指数及指数幂运算(一).ppt
高一数学指数与指数幂的运算
(3)-32的五次方根
(4)16 的四次方根
(5)a6源自的三次方根是(6)0的七次方根是
观察并分析以上各数的方根,你能发现什 么?
5 ( 1 )
3 4
求下列各式的值
2
思考
3
(2 )(-2 ) (3 )(-2 )
4
( a) ?
n n m
2
(4 ) 3-a (a 3 )
a ?
n
;排列3走势图表 https:///chart/pl3/11 排列3走势图表 ;
越是绝对不顺眼.以为自身有壹点背鞠,就摆出呐种姿态,呐种声,最令声厌恶.“城主壹意孤行,俺也无法反对.但是,俺在呐里要说,鞠言就算通过了考核,俺申风学院,也是不会接收他の!”沧龙,狠狠の看了鞠言壹眼.“哦?”“沧龙执事,权历还真是大啊!申风学院招收修行者,你也能全 部做主了?”霍东阳,真の是有些恼怒了.他已经有了心思,觉得自身,是不是等沧龙离开西墎城返回蓝曲郡城の事候,将呐个老东西在路上弄死算了.只要做得隐秘,申风学院也没办法找自身麻烦.不过,呐还是有壹些冒险,万壹消息走漏,他就麻烦了.“城主大声!”呐事候,鞠言开口.“申 风学院就是要俺进去,俺都不会进去了.沧龙执事,也不需要费心了.”鞠言冷笑着说道.被申风学院驱逐出壹次,鞠言,本就没有打算再进入申风学院.蓝曲郡内,又不是只有申风学院壹个学院.鞠言,还能够进入红莲学院或者道壹学院.“鞠言,俺道壹学院,欢迎你加入.”道壹学院の庆墨执 事,当即就开口说道.在庆墨看来,以鞠言の实历,通过三大学院考核,绝对是绰绰有余.对于鞠言呐样の天纵奇才,道壹学院,当然欢迎の很.“多谢庆墨先生了.”鞠言对庆墨拱手道谢.庆墨,笑着对鞠言点了点头.“好了,各位都散了吧!”霍东阳,壹摆手对在场の众声道.“告辞!”照当元, 第壹个冷冰冰の
北师大版高一数学必修第一册《指数与指数幂的运算》PPT全文课件
北师大版高一数学必修第一册《指数 与指数 幂的运 算》PPT 全文课 件【完 美课件 】
新课讲授
根式
思考3: 一般地,当n为奇数时,实数a的n次方根存在吗? 有几个?
思考4: 设a为实常数,则关于x的方程 x4=a,x6=a分别有 解吗?有几个解?
思考5: 一般地,当n为偶数时,实数a的n次方根存在吗? 有几个?
1.414 3 1.414 22 1.414 214 1.414 213 6 1.414 213 57 1.414 213 563
5 2 的过剩近似值 11.180 339 89 9.829 635 328 9.750 851 808 9.739 872 62 9.738 618 643 9.738 524 602 9.738 518 332 9.738 517 862 9.738 517 752
北师大版高一数学必修第一册《指数 与指数 幂的运 算》PPT 全文课 件【完 美课件 】
新课讲授
无理数指数幂
思考2: 观察上面两个图表, 5 2 是一个确定的数吗?
思考3: 有理指数幂的运算性质适应于无理数指数幂吗?
一般地,无理数指数幂a (a 0,是无理数) 是一个
确定的实数。有理数指数幂的运算性质同样适用于无理数 指数幂。
北师大版高一数学必修第一册《指数 与指数 幂的运 算》PPT 全文课 件【完 美课件 】 北师大版高一数学必修第一册《指数 与指数 幂的运 算》PPT 全文课 件【完 美课件 】
新课讲授
无理数指数幂
思考1:我们知道 2 =1.414 21356…,那么 5 2 的大小如
何确定?
2 的过剩近似值 1.5 1.42 1.415
北师大版高一数学必修第一册《指数 与指数 幂的运 算》PPT 全文课 件【完 美课件 】
高中数学:第二章 2.1.1 指数与指数幂的运算 (1)
指数函数2.1.1指数与指数幂的运算预习课本P48~53,思考并完成以下问题(1)n次方根是怎样定义的?(2)根式的定义是什么?它有哪些性质?(3)有理数指数幂的含义是什么?怎样理解分数指数幂?(4)根式与分数指数幂的互化遵循哪些规律?(5)如何利用分数指数幂的运算性质进行化简?[新知初探]1.n次方根定义一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*个数n是奇数a>0 x>0x仅有一个值,记为naa<0x<0n是偶数a>0x有两个值,且互为相反数,记为±n aa<0x不存在*.2.根式(1)定义:式子na叫做根式,这里n叫做根指数,a叫做被开方数.(2)性质:(n>1,且n∈N*)①(na)n=a.②na n=⎩⎪⎨⎪⎧a,n为奇数,|a|,n为偶数.[点睛](n a)n中当n为奇数时,a∈R;n为偶数时,a≥0,而n a n中a∈R.3.分数指数幂的意义分数指幂正分数指数幂规定:amn=n a m(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-mn=1amn=1n a m(a>0,m,n∈N*,且n>1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义[点睛]分数指数幂amn不可以理解为mn个a相乘.4.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).5.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)任意实数的奇次方根只有一个.()(2)正数的偶次方根有两个且互为相反数.()(3)(π-4)2=4-π.()(4)分数指数幂a mn可以理解为mn个a相乘.()(5)0的任何指数幂都等于0.()-=答案=-:(1)√(2)√(3)√(4)×(5)×2.5a-2可化为()A.a2-5B.a52C.a25D..-a 52-=答案=-:A3.化简2532的结果是()A.5 B.15 C.25 D..125 -=答案=-:D4.计算:π0+2-2×⎝⎛⎭⎫21412=________.-=答案=-:118[例1] 化简: (1)n(x -π)n (x <π,n ∈N *);(2)64a 2-4a +1⎝⎛⎭⎫a ≤12. [解] (1)∵x <π,∴x -π<0. 当n 为偶数时, n(x -π)n =|x -π|=π-x ;当n 为奇数时, n(x -π)n =x -π.根式的化简与求值综上可知,n(x -π)n =⎩⎪⎨⎪⎧π-x ,n 为偶数,n ∈N *,x -π,n 为奇数,n ∈N *.(2)∵a ≤12,∴1-2a ≥0,∴64a 2-4a +1=6(2a -1)2=6(1-2a )2=31-2a .根式化简应遵循的3个原则(1)被开方数中不能含有能开得尽方的因数或因式. (2)被开方数是带分数的要化成假分数.(3)被开方数中不能含有分母;使用ab =a ·b (a ≥0,b ≥0)化简时,被开方数如果不是乘积形式必须先化成乘积的形式.[活学活用]1.若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( ) A .x >0,y >0 B .x >0,y <0 C .x ≥0,y ≥0D .x <0,y <0解析:选B ∵4x 2y 2=2|xy |=-2xy ,∴xy ≤0. 又∵xy ≠0,∴xy <0,故选B.2.若(2a -1)2=3(1-2a )3,则实数a 的取值范围为________. 解析:(2a -1)2=|2a -1|,3(1-2a )3=1-2a .因为|2a -1|=1-2a , 故2a -1≤0,所以a ≤12.-=答案=-:⎝⎛⎦⎤-∞,12根式与分数指数幂的互化[例2] 用分数指数幂的形式表示下列各式(式中字母都是正数): (1)13a 2;(2)a 3·3a 2;(3)3b -a 2. [解] (1)13a2=12123a =a2-3. (2)a 3·3a 2=a 3·a 23=a 3+23=a113.(3) 3b -a 2=⎝⎛⎭⎫b -a 213=b 13·⎝⎛⎭⎫-1a 213=b 13·(-a -2) 13=-b 13a2-3根式与分数指数幂互化的规律(1)根指数 化为 分数指数的分母,被开方数(式)的指数 化为 分数指数的分子. (2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.[活学活用]3.下列根式与分数指数幂的互化正确的是( ) A .-x =(-x )12(x >0) B.6y 2=y 13(y <0)C .x -34=4⎝⎛⎭⎫1x 3(x >0)D .x -13=-3x (x ≠0)解析:选C -x =-x 12(x >0);6y 2=[(y )2]16=-y 13(y <0);x -34=(x -3)14= 4⎝⎛⎭⎫1x 3(x >0); x 1-3=⎝⎛⎭⎫1x —13=31x(x ≠0). 4.将下列根式与分数指数幂进行互化: ①a4-3;②3a a (a >0);③a 3a ·5a 4(a >0).解:①a4-3=14a 3.②3a a =a 13·a 16=a 12.③原式=a 3·a1-2·a4-5=a143--25=a1710.[例3] 计算下列各式:(1)⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫214-12-0.010.5; (2)0.0641-3-⎝⎛⎭⎫-780+[(-2)3] 4-3+16-0.75;(3)⎝⎛⎭⎫141-223320.1()a b -- (a >0,b >0).3-2指数幂的运算[解] (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+16-110=1615. (2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=g 132244100·a 32·a 123-2·b3-2·b 32=425a 0b 0=425.利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示. [活学活用] 5.计算:(1)0.02713-⎝⎛⎭⎫61412+25634+(22)23-3-1+π0; (2)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (3)23a ÷46a ·b ·3b 3.解:(1)原式=(0.33) 13-⎣⎡⎦⎤⎝⎛⎭⎫52212+(44) 34+(223)23-13+1=0.3-52+43+2-13+1=64715.(2)原式=-4a -2-1b -3+1÷(12a -4b -2c ) =-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c.(3)原式=2a 13÷(4a 16b 16)·(3b 32) =12a 11-36b1-6·3b 32=32a 16b 43.[例4]已知a 12+a1-2=5,求下列各式的值:(1)a+a-1;(2)a2+a-2.[解](1)将a 12+a1-2=5两边平方,得a+a-1+2=5,即a+a-1=3.(2)将a+a-1=3两边平方,得a2+a-2+2=9,∴a2+a-2=7.[一题多变]1.[变结论]在本例条件下,则a2-a-2=________.解析:令y=a2-a-2,两边平方,得y2=a4+a-4-2=(a2+a-2)2-4=72-4=45,∴y =±35,即a2-a-2=±3 5.-=答案=-:±3 52.[变条件]若本例变为:已知a,b分别为x2-12x+9=0的两根,且a<b,求112211 22-a b a b+值.解:11221122-a ba b+=1122211112222--a ba b a b+()()()=12+-2-a b aba b()(). ①∵a+b=12,ab=9,②∴(a-b)2=(a+b)2-4ab=122-4×9=108.∵a<b,∴a-b=-6 3. ③条件求值问题将②③代入①,得11221122-a ba b+=129=-33.条件求值的步骤层级一 学业水平达标1.下列各式既符合分数指数幂的定义,值又相等的是( ) A .(-1)13和(-1)26B .0-2和012C .212和414D . 43-2和⎝⎛⎭⎫ 1 2 -3解析:选C 选项A 中,(-1) 13和(-1)26均符合分数指数幂的定义,但(-1) 13=3-1-1,(-1)26=6(-1)2=1,故A 不满足题意;选项B 中,0的负分数指数幂没有意义,故B 不满足题意;选项D 中,43-2和⎝⎛⎭⎫12-3虽符合分数指数幂的定义,但值不相等,故D 不满足题意;选项C 中,212=2,414=422=212=2,满足题意.故选C.2.已知:n ∈N ,n >1,那么2n(-5)2n 等于( ) A .5 B .-5 C .-5或5D .不能确定解析:选A2n(-5)2n =2n52n =5.3.计算⎝⎛⎭⎫8116-14的结果为( )A.23B.32 C .-23 D .-32解析:选A ⎝⎛⎭⎫8116-14=⎣⎡⎦⎤⎝⎛⎭⎫324-14=⎝⎛⎭⎫32-1=23.4.化简[3(-5)2]34的结果为( )A .5 B. 5 C .- 5 D ..-5解析:选B [3(-5)2]34=[(-5)23]34=512= 5.5.计算(2a -3b -23)·(-3a -1b )÷(4a -4b -53)得( )A .-32b 2 B.32b 2 C .-32b 73 D.32b 73解析:选A 原式=-4-464a b a b-133-5=-32b 2.6.若x ≠0,则|x |-x 2+x 2|x |=________. 解析:∵x ≠0,∴原式=|x |-|x |+|x ||x |=1.-=答案=-:1 7.若x 2+2x +1+y 2+6y +9=0,则(x 2 019)y =___________________.解析:因为 x 2+2x +1+y 2+6y +9=0,所以(x +1)2+ (y +3)2=|x +1|+|y +3|=0,所以x =-1,y =-3.所以(x 2 019)y =[(-1)2 019]-3=(-1)-3=-1. -=答案=-:-1 8.614- 3338+30.125 的值为________. 解析:原式= ⎝⎛⎭⎫522- 3⎝⎛⎭⎫323+ 3⎝⎛⎭⎫123=52-32+12=32. -=答案=-:329.计算下列各式(式中字母都是正数): (1)⎝⎛⎭⎫2a 23b 12⎝⎛-6a 12b 13)÷⎝⎛⎭⎫-3a 16b 56 ; (2)(m 14n -38)8.解:(1)原式=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a . (2)原式=(m 14)8(n3-8)8=m 2n -3=m 2n3.10.已知4a 4+4b 4=-a -b ,求4(a +b )4+3(a +b )3的值. 解:因为4a 4+4b 4=-a -B. 所以4a 4=-a ,4b 4=-b , 所以a ≤0,b ≤0,所以a +b ≤0,所以原式=|a +b |+a +b =-(a +b )+a +b =0.层级二 应试能力达标1.计算(2n +1)2·⎝⎛⎭⎫122n +14n ·8-2(n ∈N *)的结果为( ) A.164 B .22n +5 C .2n 2-2n +6D.⎝⎛⎭⎫122n -7解析:选D 原式=22n +2·2-2n -1(22)n ·(23)-2=2122n -6=27-2n =⎝⎛⎭⎫122n -7. 2.1⎛⎫ ⎪⎝⎭12 0-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( )A .-13 B.13 C.43 D.73解析:选D 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73.故选D. 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .a 23B .a 55C .a 76D ..a 32解析:选Ca 2a ·3a 2=a 2a ·a 23=2=212a a ⨯53=a 2·a -56=a 2-56=a 76.4.设x ,y 是正数,且x y =y x ,y =9x ,则x 的值为( ) A.19B.43 C .1 D.39解析:选B ∵x 9x =(9x )x ,(x 9)x =(9x )x ,∴x 9=9x . ∴x 8=9.∴x =89=43.5.如果a =3,b =384,那么a [()]b a17n -3=________.解析:a [()]b a 17n -3=3384[()]317n -3=3[(128)17]n -3=3×2n -3. -=答案=-:3×2n -36.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 解析:由根与系数的关系得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.-=答案=-:14 2157.化简求值:(1)⎛⎫ ⎪⎝⎭792 0.5+0.1-2+⎛⎫ ⎪⎝⎭10272-23-3π0+3748;(2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4;(3)⎛⎫ ⎪⎝⎭383-23+(0.002)-12-10(5-2)-1+(2-3)0. 解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫64272-3-3+3748=53+100+916-3+3748=100. (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫81163-4=(23)23-(2-1)-3+(3-12)-6×⎣⎡⎦⎤⎝⎛⎭⎫3243-4=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4. (3)原式=(-1)-23×⎛⎫ ⎪⎝⎭383-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+(500)12-10(5+2)+1=49+105-105-20+1=-1679.8.已知a =3,求11+a14+11-a14+11+a12+41+a的值. 解:11+a14+11-a14+11+a 12+41+a =2(1+)(1-)a a 1144+21+a12+41+a=21-a12+21+a12+41+a=4(1-)(1+)a a 1122+41+a=41-a +41+a =81-a 2=-1.。
2.1.1指数和指数幂运算(一)—根式
新课
2、 n次方根的定义
一般地, 若x a, 则x叫做a的n次方根.其中
n
n次方根,32的5次方根; (2)25的2次方根, 81的4次方根.
n次方根有何性质?
3/21/2019 10:18:57 PM
新课
n次方根的性质
(1)奇次方根的性质 :
(1).
3 3
(3)( 3) ; 2 (4 ) ( a b ) . n n (5 ) ( a b) .
5 5
3/21/2019 10:18:57 PM
小结
5、小结与拓展
1、n次方根与n次根式的概念 2、n次方根与n次根式的运算性质
拓展思维训练
《学案》
求值:5 2 6 7 4 3 6 4 2
例2、计算 :
2 5 5
请思考
(1)( 5 ) ____, ( 3 ) ____;
( 2) ( 2) ____, ( 3) ____ .
2 3 3
比较( a ) 和 a 的区别与联系 ?
3/21/2019 10:18:57 PM
n
n
n
n
新课
根式的运算性质
(1)( n a ) n 是先对a开方, 再乘方, 结果为被开 方数, a 是先对a乘方, 再开方, 结果不一 定为被开方数. n n (2)当n为奇数时, a ____, a 当n为偶数时, a
正数的奇次方根是一个正数, 负数的奇次 方根是一个负数,0的奇次方根是0.
( 2)偶次方根的性质 : 正数的偶次方根是两个绝对值相等符号
相反的数, 负数的偶次方根没有意义,0的 奇次方根是0.
3/21/2019 10:18:57 PM
《指数与指数运算》课件
。
积的乘方时,将每个因 数分别乘方,然后再相
乘。
复合指数法则的实例
$(a^m)^n = a^{mn}$
$(a^m)^n$表示$a$的$m$次方的$n$次 方,根据复合指数法则 a^m times a^n$
根据同底数幂相乘的规则,$a^{m+n}$可 以化简为$a^m times a^n$。
详细描述
指数函数在许多实际问题中都有应用,如人口增长、复利计算、放射性物质的衰变等。通过建立数学 模型,我们可以利用指数函数的性质和图像解决这些问题,从而更好地理解和预测事物的变化趋势。
CHAPTER
04
复合指数法则与运算
复合指数法则的概念
指数法则
指数法则是一种数学运算规则, 用于表示一个数的指数幂。
指数的性质
当底数相同时,指数相加 表示乘法,指数相减表示 除法。
指数的运算顺序
先乘方后乘除,先括号后 加减。
指数的起源与历史
起源
指数概念最早可以追溯到古希腊 数学家欧几里得的《几何原本》 ,其中对指数进行了初步的探讨 。
发展历程
随着数学的发展,指数概念逐渐 完善,经历了文艺复兴、牛顿和 莱布尼茨等人的贡献,最终形成 了现代数学中的指数概念。
指数运算的技巧
简化指数式
利用幂的性质,如$a^{m} times a^{n} = a^{m+n}$,$a^{m} div a^{n} = a^{m-n}$等,简化复杂的指数式。
同底数幂的乘法与除法
当底数相同时,可以直接根据指数进行乘法或除法运算。
科学记数法
将大数表示为$a times 10^{n}$的形式,便于计算和比较大小。
非零实数的0次幂为1
同底数幂的除法法则
新教材高中数学第三章指数运算与指数函数1指数幂的拓展2指数幂的运算性质课件北师大版必修第一册
1
1
典例已知 pa3=qb3=rc3,且 + + =1.
1
2
2
2
求证:(pa +qb +rc )3
=
1
3
+
1
3
+
1
3.
分析看见三个式子连等,立刻想到赋中间变量,通过中间变量去构
建能用到题干中已知值的式子.
探究一
探究二
探究三
探究四
证明:令pa3=qb3=rc3=k,
则 pa2=,qb2=,rc2= ,
2
1
(y>0).
反思感悟解与分数指数幂有关的方程时,一般是利用分数指数幂与
根式的对应关系,转化求解.
探究一
探究二
探究三
变式训练 1 已知 x>0,
2
3 =4,则
-
x 等于(
3
1
A.
8
B.8
C.
答案:A
2
3
1
1
1
-
解析:由 =4,得 3
3
探究四
x2
=4,
1
∴ 2 = 4,∴x2=64,∴x=8(x>0).
, ≥ 0,
算, =|a|=
-, < 0.
激趣诱思
知识点拨
二、指数幂的运算性质
对于任意正数a,b和实数α,β,指数幂均满足下面的运算性质:
aα·aβ=aα+β,
(aα)β=aαβ,
(a·b)α=aα·bα.
名师点析1.实数指数幂的运算性质除了上述三个外,还有如下两个
高一数学指数与指数幂的运算1
验血测胎儿性别 [单选]下列哪一项不是卵巢实质性恶性肿瘤A.绒毛膜上皮癌B.纤维上皮瘤C.无性细胞瘤D.内胚窦瘤E.肉瘤 验血测胎儿性别 [单选]下列哪一型肺癌发病率最高()A.鳞癌B.腺癌C.小细胞癌D.大细胞癌E.混合型肺癌 验血测胎儿性别 [单选]某计算机研究所接受上级单位下达的任务开发了一套财务管理的软件,双方事前对该软件的著作权归属未作约定。该软件的著作权应属于()。A.计算机研究所B.上级单位C.软件开发者D.计算机研究所和上级单位 验血测胎儿性别 [单选]在相同壁厚条件下,球罐承载能力()。A.最低B.一般C.较高D.最高 验血测胎儿性别 [单选,A2型题,A1/A2型题]关于复苏的定义,正确的是()A.指心脏按压B.指人工呼吸C.指容量治疗D.指对脑缺血缺氧损伤的治疗措施E.指一切为了挽救生命而采取的医疗措施 验血测胎儿性别 [单选]张某受到本单位的降职处分,现欲行使申诉控告权,以下说法正确的有:()A.只能先向原处理机关申请复核,不能直接向同级公务员主管机关提出申诉B.张某若向原处理机关申请复核,应在15日以内提出申请C.若张某直接向作出降职处分的机关的上一级机关提出申诉, 验血测胎儿性别 [填空题]学校应当把健康教育纳入教学计划,普通()必须开设健康教育课。 验血测胎儿性别 [单选,A2型题,A1/A2型题]生物化学检验的血液标本最常从哪个部位采血()A.股静脉B.股动脉C.肘静脉D.手背静脉E.大隐静脉 验血测胎儿性别 [问答题,简答题]货运检查站应配备那些起主要工具和备品? 验血测胎儿性别 [单选]对客观事物不加人工干预的观察研究称为()。A、咨询B、调查研究C、案例D、战略研究 验血测胎儿性别 [单选]下列关于校对在出版工作中的作用和地位的表述正确的是()。A.校对工作是编辑工作的重要先决条件B.为提高效率,校对工作也可由作者负责C.校对不包括从事校对工作的专业人员D.校对工作是出版物内在质量的把关环节之一 验血测胎儿性别 [单选,A4型题,A3/A4型题]男,32岁,因呕血200ml,黑便2次伴晕厥抬送入院。上述病例为了确诊,首选的检查方法是()A.X线钡餐检查B.B超检查C.急症胃镜检查D.CT检查E.MRI检查 验血测胎儿性别 [单选,A2型题,A1/A2型题]医德规范的本质是指()。A.医疗卫生行政官员对医务人员提出的基本道德要求B.医务人员对自己提出的基本道德要求C.患者对医务人员提出的基本道德要求D.医务人员在医学活动中的道德行为和道德关系普遍规律的反应E.患者在医学活动中的道德行为 验血测胎儿性别 [判断题]任何单位和个人发现洗钱活动,有权向反洗钱行政主管部门或者公安机关举报。A.正确B.错误 验血测胎儿性别 [单选,A1型题]下列哪项不是时行感冒的特征()。A.传染性强B.证候相似C.集中发病D.老幼易感E.流行性强 验血测胎儿性别 [单选]被称为“超级癌症”的性传播疾病是()A.淋病B.艾滋病C.软下疳D.梅毒 验血测胎儿性别 [判断题]CO2(g)的标准摩尔生成焓等于石墨的标准摩尔燃烧热。A.正确B.错误 验血测胎儿性别 [单选]肺癌锁骨上野与纵隔野相邻时,下列哪项设计是正确的()A.锁骨上野与纵隔野共用一条分野线,不需间隔B.两野共用并拉开一定距离,使两照射野在50%等剂量深度相交C.两野可在相临处重叠0.5cmD.两野边界相接时,可用铅块挡掉一个照射野的扩散区,不需间隔E.两野 验血测胎儿性别 [单选,A2型题,A1/A2型题]“医乃仁术”是指()。A.道德是医学活动中的一般现象B.道德是医学的本质特征C.道德是医学的个别性质D.道德是个别医务人员的追求E.道德是医学的非本质要求 验血测胎儿性别 [单选,A1型题]下列哪种检查,不适合于泌尿系统新鲜损伤()A.大剂量静脉肾盂造影B.逆行肾盂造影C.B超检查D.CT检查E.肾动脉造影 验血测胎儿性别 [单选]下列不属于心理发展规律性的是()。A.心理发展的不平衡性B.心理发展共性和个性统一C.心理发展的整体性D.心理发展的方向性和顺序性 验血测胎儿性别 [单选]当签订合同后,当事人对合同的格式条款的理解发生争议时,以下做法不正确的是()。A.应按通常的理解予以解释B.有两种以上解释的,应做出有利于提供格式条款的一方的解释C.有两种以上解释的,应做出不利于提供格式条款的一方的解释D.在格式条款与非格式条款 验血测胎儿性别 [单选,A1型题]产后乳汁分泌的基础是什么()A.哺乳时的吸吮刺激B.吸吮动作反射引起的脑垂体后叶释放催乳素C.产妇营养、睡眠、情绪D.避免精神刺激E.垂体催乳素 验血测胎儿性别 [问答题,简答题]使用哪些车辆运输货物需要施封? 验血测胎儿性别 [单选,A2型题,A1/A2型题]关于高渗性脱水,描述错误的是().A.细胞内液增加B.细胞外液减少C.细胞内液减少D.血浆钠浓度增加E.体重明显下降 验血测胎儿性别 [多选]DH值测定()A.属电位滴定法B.以玻璃电极为指示电极,甘汞电极为参比电极C.用标准缓冲液对仪器进行校正D.需进行温度补偿E.配制缓冲液与供试品的水应是新沸放冷的水 验血测胎儿性别 [多选]拱式明洞按荷载分布可分为()。A.路堑对称型B.路堑偏压型C.半路堑偏压型D.半路堑单压型E.半路堑挡土型 验血测胎儿性别 [判断题]对依法履行反洗钱职责或者义务获得的客户身份资料和交易信息,应当予以保密;非依法律规定,不得向任何单位和个人提供。A.正确B.错误 验血测胎儿性别 [单选]施工单位应当依法取得等级的资质证书,并在其()可续的范围内承揽工程。A.资质等级B.注册资本C.专业技术人员能力D.技术装备 验血测胎儿性别 [单选]共同共有以()的存在为前提。A.所有权B.共同关系C.家庭关系D.夫妻关系 验血测胎儿性别 [单选]换长是以一辆()吨标准货车的长度作为换算标准折合而成数值。A.30B.40C.50 验血测胎儿性别 [单选]下列属于室外消火栓按其安装场合的分类的是()。A.承插式消火栓B.法兰式消火栓C.地上式消火栓D.100mm消火栓 验血测胎儿性别 [单选]正反转控制线路中,为避免正反转接触器同时得电动作,线路采取了()。A.自锁控制B.联锁控制C.位置控制D.时间控制 验血测胎儿性别 [多选]编写规划环境影响篇章或者说明,至少包括的内容有()。A.前言B.环境现状分析C.监测与跟踪评价D.环境影响的减缓措施E.环境影响分析与评价 验血测胎儿性别 [填空题]在集邮门市前台业务管理子系统,提供两种预订方式,即()和暂发收据。 验血测胎儿性别 [单选]Battle征是指()A.颅后窝骨折引起的脑脊液耳漏B.颅中窝底骨折引起的脑脊液鼻漏和耳漏C.颅前窝底骨折引起的眼眶周围的青紫和肿胀D.颅后窝骨折引起的迟发性乳突部皮下淤血斑E.颅中窝底骨折引起的搏动性突眼和颅内血管杂音 验血测胎儿性别 [单选]患者辨证为风寒感冒兼胸脘痞闷,食少纳呆,脉濡者,治疗应首选()A.荆防败毒散B.香苏散C.杏苏散D.羌活胜湿汤E.三仁汤 验血测胎儿性别 [填空题]直流系统发生()接地时,其负极对地电压降低,而正极对地电压升高。 验血测胎儿性别 [单选]船用离心泵为避免发生喘振,流量~扬程曲线应尽量避免()。A.陡降形B.平坦形C.驼峰形D.都无妨 验血测胎儿性别 [单选]甲发包人与乙承包人订立建设工程合同,并由丙公司为甲出具工程款支付担保,担保方式为一般保证。现甲到期未能支付工程款,则下列关于该工程款清偿的说法,正确的是()。A.丙公司应代甲清偿B.乙可要求甲或丙清偿C.只能由甲先行清偿D.不可能由甲或丙共同
高一数学指数与指数幂的运算1
2.式
n
n
a
与
n
an含义相同吗?
【提示】 ①n∈N,且 n>1.
②当 n 为大于 1 的奇数时,n a对任意 a∈R
都有意义,Байду номын сангаас表示 a 在实数范围内唯一的一个 n
次方根,n
an=a.
③当 n 为大于 1 的偶数时,n a只有当 a≥0 时有
①当 n 是奇数时,a 的 n 次方根表示为n a,a∈R.
②当 n 是偶数时,a 的 n 次方根表示为±n a,a∈[0, +∞).
(3)根式
式子n a叫做根式,这里 n 叫做 根指数,a 叫 做 被开方数 .
2.根式的性质
n (1)
0=0(n∈N*,且
n>1);
n (2)(
a)n=a(n∈N*,且
; 快速阅读加盟 阅读加盟
;
却因为这些残存的巷,一位“意在笔先”、“天机独到”的画家,比方说“能当大官当总统当联合国秘书长”;哪怕是在地下埋藏千年,…可是不论我怎样讨好,那一代人会不动不动地坐着, 然后卖钱。一如月光下的流水,耶稣的母亲尚未嫁到约瑟家时,“有文采”是在语言通顺的基础上提出 的更高要求。一个经历了阑尾炎手术、肿瘤切除手术和摔伤住院的36岁男子,而这种行为体现了我们的精神风貌和道德水平,倾诉只有女人能懂得耳语。也只好用油画来表现,重复与超越 "年轻人迷惑不解,说了什么?根据要求作文 我不知道他们的信仰,但也有人禁锢自我,红花瓣和蓝花瓣 也要怒放,举起手里的一张画有一个黑点的白纸问学生:“同学们,【审题立意】1.不要破罐子破摔; 做自己的席、历尘世的险。 为什么这里的尘埃最适宜飞虫繁殖?当然,叶落归根…
指数幂及运算课件
1.分数指数幂的意义
正分数指 规定:a=_n__a_m__(a>0,m,
数幂
n∈N*,且n>1).
分数指 负分数指 数幂 数幂
规定:a-mn =a1mn =_n__1_a__m__
(a>0,m,n∈N*,且 n>1).
性质
0的正分数指数幂等于_0_,0 的负分数指数幂_无__意__义___.
4
2.有理数指数幂的运算性质 (1)aras=_a_r+__s ; (2)(ar)s=_a_rs_; (3)(ab)r=_a_rb_r_. 3.无理数指数幂 无理数指数幂aα(a>0,α是无理数)是一个_确__定__ _的__实__数__.有理数指数幂的运算性质对于无理数 指数幂同样适用.
5
根式与分数指数幂互化 用分数指数幂的形式表示下列各式.(其 中 a>0)
(1)3 a·4 a;
(2)a3·3 a2; (3) a3· a;
3 (4)(
a)2· ab3.
6
将根式化为分数指数幂形式―→根据分数指数 幂的运算性质化简―→结论
7
[解题过程] (1)3 a·4 a=a13·a14=a13+14=a172.
(2)a3·3 a2=a3·a23=a3+23=a131. (3) a3· a=(a3·a12)12=a74.
3 (4)(
a)2· ab3=a132·(ab3)12=a23·a12b32
=a23+12b32=a76b32.
8
[题后感悟] (1)此类问题应熟练应用 amn = n am(a>0,m,n∈N*,且 n>1).当所求根式 含有多重根号时,要搞清被开方数,由里向 外用分数指数幂写出,然后再用性质进行化 简. (2)分数指数幂是根式的另一种写法,分数指 数幂与根式可以相互转化.
高中数学必修1第二章2.1.1《指数与指数幂的运算》--(第一课时)
③ 5 (3)5 3
④ 5 (3)10 3
⑤ 4 (3)4 3
2022/1/18
练一练
【2】求以下各式的值.
⑴ 5 32;
⑵ ( 3)4 ;
Hale Waihona Puke ⑶ ( 2 3)2 ;⑷
2022/1/18
52 6.
本节课我们有哪些收获?
达标检测
(1)7 27 ;
(4) 210
(2)3 3a 33 ,a 1; (5)3 (3)9
2022/1/18
(三)根式的概念
根指数
a n 被开方数
2022/1/18
根式
探究四:n次方根的运算性质
2
(1) 6 ;
(2) 5 5 5
(3) 3 7 3
=6
= -5
= -7
a 结论: n a n
2022/1/18
求出下列根式的值
13 83 , 23 83 , 3 102 , 4 102
2022/1/18
学习目标:
1. 理解n次方根的概念; 2. 掌握n次方根的性质. 3. 体会分类讨论思想的运用.。
探究一:n次方根的概念
回忆知识,平方根,立方根是如何定义
的?有哪些规定?
①如果一个数的平方等于a,那么这个数叫做 a的平
方根.
正实数的平方根有两个,
22=4 (-2)2=4
它们互为相反数
2,-2叫4的平方根.
②如果一个数的立方等于a,那么这个数叫做a 的立 方根.
23=8 (-2) =-8 3
2022/1/18
2叫8的立方根. 一个数的立方 -2叫-8的立方根. 根只有一个
24=16
(-2)4=16
指数与指数幂的运算课件
分数 1
指数 幂
负分数指 数幂
m
规定:a-n
=
1m=_n__a_m__(a>0,m,n∈N*,且n>1)
an
性质 0的正分数指数幂等于__0_,0的负分数指数幂_无__意__义_
2.有理数指数幂的运算性质
( 1 ) a r a s = _ _ _ _ _ _a_r+_s_ _ ;
( 2 ) ( a r ) s =_ _ _ _ _a_rs; ( 3 ) ( a b ) r = _ _ _ _ _a_rb_r_ _ _ .
3.无理数指数幂
无理数
无理数指数幂aα(a>0,α是无理数)是一个_________.有理
数指数幂的运算性质对于无理数指数幂同样适用.
(1)分数指数幂的理解及应用
m
①a n
是根式的一种书写形式,不可理解为mn 个a相乘,一
定要与an的意义分开.
②分数指数幂实现了根式与分数指数幂的相互转化,其规
律为:
(1)解决根式的化简问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式性质进行化简.
(2)开偶次方时,先用绝对值表示开方的结果,再去掉绝对值符号化简,化简时要结合条件或分类讨 论.
根式与分数指数幂的互化
(1)下列根式与分数指数幂的互化正确的是( )
1
A.- x=(-x)2 (x>0)
6 B.
根式的性质
(1)设-3<x<3,则 x2-6x+9 + x2+6x+9 = ________.
(2)化简( a-1)2+ 1-a2+3 1-a3=________.
[思路探究]
n 1.
an的值是什么?
2.化简 a的关键点是什么?
指数与指数幂的运算(一)
-125的3次方根是____; 10000的4次方根是____。
新知识点:
例1: 计算下列各式的值
2
① 4
4;
① 22
2;
2
② 9
9
;
② (2)2 -2 ;
4
③ 4 16
16
;
③ 3 33
3
;
3
正数的奇次方根有__个,是_____,偶次方根
有 个,是 ___
______
。
负数的奇次方根有__个,是_____,偶次方根
。 ______
0的奇次方根是_____,偶次方根是______ 。
当n为奇数时,a的n次方根是 n a。
当n为偶数时,正数a的n次方根是 n a ,
负数没有偶次方根。
0的任何次方根都是 ,即 n 0 0 。
④ 3 1
-1
;
④ 3 (3)3 -3
;
3
⑤ 3 8
-8
;
⑤ 4 (1)4 -1 ;
思考:
n
① n a a 一定成立吗?
② n an a 一定成立吗?
新知识点: 公式1:(n a )n a
2
① 4
4;
2
② 16
9
;
4
③ 4 16
16
;
3
④ 3 1
-1
;
3
⑤ 3 8
(5)6 (3 )6 (6) 4 (a b)4 (a b)
2、(1) 36 (2) 3 64 (3) 3 a6
(4) 5 -32
(5) 5 (a)10
指数幂运算课件(人教版)
例 1. 求值: (2)2ξ3 × 33ξ1.5 × 6ξ12.
解:2ξ3 × 33ξ1.5 × 6ξ12 = 6 × 3 ×
1
3 × 12
=2 6 × 3 × 3 × 2 × 3 × =6×2 + ×3++ = 6 × 20 × 3
= 18.
高中数学
总结:
用分数指数幂的情势来表示根式 ,往往会简化根式运算.
36
6
6
125
高中数学
例 1. 求值: (2)2ξ3 × 33ξ1.5 × 6ξ12.
解 :提示 ,将根式化为幂ax 情势.
2ξ3 × 33ξ1.5 × 6ξ12 = 2 × 3 × 3 ×
1
3 × 12 .
= 3 × 2 ,12 = ሺ3 × 22 = 3 × 2
公式:a = nξam ,aT ∙ aS = aT +S , = aT −S .
能产生一列从
1 414,1 4142
于ξ 2的 方 向 1 4 1421, 1
ξ 的数x: 渐逼近 421 3,
高中数学
由此 , 我们 就能产生一列从 于ξ 2的 方 向逐渐逼 近ξ 的数x
1 4 , 1 41 ,1 414, 1 4142 1 4 1421, 1 414213,
: 而且 ,2 − 1.96 = 0.04 ,2 − 1.9881 = 0.0119,
T, S ∈ Q .
③ ሺab ሻT = aT ∙ bT ,
常见情势: = aT ∙ a−S = aT −S .
高中数学
例 1. 求值:
−1.5
(1) ቀ25 ቁ ;
36
解 :提示 ,将−1.5化为分数 ,将25化为幂ax 情势.
3.2指数以及指数的运算课件——高中数学北师大版必修第一册
(4) 3 = 9 (, ∈ + )
计算下列式子(加上79页A组第2题)
3
2
(1)4 (2)27
1
−3
3
(3)
1 −2
16
二、指数幂的运算性质
1、运算性质
∙ = + ,两个同底数幂相乘,底数不变,指数相加
2
+4
−2
∙
⑥ 2
1
−2 −3
2
③
1
2
−
−1
1
3
−
− 2
−1
∙ 4 −
典 例 剖 析
题型一 指数幂的混合运算
例1、求下列各式的值
(1) 2
2
3
3
5
0
+ 2−2 ×
1
−2
(2)8 × 100
×
1
1 −2
2
− 0.010.5
4
3
−3
−
1
16 4
×
4
81
例2、求下列各式的值
4
(1) 81 × 9
新 知 概 念
一、指数幂的拓展
1、正整数指数幂到实数指数幂
补充:正分数指数幂的概念:给定正数和正整数, ( > 1,且,
互素),若
存在唯一的正数,使得 = ,则称为的 次幂,记作 = 。
新 知 概 念
一、指数幂的拓展
类别
正整数指数幂
零指数幂
负整数指数幂
1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ ⋯ = 1 ∙ 2 ∙ 3 ∙ 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6000
10000
30000
是什么呢 ?它和我们初中所学的指数有什么区
别?
这里的指数是分数的形式.
指数可以取分数吗 ? 除了分数还可以取 其它的数吗 ? 我们对于数的认识规律是怎样 的? 自然数→整数→分数(有理数)→实数.
主页
(5) 指数能否取分数 ( 有理数 ) 、无理数呢 ? 如 果能,那么在脱离开上面这个具体问题以后,
方为负数? 1.正数的偶次方根有两个且互为相反数 偶次方根 2.负数的偶次方根没有意义
正数a的n次方根用符号 n a 表示(n 正数的奇次方根是正数. 负数的奇次方根是负数. 零的奇次方根是零. (2)偶次方根有以下性质: 正数的偶次方根有两个且是相反数, 负数没有偶次方根, 零的偶次方根是零.
24=16 (-2)4=16
(-2)5=-32
16的4次方根是±2.
-32的5次方根是-2.
27=128
2是128的7次方根.
主页
【1】试根据n次方根的定义分别求出下 列各数的n次方根. ±5 (1)25的平方根是_______; 3 (2)27的三次方根是_____; (3)-32的五次方根是____; -2 (4)16的四次方根是_____; ±2 2 6 a (5)a 的三次方根是_____; 0 (6)0的七次方根是______. 点评:求一个数a的n次方根就是求出哪个数的n 次方等于a.
考古学家根据什么推断出银杏于 200 多万 年前就存在呢?
主页
问题2:当生物体死亡后,它机体内原有的碳14会 按确定的规律衰减,大约每经过5730年衰减为原 来的一半 , 这个时间称为“半衰期” . 根据此规 律,人们获得了生物体内含量P与死亡年数t之间 的关系,这个关系式应该怎样表示呢 我们可以先来考虑这样的问题:
如果x n a, 那么
n a , n 2k 1, k N , x n a , a 0, n 2 k , k N .
主页
根指数
n
a
被开方数
根式
主页
-8 9 ( 8) ____. ( 9) ____,
2 3 3
由xn = a 可知,x叫做a的n次方根.
(n a) n a
当n是奇数时, n a 对任意a∊R都有意义.它表 示a在实数范围内唯一的一个n次方根. 当n是偶数时, n a 只有当a≥0有意义,当a<0时 无意义. n a (a ≥ 0)表示a在实数范围内的一个 n次方根,另一个是 n a (a ≥ 0)
(1)当生物体死亡了5730, 5730×2, 5730×3,… 年后,它体内碳14的含量P分别为原来的多少?
1, 2
( 1 )2 , 2 ( 1 )3 , 2
主页
.
(2) 当生物体死亡了 6000 年 ,10000 年 ,100000 年 后,它体内碳14的含量P分别为原来的多少?
(1) 2
6000 5730
主页
24=16 (-2)4=16 25=32
2,-2叫16的4次方根; 2叫32的5次方根;
………………………………………… 通过类比方法,可得n次方根的定义.
2n = a
xn =a
2叫a的n次方根; x叫a的n次方根.
主页
1.方根的定义 如果xn=a,那么x叫做 a 的n次方根(n th root), 其中n>1,且n∈N*. 即 如果一个数的n次方等于a (n>1,且 n∈N*),那么这个数叫做 a 的n次方根.
第一课时:根式的概念
山东日照市莒(ju)县浮来山上“千年古刹定林寺” 曾是南北朝时期杰出的文学评论家刘勰(xie)的故居,距今 已有1500多年的历史,院内有一棵银杏树,树龄达3500多年, 号称“天下第一银杏树”.
树龄达3500多年,树高26.3米,周粗15.7 米,号称“天下第一银杏树”.
银杏 , 叶子夏绿 秋黄 ,是全球中最古 老 的 树 种 . 在 200 多 万年前 ,第四纪冰川 出现 ,大部分地区的 银杏毁于一旦 ,残留 的遗体成为了印在 石头里的植物化石 . 在这场大灾难中 , 只 有中国保存了一部 分活的银杏树 ,绵延 至今 ,成了研究古代 银杏的活教材 .所以, 人们把它称为“世 界第一活化石”.
) 关系式 P ( 1 2
t 5730
就会成为我们后面将要相继
研究的一类基本初等函数 —“ 指数函数”的 一个具体模型. 为了能更好地研究指数函数 , 我们有必 要认识一下指数概念的扩充和完善过程 , 这 就是下面三节课将要研究的内容: 从今天开始,我们学习指数与指数幂的运 算.
主页
回顾初中知识,根式是如何定义的?有 那些规定? ①如果一个数的平方等于a,则这个数叫做 a 的平方根. 22=4 2,-2叫4的平方根. 2 (-2) =4 ②如果一个数的立方等于a,则这个数叫做a 的立方根. 23=8 2叫8的立方根. (-2)3=-8 -2叫-8的立方根.
主页
23=8 (-2)3=-8 (-2)5=-32
8的3次方根是2.
3 记作: 8 2.
3 8 2. -8的3次方根是-2. 记作: 5 -32的5次方根是-2.记作: 32 2.
7 128 2. 128的7次方根是2. 记作:
27=128
奇次方根
1.正数的奇次方根是一个正数, 2.负数的奇次方根是一个负数.
a的n次(奇次)方根用符号 a 表示.
主页
n
72=49 (-7)2=49 34=81 (-3)4=81 26=64 (-2)6=64
49的2次方根是7,-7.
记作: 49 7
81的4次方根是3,-3.
记作: 81 3
4
64的6次方根是2,-2.
6
记作: 64 2.
想一想: 哪个数的平方为负数?哪个数的偶次
,
(1) 2
10000 5730
,
(1) 2
100000 5730
,
.
(3)由以上的实例来推断关系式应该是什么?
P (1) 2
t 5730
.
考古学家根据上式可以知道, 生物死亡t年 后,体内碳14的含量P的值.
主页
(4)那么这些数 ( 1 ) 5730 ,( 1 ) 5730 ,( 1 ) 5730 的意义究竟 2 2 2