2cos )0m x x =--≥可得,()2cos sin f x x x x x ≥--设,则,()2cos sin g x x x x x =--()22cos sin g x x x x '=-+当时,,所以单调递增,则;(0,]x π∈()0g x '>()g x ()(0)0g x g >=当时,,所以,(,)x ∈π+∞()(1cos )(sin )0g x x x x x =-+->()0g x >所以恒成立,符合题意;()0f x >ii.若,,0m ≤()2cos sin f x mx mx x x =--(1cos )sin mx x mx x =-+-当时,,不合题意.π0,2x ⎛⎫∈ ⎪⎝⎭()0f x <iii.若,,01m <<()2(1)cos sin f x m m x mx x '=-++设,则,()()h x f x '=()(21)sin cos h x m x mx x '=++当时,,所以在上单调递增,π0,2x ⎛⎫∈ ⎪⎝⎭()0h x '>()f x 'π0,2⎛⎫ ⎪⎝⎭因为,,所以存在,使得,ππ2022f m ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭'(0)0f '<0π0,2x ⎛⎫∈ ⎪⎝⎭()00f x '=当时,,则在上单调递减,,不合题意.()00,x x ∈()0f x '<()f x ()00,x ()(0)0f x f <=综上所述,m 的取值范围为.[1,)+∞方法二:由题知当时,,即,0m >2cos sin 0mx mx x x -->(2cos )sin mx x x ->因为,所以.2cos 0x ->sin 2cos xmx x>-设,因为,所以为周期函数,且周期为.sin ()2cos x g x x=-(2)()g x g x π+=()g x 2π,22cos (2cos )sin ()(2cos )x x x g x x --'=-22cos 1(2cos )x x -=-令,则或,,()0g x '=π2π3x k =+5π2π3x k =+k ∈Z 所以当,时,,则单调递增;ππ2π,2π33x k k ⎛⎫∈-++ ⎪⎝⎭k ∈Z ()0g x '>()g x 当,时,,则单调递减.π5π2,2π33x k k π⎛⎫∈++ ⎪⎝⎭k ∈Z ()0g x '<()g x 当时,令,则,则单调递减,0,3x π⎛⎫∈ ⎪⎝⎭()()h x g x '=32sin (1cos )()0(2cos )x x h x x -+'=<-()()h x g x '=∴.()(0)1g x g ''<=当时,直线与曲线相切,如图,1m =y mx =()y g x =根据图象可知,要使,只需,故实数m 的取值范围为.sin 2cos x mx x>-m 1≥[1,)+∞【点睛】恒成立问题,一般可通过分离参数法,转化为由导数法研究不含参部分的最值;或者对参数分类讨论,由导数法分别说明.22.(1),,作图见解析;20x y +-=222||2||0x y x y +--=(2)或.π12α=5π12α=【分析】(1)消去参数,即可得出直线的普通方程.根据公式即可求得曲线C 的直角坐标方t 程.然后根据方程作图即可;(2)设点A 位于第一象限,由图象集合已知条件可推出,2sin 2cos A ραα=+.由.然后根据的范围,即可得出2sin 2cos B ραα=+||AB =πsin 4α⎛⎫+= ⎪⎝⎭αα的值.【详解】(1)将直线的参数方程消去t ,得普通方程为.20x y +-=曲线C 的极坐标方程为,即,2|sin |2|cos |ρθθ=+22|sin |2|cos |ρρθρθ=+又,,,所以曲线C 的直角坐标方程为222x y ρ=+cos x ρθ=sin y ρθ=.222||2||0x y x y +--=则曲线C的简图如图所示.(2)不妨设点A 位于第一象限,结合图形和直线可知,:0,2m πθαα⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,,2sin 2cos A ραα=+2sin(π)2cos(π)B ραα=-+-+2sin 2cos αα=+则,||4sin 4cos A B AB ρραα=+=+π4α⎛⎫=+= ⎪⎝⎭所以.πsin 4α⎛⎫+ ⎪⎝⎭又,所以,π0,2α⎡⎤∈⎢⎥⎣⎦ππ3π,444α+∈⎡⎤⎢⎥⎣⎦则或,所以或.ππ43α+=π2π43α+=π12α=5π12α=23.(1)作图见解析,2m =-(2)3【分析】(1)写出f (x )解析式,按照一次函数图象画法即可画出图象,根据图象即可求出最小值m ;(2)利用基本不等式得,,,三式相加即可求得22a b a b+≥22b c b c +≥22c a c a +≥222a b c b c a ++的最小值.【详解】(1)由题知()35,1,1,11,33,1,x x f x x x x x --≤-⎧⎪=--<<⎨⎪-≥⎩描点,,,,连线得的图象如图所示.(2,1)-(1,2)--(1,0)(2,3)()y f x =通过图象可知,当时,函数的最小值为,即.=1x -()y f x =2-2m =-(2)由(1)知,,2m =-13a b c m ++=-+=,,,22a b a b+≥22b c b c +≥22c a c a +≥三个式子相加得,当且仅当时等式成立,2223a b c a b c b c a++≥++=1a b c ===∴的最小值为3.222a b c b c a++。

2020年高三全国统一考试·联考数学理科(含答案)

2020年高三全国统一考试·联考数学理科(含答案)

2020年普通高等学校招生全国统一考试·联考理科数学本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}N x x x x A ∈<--=,0322,则集合A 的真子集有( )A .5个 B. 6个 C. 7个 D. 8个2.已知i 是虚数单位,则化简2020)11(ii -+的结果为( ) A.i B.i - C.1- D.13.若干年前,某教师刚退休的月退休金为400元,月退休金各种用途占比统计图如下面的条形图该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( )A .4500元 B. 5000元 C .5500元 D .6000元4.将包括甲、乙、丙在内的8人平均分成两组参加文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为( ) A.72 B.73 C.71 D.143 5已知抛物线x y 42=的焦点为F ,过点F 和抛物线上一点)32,3(M 的直线l 交抛物线于另一点N ,则NM NF :等于( )A.2:1B.3:1C.4:1D.3:16.在所有棱长都相等的直三棱柱111C B A ABC -中,D ,E 分别为棱AC CC ,1的中点,则直线AB 与平面DE B 1所成角的余弦值为( ) A.1030 B.2030 C.20130 D.1070 7已知点A (4,3),点B 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥06200y x y x y 所表示平面区域上的任意一点,则AB 的最小值为( )A.5B.554 C.5 D.552 8.给出下列说法①定义在[a ,b]上的偶函数b x a x x f ++-=)4()(2的最大值为20; ②“4π=x ”是“1tan =x ”的充分不必要条件; ③命题“21),,0(000≥++∞∈∃x x x ”的否定形式是“21),,0(<++∞∈∀xx x ” 其中正确说法的个数为( )A.0B.1C.2D.39.已知5.03422log 2log ,,,03log m c m b m a m ===>,则c b a ,,间的大小关系为 A.c b a << B.c a b << C.b a c << D.a c b <<10.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤=15斤,1斤=16两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( )A .9两 B.127266两 C.63266两 D.127250两 11在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若3cos cos c A b B a =-,则B b A a B a cos cos cos +的最大值为( ) A.2 B.22 C.23 D.332 12.已知几)(x f 为奇函数,)(x g 为偶函数,且)13(log )()(3+=+x x g x f ,不等式0)()(3≥--t x f x g 对R x ∈恒成立,则t 的最大值为( )A.1B.2log 233-C.2D.12log 233- 二、填空题:本题共4小题,每小题5分,共20分13已知向量a =(2,5-),b =(1,52),则b 在a 方向上的投影等于 .14在△ABC 中,∠B=32π,A 、B 是双曲线E 的左、右焦点,点C 在E 上,且BC=21AB ,则E 的离心率为 .5已知函数)0,0)(cos()(πϕωϕω≤≤>+=x x f 是奇函数,且在]4,6[ππ-上单调减,则ω的最大值是 .16已知三棱锥A-BCD 中,平面ABD ⊥平面BCD ,BC ⊥CD ,BC=CD=2,AB=AD=6,则三棱锥A-BCD 的外接球的体积为 .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第次年题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17.(12分)已知数列{a n }的前n 项和为S n ,且112n n n S na a =+-. (1)求数列{a n }的通项公式;(2)若数列22n a ⎧⎫⎨⎬⎩⎭的前n 项和为T n ,证明: 32n T <.18.(12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABEF 为正方形,AF ⊥DF ,AF=22FD ,∠DFE=∠CEF=45.(1)证明DC ∥FE ;(2)求二面角D-BE-C 的平面角的余弦值.19.(12分)已知点P 在圆O :x 2+y 2=9上,点P 在x 轴上的投影为Q ,动点M 满足432PQ MQ u u u r u u u u r .(1)求动点M 的轨迹E 的方程;(2)设G (-3,0),H (3,0),过点F (1,0)的动直线l 与曲线E 交于A 、B 两点,问直线AG 与直线BH 的斜率之比是否为定值?若为定值,求出该定值;若不为定值,试说明理由.20.(12分)某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为p (0.6≤p≤0.8)(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率,该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元该农户为了获利期望不低于10万元,问至少要引种种树苗多少棵?21.(12分)已知函数f (x )=(a-1)x+xlnx 的图象在点A (e 2,f (e 2))(e 为自然对数的底数)处的切线斜率为4(1)求实数a 的值;(2)若m ∈Z ,且m (x-1)<f (x )+1对任意x>1恒成立,求m 的最大值.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为-22ππρθ⎡⎤∈⎢⎥⎣⎦,),直线l 的参数方程为2cos 4sin x t y ts αα=-+⎧⎨=-+⎩(t 为参数). (1)点A 在曲线C 上,且曲线C 在点A 处的切线与直线:x+2+1=0垂直,求点A 的直角坐标;(2)设直线l 与曲线C 有且只有一个公共点,求直线l 的斜率的取值范围.23.[选修4-5:不等式选讲](10分)设函数f (x )=|x-1|+2|x+1|,x ∈R(1)求不等式f (x )<5的解集;(2)若关于x 的不等式122)(-<+t x f 在实数范围内解集为空集,求实数t 的取值范围·11·。

2024-2025学年辽宁省三校高三数学上学期10月联考试卷及答案解析

2024-2025学年辽宁省三校高三数学上学期10月联考试卷及答案解析

2024—2025学年度上学期高三10月联合教学质量检测高三数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1. 已知集合{}21A x x =-<,{}3B x a x a =<<+,若{}15A B x x ⋃=<<,则a =()A. 0B. 1C. 2D. 3【答案】C 【解析】【分析】先求出集合A ,再根据并集得出参数的值.【详解】因为()1,3A =,()1,5A B ⋃=,又因为(),3B a a =+,所以35,a +=即a =2.故选:C.2. 如图,在ABC V 中,点D 是BC 边的中点,3AD GD = ,则用向量AB ,AC表示BG 为( )A. 2133BG AB AC=-+u u u u r uu r u u u r B. 1233BG AB AC=-+u u u r u uu r u u u r C. 2133BG AB AC=-u u u r u u u r u u u r D. 2133BG AB AC=+u u u r u u u r u u u r【答案】A 【解析】【分析】利用向量的线性运算求解即可.【详解】3AD GD =,故23AG AD = ,则()2212133233B C G BA BA BA AG AD AB A AB AC =+=+=+⨯+=-+.故选:A3. 在等比数列{}n a 中,记其前n 项和为n S ,已知3212a a a =-+,则84S S 的值为( )A. 2 B. 17 C. 2或8D. 2或17【答案】D 【解析】【分析】根据等比数列通项公式求得1q =或2q =-,再利用等比数的求和公式求解即可.【详解】解:由等比数列的通项公式可得21112a q a q a =-+,整理得220q q +-=,解得1q =或2q =-.当q =1时,1841824S a S a ==;当2q =-时,()()814844184111117111a q S q q q S q a q q ---====-+--.所以84S S 的值为2或17.故选:D .4. 每年10月1日国庆节,根据气象统计资料,这一天吹南风的概率为25%,下雨的概率为20%,吹南风或下雨的概率为35%,则既吹南风又下雨的概率为( )A. 5% B. 10%C. 15%D. 45%【答案】B 【解析】【分析】根据概率公式直接得出结论.【详解】由题知,既吹南风又下雨的概率为25%20%35%10%+-=.故选:B5. 若直线:3l y kx k =+-与曲线:C y =恰有两个交点,则实数k 的取值范围是( )A. 4,+3∞⎛⎫⎪⎝⎭B. 43,32⎛⎤⎥⎝⎦C. 40,3⎛⎫ ⎪⎝⎭D. 43,32⎡⎫⎪⎢⎣⎭【答案】B 【解析】【分析】先得到直线过定点()1,3P ,作出直线l 与曲线C ,由图求出直线l 过点()1,0A -时的斜率和直线l 与曲线C 相切时的斜率即可树形结合得解.【详解】由()313y kx k k x =+-=-+可知直线l 过定点()1,3P ,曲线:C y =两边平方得()2210x y y +=≥,所以曲线C 是以()0,0为圆心,半径为1且位于直线x 轴上方的半圆,当直线l 过点()1,0A -时,直线l 与曲线C 有两个不同的交点,此时3032k k k =-+-⇒=,当直线l 与曲线C 相切时,直线和圆有一个交点,圆心()0,0到直线l的距离1d ,两边平方解得43k =,所以结合图形可知直线l 与曲线C 恰有两个交点,则4332k <≤.故选:B.6. 已知()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,()()sin g x x ωϕ=+,则下列结论不正确的A. π6ϕ=B. 若()g x 的最小正周期为3π,则23ω=C. 若()g x 在区间()0,π上有且仅有3个最值点,则ω的取值范围为710,33⎛⎫⎪⎝⎭D. 若π4g ⎛⎫= ⎪⎝⎭,则ω的最小值为2【答案】D 【解析】【分析】先根据()f x 是偶函数求ϕ判断A 选项;根据最小正周期公式计算可以判断B 选项;据有且仅有3个最值点求范围判断C 选项;据函数值求参数范围结合给定范围求最值可以判断D 选项.【详解】()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,则πππππ,Z,,,3226k k ϕϕϕ+=+∈<∴=∣∣A 选项正确;若()g x 的最小正周期为3π,由()sin()g x x ωϕ=+则2π23π,3T ωω==∴=,B 选项正确;πππ(0,π),(,π)666x x ωω∈+∈+ 若()g x 在区间()0,π上有且仅有3个最值点,则5ππ7π710π,26233ωω<+≤<≤,C 选项正确;若π()sin(6g x x ω=+ πππsin +446g ω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则πππ+2π463k ω=+或ππ2π+2π463k ω=+,Z k ∈,则 283k ω=+或28,Z k k ω=+∈,又因为0ω>,则ω的最小值为23,D 选项错误.故选:D.7. 已知()612a x x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为1280-,则a =( )A. ―2B. 2C. D. 1【解析】【分析】根据已知条件,结合二项式定理并分类讨论,即可求解.【详解】由题意,62a x x ⎛⎫- ⎪⎝⎭的通项公式为()()6662166C 2C 2rr r r r rr r a T x a x x ---+-⎛⎫=⋅=- ⎪⎝⎭,令620r -=,则3r =,令621r -=-,则72r =不符合题意,所以()612a x x x ⎛⎫-- ⎪⎝⎭的常数项为()3336C 21280a --=-,解得2a =-.故选:A .8. 已知函数22()log f x x mx x =-+,若不等式()0f x >的解集中恰有两个不同的正整数解,则实数m的取值范围是( )A. 23log 33,89+⎡⎫⎪⎢⎣⎭B. 23log 33,94+⎛⎫⎪⎝⎭C. 23log 33,94+⎡⎫⎪⎢⎣⎭ D. 23log 33,89+⎛⎫⎪⎝⎭【答案】C 【解析】【分析】不等式()0f x >可化为2log 1xmx x-<,利用导数分析函数()2log x g x x =的单调性,作函数()1h x mx =-,()2log xg x x=的图象,由条件结合图象列不等式求m 的取值范围.【详解】函数22()log f x x mx x =-+的定义域为(0,+∞),不等式()0f x >化为:2log 1xmx x-<.令()1h x mx =-,()2log x g x x=,()2222221log e log log e log x xx x g x x x --='=,故函数()g x 在()0,e 上单调递增,在()e,∞+上单调递减.当1x >时,()0g x >,当1x =时,()0g x =,当01x <<时,()0g x <,当x →+∞时,()0g x →,当0x >,且0x →时,()g x ∞→-,画出()g x 及()h x 的大致图象如下,因为不等式()0f x >的解集中恰有两个不同的正整数解,故正整数解为1,2.故()()()()2233h g h g ⎧<⎪⎨≥⎪⎩,即22log 2212log 3313m m ⎧-<⎪⎪⎨⎪-≥⎪⎩,解得23log 3943m +≤<.故选:C.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9. 已知复数232023i i i i 1iz ++++=+ ,则下列结论正确的是( )A. 1i 2z -=-B. 1i 2z -=C. 1i 2z +=-D. z =【答案】ACD 【解析】【分析】利用234i+i +i +i 0=对分子化简,然后利用复数的除法化简,可求共轭复数、复数的模依次判断即可得出结果.【详解】因为i,411,42i ,i,431,4nn k n k k n k n k=+⎧⎪-=+⎪=∈⎨-=+⎪⎪=⎩Z ,所以234i+i +i +i 0=,所以()()()()2342323202323505i+i +i +i i i i 1i i i i i i i i 111i 1i 1i 1i 1i 1i 1i 22z +++--++++++-======-++++++- ,所以A 正确,B 错误,111i i=222z +=---,C 准确,所以z ==D 正确.故选:ACD10. “费马点”是由十七世纪法国数学家费马提出并征解的一个问题. 该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.意大利数学家托里拆利给出了解答,当 ABC V 的三个内角均小于120°时,使得120AOB BOC COA ︒∠=∠=∠=的点O 即为费马点;当 ABC V 有一个内角大于或等于120°时,最大内角的顶点为费马点.下列说法正确的是( )A. 正三角形的的费马点是正三角形的中心B. 若P 为ABC V 的费马点, 且 0PA PB PC ++=u u r u u r u u u r r,则ABC V 一定为正三角形C. 若ABC V 三边长分别为2D. ABC V 的内角A ,B ,C 所对的边分别为a ,b , c , π22A ,bc ∠==,若点P 为ABC V 的费马点,则PA PB PB PC PC PA ⋅+⋅+⋅=.【答案】ABC 【解析】【分析】对A ,根据正三角形中心的性质结合费马点定义易判断;对B ,取AB 的中点D ,由0PA PB PC ++=可得点P 是ABC V 的重心,再结合条件可得点P 是ABC V 的中心,得证;对C ,利用三角形旋转,结合费马点定义,构造正三角形转化线段长求解;对D ,由向量数量积定义,结合费马点定义和三角形等面积法列式求解.【详解】对于A ,如图O 是正三角形ABC 的中心,根据正三角形的性质易得o 120AOB AOC BOC ∠=∠=∠=,所以点O 是正三角形ABC 的费马点,故A 正确;对于B ,如图,取AB 的中点D ,则2PA PB PD += ,因为0PA PB PC ++=,所以2PC PD =-u u u r u u u r,所以,,C P D 三点共线,且点P 是ABC V 的重心,又点P 是ABC V 费马点,则o 120APB APC BPC ∠=∠=∠=,则o 60APD BPD ∠=∠=,又AD BD =,易得PA PB =,同理可得PC PB =,所以PA PB PC ==所以点P 是ABC V 的外心,所以点P 是ABC V 的中心,即ABC V 是正三角形.故B 正确;对于C ,如图,在Rt ABC △中,1AB =,BC =,2AC =,o 30ACB ∠=,点O 是Rt ABC △的费马点,将COA 绕点C 顺时针旋转o 60,得到CED △,易证COE ,ACD 是正三角形,则OC OE =,OA DE =,CD AC =,且点,,,B O E D 共线,所以o90BCD ∠=,所以BD ===又OA OB OC DE OE OB DB ++=++==,的.故C 正确;对于D ,由费马点定义可得o 120APB APC BPC ∠=∠=∠=,设PA x =,PB y =,PC z =,,,0x y z >,由ABC PAB PAB PAB S S S S =++V V V V,可得111122222xy xz yz ++=⨯,整理得xy yz xz ++=,所以111222PA PB PB PC PC PA xy yz xz ⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1122xy yz xz =-++=-=,故D 错误.故选:ABC.【点睛】关键点点睛:解答本题首先要理解费马点的含义,解答D 选项的关键在于利用三角形等面积法求出xy yz xz ++=.11. 在四面体ABCD 中,棱AB 的长为4,AB BD ⊥,CD BD ⊥,2BD CD ==,若该四面体的体积为)A. 异面直线AB 与CD 所成角的大小为π3B. AC的长可以为C. 点D 到平面ABCD. 当二面角A BC D --是钝角时,其正切值为【答案】ACD【解析】【分析】根据等体积法可结合三角形的面积公式可得sin CDE ∠=A ,根据余弦定理即可求解B ,根据等体积法即可求解C ,根据二面角的几何法,结合同角关系即可求解D.【详解】在平面ABD 内过D 作DE AB ∥,且ED AB =,由于AB BD ⊥,故四边形ABDE 为矩形,CD BD ⊥,DE BD ⊥,BD DE C = ,CD ⊂平面CDE ,DE ⊂平面CDE ,故BD ⊥平面CDE ,故11233C ABD C EDA B CDE CDE CDE V V V S BD S ---===⋅=⨯=,11sin 24sin 4sin 22CDE S CD DE CDE CDE CDE=⋅⋅∠=⨯⨯∠=∠故1124sin 233C ABD CDE V S CDE -=⨯=⨯∠⨯=,因此sin CDE ∠=由于()0,CDE π∠∈,所以3CDE π∠=或23π,由于CDE ∠为异面直线AB 与CD 所成角或其补角,故异面直线AB 与CD 所成角的大小为3π,A 正确,当23CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时AC ==当3CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时4AC ==,故B 错误,由于BC ==,4AB =,当AC =cos BAC ∠==sin BAC ∠=,11sin 422ABC S AB AC BAC =⋅⋅∠=⨯⨯= ,当4AC =时,161683cos 2444BAC +-∠==⨯⨯,故sin BAC ∠=,1sin 2ABC S AB AC BAC =⋅∠= ,故点D 到平面ABC的距离为d ===,C 正确,当4AC =时,4AB AC ==,2CD BD ==,取BC 中点为O ,连接OA ,OD ,则AOD ∠即为二面角A BC D --的平面角,12OD BC ===,AO ==所以22cos 0AOD ∠===<,故AOD ∠为钝角,符合题意,此时sin tan cos AODAOD AOD∠∠==∠,当4AC =,由于2DBCS =,点A 到平面BDC距离为d ===,设A 在平面BDC 的投影为H ,则AH =,故HD==HC ==,因此点O 为以D ,C为圆心,以半径为,显然交点位于BC ,同D 的一侧,故此时二面角A BC D --为锐角,不符合要求,故D 正确,故选:ACD三、填空题(本大题共3小题,每小题5分,共15分)12. 已知,a b +∈R ,41a b +=,则aba b+的最大值是________.【答案】19【解析】的【分析】先求出11a b+的最小值,再将aba b +化为111a b+,即可求得答案.【详解】因为,a b +∈R ,41a b +=,故()111144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,结合41a b +=,即11,63==a b 时等号成立,所以11119ab a b a b =≤++,即ab a b +的最大值是19,故答案为:1913. 刻画空间的弯曲性是几何研究的重要内容,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体(四个面都是等边三角形围成的几何体)在每个顶点有3个面角,每个面角是π3,所以正四面体在每个顶点的曲率为π2π3π3-⨯=,故其总曲率为4π.我们把平面四边形ABCD 外的点P 连接顶点A 、B 、C 、D 构成的几何体称为四棱锥,根据曲率的定义,四棱锥的总曲率为______.【答案】4π【解析】【分析】根据曲率的定义求解即可.【详解】由定义可得多面体的总曲率2π=⨯顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()2π5π42π14π⨯-⨯+⨯=.故答案为:4π.14. 过双曲线22221(0,0)y x a b a b-=>>的上焦点1F ,作其中一条渐近线的垂线,垂足为H ,直线1F H 与双曲线的上、下两支分别交于,M N ,若3NH HM =,则双曲线的离心率e =__________.【解析】【分析】设双曲线右焦点为2F ,HM t =,3NH t =,由题意结合双曲线定义可依次求出1F H 、1OF 、1F M 、1F N 、2F N 和2F M ,接着分别在1Rt F OH 、12F MF △和12F NF △中结合余弦定理求出1cos OF M ∠,进而建立等量关系式求出t ,从而求得2b a =,进而由离心率公式即可得解.【详解】设双曲线右焦点为2F ,由题()10,F c ,双曲线的一条渐近线方程为ay x b=-即0ax by +=,过该渐近线作垂线,则由题1F H b =,1OF c =,设HM t =,则由题3NH t =,1F M b t =-,13F N b t =+,所以232F N b t a =+-,22F M b t a =-+,所以在1Rt F OH 中,111cos F H bOF M OF c∠==①,在12F MF △中,()()()()()22222211221112||||22cos 222F M F F F M b t c b t a OF M b t c F M F F +--+--+∠==-⋅②,在12F NF △中,()()()()()22222211221112||||3232cos 2322F N F F F N b t c b t a OF M b t c F N F F +-++-+-∠==+⋅③,由①②得()()()()()2222222b t c b t a bb tc c-+--+=-,化简解得ab t a b =+,由①③得()()()()()2223232232b t c b t a b b t c c++-+-=+,化简解得()3ab t b a =-,所以()23ab abb a a b b a =⇒=+-,故双曲线的离心率c e a====.【点睛】思路点睛:依据题意设双曲线右焦点为2F ,HM t =,则结合双曲线定义可得1Rt F OH 、12F MF △和12F NF △的边长均是已知的,接着结合余弦定理均可求出三个三角形的公共角1OF M ∠的余弦值1cos OF M ∠,从而可建立等量关系式依次求出t 和2b a =,进而由离心率公式得解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15. 设n S 为数列{}n a 的前n 项和,满足()*1N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)1()2n n a = (2)1235111((3232n nn n T --=+-⋅【解析】【分析】(1)应用1n n n S S a --=,再结合等比数列定义及通项公式计算即可;(2)先化简得出21111()()24n n n S --+=,再应用分组求和及等比数列前n 项和公式计算.小问1详解】因为数列{a n }的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{a n }构成首项为12,公比为12的等比数列,所以{a n }的通项公式为1111()(222n nn a -=⋅=.【小问2详解】由(1)知1(2nn a =,可得11(2nn S =-,所以222111111()]12()()1((22224[1n n n n n n S -=-⋅=+=-+-,【则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++-+-- 1235111()()3232n n n --=+-⋅.16. 如图,正四棱台ABCD EFGH -中,24,EG AC MN ==上为上下底面中心的连线,且MN 与侧面.(1)求点A 到平面MHG 的距离;(2)求二面角E HM G --的余弦值.【答案】(1(2)23-【解析】【分析】(1)由题意建立空间直角坐标系,求得平面法向量,利用点面距向量公式,可得答案;(2)求得两个平面的法向量,利用面面角的向量公式,可得答案.【小问1详解】由题意,易知,,MN MA MB 两两垂直,分别以,,MA MB MN 为,,x y z 轴建立直角坐标系,如下图:则()()()()1,0,0,0,0,0,0,2,1,2,0,1A M H G --,取()()0,2,1,2,0,1MH MG =-=-,设平面MHG 的法向量(),,n x y z = ,则2020n MH y z n MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z =,则1,1x y ==,所以平面MHG 的一个法向量()1,1,2n =,取()1,0,0MA = ,点A 到平面MHG的距离MA n d n ⋅===.【小问2详解】由(1)可知()()()()2,0,1,0,2,1,0,0,0,2,0,1E H M G --,取()()()()2,2,0,2,0,1,2,2,0,2,0,1HE ME HG MG ===-=-,设平面EHM 的法向量()1111,,m x y z = ,则11111122020m HE x y m ME x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令11x =-,则221,2y z ==,所以平面EHM 的一个法向量()11,1,2m =-,设平面HMG 的法向量()2222,,m x y z = ,则22222222020m HG x y m MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21x =,则111,2y z ==,所以平面EHG 的一个法向量()21,1,2m =,设二面角E HM G --的大小为θ,则12121142cos 1143m m m m θ⋅-++=-=-=-++⋅ .17. 某汽车公司最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行整理,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)由频率分布直方图计算得样本标准差s 的近似值为49.75.根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本标准差S.(ⅰ)利用该正态分布,求()250.25399.5P X <<;(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z 表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E (Z );参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+=,()()220.9545,330.99731P P μσξμσμσξμσ-<<+=-<<+=.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在x 轴上从原点O 出发向右运动,已知硬币出现正、反面的概率都12,客户每掷一次硬币,遥控车向右移动一次,若掷出正面,则遥控车向移动一个单位,若掷出反面,则遥控车向右移动两个单位,直到遥控车移到点(59,0)(胜利大本营)或点(60,0)(失败大本营)时,游戏结束,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.设遥控车移到点(),0n 的概率为()160n P n ≤≤,试证明数列{}1n n P P --是等比数列()259n ≤≤,求出数列{}()160n P n ≤≤的通项公式,并比较59P 和60P 的大小.【答案】(1)300 (2)(ⅰ)0.8186;(ⅱ)16.372(3)证明见解析,158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩,5960P P >【解析】【分析】(1)根据平均数的求法求得正确答案.(2)(ⅰ)根据正态分布的对称性求得正确答案.(ⅱ)根据二项分布的知识求得正确答案.(3)根据已知条件构造等比数列,然后利用累加法求得n P ,利用差比较法比较59P 和60P 的大小.【小问1详解】2050.12550.23050.453550.24050.05300x ≈⨯+⨯+⨯+⨯+⨯=.【小问2详解】(ⅰ)0.95450.6827(250.25399.5)0.68270.81862P X -<<=+=.(ⅱ))∵Z 服从二项分布()20,0.8186B ,∴()200.818616.372E Z =⨯=.【小问3详解】当359n ≤≤时,()12112111,222n n n n n n n P P P P P P P -----=+-=--,1221111131,,222244P P P P ==⨯+=-=.∴{}1(259)n n P P n --≤≤是以14为首项,12-为公比的等比数列,2111(259)42n n n P P n --⎛⎫-=⋅-≤≤ ⎪⎝⎭.22132111111,,,(259)44242n n n P P P P P P n --⎛⎫⎛⎫-=-=⋅-⋯-=⋅-≤≤ ⎪⎪⎝⎭⎝⎭.累加得:115816058111422111111,(259),1362236212n n n n P P P n P P --⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭-==-⋅-≤≤==+⋅ ⎪ ⎪⎝⎭⎝⎭+.∴158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩∵58585960111111033232P P ⎛⎫⎛⎫⎛⎫-=-⨯=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴5960P P >.注:比较59P 和60P 的另一个过程:58596059592112111,13623622P P P P ⎛⎫=-⋅>-==-<< ⎪⎝⎭.18. 已知函数()1e xx f x +=.(1)求函数()f x 的极值;(2)若不等式()e ln 1xf x a x +≥恒成立,求实数a 的取值范围;(3)已知直线l 是曲线()y f x =在点()(),t f t 处的切线,求证:当1t >时,直线l 与曲线()y f x =相交于点()(),s f s ,其中s t <.【答案】(1)极大值为1,没有极小值 (2)[]e,0- (3)证明见解析【解析】【分析】(1)求导,利用导数判断()f x 的单调性和极值;(2)根据题意可得ln 0x a x +≥恒成立,构建()ln ,0g x x a x x =+>,分类讨论a 的符号,利用导数求最值,结合恒成立问题分析求解;(3)根据导数的几何意义可得当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,构建()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >,利用导数研究函数零点分析证明.小问1详解】由题意可知:()f x 的定义域为R ,且()ex xf x '-=,令()0f x '=时,0x =,则x ,f ′(x ),()f x 的关系为x(),0∞-0(0,+∞)f ′(x )+0-()f x 单调递增极大值单调递减所以,当0x =时,()f x 取到极大值为1,没有极小值.【小问2详解】若()e ln 1xf x a x +≥,即ln 0x a x +≥恒成立,设()ln ,0g x x a x x =+>,则()1a x a g x x x'+=+=,①当0a =时,则()0g x x =>恒成立,符合题意;②当0a >时,则()0g x '≥,可知()g x 在(0,+∞)上单调递增,因为11e e 10a a g --⎛⎫=-< ⎪⎝⎭,所以ln 0x a x +≥不恒成立;③当0a <时,x ,()g x ',()g x 的关系为x()0,a -a-(),a ∞-+()g x '-+【()g x 单调递减极小值单调递增可知()g x 的最小值为()()min ln g x a a a =-+-,则()ln 0a a a -+-≥,因为0a <,则()1ln 0a --≥,解得e 0a ≤-<;综上所述:实数a 的取值范围是[]e,0-.【小问3详解】因为()1e x x f x +=,()e x x f x '-=,则()1e t tf t +=,e t t k -=即切点坐标为1,e t t t +⎛⎫⎪⎝⎭,切线l 斜率为e tt k -=,可得l 的方程为()1e e t t t t y x t +--=-,即21e et tt t t y x -++=+,联立方程21e e 1e t txt t t y x x y ⎧-++=+⎪⎪⎨+⎪=⎪⎩,可得2110e e e x t tx tx t t ++++-=,由题可知:当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,设()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >且()0h t =,则()e e x t x t h x '-=+,设()()F x h x =',则()1e xx F x '-=,因为1t >,x ,()F x ',F (x )的关系为x(),1∞-1()1,t ()F x '-+F (x )单调递减1e et t -+,单调递增可知F (x )的最小值()()()min 10F x F F t =<=,且()1e 0e ttF -=+>,可知()01,1x ∃∈-,使()00F x =,当()0,x x ∞∈-时,()0F x >,即h ′(x )>0;当()0,x x t ∈时,()0F x <,即h ′(x )<0;可知h (x )在()0,x ∞-内单调递增;在()0,x t 内单调递减,可知h (x )的最大值()()()0max 0h x h x h t '=>=,且()()2110e t t h -+-=<,可知h (x )存在小于t 的零点,所以当1t >时,直线l 与曲线y =f (x )相交于点()(),s f s ,其中s t <,得证.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.19. 蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为222()x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.设CF 交x 轴于点P ,ED 交x 轴于点Q .(1)当0b =,r =,12m =-,2n =时,分别求线段OP 和OQ 的长度;(2)①求证:34121234y y y y y y y y ++=.②猜想|OP |和|OQ |的大小关系,并证明.【答案】(1)53OP OQ == (2)①证明见解析;②猜测OP OQ =,证明见解析.【解析】【分析】(1)联立直线与圆的方程,可求,,,C D E F 各点的坐标,利用直线的两点式方程,可得直线CF 和ED 的方程,并求它们与x 轴的交点坐标,可得问题答案.(2)①联立直线与圆的方程,求出两根之和与两根之积,找到相等代换量,从而证明成立.②分别求出点P 和点Q 的横坐标表达式,结合①中的结论,从而证明成立.【小问1详解】当0b =,r =,12m =-,2n =时,圆M :225x y +=,直线CD :12x y =-,由22512x y x y ⎧+=⎪⎨=-⎪⎩⇒12x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,故()1,2C -,()1,2D -;直线EF :2x y =,由2252x y x y⎧+=⎨=⎩⇒21x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,故()2,1E ,()2,1F --.所以直线CF :122112y x ++=+-+,令0y =得53x =-,即5,03P ⎛⎫- ⎪⎝⎭;直线ED :122112y x --=---,令0y =得53x =,即5,03Q ⎛⎫ ⎪⎝⎭.所以:53OP OQ ==.【小问2详解】①由题意:22b r <.由()222x y b r x my ⎧+-=⎪⎨=⎪⎩⇒()()222my y b r +-=⇒()2222120m y by b r +-+-=,则1y ,2y 是该方程的两个解,由韦达定理得:12222122211b y y m b r y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以1222122y y b y y b r +=⋅-.同理可得:3422342y y b y y b r +=⋅-,所以34121234y y y y y y y y ++=⋅⋅.②猜测OP OQ =,证明如下:设点(),0P p ,(),0Q q .因为,,C P F 三点共线,所以:414100y y x p x p --=--⇒411414x y x y p y y -=-,又因为点C 在直线x my =上,所以11x my =;点F 在直线x ny =上,所以44x ny =.所以()1441141414y y n m ny y my y p y y y y --==--;同理因为,,E Q D 三点共线,可得:()2323y y n m q y y -=-.由①可知:34121234y y y y y y y y ++=⋅⋅⇒12341111y y y y +=+⇒14321111y y y y -=-⇒23411423y y y y y y y y --=⋅⋅⇒231414230y y y y y y y y ⋅⋅+=--, 所以()()14231423y y n m y y n m p q y y y y --+=+--()23141423y y y y n m y y y y ⎛⎫=-+ ⎪--⎝⎭0=.即p q =-,所以OP OQ =成立.【点睛】关键点点睛:本题的关键是联立直线与圆的方程,结合一元二次方程根与系数的关系,进行化简处理,设计多个字母的运算,整个运算过程一定要小心、仔细.。

2024-2025学年河南省高三上学期联考(二)数学试题及答案

2024-2025学年河南省高三上学期联考(二)数学试题及答案

2024-2025年度河南省高三年级联考(二)数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:集合与常用逻辑用语,函数与导数,三角函数,平面向量,数列,不等式.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21A x x =-<,{}3B x a x a =<<+.,若{}15A B x x =<< ,则a =( )A.0B.1C.2D.32.已知符号)(表示不平行,向量(1,2)a =--,(,7)b m m =+ .设命题:(0,)p m ∀∈+∞,a )(b ,则()A.:(0,)p m ⌝∃∈+∞,//a b,且p ⌝为真命题B.:(0,)p m ⌝∀∈+∞,//a b,且p ⌝为真命题C.:(0,)p m ⌝∃∈+∞,//a b,且p ⌝为假命题D.:(0,)p m ⌝∀∈+∞,//a b,且p ⌝为假命题3.若||0a b >>,则下列结论一定成立的是( )A.22a b ab > B.2211ab a b> C.33a b < D.a c c b->-4.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.已知函数3()log f x x =,若0b a >>,且a ,b 是()f x 的图像与直线(0)y m m =>的两个交点对应的横坐标,则4a b +的最小值为( )A.2B.4C.6D.86.三角板主要用于几何图形的绘制和角度的测量,在数学、工程制图等领域被广泛应用.如图,这是由两块直角三角板拼出的一个几何图形,其中||||AB AC = ,||||BD BC =,0BD BC ⋅= .连接AD ,若AD x AB y AC =+,则x y -=( )A.1B.2D.327.若0a ≠,()2ππsin 066x ax bx c ⎛⎫-++≥ ⎪⎝⎭对[0,8]x ∈恒成立,则( )A.0a > B.0bc +> C.0c > D.16b c a-=-8.已知A 是函数()e 3xf x x =+图象上的一点,点B 在直线:30l x y --=上,则||AB 的最小值是( )B.3C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且3n an b =,则下列结论不正确的是()A.若{}n a 是递增数列,则{}n S 是递增数列B.若{}n a 是递减数列,则{}n S 是递减数列C.若{}n a 是递增数列,则{}n T 是递增数列D.若{}n a 是递减数列,则{}n T 是递减数列10.已知(31)f x +为奇函数,(3)1f =,且对任意x ∈R ,都有(2)(4)f x f x +=-,则必有( )A.(11)1f =-B.(23)0f =C.(7)1f =- D.(5)0f =11.已知函数()sin sin 3f x x x =+,则( )A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π4x =对称C.()f x的值域为⎡⎢⎣D.()f x 在π3π,24⎡⎤⎢⎥⎣⎦上单调递增三、填空题:本题共3小题,每小题5分,共15分.12.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且1a =,3b =,1cos 3C =,则ABC △外接圆的面积是__________.13.已知某种污染物的浓度C (单位:摩尔/升)与时间t (单位:天)的关系满足指数模型(1)0e k t C C -=,其中0C 是初始浓度(即1t =时该污染物的浓度),k 是常数.第2天(即2t =)测得该污染物的浓度为5摩尔/升,第4天测得该污染物的浓度为15摩尔/升,若第n 天测得该污染物的浓度变为027C ,则n =__________.14.1796年,年仅19岁的高斯发现了正十七边形的尺规作图法.要用尺规作出正十七边形,就要将圆十七等分.高斯墓碑上刻着如图所示的图案.设将圆十七等分后每等份圆弧所对的圆心角为α,则162121tan 2k k α==+∑__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,4cos 5A =,2cos 3cos a C c A =.(1)求sin C 的值;(2)若3a =,求ABC △的周长.16.(15分)已知函数()sin()(0,0,0π)f x A x b A ωϕωϕ=++>><<的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的零点;(3)将()f x 图象上的所有点向右平移π12个单位长度,得到函数()g x 的图象,求()g x 在7π0,12⎡⎤⎢⎥⎣⎦上的值域.17.(15分)已知函数3()33xx a f x ⋅=+,且()()66log 3log 122f f +=.(1)求a 的值;(2)求不等式()22310f x x +->的解集.18.(17分)已知函数2()(2)ln(1)2f x ax x x x =++--.(1)当0a =时,求()f x 的单调区间与极值;(2)当0x ≥时,()0f x ≤恒成立,求a 的取值范围.19.(17分)设数列{}n a 的前n 项和为n S ,若对任意的n +∈N ,都有2n n S kS =(k 为非零常数),则称数列{}n a 为“和等比数列”,其中k 为和公比.(1)若23n a n =-,判断{}n a 是否为“和等比数列”.(2)已知{}n b 是首项为1,公差不为0的等差数列,且{}n b 是“和等比数列”,2n b nc =,数列{}n c 的前n 项和为n T .①求{}n b 的和公比;②求n T ;③若不等式2134(1)22n n n n T m -+->--对任意的n +∈N 恒成立,求m 的取值范围.2024-2025年度河南省高三年级联考(二)数学参考答案1.C 由题意可得{}13A x x =<<.因为{}15A B x x =<< ,所以1,35a a ≥⎧⎨+=⎩,解得2a =.2.A :(0,)p m ⌝∃∈+∞,//a b ,当(7)2m m -+=-,即7m =时,//a b,所以p ⌝为真命题.3.B 当3a =,2b =-时,2218,12a b ab =-=,此时22a b ab <,则A 错误.因为||0a b >>,所以a b >,且0ab ≠,所以2210a b >,所以2211ab a b>,则B 正确.当2a =,1b =-时,338,1a b ==-,此时33a b >,则C 错误.当2a =,1b =,3c =时,1a c -=-,2c b -=,此时a c c b -<-,则D 错误.4.A 设{}n a 的公比为q ,则()23123111S a a a q q a ma =++=++=.因为10a ≠,所以21q q m ++=.由7m =,得217q q ++=,即260q q +-=,解得2q =或3q =-.由2q =,得7m =,则“7m =”是“{}n a 的公比为2”的必要不充分条件.5.B 由题意可得01a b <<<,1b a=,则44a b +≥,当且仅当42a b ==时,等号成立.故4a b +的最小值为4.6.A 如图,以A 为原点,AB ,AC的方向分别为x ,y 轴的正方向,建立直角坐标系,设1AB =,则(0,0)A ,(1,0)B ,(0,1)C ,故(1,0)AB = ,(0,1)AC =.作DF AB ⊥,交AB 的延长线于点F .设||1AB = ,则||||1BF DF ==,所以(2,1)D ,所以(2,1)AD = .因为AD x AB y AC =+,所以2,1x y ==,则1x y -=.7.B 因为[0,8]x ∈,所以πππ7π,6666x ⎡⎤-∈-⎢⎥⎣⎦.当[0,1)x ∈时,ππsin 066x ⎛⎫-< ⎪⎝⎭;当()1,7x ∈时,ππsin 066x ⎛⎫-> ⎪⎝⎭;当(7,8]x ∈时,ππsin 066x ⎛⎫-< ⎪⎝⎭.因为()2ππsin 066x ax bx c ⎛⎫-++≥ ⎪⎝⎭对[0,8]x ∈恒成立,所以1,7是20ax bx c ++=的两根,且0a <,则17,17,b ac a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩故80b a =->,70c a =<,15b c a -=-,0b c a +=->.8.D 由题意可得()(1)e xx f x +'=.设()()g x f x '=,则()(2)e xg x x '=+,当1x <-时,()0f x '<,当1x >-时,()0g x '>,()f x '单调递增.因为(0)1f '=,所以()(1)e 1x f x x '=+=,得0x =,此时(0,3)A,故min ||AB ==.9.ABD 当7n a n =-时,{}n a 是递增数列,此时{}n S 不是递增数列,则A 错误.当12n a n =-+时,{}n a 是递减数列,此时{}n S 不是递减数列,则B 错误.由{}n a 是递增数列,得{}n b 是递增数列,且0n b >,则{}n T 是递增数列,故C 正确.由{}n a 是递减数列,得{}n b 是递减数列,且0n b >,则{}n T 是递增数列,故D 错误.10.CD 由(31)f x +为奇函数,可得(31)(31)f x f x -+=-+,则()f x 的图象关于点(1,0)对称.又(2)(4)f x f x +=-,所以()f x 的图象关于直线3x =对称,则()f x 是以8为周期的周期函数,所以(7)(3)1f f =-=-,(5)(1)0f f ==,(11)(3)1f f ==,(23)(7)1f f ==-,故选CD.11.ACD 因为(π)(π)sin(π)sin 3(π)sin(π)sin 3(π)0f x f x x x x x ++-=++++-+-=,所以()f x 的图象关于点(π,0)中心对称,则A 正确.由题意可得()sin sin 32sin 2cos f x x x x x =+=,则ππππ2sin 2cos 2cos 2cos 4244f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,ππππ2sin 2cos 2cos 2cos 4244f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以ππ44f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于直线π4x =对称,则B 错误.由题意可得3()2sin 2cos 4sin 4sin f x x x x x ==-.设sin [1,1]t x =∈-,则3()44y g t t t ==-+,故()22()124431g t t t '=-+=--.由()0g t '>,得t <<()0g t '<,得1t -≤<1t <≤,则()g t在1,⎡-⎢⎣和⎤⎥⎦上单调递减,在⎛ ⎝上单调递增.因为(1)(1)0g g -==,g ⎛= ⎝,g =()g t ⎡∈⎢⎣,即()f x的值域是⎡⎢⎣,则C 正确.当π3π,24x ⎡⎤∈⎢⎥⎣⎦时,sin t x ⎤=∈⎥⎦.因为sin t x =在π3π,24⎡⎤⎢⎥⎣⎦上单调递减,且()g t在⎤⎥⎦上单调递减,所以()f x 在π3π,24⎡⎤⎢⎥⎣⎦上单调递增,则D 正确.12.9π4 由余弦定理可得22212cos 1921383c a b ab C =+-=+-⨯⨯⨯=,则c =因为1cos 3C =,所以sin C =,则ABC △外接圆的半径32sin 2c R C ==,故ABC 外接圆的面积为29ππ4R =.13.7 由题意可得030e 5,e 15,k kC C ⎧=⎨=⎩则2e 3k =,解得ln 32k =.因为(1)00e 27k n C C -=,即3ln(1)200e 27n C C -=,所以ln 3(1)2e 27n -=,所以ln 3(1)ln 273ln 32n -==,解得7n =.14.15 由题可知2π17α=,则222π11tan 1tan π217cos 17k k k α+=+=,则161616162211112π2π2π2cos 1cos 16cos 1717171tan 2k k k k k k k k α====⎛⎫==+=+ ⎪⎝⎭+∑∑∑∑.由161611π2π(21)π(21)π33πππ2sin cos sin sin sin sin 2sin17171717171717k k k k k ==+-⎡⎤⋅=-=-=-⎢⎥⎣⎦∑∑,得1612πcos117k k ==-∑,故原式16115=-=.15.解:(1)因为4cos 5A =,且0πA <<,所以3sin 5A ==.因为2cos 3cos a C c A =,所以2sin cos 3sin cos A C C A =,所以342cos 3sin 55C C ⨯=⨯,即cos 2sin C C =.因为22sin cos 1C C +=,所以21sin 5C =.因为0πC <<,所以sin C =(2)由(1)可知3sin 5A =,4cos 5A =,sin C =,cos C =,则34sin sin()sin cos cos sin 55B A C A C A C =+=+==由正弦定理可得sin sin sin a b cA B C==,则sin sin a B b A ==,sin sin a C c A==,故ABC △的周长为3a b c ++=+.16.解:(1)由图可知3(1)22A --==,3(1)12b +-==,()f x 的最小正周期7ππ2π1212T ⎛⎫=-= ⎪⎝⎭.因为2π||T ω=,且0ω>,所以2ω=.因为()f x 的图象经过点π,312⎛⎫⎪⎝⎭,所以ππ2sin 2131212f ϕ⎛⎫⎛⎫=⨯++= ⎪ ⎪⎝⎭⎝⎭,即πsin 16ϕ⎛⎫+=⎪⎝⎭,所以ππ2π()62k k ϕ+=+∈Z ,即π2π()3k k ϕ=+∈Z .因为0πϕ<<,所以π3ϕ=.故π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭.(2)令()0f x =,得π1sin 232x ⎛⎫+=- ⎪⎝⎭,则ππ22π()36x k k +=-∈Z 或π5π22π()36x k k +=-∈Z ,解得ππ4x k =-或7ππ()12k k -∈Z ,故()f x 的零点为ππ4k -或7ππ()12k k -∈Z .(3)由题意可得πππ()2sin 212sin 211236g x x x ⎡⎤⎛⎫⎛⎫=-++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为7π0,12x ⎡⎤∈⎢⎥⎣⎦,所以ππ4π2,663x ⎡⎤+∈⎢⎥⎣⎦.当ππ262x +=,即π6x =时,()g x 取得最大值π36g ⎛⎫= ⎪⎝⎭;当π4π263x +=,即7π12x =时,()g x 取得最小值7π112g ⎛⎫= ⎪⎝⎭.故()g x 在7π0,12⎡⎤⎢⎥⎣⎦上的值域为1⎡⎤⎣⎦.17.解:(1)因为3()33x x a f x ⨯=+,所以221393(2)333933x x x xa a af x --+⨯-===+++,则33()(2)3333x x x a af x f x a ⨯+-=+=++.又666log 3log 12log 362+==,所以()()66log 3log 12f f a +=,从而2a =.(2)由(1)可知236()23333x x xf x ⨯==-++,显然()f x 在R 上单调递增.因为1(0)2f =,所以由()22310f x x +->,可得()23(0)f x x f +>,则230x x +>,解得3x <-或0x >,故不等式()22310f x x +->的解集为(,3)(0,)-∞-+∞ .18.解:(1)当0a =时,2()2ln(1)2f x x x x =+--,其定义域为(1,)-+∞,则()222(2)22111x x x x f x x x x x ---+'=--==+++.当(1,0)x ∈-时,()0f x '>,()f x 的单调递增区间为(1,0)-,当(0,)x ∈+∞时,()0f x '<,()f x 的单调递减区间为(0,)+∞,故()f x 的极大值为(0)0f =,无极小值.(2)设1t x =+,[1,)t ∈+∞,2()(2)ln 1g t at a t t =+--+,[1,)t ∈+∞,则2()ln 2at a t t a tg -=+-+'.设()()h t g t '=,则222222()2a a t at a h t t t t --++-'=--=.设2()22m t t at a =-++-,则函数()m t 的图象关于直线4at =对称.①当2a ≤时,()m t 在[1,)+∞上单调递减.因为(1)240m a =-≤,所以2()220m t t at a =-++-≤在[1,)+∞上恒成立,即()0h t '≤在[1,)+∞上恒成立,则()h t 在[1,)+∞上单调递减,即()g t '在[1,)+∞上单调递减,所以()(1)0g t g ''≤=,所以()g t 在[1,)+∞上单调递减,则()(1)0g t g ≤=,即()0f x ≤在[0,)+∞上恒成立,故2a ≤符合题意.②当2a >时,()m t 在[1,)+∞上单调递减或在[1,)+∞上先增后减,因为(1)240m a =->,所以存在01t >,使得()00m t =.当()01,t t ∈时,()0m t >,即()0h t '>,所以()g t '在()01,t 上单调递增.因为(1)0g '=,所以()0g t '>在()01,t 上恒成立,所以()g t 在()01,t 上单调递增,则()0(1)0g t g >=,故2a >不符合题意.综上,a 的取值范围为(,2]-∞.19.解:(1)因为23n a n =-,所以121n a n +=-,所以12n n a a +-=.因为11a =-,所以{}n a 是首项为-1,公差为2的等差数列,则22n S n n =-,所以2244n S n n =-,所以222444422n n S n n n S n n n --==--.因为442n n --不是常数,所以{}n a 不是“和等比数列”.(2)①设等差数列{}n b 的公差为d ,前n 项和为n S ,则21(1)1222n n n d d S nb d n n -⎛⎫=+=+- ⎪⎝⎭,所以222(2)n S dn d n =+-.因为{}n b 是“和等比数列”,所以2n n S kS =,即222(2)22kd kd dn d n n k n ⎛⎫+-=+- ⎪⎝⎭,所以2,22,2kd d kd d k ⎧=⎪⎪⎨⎪-=-⎪⎩解得4,2,k d =⎧⎨=⎩即{}n b 的和公比为4.②由①可知12(1)21n b n n =+-=-,则212n n n c -=,所以35211232222n n n T -=++++ ,所以2352121112122222n n n n nT -+-=++++ ,所以235212121211122311111422222212nn n n n n n T -++⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=++++-=-- ,即2132344332n n n T ++=-⨯,所以21834992n n n T -+=-⨯.③设2121212134834348103429922992n n n n n n n n n n P T ----++++=-=--=-⨯⨯,12121103710345(1)092924n n n n n n n n P P ++-+++-=-⨯+⨯=>.不等式2134(1)22n n n n T m -+->--对任意的n +∈N 恒成立,即不等式(1)2n n P m >--对任意的n +∈N 恒成立.当n 为奇数时,()1min 23n m P P --<==-,则1m >;当n 为偶数时,()2min 122n m P P -<==-,则32m <.综上,m 的取值范围是31,2⎛⎫⎪⎝⎭.。

2023年高三1月大联考(全国乙卷)理科数学试题及参考答案

2023年高三1月大联考(全国乙卷)理科数学试题及参考答案

2023年高三1月大联考(全国乙卷)理科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.砸每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{},0>=x x A {}01232≤--=x x x B ,则()=B A C R ()A .⎪⎭⎫ ⎝⎛-∞-31,B .()⎪⎭⎫⎝⎛∞+∞-,,310 C .()1-∞-,D .(]()∞+∞-,,10 2.已知i 为虚数单位,复数z 的共轭复数为z ,且i z z 232+=+,则=z1()A .i 5251-B .i 5251+C .i 2121-D .i 2121+3.榫卯,是一种中国传统建筑、家具及其他器械的主要结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式.春秋时期著名的工匠鲁班运用榫卯结构制作了鲁班锁,且鲁班锁可拆解,但是要将它们拼接起来则需要较高的空间思维能力和足够的耐心.如图(1)六通鲁班锁是由六块长度大小一样,中间各有着不同镂空的长条形木块组装而成.其主视图如图(2)所示,则其侧视图为()4.已知向量()3,1=a ,2=b ,且10=-b a ,则()()=-⋅+b a b a2()A .1B .14C .14D .105.已知32cos 3sin =-αα,则=⎪⎭⎫ ⎝⎛+32cos πα()A .91-B .91C .97D .97-6.使得“函数()txx x f 323-=在区间()3,2上单调递减”成立的一个充分不必要条件可以是()A .2≥tB .2≤tC .3≥tD .334≤≤t 7.某精密仪器易因电压不稳定损坏,自初装起,第一次电压不稳仪器损坏的概率为0.1.若在第一次电压不稳仪器未损坏的条件下,第二次电压不稳仪器损坏的概率为0.2,则连续两次电压不稳仪器为损坏的概率为()A .0.72B .0.7C .0.2D .0.188.已知函数()x x f cos 4=,将函数()x f 的图象向左平移3π个单位长度,再将所得函数图象上所有点的纵坐标不变,横坐标变为原来的()01>ωω倍得到函数()x g 的图象,若函数()()2-=x g x h 在()π2,0上有且仅有4个零点,在实数ω的取值范围为()A .[)3,2B .⎥⎦⎤ ⎝⎛382,C .(]3,1D .⎪⎭⎫⎢⎣⎡338,9.已知1.1log 2.1=a ,1.12.1=b ,2.11.1=c ,则()A .c b a <<B .c a b <<C .b a c <<D .bc a <<10.已知数列{}n a 满足121-=+n n a a ,11=a ,设{}n a 的前n 项和为n S ,若*N n ∈∀,不等式λ≤-+--8476n S a n n n 恒成立,则λ的最小值为()A .21B .2C .5D .611.已知双曲线C :()0,012222>>=-b a by a x 的左顶点为A ,右焦点为F ,以线段AF 为直径圆M 与双曲线的一条渐近线相交于D B ,两点,且满足2-=⋅OD OB (O 为坐标原点),若圆M 的面积S 满足⎥⎦⎤⎢⎣⎡∈825,49ππS ,则双曲线C 的离心率e 的取值范围是()A .⎥⎦⎤⎢⎣⎡247B .[]4,2C .⎥⎦⎤⎢⎣⎡447,D .(]2,112.已知函数()x f 的定义域为R ,且满足()()011=-+-x f x f ,()()x f x f =+8,()11=f ,()13-=f ,()()⎪⎩⎪⎨⎧≤<-+≤<++-=42,120,12x b x x a x x f ,给出下列结论:①31-=-=b a ,;②()12023=f ;③当[]6,4-∈x 时,()0<x f 的解集为()()4,20,2 -;④若函数()x f 的图象与直线m mx y -=在y 轴右侧有3个交点,则实数m 的取值范围是⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--4176166121,, .其中正确结论的个数为()A .4B .3C .2D .1二、填空题:本题共4小题,每小题5分,共20分.13.()6111⎪⎭⎫⎝⎛+-x x 的展开式中含x 1项的系数为.14.已知数列{}n a 的前n 项和为n S ,51-=a ,32-=a ,对任意*N n ∈,都有21221++=+++n S n S n S n n n ,则=2023a .15.已知抛物线x y 42=,其准线为l 且与x 轴交于点D ,其焦点为F ,过焦点F 的直线交抛物线于B A ,两点,过点A 作准线l 的垂线,垂足为H .若BF AH 2=,则线段HF 的长度为.16.如图,已知正方体1111D C B A ABCD -的棱长为2,F E ,分别为BC AB ,的中点,则下列说法正确的是.(填写所有正确说法的序号)①平面EF D 1截正方体1111D C B A ABCD -所得截面图形的周长为5223+;②点B 到平面EF D 1的距离为1717;③平面EF D 1将正方体1111D C B A ABCD -分割成两部分,较小一部分的体积为925;④三棱锥EF D B 1-的外接球的表面积为π18三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)记ABC ∆的三个内角C B A ,,的对边分别为c b a ,,,=⎪⎭⎫⎝⎛-A a 2cos π()()()C b c C A b --++πsin sin .(1)求A ;(2)若AD 是角A 的平分线且3=AD ,求c b +的最小值.18.(12分)某地区一中学为了调查教师是否经常使用多媒体教学与教师年龄的关系,规定在一个月内使用多媒体上课的次数超过本月上课总次数的一半视为经常使用,否则视为不经常使用.现对120名教师进行调查统计,汇总有效数据得到如下22⨯列联表:(1)根据表中数据,判断能否有99.9%的把握认为教师是否经常使用多媒体教学与教师年龄有关?(2)若从45岁以下的被调查教师中按是否经常使用多媒体教学采用分层抽样的方式抽取6名教师,再从这6名教师中随机选取3名教师,记其中经常使用多媒体教学的教师的人数为X ,求X 的分布列和数学期望.附:()()()()()d b d c c a b a bc ad n K ++++-=22(其中d c b a n +++=)45岁以下45岁以上合计经常使用402060不经常使用204060合计6060120()2k K p ≥0.100.050.0250.0100.0050.0010k 2.7063.8415.0246.6357.87910.82819.(12分)如图,已知四棱锥ABCD P -中,⊥P A 平面ABCD ,四边形ABCD 为等腰梯形,BC AD ∥,且BC AD AB P A 21===,E 为线段BC 的中点.(1)求证:BD ⊥平面P AE ;(2)求直线PE 与平面PCD 所成角的正弦值.20.(12分)已知椭圆C :()012222>>=+b a by a x 的左顶点和上顶点分别为B A ,,直线AB与圆O :3422=+y x 相切,切点为M ,且MB AM 2=.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于F E ,两点,试判断:PF PE 是否为定值?若是,求出该值,并证明;若不是,请说明理由.21.(12分)已知函数()()R a x x ax x f ∈--=ln 2.(1)若当22>x 时,直线a x y +-=与函数()x f 的图象相切,恒成立,求实数a 的值;(2)设()()()x a x f x g ln 12++=,若()x g 有两个零点,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=+=ϕϕsin cos 1t y t x (t 为参数,()πϕ,0∈).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θθρcos 4sin 2=.(1)求曲线C 的直角坐标方程和当4πϕ=时,直线l 的普通方程;(2)若直线l 与曲线C 交于B A ,两点,且与x 轴交于点F ,38=-BF AF ,求直线l 的倾斜角.23.(10分)【选修4-5:不等式选讲】已知函数()x ax x f 21++=.(1)若1=a ,求不等式()4≤x f 的解集;(2)若()x f 的最小值为1,求实数a 的取值范围.参考答案一、选择题1.A解析:∵{},0>=x x A ()(){}⎭⎬⎫⎩⎨⎧≤≤-=≤-+=1310113x x x x x B ,∴⎭⎫⎩⎨⎧-≥=31x x B A ,∴()=B A C R ⎪⎭⎫ ⎝⎛-∞-31,.2.B解析:设bi a z +=,则bi a z -=,i bi a z z 2332+=-=+,则2,1-==b a ,∴()()i i i i i i z 52515212121212111+=+=+-+=-=.3.C解析:观察主视图中的木条位置,分析可知侧视图不可能是A 和B,观察木条的层次位置,分析可知侧视图也不可能是D.4.B 解析:∵102222=+⋅-=-b b a a b a ,10=a ,2=b ,∴2=⋅b a ,∴()()1424202222=--=⋅--=-⋅+b a b a b a b a.5.D解析:∵32cos 3sin =-αα,∴316cos -=⎪⎭⎫ ⎝⎛+πα,∴9716cos 232cos 2-=-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+παπα.6.C解析:由函数()txx x f 323-=在区间()3,2上单调递减,得tx x y 32-=在区间()3,2上单调递减,∴323≥t,解得2≥t .结合A,B,C,D 四个选项,知使得“函数()tx x x f 323-=在区间()3,2上单调递减”成立的一个充分不必要条件可以是3≥t .7.A解析:设第i 次电压不稳仪器损坏为事件()2,1=i A i ,则()1.01=A P ,()9.01=A P ,()2.012=A A P ,()8.012=A A P ,故连续两次电压不稳仪器为损坏的概率为()()()72.09.08.011221=⨯==A P A A P A A P .8.B解析:由题意得()⎪⎭⎫ ⎝⎛+=3cos 4πωx x g .()()02=-=x g x h ,得213cos =⎪⎭⎫ ⎝⎛+πωx ,∴323πππω-=+k x 或323πππω+=+k x ,Z k ∈,解得ωππ322-=k x 或ωπk x 2=,Z k ∈,欲使函数()x h 在()π2,0上有且仅有4个零点,则ωππωπ31624≤<,解得382≤<ω.9.D解析:12.1log 1.1log 2.12.1=<=a ,12.12.101.1=>=b ,11.11.102.1=>=c .设()x x x f ln =,则()2ln 1xxx f -='.当e x <<0时,()0>'x f ,()x f 在()e ,0上单调递增,当e x >时,()0<'x f ,()x f 在()+∞,e 上单调递减,∵e <<2.11.1,∴1.11.1ln 2.12.1ln >,即1.1ln 2.12.1ln 1.1>,即2.11.11.1ln 2.1ln >,∴2.11.11.12.1>,∴b c a <<.10.C 解析:由题意知()12111+=++n n a a ,∴12121-⎪⎭⎫⎝⎛⨯=+n n a ,∴12121-⎪⎭⎫⎝⎛⨯=-n n a ,n n S nnn -+⎪⎭⎫⎝⎛⨯-=--⎪⎭⎫ ⎝⎛-⨯=42142112112,∴533253768476-+=--=-+--n n n n S a n n n 当2=n 时,55376max=⎪⎭⎫⎝⎛--n n ,∴5≥λ,∴λ的最小值为5.11.B 解析:设双曲线C 的半焦距为c ,∵2-=⋅OD OB2=.由圆的相交弦定理知:2===OD OB OF OA ac .又圆M 的半径2c a r +=,∴⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛+=825,4922πππc a S ,∴825424922≤++≤c ac a ,∴2252922≤++≤c ac a ,∴217522≤+≤c a ,∴acac c a ac 27522≤+≤.又2=ac ,∴417125≤+≤e e ,∴42≤≤e .12.C 解析:∵()()011=-+-x f x f ,∴()()x f x f -=-,∴函数()x f 为奇函数,且()00=f .∵()()x f x f =+8,∴()x f 的周期为8.又()()11112=++-=a f ,∴1-=a ,()1133-=-+=b f ,∴3-=b ,故①正确.∵()()()()111182532023-=-=-=-⨯=f f f f ,故②错误.已知()()⎪⎩⎪⎨⎧≤<--≤<+--=42,1320,112x x x x x f ,作出函数()x f 在[]4,0上的图象,根据函数()x f 为奇函数,及其周期为8,得到函数()x f 在R 上的图象,如图所示,由()x f 的图象知,当[]6,4-∈x 时,()0<x f 的解集为()()4,20,2 -.故③正确.由题意知直线()1-=-=x m m mx y 恒过点()0,1,与函数()x f 的图象在y 轴右侧有3个交点.根据图象可知:当0>m 时,应有15<-⨯m m ,即41<m ,且同时满足()x f m mx =-,[]10,8,∈x 无解,即当[]10,8,∈x 时,()()m mx x x -=--810无解,∴0<∆,解得76167616+<<-m ,∴417616<<-m .当0<m 时,应有13->-⨯m m ,即21->m ,且同时满足()x f m mx =-,[]8,6∈x 无解,即当[]8,6∈x 时,()()m mx x x -=--86无解,∴0<∆,解得3521235212+-<<--m ,∴3521221+-<<-m ,综上,417616<<-m 或3521221+-<<-m ,④错误.二、填空题13.9解析:∵()6661111111⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+-x x x x x,∴其展开式中含有x1项的系数有两部分:一部分是611⎪⎭⎫ ⎝⎛+x 展开式中21x 的系数1526=C ,另一部分时611⎪⎭⎫ ⎝⎛+x 展开式中x 1的系数616=C ,∴所求的系数为9615=-.14.4039解析:由题意,知⎭⎬⎫⎩⎨⎧n S n 时等差数列,422121-=-=S S ,,∴615-=-+-=n n nS n,即n n S n 62-=.当2≥n 时,()()16121---=-n n S n ,以上两式相减得:()272≥-=n n a n .又51-=a 也适合上式,∴72-=n a n ∴当2023=n 时,40397202322023=-⨯=a .15.32解析:由抛物线定义知,AF AH =,又BF AH 2=,∴BF AF 2=.如图,过点B 作直线l 的垂线,垂足为E ,则BF BE =,过点B 作AH 的垂线,垂足为C .设m BF BE ==,则m AF AH 2==,显然m m m BE AH AC =-=-=2,∴312cos =+=+==∠m m m BF AF m ABAC CAF ,∴22tan =∠CAF ,∴直线AB 的斜率为22,∴直线AB 的的方程为()122-=x y .不妨设()11,y x A ,0011>>y x ,,由()⎪⎩⎪⎨⎧=-=121114122x y x y ,解得⎩⎨⎧==22211y x ,∴3212221==+=DFy HF.16.③④解析:由题意,知平面EF D 1截正方体1111D C B A ABCD -所得截面图形为HEFG D 1,如图,易得32==AH CG ,3411==H A GC ,∴3132916411=+==H D G D ,313941=+==GF HE ,∴所求周长为21322313231322+=+⨯+⨯,故①正确;设点B 到平面EF D 1的距离为h ,由题意,得31221311=⨯⨯=-BEF D V ,311==F D E D ,2=EF ,∴2172172211=⨯⨯=∆EF D S ,∴2173131⋅=h ,即17172=h ,故②错误;正方体1111D C B A ABCD -的体积为8222=⨯⨯,其中一部分的体积9251223221312312232213123231111=⨯⨯⎪⎭⎫⎝⎛+⨯⨯++⨯⨯⎪⎭⎫ ⎝⎛+⨯⨯+⨯⨯=++=---DAH D E DCG D F DEF D V V V V ,则另一部分的体积为9479258=-,∴平面EF D 1将正方体1111D C B A ABCD -分割成两部分,较小一部分的体积为925,故③正确;对于三棱锥EF D B 1-,先找到BEF ∆的外接圆的圆心,即为EF 中点,设为M ,过点M 作1BB MN ∥,交11D B 于点N ,则外接球球心在直线MN 上,设球心为O ,外接球半径为R ,x MO =,∴()22222223222⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+=x x R ,∴2=x ,292=R ,球O 的表面积ππ1842==R S ,故④正确.三、解答题(一)必考题17.解:(1)由题意得()C b c B b A a sin sin sin -+=,由正弦定理得()bc c b c b c b a -+=-+=2222.由余弦定理得2122cos 222==-+=bc bc bc a c b A.又()π,0∈A ,∴3π=A .(2)∵ABD ∆与ACD ∆的面积之和等于ABC ∆的面积,且AD 为角A 的平分线,由(1)知,3π=A ,∴3sin 216sin 3216sin 321πππbc c b =+,∴bc c b =+.又22⎪⎭⎫ ⎝⎛+≤c b bc ,当且仅当⎩⎨⎧=+=bc c b c b ,即2==c b 时取等号,∴22⎪⎭⎫⎝⎛+≤+c b c b ,∴4≥+c b ,∴c b +的最小值为4.18.解:(1)由于()828.10333.13340606060602020404012022>≈=⨯⨯⨯⨯-⨯⨯=K ,∴有99.9%的把握认为教师是否经常使用多媒体教学与教师年龄有关.(2)抽取的6名教师中,经常使用多媒体教学的教师人数为42040406=+⨯,不经常使用多媒体教学的教师人数为22040206=+⨯.X 的所有可能取值为1,2,3,()511361422===C C C X P ;()532362412===C C C X P ;()5133634===C C X P ,∴X 的分布列为∴()2513532511=⨯+⨯+⨯=X E .19.解:(1)如图,连接ED ,BC AD ∥,∵E 为BC 的中点,BC AD 21=,∴BC BE 21=,∴BE AD =,BE AD ∥,∴四边形ABED 为平行四边形.又AD AB =,∴四边形ABED 为菱形,∴BD AE ⊥.∵⊥P A 平面ABCD ,⊂BD 平面ABCD ,∴BD P A ⊥.又⊂P A AE ,平面P AE ,且A P A AE = ,∴⊥BD 平面P AE .(2)设121====BC AD AB P A ,则1===AB BE AE ,∴ABE ∆为正三角形.X 123P515351过点A 作AD AH ⊥交BC 于点H ,由题意,知AP AD AH ,,两两垂直,以A 为坐标原点,AP AD AH ,,所在直线分别为z y zx ,,轴建立如图所示的空间直角坐标系,则()()0100,23,230,21,23100,,,,,,,D C E P ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛,∴⎪⎪⎭⎫⎝⎛-=1,21,23PE ,()110-=,,PD ,⎪⎪⎭⎫⎝⎛=0,21,23DC .设平面PCD 的法向量为()z y x n ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅0DC n PD n ,∴⎪⎩⎪⎨⎧=+=-021230y x z y ,令1-=x ,得33==z y ,,∴()3,3,1-=n是平面PCD 的一个法向量.设直线PE 与平面PCD 所成的角为θ,∴1442723sin =⨯===nθ,∴直线PE 与平面PCD 所成角的正弦值为1442.20.解:(1)依题意,得()()b B a A ,0,0,-,设λ=MB ,则λ2=AM ,λ3=AB ,()2223λ=+b a ……①由OM AB ⊥,知22222MB OB AM OA OM-=-=,∴()3422222=-=-λλb a ……②.由①②解得:2422==b a ,,∴椭圆C 的标准方程为12422=+y x .(2)①当直线EF 的斜率不存在时,即x EF ⊥轴时,⎪⎭⎫ ⎝⎛0,332P 或⎪⎭⎫⎝⎛-0,332P ,直线EF 的方程为332=x 或332-=x ,代入12422=+y x 中,得332±=y ,∴34332332=⨯=PF PE .②当直线EF 的斜率存在时,设直线EF 的方程为m kx y +=,()()2211,,y x F y x E ,.∵直线EF 与圆O 相切于点P ,∴圆心O 到EF 的距离33212=+=k m OP ,即()()*13422+=k m .联立⎪⎩⎪⎨⎧+==+m kx y y x 12422,整理得()042421222=-+++m kmx x k ,()()014316248222>+=+-=∆k m k 恒成立,且22212212142214k m x x k km x x +-=+-=+,,()()()2212122121m x x km x x k m kx m kx y y +++=++=,∴()()2222212122121214431k k m m x x km x x k y y x x +--=++++=+,将(*)式代入上式得02121=+y y x x ,∴OF OE ⊥.又EF OP ⊥,∴OPE ∆∽EPO ∆,∴PEOP OPPF =,∴342==OPPF PE .综上可得,PF PE 为定值34.21.解:(1)设直线a x y +-=与函数()x f 的图象相切于点()00,y x P ,求导得()xx a x f 12--=',则11200-=--x x a ,即11200-+=x x a ……①由题意知a x x x ax +-=--00200ln ,……②由①②消去a 得,02ln 1200020=+---x x x x .()2ln 122+---=x x x x x h ,22>x ,则()()⎪⎭⎫ ⎝⎛--=-+-='221211122x x x x x x h ,当⎪⎪⎭⎫⎝⎛∈1,22x 时,()0<'x h ,()x h 单调递减,当()+∞∈,1x 时,()0>'x h ,()x h 单调递增,∴()x h 在1=x 处取得极小值,也是最小值,()021211=+--=h ,∴()⎪⎪⎭⎫⎝⎛>+---=222ln 122x x x x x x h 有唯一零点1,即02ln 1200020=+---x x x x 有唯一根1,∴2112=-+=a .(2)由题意,知()()0,ln ln 1ln 2222>+-=++--=x x a x ax x a x x ax x g ,则()()()xa x a x x a x a x g +-+=+-='222.当0=a 时,()02<-=x x g ,无零点;当0>a 时,若()a x ,0∈,则()0>'x g ,()x g 单调递增,若()+∞∈,a x ,则()0<'x g ,()x g 单调递减,∴()x g 在a x =处取得极大值,也是最大值,()a a a g ln 2=,欲使()x g 有两个零点,则()0ln 2>=a a a g ,解得1>a .又043211112222222<+⎪⎭⎫ ⎝⎛--=-+-=--=⎪⎭⎫ ⎝⎛e ae e ae e a a e e a e g ,且a e <1,∴⎪⎭⎫⎝⎛∈∃a e x ,11,使()01=x g .易证当0>x 时,x x ln >,∴()a x x a x ax x a x ax x g >+-<+-=,ln 2222,∴()()()()0111122222<++-=++---++<++a a a a a a a a a a g ,∴()1,22++∈∃a a a x ,使()02=x g ,故()x g 有两个零点.当0<a 时,若⎪⎭⎫⎝⎛-∈2,0a x ,则()0>'x g ,()x g 单调递增,若⎪⎭⎫⎝⎛+∞-∈,2a x ,则()0<'x g ,()x g 单调递减,∴()x g 在2a x -=处取得极大值,也是最大值,⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛-2ln 43222a a a a g ,欲使()x g 有两个零点,则02ln 43222>⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛-a a a a g ,解得432e a -<.又01<⎪⎭⎫⎝⎛e g ,()012<++a a g ,且1212++<-<a a ae ,∴⎪⎭⎫ ⎝⎛-∈∃2,13a e x ,⎪⎭⎫⎝⎛++-∈1,224a a a x ,使得()()043==x g x g .综上,实数a 的取值范围是⎪⎪⎭⎫⎝⎛-∞-432,e ∪()∞+,1.(二)选考题22.解:(1)由θθρcos 4sin 2=得,θρθρcos 4sin 22=,将θρθρsin cos ==y x ,,代入得x y 42=.当4πϕ=时,⎪⎪⎩⎪⎪⎨⎧=+=ty t x 22221,消去t 得01=--y x .∴曲线C 的直角坐标方程为x y 42=,直线l 的普通方程为01=--y x .(2)设B A ,对应的参数分别为21,t t ,将⎩⎨⎧=+=ϕϕsin cos 1t y t x 代入x y 42=得,04cos 4sin 22=--ϕϕt t ,∴0sin 4sin cos 4221221<-==+ϕϕϕt t t t ,,∴21,t t 异号,∴382121=+=-=-t t t t BF AF ,∴38sin cos 42=ϕϕ,解得21cos =ϕ或21cos -=ϕ,∵()πϕ,0∈,∴3πϕ=或32πϕ=,∴直线l 的倾斜角为3π或32π.23.解:(1)当1=a 时,()x x x f 21++=,当1-<x 时,不等式()4≤x f 等价于421≤---x x ,解得35-≥x ,则135-<≤-x ;当01≤≤-x 时,不等式()4≤x f 等价于421≤-+x x ,解得3-≥x ,则01≤≤-x ;当0>x 时,不等式()4≤x f 等价于421≤++x x ,解得1≤x ,则10≤<x .综上可得,不等式()4≤x f 的解集为⎥⎦⎤⎢⎣⎡-135,.(2)若()x f 的最小值为1,则()121≥++=x ax x f 恒成立,即x ax 211->+,分别作出函数()1+=ax y 和x y 21-=的图象,由图分析可知,当22≤≤-a 时,x ax 211->+恒成立.∴实数a 的取值范围是[]2,2-.。

2022年高三12月大联考(全国乙卷)理科数学试题及参考答案

2022年高三12月大联考(全国乙卷)理科数学试题及参考答案

2022年高三12月大联考(全国乙卷)理科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.砸每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{},0322>-+=x x x A {}1-≥=x x B ,则=B A ()A .()∞+,1B .[)∞+-,1C .(]13,-D .[)11,-2.已知()i i z 7432+-=+⋅,i 为虚数单位,则复数z 在复平面内所对应的点的坐标是()A .()1,1B .()12,C .()2,1D .()2,23.已知n S 为等差数列{}n a 的前n 项和,1674-=+S a ,48a a -=,则=10a ()A .1B .2C .3D .44.已知抛物线C :x y 42=的焦点为F ,直线1-=kx y 过点F 且与抛物线C 交于B A ,两点,则=AB ()A .8B .6C .2D .45.已知向量()3,1=a ,()4,3-=b ,()2,7=c,则下列结论正确的是()A .15-=⋅b aB .55=++c b aC .b a +与a的夹角为钝角D .b a +与c 垂直6.将函数()162sin +⎪⎭⎫ ⎝⎛+=πx x f 的图象向右平移6π个单位长度,得到函数()x g 的图象,则()x g 图象的对称中心可以为()A .⎪⎭⎫⎝⎛03πB .⎪⎭⎫ ⎝⎛-0125πC .⎪⎭⎫⎝⎛13,πD .⎪⎭⎫ ⎝⎛-1125π7.中国古代“刍童”作为长方棱台(上、下底面均为矩形的棱台)的专用术语.关于计算的描述,《九章算术》中记载:“倍上袤,下袤从之亦倍下袤,上袤从之各以其广乘之,并,以高若深乘之,皆六而一”.即体积计算方法是:将上底面的长乘二,与下底面的长相加,所得结果再与上底面的宽相乘:将下底面的长乘二,与上底面的长相加,所得结果再与下底面的宽相乘,把这两个数值相加,所得结果与高相乘,再取其六分之一.按照此算法,如图,现有体积为328的长方棱台1111D C B A ABCD -,其高为2,上底面矩形的长11B A为a 2,宽11D A 为a ,下底面矩形的长AB 为a 4,则该长方棱台的三视图中侧视图的面积为()A .7B .3C .17D .1938.将2个红球、2个白球、1个绿球放入编号分别为①②③的三个盒子中,其中,两个盒子各放1个球,另外一个盒子放3个球,这5个球除颜色外其他都一样,则不同的放法有()A .24中B .30种C .62种D .41种9.已知数列{}n a 的前n 项和为n S ,且13+=nn S ,则数列{}2na 的前n 项和为()A .236-⨯nB .22331++n C .2239+n D .23391-+n 10.若实数y x ,满足()yxyx22244+=+,则1122--+y x 的值可以是()A .21B .1C .23D .2511.已知e 为自然对数的底数,若()()ea b e b e a ba 122214221-->-+--,且0<a ,则下列结论一定正确的是()A .322+>b aB .12+>b a C .ab <+32D .eb a +<212.已知圆1C :31633222=⎪⎪⎭⎫ ⎝⎛-+y x 过双曲线2C :()0,012222>>=-b a b y a x 的左、右焦点21F F ,,曲线1C 与曲线2C 在第一象限的交点为M ,若1221=⋅MF MF ,则双曲线2C 的离心率为()A .2B .3C .2D .3二、填空题:本题共4小题,每小题5分,共20分.13.现从某校2022年高三上学期某次测试成绩中随机抽取部分学生的物理成绩ξ作为样本进行分析,成绩ξ近似服从正态分布()273σ,N ,且()78.077=<ξP ,则()=<<7369ξP .14.()51-x 的展开式中所有有理项的系数之和为.15.已知函数()x f 的导函数()()()m x x m x f -+-='2,若()x f 在m x =处取到极小值,则m 的取值范围是.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE ∆沿DE 折起,构成四棱锥BCDE F -,若CD EF ⊥,则四棱锥BCDE F -外接球的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)在ABC ∆中,点D 在边BC 上,2=BD ,4=CD ,AB AC >.(1)若32=AB ,6π=C ,求AD 的长;(2)若32π=∠BAC ,求ACD ∆的面积S 的取值范围.18.(12分)2022年11月12日,在湖北黄石举行的2022年全国乒乓球锦标赛中,樊振东最终以4:2战胜林高远,夺得2022年全国乒乓球锦标赛男子单打冠军.乒乓球单打规则时是首先由发球员合法发球,再由接发球员合法还击,然后两者交替合法还击,胜利者得1分.在一局比赛中,先得11分的一方为胜方,10平后,先多得2分的一方为胜方.甲、乙两位同学进行乒乓球单打比赛,甲在一次合法发球中,得1分的概率为53,乙在一次合法发球中,得1分的概率为52,设在一局比赛中第n 个合法发球出现得分时,甲的累积得分为n a .(假定在每局比赛中双方运动员均为合法发球)(1)求随机变量3a 的分布列及数学期望;(2)求621,,a a a 成等比数列的概率.19.(12分)已知几何体1111D DCC A ABB -为正四棱柱1111D DEE A ABB -沿1DD 和BE 的中点C 截去一个三棱柱后的剩余部分,其中2==BC AB ,如图,平面1CDD 与直线11E B的交点记为1C .(1)过A 点作与平面D BC 1平行的平面α,试确定平面α与11B A 的交点位置,并证明;(2)求二面角B DC A --11的正弦值.20.(12分)已知曲线C 上任意一点()y x P ,满足方程()()4112222=++++-y x y x .(1)求点P 的轨迹方程;(2)如果直线l 交曲线C 于B A ,两点,且0=⋅OB OA ,过原点O 作直线AB 的垂线,垂足为H .判断OH 是否为定值,若是,请求出此定值,若不是,请说明理由.21.(12分)已知函数()x x f cos =,其导函数为()x f '.(1)若对任意0≤x ,()ax x f ≤'恒成立,求实数a 的取值范围;(2)判断函数()()⎪⎭⎫⎝⎛+-=x x f x g 2ln π的零点个数,并证明.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+=+=ty tx 211(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()1sin 1=-θρ.(1)求曲线1C 的普通方程,曲线2C 的直角坐标方程;(2)设()1,1M ,曲线1C ,2C 的交点为B A ,,求MB MA ⋅的值.23.(10分)【选修4-5:不等式选讲】已知函数()124123---=x x x f .(1)求不等式()2>x f 的解集;(2)若不等式()x k x f ≤恒成立,求实数k 的取值范围.参考答案一、选择题1.A解析:由0322>-+x x ,得1>x 或3-<x ,∴{}31-<>=x x x A 或,又{}1-≥=x x B ,∴()∞+=,1B A .2.C解析:由()i i z 7432+-=+⋅,得()()()()i i i i i ii z 21323232743274+=-+-+-=++-=,∴复数z 在复平面内所对应的点的坐标为()2,1.3.D解析:设等差数列()n a 的公差为d ,由1674-=+S a ,48a a -=,可得:()⎪⎩⎪⎨⎧=+-=-⨯+++016217774814a a d a a ,即⎩⎨⎧=+++-=+++0371621731111d a d a d a d a ,解得⎩⎨⎧=-=151d a ,∴()611-=-+=n d n a a n ,则410=a .4.A解析:由题意知抛物线C :x y 42=的焦点F 的坐标为()0,1,2=p ,又直线1-=kx y 过抛物线C 的焦点()01,F ,∴01=-k ,解得1=k ,∴直线的方程为1-=x y ,由⎩⎨⎧=-=xy x y 412得0162=+-x x ,设()()B B A A y x B y x A ,,,,∴6=+B A x x ,∴826=+=++=p x x AB B A .5.D 解析:∵()3,1=a,()4,3-=b ,∴9123=+-=⋅b a ,A 错误;∵()9,5=++c b a ,∴1068125=+=++c b a,B 错误;∵()019>=⋅+a b a ,∴b a +与a的夹角为锐角,C 错误;由题意,知()7,2-=+b a ,又()2,7=c,∴()0=⋅+c b a ,则b a +与c 垂直,D 正确.6.D解析:由题意得()162sin 1662sin +⎪⎭⎫ ⎝⎛-=+⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πππx x x g ,令Z k k x ∈=-,62ππ,得122ππ+=k x ,Z k ∈,当1-=k 时,125122πππ-=+-=x ,∴⎪⎭⎫⎝⎛-1125π为函数()x g 图象的一个对称中心.7.B 解析:由题意,的长方棱台的体积()()[]()32832822086122284461222==⨯+=⨯⋅++⋅+⨯=a a a a a a a a a V ,∴1=a ,∴该长方棱台的三视图中侧视图为等腰梯形,其上底长为1,下底长为2,高为2,则侧视图的面积为()322121=⨯+⨯=S .8.A解析:第一步,选一个盒子放3个球,则这样的选法有313=C (种);第二步,假设③号盒子放3个球,若③号盒子放1绿2白或1绿2红,则①②号盒子只有1种放法,若③号盒子放1红1白1绿,则①②号盒子有2种放法,若③号盒子放2红1白或2白1红,则①②号盒子有2种放法.∴,不同的放法有()242221113=++++⨯C (种).9.C解析:由13+=n n S 得当2≥n 时,1311+=--n n S ,以上两式相减,得132-⨯=n n a ,又当1=n 时,41=a ,∴⎩⎨⎧≥⨯==-2,321,41n n a n n ,∴⎩⎨⎧≥⨯==-2,941,1612n n a n n ,其前n 项和为()2239919941699941121+=--⨯+=+++⨯=+=-n n n n T .10.C 解析:()y x y xyx22222442⋅⋅-+=+,()y xy x 22212211+=+--,设()022>=+t t yx,则由题意得t t yx22222=⋅⋅-,即t t yx22222-=⋅⋅.∵222222220⎪⎪⎭⎫ ⎝⎛+⋅≤⋅⋅<y x yx ,即42022t t t ≤-<,当且仅当yx22=,即1==y x 时等号成立,解得42≤<t ,∴1122--+y x 的取值范围是(]2,1.11.B 解析:由题意,知()()122214212-->-+-+a b e b e a b a,∴()()b eb a e a b a 212124212+->++-+,∴()()beb a e a b a2212122212+-+>++-+∴()[]()()21221222212+++-+>++-+b eb a e a b a,设()()22++-=x e x x f x ,则()()11+-='x e x x f ,李陵()()x f x g '=,则()xxe x g =',当0<x 时,()0<'x g ,()x f '单调递减,∴()()00='>'f x f ,∴()x f 单调递增,∴()()00=<f x f ;当0>x 时,()0>'x g ,()x f '单调递增,∴()()00='>'f x f ,∴()x f 单调递增,∴()()00=<f x f .∴()()00=<f a f .,∴()()()1220+>>>b f a f a f ,∴()()12+>b f a f ,∴12+>b a .12.C 解析:由题意,知圆1C 的圆心坐标为⎪⎪⎭⎫ ⎝⎛3320,,半径334=r ,()()02,0221,,F F -,则421=F F ,在O C F Rt 11∆中(其中O 为坐标原点),∵334332111==F C O C ,,∴︒=∠6011O C F ,∴︒=∠=∠︒=∠602112021121211F C F MF F F C F ,,在21MF F ∆中,由余弦定理得:()221221212221221460cos 2a MF MF MF MF MF MF MF MF F F =+-=︒-+=1612=+,∴1=a ,又2=c ,∴双曲线2C 的离心率为2=e .又11296lg 3125lg 6lg 5lg 5log 45456>==,∴545log 6>=c ,∴c b <.∴c b a <<.二、填空题13.28.0解析:由随机变量ξ服从正态分布()2,73σN ,()78.077=<ξP ,得()()22.06977=≤=≥ξξP P ,∴()28.022.05.07369=-=<<ξP .14.16-解析:由二项式定理,可得()51-x 的展开式通项为()()r rrr x C T 1551-=-+,5,4,3,2,1=r ,当42,05,=-r ,即1,3,5=r 时,1+r T 为有理项,∴所有有理项的系数之和为()()()()16510111115353555-=++-=-+-+-C C C .15.()2,0解析:由题意得0≠m ,当0>m 时,()x f '为图象开口向下的二次函数,若()x f 在m x =处取到极小值,则有20<<m ;当0<m 时,()x f '为图象开口向上的二次函数,若()x f 在m x =处取到极小值,则有2>m ,与0<m 矛盾,不符合题意,故m 的取值范围是()2,0.16.π211解析:由EF BE AE ==得BF AF ⊥,同理CF AF ⊥,又F CF BF = ,∴⊥AF 平面BCF ,如图,取BC 的中点G ,连接AG FG EG ,,,则AC EG ∥,又AC EF ⊥,∴EG EF ⊥,∴在EFG Rt ∆中,2=FG ,在AFG Rt ∆中,122=-=FG AG AF ,∴三棱锥ADE F -为正四面体,设AG 与ED 的交点为M ,易知M 为ED 的中点,连接FM ,则23==MG FM ,在FMG ∆中,由余弦定理得312cos 222-=⋅-+=∠MG FM FG MG FM FMG ,设正三角形EFD 的中心为I ,易知等腰梯形BCDE 的外接圆圆心为BC 的中点G ,设四棱锥BCDE F -外接球的球心为O ,连接OG OI ,,则⊥OI 平面EFD ,⊥OG 平面BCDE ,连接GI ,在MGI ∆中,131236322363cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=∠⋅-+=FMG MG MI MG MI GI ,易知I O G M ,,,四点共圆,设四边形MGOI 外接圆的半径为r ,结合正弦定理,得223sin 2=∠==GMI GI r OM ,8322=-=MG OM OG ,设四棱锥BCDE F -外接球的半径为R ,则811831222=+=+=OG BG R,∴四棱锥BCDE F -外接球的表面积为π211.三、解答题17.解:(1)由题意知6=BC ,在ABC ∆中,由余弦定理得C AC BC AC BC AB cos 2222⋅⋅-+=,即236236122⨯⨯⨯-+=AC AC ,即024362=+-AC AC ,解得32=AC 或34=AC ,∵AB AC >,∴34=AC .在ADC ∆中由余弦定理得:C AC DC AC DC AD cos 2222⋅⋅-+=,即1623344248162=⨯⨯⨯-+=AD ,∴4=AD .(2)∵326π=∠=BAC BC ,,∴在ABC ∆中,由正弦定理得34sin sin sin =∠==BACBCB AC C AB ,∴C AB sin 34=,⎪⎭⎫⎝⎛-==C B AC 3sin 34sin 34π,∴C C C AC CD S sin 3sin 34421sin 21⋅⎪⎭⎫⎝⎛-⨯⨯=⋅⋅=πC C C C C C 2sin 34cos sin 12sin sin 21cos 2338-=⋅⎪⎪⎭⎫ ⎝⎛-⨯=()3262sin 342cos 21322sin 6-⎪⎭⎫ ⎝⎛+=--=πC C C .又AB AC >,则60π<<C ,∴2626πππ<+<C ,∴162sin 21<⎪⎭⎫ ⎝⎛+<πC ,可得320<<S ,∴ACD ∆的面积S 的取值范围为()32,0.18.解:(1)随机变量3a 的可能取值为0,1,2,3.()12585203033=⎪⎭⎫ ⎝⎛⨯==C a P ;()12536525312133=⎪⎭⎫ ⎝⎛⨯⨯==C a P ;()12554525322233=⨯⎪⎭⎫ ⎝⎛⨯==C a P ;()125275333333=⎪⎭⎫ ⎝⎛⨯==C a P .随机变量3a 的分布列为∴()59125273125542125361125803=⨯+⨯+⨯+⨯=a E .(2)若621a a a ,,成等比数列,则11=a ,当12=a 时,则16=a ,()156259652531,1,15621=⎪⎭⎫ ⎝⎛⨯====a a a P ;当22=a 时,则46=a ,()1562519445253534,2,122242621=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛====C a a a P ∴事件621a a a ,,成等比数列的概率31254081562519441562596=+=P .19.解:(1)由题意,知1C 为11E B 的中点,如图,取11D A 的中点P ,连接AP P C ,1,则1111112C B P A C B P A ∥,==,∴四边形111B PC A 为平行四边形,∴111B A PC ∥,∴AB PC ∥1,又AB PC =1,∴四边形B APC 1为平行四边形,∴1BC AP ∥,又⊄AP 平面D BC 1,⊂1BC 平面D BC 1,∴AP ∥平面D BC 1,连接11D B ,同理可证11D B BD ∥,设11B A 的中点为Q ,连接AQ PQ ,,则11D B PQ ∥,∴BD PQ ∥,又⊄PQ 平面D BC 1,⊂BD 平面D BC 1,∴PQ ∥平面D BC 1,又P PQ AP = ,∴平面APQ ∥平面D BC 1,从而平面APQ 即为平面α,故平面α与11B A 的交点为11B A 的中点Q .(2)以1A 为坐标原点,11111D A B A A A ,,所在的直线分别为z y x ,,轴建立空间直角坐标系,如图所示.3a 0123P1258125361255412527则()()()()0,2,222040200011B C D A ,,,,,,,,,,∴()4021,,=D A ,()22011,,=C A ,()420,,-=BD ,()2021,,-=BC .设平面D C A 11的法向量为()1111,,z y x n =,∵⎪⎩⎪⎨⎧=⋅=⋅0011111n C A n D A ,∴⎩⎨⎧=+=+022*******z y z x ,令11=y ,∴()1,1,21-=n 即平面D C A 11的一个法向量为()1,1,21-=n.设平面D BC 1的法向量为()2222,,z y x n =,∵⎪⎩⎪⎨⎧=⋅=⋅00212n BC n BD ,∴⎩⎨⎧=+-=+-022*******z x z y ,令12=x ,∴()1,2,12=n ,∴平面D BC 1的一个法向量为()1,2,12=n.∴21663,cos 212121=⨯=⋅=n n n n n n.设二面角B DC A --11的大小为θ,则23211sin 2=⎪⎭⎫⎝⎛-=θ,∴二面角B DC A --11的正弦值为23.20.解:(1)由题意知,点P 的轨迹是椭圆,设椭圆的标准方程为()012222>>=+b a b y a x ,且12==c a ,,∴32=b ,∴点P 的轨迹方程为13422=+y x .(2)当直线l 的斜率不存在时,0=⋅OB OA ,不妨设点A 在第一象限,易得⎪⎪⎭⎫⎝⎛72127212,A ,∴7212=OH .当直线l 的斜率存在时,设直线l 的方程为:m kx y +=,且与曲线C 的交点分别为()()2211,,y x B y x A ,,联立⎪⎩⎪⎨⎧+==+m kx y y x 13422,化简得()0124843222=-+++m kmx x k ,∴()0434822>-+=∆mk ,即2243k m+<,且222122143124438k m x x k km x x +-=+-=+,,由此可得2222143123k k m y y +-=,又0=⋅OB OA ,∴0431********22222121=+-++-=+k k m k m y y x x ,即01212722=--k m ,∴()222431712k k m +<+=,则721271212==+=km OH ,综上,OH 为定值7212.21.解:(1)由()x x f cos =可得()x x f sin -=',令()()ax x ax x f x h --=-'=sin ,则()a x x h --='cos .当1-≤a 时,()0cos 1≥-≥'x x h ,()x h 在(]0,∞-上单调递增,故()()00=≤h x h ,符合题意;当1≥a 时,()0cos 1≤--≤'x x h ,()x h 在(]0,∞-上单调递减,故()()00=≥h x h ,不符合题意;当11<<-a 时,方程()0='x h 在(]0,∞-上有无数个解,记其中最大的负数解为0x ,则当()0,0x x ∈时,()0<'x h ,故()()00=>h x h ,不符合题意.综上,1-≤a ,即实数a 的取值范围为(]1,∞-.(2)()⎪⎭⎫⎝⎛+-=x x x g 2ln cos π的定义域为⎪⎭⎫⎝⎛∞+-2π,①当⎪⎭⎫⎝⎛∞+∈2πx 时,1cos ≤x ,1ln 2ln >>⎪⎭⎫⎝⎛+ππx ,∴()0<x g ,此时函数()x g 无零点.②当⎥⎦⎤⎢⎣⎡∈2,0πx 时,()021sin <+--='xx x g π,()x g 在⎦⎤⎢⎣⎡2,0π上单调递减,∵()02ln10>-=πg ,0ln 02<-=⎪⎭⎫⎝⎛ππg ,∴函数()x g 在⎥⎦⎤⎢⎣⎡2,0π上有且仅有1个零点.③当⎪⎭⎫ ⎝⎛-∈0,2πx 时,令()2ln 22ln πππ--⎪⎭⎫ ⎝⎛+=x x x p ,则()022221>⋅⎪⎭⎫ ⎝⎛+-=-+='ππππx xx x p ,∴()x p 在⎪⎭⎫ ⎝⎛-0,2π上单调递增,故()()00=<p x p ,即2ln 22ln πππ+<⎪⎭⎫ ⎝⎛+x x .令()2ln 2cos ππ--=x x x q ,⎪⎭⎫⎝⎛-∈0,2πx ,则()π2sin --='x x q ,令()π2sin --=x x n ,⎪⎭⎫⎝⎛-∈0,2πx ,则()0cos <-='x x n ,可得()x n 在⎪⎭⎫⎝⎛-0,2π上单调递减,又02>⎪⎭⎫ ⎝⎛-πn ,()00<n ,故存在⎪⎭⎫⎝⎛-∈0,20πx 使()00=x n ,则存在⎪⎭⎫⎝⎛-∈0,20πx ,使得()00='x q ,且当⎪⎭⎫⎝⎛-∈0,20πx 时,()00>'x q ,()x q 单调递增,当()0,0x x ∈时,()00<'x q ,()x q 单调递减,又()02ln 102>-==⎪⎭⎫⎝⎛-ππq q ,∴当02<<-x π时,()0>x q ,即2ln 2cos ππ+>x x ,∴⎪⎭⎫⎝⎛+>x x 2ln cos π,即当⎪⎭⎫⎝⎛-∈0,2πx 时,()0>x g ,∴()⎪⎭⎫⎝⎛+-=x x x g 2ln cos π在⎪⎭⎫⎝⎛-0,2π上无零点.综上,函数()x g 有1个零点.(二)选考题22.解:(1)∵曲线1C 的参数方程为⎪⎩⎪⎨⎧+=+=②,①t y t x 21,1,则①-⨯2②,得122-=-y x ,∴曲线1C 的普通方程为:0212=-+-y .由()1sin 1=-θρ得1sin +=θρρ,两边同时平方得1sin 2sin 222++=θρθρρ,将y =θρsin ,222y x +=ρ代入上式,得12222++=+y y y x ,化简得122+=y x ,∴曲线2C 的直角坐标方程为21212-=x y .(2)将曲线1C 的参数方程化为⎪⎪⎩⎪⎪⎨⎧'+='+=t y t x 361331,代入21212-=x y 得()0662322=-'-+'t t ,设B A ,两点对应的参数分别为21t t '',,则621-=''t t .∴621='⋅'=⋅t t MB MA .23.解:()⎪⎩⎪⎨⎧>-≤≤+-<=4,43,2473,x x x x x x x f ,(1)①当3<x 时,2>x ,即32<<x ;②当43≤≤x 时,2247>+-x ,解得722<x ,即7223≤≤x ;③当4>x 时,2>-x ,解得2-<x ,则()2>x f 无解.综上所述,不等式()2>x f 的解集为⎪⎭⎫ ⎝⎛7222,.(2)①当0=x 时,显然成立;②当0≠x 时,不等式()x k x f ≤可化为xx xx x k 124123124123---=---≥.又1124123124123=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-≤---x x x x ,当且仅当0124123≥⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-x x 且xx 124123->-时等号成立,∴实数k 的取值范围为[)∞+,1.。

高三数学12月联考试题理(含解析)

高三数学12月联考试题理(含解析)

天一大联考2017-2018学年高中毕业班时期性测试(三)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、1。

已知集合,,则( )A、B。

C。

D、【答案】A【解析】由题意得,因此。

选A。

2、已知是虚数单位,若复数为纯虚数(,),则( )A、 B。

C、D、【答案】A【解析】由题意得为纯虚数,因此,故。

因此、选A。

3、如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍、若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A。

B、C。

D。

【答案】D【解析】由题意得正方形的内切圆的半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,因此白色区域的面积为,由几何概型概率公式可得所求概率为。

选D。

4。

已知函数()的最小值为2,则实数( )A。

2 B、4 C、 8 D、 16【答案】B【解析】由得,故函数的定义域为,易知函数在上单调递增,因此,解得。

选B。

5、已知数列满足,,,则数列前项的和等于( )A、 162B、 182C、 234D、346【答案】B【解析】由条件得,因此,因此数列为等差数列、又,,因此。

故。

选B。

点睛:在等差数列项与和的综合运算中,要注意数列性质的灵活应用,如在等差数列中项的下标和的性质,即:若,则与前n项和公式经常结合在一起运用,采纳整体代换的思想,以简化解题过程、6。

用,,…,表示某培训班10名学员的成绩,其成绩依次为85,68,95,75,88,92,90,80,78,87、执行如图所示的程序框图,若分别输入的10个值,则输出的的值为( )A、 B、 C、 D、【答案】C、。

、、、、、。

、。

、、、、、、、。

、。

、7。

如图画出的是某几何体的三视图,则该几何体的体积为( )A、16B、 32 C。

48 D。

高三数学下学期毕业班联考试卷一理含解析 试题

高三数学下学期毕业班联考试卷一理含解析 试题

卜人入州八九几市潮王学校十二重点2021届高三下学期毕业班联考〔一〕数学〔理〕试题本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.一共150分.考试时间是是120分钟.第一卷选择题(一共40分)本卷须知:2.第一卷每一小题在选出答案以后,需要用2B铅笔把答题卡上对应之答案标号涂黑;参考公式:·假设事件、互斥,那么柱体的体积公式.其中表示柱体的底面积,表示柱体的高.一、选择题:本大题一一共8小题,每一小题5分,总分值是40分.1.集合等于〔〕A. B. C. D.【答案】C【解析】【分析】求出M中y的范围确定出M,求出N中x的范围确定出N,找出M与N的交集即可.【详解】由y=ln(x2+1)⩾0,得到M=[0,+∞),由N中2x<4=22,得到x<2,即N= (−∞,2),那么M∩N=[0,2),应选:C【点睛】此题考察了交集及其运算,纯熟掌握交集的定义是解此题的关键.2.设变量满足约束条件{x−y+1≤02x+3y−6≥03x−2y+6≥0,那么目的函数z=x−2y的最大值为〔〕A.−6639B.−135C.−2D.2【答案】B 【解析】 【分析】先作出不等式对应的可行域,再利用数形结合分析得到目的函数z =x −2y 的最大值. 【详解】作出不等式组的可行域如下列图, 由题得目的函数为y =12x −z2,直线的斜率为12,纵截距为−z2, 当目的函数经过点A(35,85)时,纵截距−z2最小,z 最大.所以z max =35−2⋅85=−135. 故答案为:B【点睛】此题主要考察线性规划求最值,意在考察学生对这些知识的理解掌握程度和数形结合分析推理才能. 3.p :∀x ∈R,x 2+x <0,那么¬p :∃x ∈R,x 2+x >0; p :|2x −1|≤1q :11−x >0,那么p 是q 成立的充分不必要条件;③在等比数列{b n }中,假设b 5=2,b 9=8,那么b 7=±4; ) A.0 B.1C.2D.3【答案】A 【解析】 【分析】 .【详解】p :∀x ∈R,x 2+x <0,那么¬p :∃x ∈R,x 2+x ≥0pq :x <1,那么p 是q③在等比数列{b n }中,假设b 5=2,b 9=8,那么b 7=±4,但是等比数列的奇数项都是同号的,所以要舍去-4,所以b 7=4 应选:A 【点睛】.4.如图是一个算法流程图,那么输出的k 的值是() A.2 B.3 C.4 D.5【答案】B 【解析】 【分析】分析程序中的变量,语句的作用,根据流程图的顺序,即可得出答案. 【详解】由题意提供的算法流程图中的算法程序可知 当S=1,k=1时,S=2<10,k=2; 当S=2,k=2时,S=6<10,k=3; 当S=6,k=3时,S=15>10, 此时运算程序完毕,输出k=3 应选B.【点睛】此题主要考察了程序框图,属于简单题. 5.将函数y =cos (2x −π6)的图象向左平移φ(0<φ<π)的单位后,得到函数y =cos(2x +π3)的图象,那么φ等于〔〕 A.π3B.π6C.π2D.π4【解析】【分析】将函数y=cos(2x−π6)的图象向左平移φ(0<φ<π)的单位后,得到函数y=cos[2(x+φ)−π6]=cos(2x+2φ−π6),所以2φ−π6=2kπ+π3,k∈z,解之即得解.【详解】将函数y=cos(2x−π6)的图象向左平移φ(0<φ<π)的单位后,得到函数y=cos[2(x+φ)−π6]=cos(2x+2φ−π6),所以2φ−π6=2kπ+π3,k∈z,因为0<φ<π,所以k=0时,φ=π4.应选:D【点睛】此题主要考察三角函数图像的变换和三角函数的图像和性质,意在考察学生对这些知识的理解掌握程度和分析推理才能.6.a=log130.60.3,b=log1214,c=log130.50.4,那么实数a,b,c的大小关系为〔〕A.c<a<bB.b<a<cC.a<c<bD.c<b< a【答案】C【解析】【分析】先化简得到b=2,再分析得到a<c,再证明c<2,即得解.【详解】由题得b=log1214=2,因为0.60.3>0.60.4>0.50.4,∴log130.60.3<log130.50.4,log130.50.4=0.4log130.5<0.4log1313=0.4,所以a<c<b.【点睛】此题主要考察对数函数指数函数幂函数的图像和性质,意在考察学生对这些知识的理解掌握程度和分析推理才能. 7.双曲线x 2a 2−y 2b 2=1(a >0,b >0),过原点的直线与双曲线交于A,B 两点,以AB 为直径的圆恰好过双曲线的右焦点C ,假设ΔABC 的面积为2a 2,那么双曲线的渐近线方程为〔〕 A.y =±√22xB.y =±√2xC.y =±√33xD.y =±√3x【答案】B 【解析】 【分析】根据以AB 为直径的圆恰好经过双曲线的右焦点C ,得到以AB 为直径的圆的方程为x 2+y 2=c 2,根据三角形的面积求出B 的坐标,代入双曲线方程进展整理即可得解.【详解】∵以AB 为直径的圆恰好经过双曲线的右焦点C ,∴以AB 为直径的圆的方程为x 2+y 2=c 2,由对称性知ΔABC 的面积S =2S ΔOBC =2×12cℎ=cℎ=2a 2,即ℎ=2a 2c,即B 点的纵坐标为y =2a 2c,那么由x 2+(2a 2c)2=c 2,得x 2=c 2−(2a 2c)2=c 2−4a 4c 2,因为点B 在双曲线上, 那么c 2−4a 4c 2a 2−4a 4c 2b 2=1,即c 2a 2−4a 2c 2−4a 4c 2(c 2−a 2)=1, 即c 2a 2−4a 2c 2(1+a 2c 2−a 2)=1, 即c 2a 2−4a 2c 2·c 2c 2−a 2=1,即c2a2−4a2c2−a2=1,即c2a2−1=4a2c2−a2=c2−a2a2,得4a4=(c2−a2)2,即2a2=c2−a2,得3a2=c2,得c=√3a,b=√2a.那么双曲线的渐近线方程为y=±bax=±√2x.应选:B【点睛】此题主要考察双曲线的几何性质,考察圆的方程,意在考察学生对这些知识的理解掌握程度和分析推理计算才能.8.函数f(x)={|log3(2−x)|,x<2−(x−3)2+2,x≥2,g(x)=x+1x−1,那么方程f(g(x))=a的实根个数最多为〔〕A.6B.7C.8D.9【答案】C【解析】【分析】先求出函数g(x)的值域,再令g(x)=t换元得到f(t)=a,作出函数f(x)的图像,数形结合观查分析得到方程f(g(x))=a的实根个数最多为8.【详解】由题得函数g(x)=x+1x−1的值域为[1,+∞)∪(−∞,−3],设g〔x〕=t(t∈[1,+∞)∪(−∞,−3]),作出函数f(x)的图像为:所以f(t)=a,当1≤a≤2时,直线和图像交点个数最多,有四个交点,也就是t有四个实根.且一个t≤-1,有三个t>1.因为函数g(x)=x +1x−1在〔0,1〕〔-1,0〕单调递减,在〔1,+∞〕,〔-∞,-1〕单调递增. 所以g(x)=t,当t 在[1,+∞)∪(−∞,−3]每取一个t 值时,x 都有两个值和它对应,因为t 最多有4个根,所以x 最多有8个解. 应选:C【点睛】此题主要考察函数的图像和性质的综合应用,考察利用函数的图像研究零点问题,意在考察学生对这些知识的理解掌握程度和数形结合分析推理才能.第二卷非选择题(一共110分)二、填空题:本大题一一共6小题,每一小题5分,一共30分.把答案填在答题卡中的相应横线上. 9.假设z =1+2i ,且(a +bi)⋅z =8−i ,那么a ⋅b =__________. 【答案】6 【解析】 【分析】 先化简得{a +2b =8b −2a =−1,解方程即得a,b 的值,即得解.【详解】由题得〔a+bi 〕(1-2i)=8-i,化简得a+2b+(b-2a)i=8-i, 即{a +2b =8b −2a =−1,∴a =2,b =3,∴a ⋅b =6.故答案为:6【点睛】此题主要考察复数的运算和复数相等的概念,意在考察学生对这些知识的理解掌握程度和分析推理才能.10.a =∫sinxdx π0,那么(ax +√x)5的二项展开式中,x 2的系数为__________. 【答案】80 【解析】 【分析】由题得a=2,再利用二项式展开式的通项求出x2的系数.【详解】由题得a=(−cosx)|0π=2,所以(ax+√x )5=(2x+√x)5,设二项式展开式的通项为T r+1=C5r(2x)5−r(√x)r=C5r⋅25−r x5−32r,令5−32r=2,∴r=2,所以x2的系数为C5223=80.故答案为:80【点睛】此题主要考察定积分的计算和二项式展开式的某一项的系数的求法,意在考察学生对这些知识的理解掌握程度和分析推理计算才能.11.圆柱的高和底面半径均为2,那么该圆柱的外接球的外表积为_____________.【答案】20π【解析】【分析】设球的半径为r,由题得r2=12+22,再求圆柱外接球的外表积.【详解】设球的半径为r,由题得r2=12+22=5,∴S球=4π⋅5=20π.故答案为:20π【点睛】此题主要考察圆柱外接球外表积的计算,意在考察学生对这些知识的理解掌握程度和分析推理才能.12.直线:{x=aty=1−2t〔为参数〕,圆C:ρ=−4√2sin(θ+3π4)〔极轴与x轴的非负半轴重合,且单位长度一样〕,假设圆C上恰有三个点到直线的间隔为√2,那么实数a=__________.【答案】−4±2√6【解析】【分析】先求出直线的普通方程为2x+ay-a=0,再求出圆的方程为(x +2)2+(y −2)2=8,根据得到方程√4a 2=√2,解方程即得a 的值.【详解】由题得直线的方程为2x+ay-a=0,圆的方程为(x +2)2+(y −2)2=8, 因为圆C 上恰有三个点到直线的间隔为√2,所以√4a 2=√2,解之即得a=−4±2√6. 故答案为:−4±2√6【点睛】此题主要考察参数方程、极坐标与直角坐标的互化,考察直线和圆的位置关系,意在考察学生对这些知识的理解掌握程度和分析推理才能.13.x >0,y >0,√2是2x 与4y 的等比中项,那么1x +xy 的最小值为__________. 【答案】2√2+1 【解析】 【分析】先由得到x+2y=1,再对1x+xy 化简变形,再利用根本不等式求其最小值.【详解】由题得2x ⋅4y =2,∴2x+2y =2,∴x +2y =1. 所以1x +x y =x+2yx+x y =1+2y x+x y ≥1+2√2y x ⋅xy =1+2√2.当且仅当x =√2−1,y =2−√22时取等.所以1x +xy 的最小值为2√2+1. 故答案为:2√2+1 【点睛】此题主要考察根本不等式求最值,意在考察学生对这些知识的理解掌握程度和分析推理才能. 14.在等腰梯形ABCD 中,下底AB 长为4,底角A 为45∘,高为m ,Q 为折线段B −C −D 上的动点,AC ⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ =2AE ⃑⃑⃑⃑⃑ 设AE⃑⃑⃑⃑⃑ ⋅AQ ⃑⃑⃑⃑⃑ 的最小值为f (m ),假设关于m 的方程f (m )=km −3有两个不相等的实根,那么实数k 的取值范围为__________.【答案】(2√3+2,112)【解析】 【分析】建立直角坐标系,其中A(0,0),B(4,0),C(4-m,m),D(m,m),先对Q 的位置分类讨论得到f(m)=m 2+2m ,根据得到k =m +3m +2有两个不相等的实根,再利用导数和数形结合求得k 的取值范围.【详解】建立坐标系,其中A(0,0),B(4,0),C(4-m,m),D(m,m),所以AC⃑⃑⃑⃑⃑ +AD ⃑⃑⃑⃑⃑ =(4,2m)=2(2,m)=2AE ⃑⃑⃑⃑⃑ , 所以点E(2,m),且0<m <2,又动点Q 为折线上B-C-D 上的点, ①Q 在CD 上时,Q(x Q ,m),m ≤x Q ≤4−m,AE⃑⃑⃑⃑⃑ ⋅AQ ⃑⃑⃑⃑⃑ =m 2+2x Q ≥m 2+2m , ②Q 在BC 上时,Q(x Q ,4-x Q ),4-m ≤x Q ≤4,AE⃑⃑⃑⃑⃑ ⋅AQ ⃑⃑⃑⃑⃑ =4m +(2−m)x Q ≥4m +(2−m)(4−m)=m 2−2m +8, 因为0<m <2,所以m 2+2m <m 2−2m +8,∴f(m)=m 2+2m . 因为f (m )=km −3,所以k =m +3m+2,构造函数g(m)=m +3m+2(0<m <2),函数在(0,√3)单调递减,在(√3,2)单调递增.所以g(√3)<k <g(2),即k∈(2√3+2,112).故答案为:(2√3+2,112)【点睛】此题主要考察平面向量的坐标运算和数量积,考察导数求函数的单调性,考察导数研究函数的零点问题,意在考察学生对这些知识的理解掌握程度和分析推理才能.三、解答题:本大题6小题,一共80分.解容许写出必要的文字说明,证明过程或者演算步骤. 15.在ΔABC 中,内角A,B,C 所对的边分别为a,b,c ,2b(2b −c)cosA =a 2+b 2−c 2. 〔Ⅰ〕求角A 的大小;〔Ⅱ〕假设ΔABC的面积SΔABC=25√34,且a=5,求b+c.【答案】〔Ⅰ〕A=π3;〔Ⅱ〕10.【解析】【分析】〔Ⅰ〕利用余弦定理正弦定理对2b(2b−c)cosA=a2+b2−c2化简即得A=π3.〔Ⅱ〕先化简SΔABC=25√34得到bc=25,再利用余弦定理求得b2+c2=50,再求b+c的值.【详解】〔Ⅰ〕∵2b(2b−c)cosA=a2+b2−c2∴2b(2b−c)cosA2ab =a2+b2−c22ab,∴(2b−c)cosA=acosC,由正弦定理得∴(2sinB−sinC)cosA=sinAcosC,即∴2sinBcosA=sinCcosA+sinAcosC∴2sinBcosA=sinB,∵0<B<π∴sinB≠0,∴cosA=12,∵0<A<π∴A=π3.〔Ⅱ〕∵SΔABC=12bcsinA=25√34,∴bc=25,∵cosA=b2+c2−a22bc =b2+c2−252×25=12,∴b2+c2=50,∴(b+c)2=b2+c2+2bc=100,即b+c=10.【点睛】此题主要考察正弦定理余弦定理解三角形,考察三角形面积的计算,意在考察学生对这些知识的理解掌握程度和分析推理才能.16.“绿水青山就是金山银山〞,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档