第十章-数据的收集、整理与描述全章教(学)案
人教版七年级下册10.1数据的收集、整理与描述教案
一、教学内容
人教版七年级下册10.1数据的收集、整理与描述:
1.数据的收集:学习使用观察、调查、访谈等方法收集数据,了解数据收集的注意事项。
2.数据的整理:学习使用表格、图表等方法整理数据,掌握分类、排序等整理技巧。
3.数据的描述:学习使用平均数、中位数、众数等描述数据集中趋势,了解极差、方差等描述数据离散程度的指标。
-数据描述的统计量:重点介绍平均数、中位数、众数等描述数据集中趋势的统计量,以及极差、方差等描述数据离散程度的指标。
-实践活动的应用:通过具体案例,让学生掌握如何将数据收集、整理与描述的方法应用于解决实际问题。
举例:在讲解数据的整理技巧时,可以以班级同学的身高数据为例,演示如何将原始数据整理成表格,并通过图表直观展示数据分布。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何对一次班级考试成绩进行收集、整理与描述,以及如何通过这些数据帮助我们分析学生的学习情况。
3.重点难点解析:在讲授过程中,我会特别强调数据收集的准确性和整理的逻辑性这两个重点。对于难点部分,比如统计量的选择和应用,我会通过举例和比较来帮助大家理解。
5.培养学生的创新意识,鼓励学生尝试不同的数据收集和整理方法,勇于探索新思路,提高数据处理能力。
三、教学难点与重点
1.教学重点
-数据的收集方法:重点讲解观察法、调查法、访谈法等常见的数据收集方法,并通过实例让学生理解各种方法的适用场景和操作步骤。
-数据的整理技巧:强调分类、排序等整理方法的重要性,以及如何利用表格、图表等形式清晰、有序地展示数据。
2.教学难点
-数据收集的准确性:难点在于如何确保收集到的数据真实、可靠,避免因主观因素造成数据偏差。
人教版七年级数学(下册)第十章-数据的收集、整理与总结教案
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
第十章-数据的收集、整理与描述
§10.1 统计调查(1)【教学目标】1.了解通过全面调查收集数据的方法和划记法,经历简单的数据的收集、整理、描述和分析数据得出结论,即数据处理的一般过程;2.会设计简单的调查问卷收集数据,能根据问题查找有关资料,获得数据信息,会用表格整理数据,用条形图、扇形图直观地描述数据;3.通过实际参与收集、整理、描述、分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,初步培养重视调查研究的良好习惯和科学态度.【教学过程】一、预习导航回忆小学所学的统计的有关知识,并在旁边空白处记录下来.二、新知探究自学课本回答下列问题:我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.尝试练习1:问题一:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?1.收集数据如何收集数据,让各小组的同学在下面的问卷调查中获取数据.填完后交小组长,由小组长表唱票,小组成员在表格中进行统计.1. 确定调查目的;2. 选择调查对象;3. 设计调查问题.2.整理数据语数外物政历地生51 1 2 人学科类3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息. 条形统计图:就是用坐标的形式来描述.如:扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.如图所示:制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o ×20%=72o.注意:各部分的圆心角之和可能与360 o有一定的误差.条形统计图与扇形统计图的优缺点各是什么? 4.全面调查的意义 在上面的调查中,我们利用调查问卷得到了全班同学喜爱的学科数据,利用表格整理数据,并用统计图直观形象的描述了数据.利用表和图分析了解到了全班同学喜爱学科的情况.在这个调查中,全班同学是要考查的全体对象.像这样考查全体对象的调查就叫做全面调查(也叫做普查).三、巩固提高例 经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%,请画出扇形图描述以上统计数据.例 春节文艺晚会是大家都喜欢的节目,下面是路刚班级喜爱某种节目的人数分布 表,但因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题.(1)被墨水遮掉的3处应是① _______ ②_______ ③________;(2)从上表中可知该班同学喜欢_______的人数最多;(3)画出条形图表示全班同学喜欢某种节目的分布情况. 四、课堂小结五、当堂检测1. 某中学初一(3)班50名学生参加数学测验,测验题目共20题,每题5分满分100分.统计结果如下:节目编号节目类别 划计 人数 百分比 1 相声 ① ② ③_ 2 小品 正 8 19% 3 歌曲 正5 12% 4 舞蹈 正 8 19% 5 杂技 正 7 17%6 戏曲 3 7% 合计42421语文% 数学25 %全对的2人对19题的8人对18题的10人对17题的9人对16题的6人对15题的6人对14题的5人对12题的2人对10题的1人对6题的1人.(1)请你设计一张表格对以上数据进行统计并填上相应数据?(2)你能用条形图把上述数据表示出来吗?2. 根据下面的数据制作扇形统计图并回答问题.对滨州市家庭人口数据的一次统计结果表明:2口之家占24%,3口之家占41%,4口之家占20%,5口之家占10%,6口之家占3%,其他占2%.(1)哪一类家庭人口多?占百分之几?(2)哪两类家庭的百分比之和超过了半数,且最多?(3)哪两类家庭的百分比之和刚达到30%?§10.1 统计调查(2)【教学目标】1.了解总体、个体、样本及样本容量的概念,通过抽样调查,初步感受抽样的必要性及样本的代表性,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析;2.理解抽样调查的方法,通过案例理解简单随机抽样,体会用样本估计总体的统计思想,合理运用抽样调查方法来解决实际问题;3.通过实际参与收集、整理、描述、分析数据的活动,体会数学在生活和生产中的作用,激发学生爱数学的热情.【教学过程】一、预习导航我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.二、新知探究自学课本,回答下列问题:如果要对某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?(1) 抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查.,叫做抽样调查.(2)总体、个体、样本、样本容量的定义总体: .个体: .样本: .样本容量: .(3)抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查2000名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此,随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.尝试练习:某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?⑴可以用全面调查的方法对全校学生逐个进行调查吗?这样做你认为有什么不足之处?⑵能否有既省时省力又能解决问题的新方法?请阅读教材P153-155后,小组讨论交流你的理解.⑶什么是总体、个体、样本、样本容量?在上面的问题中总体、个体、样本、样本容量分别是什么?⑷你明白了统计的思想了吗?抽样调查是实际中经常采用的调查方式.抽样调查有什么优点?需要注意什么?⑸见教材P154表10-2,你知道哪个节目最受学生喜爱?百分比为多少?据此你知道全校2000名学生中有多少学生最喜爱这个节目?⑹试用条形图和扇形图来描述表10-2中的数据.三、巩固提高1. 为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们的身高的平均值作为全校学生的平均身高的估计.⑴小明的调查是抽样调查吗?⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量.⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由.2. 举出不宜用全面调查的例子,并说明理由.3. 某班要选3名学生代表本班参加班级间的交流活动.现在按下面的办法抽取:把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学.你觉得上面的抽取过程是简单随机抽样吗?为什么?四、课堂小结五、当堂检测1.要调查下面几个问题,你认为应该作全面调查还是抽样调查?⑴了解全班同学每周体育锻炼的时间.⑵调查市场上某种食品的色素含量是否符合国家标准.⑶鞋厂检测生产的鞋底能承受的弯折次数.2.指出下列调查中的总体、个体、样本和样本容量.⑴从一批电视机中抽取20台,调查电视机的使用寿命.⑵从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.3.小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾,称得每尾的质量如下(单位:千克):0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8.⑴估计这塘鱼的总产量是多少千克?⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?§10.1 统计调查(3)【教学目标】1.感受分层抽样的必要性,初步掌握分层抽样的基本步骤和方法;2.经历收集、处理数据的过程,会用分层抽样的方法来收集数据、整理数据、分析数据、做出决策,能利用分层抽样的知识解决简单实际生活中的问题;3.增强用统计方法解决实际问题的意识,通过研究解决问题的过程,初步培养学生合作交流的意识和探究精神.【教学过程】一、预习导航1.什么是抽样调查?2.什么是总体、个体、样本和样本容量?3.统计的思想是什么?4.抽样调查有什么优点?简单随机抽样时需要注意什么?二、新知探究:自学课本,回答下列问题:(1)分层抽样:.分层抽样的优点:.(2)在什么情况下分层?分层的根据是什么?尝试练习问题某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况.⑴不能用对学生调查数据去估计整个地区电视观众的情况呢?⑵如果抽取一个容量为1000的样本进行调查,你会怎样调查?⑶采用分层抽样与在整个地区直接进行简单随机抽样相比,这样抽取样本一般能更好地反映总体.如果青少年、成年人、老年人的人数比为2∶5∶3,则可按下表抽取:教材P157表10-3是按上述做法进行调查并整理得到的数据,从中可以大致估计出整个地区观众对五种节目的喜爱情况.请你画条形图和扇形图描述表10-3中的数据.⑷由表10-3中数据还可以估计各个年龄段中观众对某类节目喜爱的情况.如,各个娱乐37% 35.2% 19.7%三、巩固提高1. 如果整个地区的观众中,青少年、成年人、老年人的人数比为3∶4∶3,要抽取容量为500的样本,则各年龄段分别抽取多少人合适?2. 根据表10-3,请你计算各个年龄段中最喜爱新闻、体育、戏曲类节目的百分比,画出折线图,分析随年龄变化,观众喜爱节目的变化情况.3. 活动1的问题中,除了根据年龄段分不同的人群,还可以按其他特征分吗?四、课堂小结五、当堂检测1.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.2.对某中学学生户外活动时间进行抽样调查,学校共有学生1500名,其中男生有800名,女生有700名.如果样本大小为150,小明现有三种方案:A:在七年级学生中用简单随机抽样,抽取150名学生进行调查;B:对全校学生进行简单随机抽样,抽取150名学生进行调查;C:分别在男生中用简单随机抽样抽取80名,在女生中用简单随机抽样抽取70名进行调查.你觉得哪种方案调查的结果会更精确一点?说说你的理由.3.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 .4.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成 下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)50403020100项目金额/§10.2 直方图(1)【教学目标】1.了解频数及频数分布的概念,根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布,会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息;2.通过学习用表格整理数据表示频数分布,体会表格在整理数据中的作用,通过学习用简单频数分布直方图描述数据的方法,进一步体会统计图表在描述数据中的作用;3. 初步建立统计的观念,初步培养调查研究的良好习惯和实事求是的科学态度.【教学过程】一、预习导航1.什么是分层抽样?2.分层抽样的优点是什么?二、新知探究自学课本回答下列问题:称为组距.叫做频数.尝试练习:活动1提出问题探索解决问题的方法问题1:为了参加学校年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.你知道应该怎样选择吗?为什么?问题2:已知63名学生的身高数据,为了使选取的参赛选手身高比较整齐,你知道怎样做才能知道数据(身高)的分布情况吗?(即在哪些身高范围学生比较多?而哪些身高范围学生比较少?)活动2 用频数分布描述数据的方法阅读教材,并结合以上探究,你知道用频数分布描述数据的一般步骤是什么?注意对以下概念的理解:1.组距2.频数3.频数分布直方图4.频数折线图活动3 应用频数分布解决简单的实际问题为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(数据见教材).列出样本的频数分布表,画出频数分布直方图.问题在活动1的问题2中,对数据进行分组时,组距取3,把数据分成8组.如果组距取2或4,那么数据分成几个组?这样做能否选出身高比较整齐的40名队员?三、巩固提高1. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.四、课堂小结五、当堂检测1.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5,则第四组频数是______.3.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第3题)/min§10.2 直方图(2)【教学目标】1.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布;2.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 进一步体会统计图表在描述数据中的作用;3. 增强学习统计的兴趣,初步培养调查研究的良好习惯和科学态度.【教学过程】一、预习导航1.什么是组距、频数?2.用频数分布描述数据的一般步骤是什么?二、新知探究:活动熟练掌握用频数分布直方图解决问题的一般步骤从蔬菜大棚中收集到50株西红柿秧上小西红柿的个数:28 62 54 29 32 47 68 27 55 4336 79 46 54 25 82 16 39 32 6461 59 67 56 45 74 49 36 39 5285 65 48 58 59 64 91 67 54 5768 54 71 26 59 47 58 52 52 70请按组距为10将数据分组,列出频数分布表,画出频数分布直方图和频数折线图,分析数据分布的情况.(先独立思考后分组交流评讲)三、巩固提高:⑴全班有多少同学?⑵组距是多少?组数是多少?⑶跳绳的次数x在100≤x<140范围内的同学有多少?占全班同学的百分之几?⑷画出适当的统计图表示上面的信息.⑸你怎样评价这个班的跳绳成绩?四、课堂小结五、当堂检测1.某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数..)(1)抽取样本的容量为;(2)根据表中数据,补全图中频数分布直方图;(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为人.2.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数)组别噪声声级分组频数频率1 44.5~59.5 4 0.12 59.5~74.5 a 0.23 74.5~89.5 10 0.254 89.5~104.5 b c5 104.5~119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?第十章 数据的收集、整理与描述复习【教学目标】1. 通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实;2. 通过复习,进一步明确数据处理的一般过程;3. 在与他人交流合作的过程中学会收集、整理、描述数据. 【教学过程】一、本章知识网络: 数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识链接:1. 统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比. 条形统计图 可以表示出各种情况下各个项目的具体数目. 折线统计图 可以表现出同一对象的发展变化情况2. 全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调查中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体 样本容量 样本中个体的数目 3. 直方图画频数分布直方图的一般步骤(1)计算最大值与最小值 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图三、巩固练习:1. 右图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生 人, 七年级共捐款 元,该校三个年级共捐款 元.人均捐款数(元)0246810121416七年级八年级九年级年级/日4821温度/℃2. 某校七年级学生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题.(1)该班有多少名男生?(2)若立定跳远的成绩在 2.0米以上(包括2.0米)为合格率是多少四、当堂检测 一、精心选一选,你一定能行1.下列调查适合作全面调查的是( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人 3.要反映某市一周内每天的最高气温的变化情况,宜采用( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( ) A.144 B.162 C.216 D.250二、耐心填一填,你一定很棒的! 6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,样本是______________.7.小明家本月的开支情况如右图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元.8.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有_____________万人.9.测得某市2月份1~10日最低气温随日期变化折线图如图所示 ()1 最低气温为2c 的天数为_______天.()2 该市这10天的天气变化趋势是___________________.三、挑战你的技能10.老师布置每位学生估计本班的数学平均成绩,小玲是数学兴趣小组的成员,就向数学兴趣小组的全体成员做了调查,用他们的数学平均成绩估计本班的数学平均成绩,这样的抽样调查合理吗?为什么?11.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试.将所得的成绩(成绩均为整数)进行整理(如下边所示),请你画出频数分布直方图和频数折线图,并回答问题:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)测试成绩在70≤x<80范围的同学有多少?占全班同学的百分比?(4)画出适当的统计图表示上面的信息.(5)你怎样评价这个班的测试成绩?12. 某校学生会准备调查全校七年级学生 每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最合理的是(填“甲”、或“乙”或“丙”)____________________(2)他们采用了最为合适的调查方法收集数据,并绘制了条形和扇形统计图,请将两幅统计图补充完整;图1(3)若该七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数.20分钟约40分钟及以上图2。
沈阳市第二中学七年级数学下册第十章数据的收集整理与描述章末复习导学案新版新人教版
章末复习一、复习导入1.导入课题:前面我们学习了在生产和生活中对数据的收集、整理与描述方法,为了使大家更全面、准确、熟练地掌握本章知识和技能,下面我们一起来进行本章的小结与复习.2.学习目标:(1)更进一步认识收集数据的方式和方法.(2)学会整理数据的方法.(3)领会描述数据的方法.3.学习重、难点:重点:制表整理数据、绘图描述数据.难点:合理设计统计图表及描述和分析数据的合理方式和方法.二、分层复习1.自学指导:(1)自学内容:本章全部内容.(2)自学时间:8分钟.(3)自学方法:阅读课本P157小结,对小结中不熟悉的问题查看课本内容及学习笔记,并记录新的疑点.(4)自学参考提纲:①收集数据有哪些方法?不同的方法各有什么优缺点?②对收集的数据如何进行整理?③对整理出的数据进行描述的目的是什么?①样调查的作用是什么?抽样时应注意什么?②种描述数据的图表在表示数据方面各有什么特点?⑥反映一天的气温随时间的变化情况适用折线图描述,反映某校近视的学生人数占全校学生人数的百分比适用扇形统计图描述,反映某村种植水稻、棉花、花生等农作物种植面积情况适用条形统计图描述.2.自学:学生可围绕自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解自学进度和自学中存在的问题.②差异指导:对学有困难或方法不当的学生进行引导.(2)生助生:小组内学生之间相互交流,提供帮助.4.强化:(1)数据处理的一般过程.(2)收集数据的方法.(3)整理数据的方法.(4)描述数据的方法.1.自学指导:(1)自学内容:典例剖析.(2)自学时间:6分钟.(3)自学要求:在自学提纲的分析引领下,积极思考,逐个解答.(4)自学提纲:【例1】为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是( B )A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.500【例2】某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开展A.乒乓球,B.篮球,C.跑步,D.跳绳四种运动项目,随机抽取了100名学生进行调查,并将调查结果(每名学生统计一个最喜欢的项目)绘制成如下统计图,请你结合图中信息解答下列问题:①本中最喜欢B项目的人数占所调查人数的百分比是 20% ,其所在扇形图中的圆心角的度数是 72° .②请把统计图补充完整.③已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少.1200×44100=528(人)提示:理解不同的统计图描述数据的侧重点及特征,用样本估计总体的统计思想.【例3】李老师为了了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值,不含最大值),请根据该频数分布直方图,回答下列问题:①此项调查的总体是什么?(50名学生上学路上花费的时间)②补全频数分布直方图;③该班学生上学路上花费时间在30分钟及以上的人数占全班人数的百分比是多少?解:(4+1)÷50×100%=10%提示:利用数形结合,根据图形提供的信息,联系题意可解决问题.2.自学:同学们结合自学指导进行学习,尽量自己独立完成,若有困难可相互协作研讨解决.3.助学:(1)师助生①明了学情:教师深入课堂了解自学进度、遇到的困难和存在的问题等.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、研讨、纠错,互帮互学.4.强化:各小组展示学习成果,准确解释相关概念的含义,如何从图形中获取相关信息,进一步强化用样本估计总体的统计思想.三、评价1.学生的自我评价:各小组长汇报本组的学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、学法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课的内容主要是让学生学会收集数据,感受生活中处处有数学,会把数据分类、收集,掌握整理数据的方法.在教学中,注重让学生全程参与学习活动——课前参与、课中体会、课后反思,激发学生的学习积极性、主动性,使学生体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时,让学生掌握必要的基础知识与基本技能.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)下列调查中,调查方式选择正确的是( C )A.了解1000只灯泡的使用寿命,选择全面调查B.了解某路段的日车流量,选择全面调查C.了解月球车仪表的性能状况,选择全面调查D.了解某水库中鱼的种类,选择全面调查2.(10分)某水果公司对1000箱苹果进行质量检验,从中抽取100箱检查,在这个问题中,总体是 1000箱苹果的质量,样本是 100箱苹果的质量,样本容量是100 .3.(20分)如图,是某班一次数学测验成绩的频数分布直方图,则数学成绩在69.5~89.5分范围内的学生占全班学生人数的百分比为 60% .(每组中数据含最小值,不含最大值)第3题图第4题图4.(10分)如图,用整圆表示一个普通家庭月收入为4500元,扇形D表示房屋租赁收入,则D表示的数据是(B)A.680元B.900元C.750元D.850元5.(10分)某校学生来自甲、乙、丙三个村,其人数比为4∶3∶5,如图所示的扇形表示三个村学生占全校学生人数情况的统计图,已知甲村有180人.(1)该校有学生 540 人;(2)丙村人数所在的扇形圆心角为 150 度.二、综合运用(20分)6.如图是某医院对3000名慢性支气管炎患者使用中草药治疗的效果统计图,观察统计图,并回答下列问题.(1)使用中草药治疗显著的有多少人?(2)你对这种中草药的疗效有何评价?(3)试将上图反映的信息用条形统计图来描述.解:(1)3000×(1-8%-20%-35%)=1110(人)答:使用中草药治疗显著的有1110人.(2)疗效显著的患者占总数的37%,属于人数最大人群,无效的患者所占比例最小,所以,总体而言,这种中草药的疗效还是很不错的.(3)条形统计图如图.三、拓展延伸(20分)7.某校九年级(1)班50名学生参加1分钟跳绳比赛,1分钟跳绳次数统计情况如下图表(表中60~70表示大于或等于60,并且小于70,其余同理).(1)求m,n的值.(2)求该班1分钟跳绳成绩在80分及以上的人数占全班人数的百分比.解:(1)由题意得,950m+×100%=54%,得m=18.12 50n+×100%=30%,得n=3.(2)12189350+++×100%=84%答:该班1分钟跳绳成绩在80分及以上的人数占全班人数的84%.章末复习一、复习导入1.导入课题:同学们,我们学完有理数这一章后,你对本章的知识结构、知识要点和知识的运用等有没有深刻、清晰的总体认知,还有哪些不够熟悉的知识点和它们之间内在联系不够清楚的地方,下面我们一起走进本章的知识圈再去仔细审视一遍!2.三维目标:(1)知识与技能①会记录统计相关数据.②会计算相关的数量.③会建立收支账目,并作为家庭理财的参考资料.(2)过程与方法通过建立家庭生活收支帐目,体会数学在生活中的应用价值.(3)情感态度感受数学和生活的紧密联系,激发学习数学的兴趣.3.学习重、难点:重点:有理数的有关概念、运算法则和运算顺序.难点:有理数的运算技巧和数学思想方法.二、分层复习1.复习指导:(1)复习内容:教材第50页到第51页的内容.(2)复习时间:5~8分钟.(3)复习要求:对照小结归纳的内容,运用边看书、边回忆、边交流总结的方式回顾和梳理本章的学习内容、知识要点.(4)复习参考提纲:为了运算简便灵活运用(交换)律、(结合)律和(分配)律进行有理数运算.②什么叫做数轴?它有什么用途?什么叫做绝对值?怎样化简绝对值?什么是相反数和倒数?≥③为了表示具有相反意义的量,引入了相反数.它在现实生产、生活中有什么用途?⑤有理数的减法法则:减去一个数,等于加这个数的相反数.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.有理数的除法法则:除以一个不为0的数,等于乘这个数的倒数.⑥有理数的乘方意义是n个相同的因数相乘.一个数的乘方符号怎样确定?⑦有理数的混合运算顺序是先乘方,再乘除,后加减.⑧什么叫做科学记数法,它的表达形式是怎样的?如何按要求求一个数的近似数?以及由近似数怎么确定其精确度?将一个数表示成a×10n的形式(其中1≤a<10,n为正整数),这种记数方法叫做科学记数法.求一个数的近似数时,先明了要求的精确度,再根据精确度四舍五入.由近似数确定其精确度,则要看近似数的最末位数字在哪个数位上即为其精确度.2.自主复习:学生依据复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师巡视课堂了解学生对本章知识的熟知情况,发现学生的薄弱之处.②差异指导:通过深入了解学情后,适时让不同层次的学生展示复习成果,找准问题并强化本章知识学习中的易错点、易混点、易忘点.(2)生助生:学生相互交流,相互帮助解决疑难问题,相互补充完善知识结构.4.强化复习:(1)本章知识结构.(2)运算法则及运算的顺序.(3)相互交流并板演展示复习成果.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按复习提纲的指引、提示,积极动脑,寻求解决问题中的所用知识和办法.(4)复习提纲:【例1】某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元).①星期三收盘时,每股是多少元?②已知买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?分析:①实际上是求买股票时每股的价格与星期一、二、三几天的每股涨跌值的代数和,故列出算式:60+4+4.5-1=67.5.②收益=总收入-总支出总收入=卖出时每股价格×股数,所以总收入=59×500=29500总支出由购买成本、手续费,卖出时手续费、交易费四部分组成.其中购买成本=60×500=30000购买时手续费=30000×1.5‰=45卖出时手续费=29500×1.5‰=44.25卖出时交易费=29500×1‰=29.5按上面结果求得它的最终收益为:29500-30000-45-44.25-29.5=-618.75元【例2】计算:①-22×-12+8÷(-2)2=4②(-3)2÷214×(-23)2+4-22×(-13)=649③{1+[116-(-34)3]×(-2)4}÷(-116-34-12)=-203分析:在有理数的加、减、乘、除、乘方几种运算的运算法则及运算顺序烂熟于胸的情况下,仔细审题,细心求解,能适当使用运算律进行简便运算.2.自主复习:同学们结合“复习指导”进行学习,能自己单独解决的尽量独立完成,有困难的可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的自学进度,遇到的疑难和出现的问题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互纠错、改正答案.4.强化复习:(1)展示各小组的学习成果.(2)根据典型(代表性的错误或独到的解法)情况予以评讲.三、评价1.学生的自我评价:通过本节课的学习,让学生代表谈谈自己的收获或困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和收获进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时教学时应抓住以下重点:(1)分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.(2)教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.(3)强调思路分析和书写规范.一、基础巩固。
数据的收集整理及描述复习教案
数据的收集整理及描述复习教案一、教学目标:1.了解数据的收集方法;2.掌握数据的整理和描述方法;3.能够运用所学知识进行实际问题的解决。
二、教学重难点:1.数据的整理方法;2.数据的描述方法。
三、教学内容:1.数据的收集方法;2.数据的整理方法;3.数据的描述方法。
四、教学过程:1.导入:引入教材内容,告诉学生本节课将学习数据的收集、整理及描述方法,提出问题:“什么是数据?为什么需要对数据进行收集、整理和描述?”让学生思考并回答。
2.讲解:1)数据的收集方法:-个别观察法:通过观察个别现象得到数据,适用于小样本的情况;-抽样观察法:通过观察部分现象推断整体情况,适用于大样本的情况;-实验法:通过特定条件的实验得到数据,适用于实验研究的情况;-文献调查法:通过查阅文献资料得到数据,适用于需要详细资料的情况。
2)数据的整理方法:-分类整理法:将数据按照一定规则进行分类整理,便于统计和分析;-图表整理法:使用图表形式展示数据,如表格、条形图、折线图等;-统计指标法:使用统计指标描述数据,如均值、中位数、众数等。
3)数据的描述方法:-数值描述:使用数字进行描述,如平均数为5、最大值为10等;-可视化描述:使用可视化方式展示数据,如图表、图像等;- 文字描述:使用文字进行描述,如“大部分学生的体重在50-70kg之间”等。
3.练习:请学生根据以下情景进行数据的收集、整理和描述:情景一:班所有学生的身高数据情景二:地区每个月的降雨量数据情景三:电商平台每天的订单量数据学生需要运用所学的知识,选择合适的数据收集方法,并进行数据整理和描述。
4.讲解和总结:教师对练习结果进行点评,并解释正确答案。
总结本节课的内容,强调数据的收集、整理和描述在统计学中的重要性,及应用范围等。
五、实践应用:让学生以小组形式,选择一个实际问题,进行数据收集、整理和描述。
鼓励学生自主思考和合作解决问题,并对解决结果进行展示和交流。
六、课堂作业:要求学生选择一个自己感兴趣的话题,进行数据的收集、整理和描述,并写一篇小结,归纳所学知识和体会。
人教版七年级数学下册全册教案 第十章数据的收集、整理与描述
10.1.1统计调查【课时分配】3课时统计调查 (第一课时)【教学目标】1.了解通过全面调查收集数据的方法,并能够独立设计调查表.2.了解全面调查的一般步骤和适用范围.3.会画条形图和扇形图.【教学重点与难点】教学重点:了解全面调查的一般方法.教学难点:了解运用全面调查的应用范围,并能根据已有数据画出条形图和扇形图.【教学方法】通过创设情境引发学生思考,引导学生积极动手动脑进行探索.教学环节的设计与展开都以生活中的常见问题为出发点,让学生在自主探索的过程中,形成自己的观点。
【教学过程】一、创设情境提出问题(设计说明:以生活中常见问题创设情境,引起学生的探究兴趣,从而发现问题.)问题:2001年7月13日,国际奥委会根据什么决定由中国承办2008年奥运会?在2008年北京奥运会上,人们又是根据什么知道中国队位列金牌榜第一位呢?学生回答:国际奥委会根据投票的多少决定由哪个国家承办2008年奥运会,在这次投票中,第二轮北京得56票,多伦多得22票,巴黎得18票,伊斯坦布尔得9票(获得主办权需要52票),中国得标最多,所以由中国承办2008年奥运会.在2008年奥运会上,中国得到51枚金牌,是得到金牌数最多的国家,所以中国列于金牌榜第一位.(教学说明:这两个问题只要学生能够说明中国得票最多,中国得到的金牌数最多即可,教师可以将问题的答案说明得更为详细,不仅激发学生的学习兴趣,也培养了学生的民族自豪感.)二、探索新知解决问题1.自主探索,讨论收集数据的方法(设计说明:从生活中常见的问题出发,合作探索收集数据的方法.)问题1:如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?学生回答:要进行统计调查,可以举手,也可以调查问卷.问题2:你能设计一份调查问卷来收集我们需要的数据吗?学生探索交流,并进行设计.教师进行点拨,并说明设计应注意的问题.问题3:如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?学生回答:还应该增加性别.(教学说明:本环节所提出的问题较少,但整个活动过程需要教师注意引导.特别是问题2,这是本环节的一个重点,教师要先让学生自己尝试进行设计,不能由教师一手代劳,并且好的设计教师要给予肯定.最后,教师可以通过提出“调查的目的是什么”“调查的对象是什么”“调查问卷应该包括哪些内容”“应该从哪些方面提出问题”“如何提问”“怎样设计选择答案”等问题,让学生体会设计一份调查问卷需要注意哪些问题.所以,一般说来,调查问卷应简明易答,内容一般包括调查中所提问题的设计、问题答案的设计、提问顺序的设计等.最后,教师要说明,这就是统计的第一个步骤“收集数据”.)2. 集体合作,探究整理数据的方法(设计说明:在已有数据的基础上,集体合作进行整理数据.)问题1:利用调查问卷,我们现在收集到全班每一位同学喜爱的节目的编号,这些编号我们称为数据.观察下现的数据,你能看出全班同学喜爱各类节目的情况吗?C C AD B C A D C DC E A BD D B C C CD B D C D D D C D CE B B D D C C E B DA B D D C B C B D D学生回答:不能.问题2:我们运用什么方法能够更为清晰地发现这些数据中的规律呢?学生回答:数一数每个编号的个数;画“正”字;列表等.问题3:我们一般都是列出一个表格,通过画“正”字进行记数,“正”字的每一划代表一个数据,这种方法被称为划记法.请同学们设计一个表格整理一下这些数据.学生小组合作设计并完成下表.全班同学最喜爱的节目统计表3.运用条形图和扇形图描述和分析数据(设计说明:画出条形图和扇形图,通过两种统计图的对比,感受条形图与扇形图的特点和作用.)教师操作:为了更直观地看出表中的信息,我们可以将数据用条形图和扇形图表示出来.教师操作:为了更直观地看出表中的信息,我们可以将数据用条形图和扇形图表示出来.问题1:从这两个统计图中,你可以得到哪些信息?学生回答:从条形图中可以知道,喜欢娱乐节目的同学最多,其次是喜欢动画的同学,喜欢戏曲节目的同学最少等;从扇形图中可以知道,喜欢新闻节目的人占总人数的8%,喜欢体育节目的人数占总人数的20%等.问题2:这两个统计图有什么区别?学生回答:条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图用扇形的大小表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小,而不能判断出每组数据的绝对大小.问题3:如图,我们称∠AOB为圆心角.那么圆心角的度数与这个扇形所表示的百分比有什么关系?学生回答:圆心角度数=360°×扇形所表示的百分比.问题4:思考,画扇形图的一般步骤是什么?学生讨论回答:①收集数据;②整理数据,算出每组数据所代表的圆心角度数;③画扇形图.(教学说明:通过演示统计图的完成过程,让学生感受利用统计图描述数据的好处,同时让学生通过条形图和扇形图对数据进行分析.分析数据时最好从三方面进行分析:①表面情况;②可以计算出的结果;③数据所反映的现实情况.对于条形图和扇形图,学生在小学都接触过,学生已经学过用条形图来描述数据,但对于扇形图学生只会从扇形图中读出信息,并没有学习如何画扇形图,所以些环节只讲解了扇形图的画法,这是本节课的一个重点.最后教师要说明,画出统计图,是描述数据的过程,而从统计图中得到一定的信息,则是分析数据的过程.至此统计调查的步骤结束.)4.通过所学知识,总结本节内容(设计说明:通过回顾所学知识的过程,独立总结统计调查的基本步骤.)问题1:回顾本节课的学习过程,思考统计调查的基本步骤.学生回答:统计调查的基本步骤是:①收集数据;②整理数据;③描述数据;④分析数据.教师讲解:本节课我们对全班的每一位同学进行了喜爱哪种电视台节目的调查.这里,调查的对象是全班的每一位同学,所以我们对全班每一位同学都进行了调查.像这样的调查方式就被称为全面调查.问题2:在生产生活中,你还知道哪些统计调查属于全面调查?学生回答:人口普查等.(教学说明:本环节教师要注意引导学生回顾探索知识的过程,而在问题2中,只要学生所举的调查方式适合于全面调查,教师就要给予肯定.)三、巩固训练熟练技能(设计说明:通过基础的练习,使学生感受统计调查在生活中的广泛应用,培养学生的应用意识.)练习1.下图是从1988年汉城奥运会到2008年北京奥运会中国队所获得的金牌数目的统计图,从这个统计图中你能得到哪些信息?学生:1998年获得的金牌最少,只有5块;2008年获得的最多,有51块,大约20年前的10倍;中国获得的金牌数逐年增加,呈上升趋势;可以看出我国的体育发展水平越来越高等.练习2.经调查,某班同学上学所用的交通工具中,自行车60%,公交车30%,其他10%,请画出扇形统计图以描述以上数据.学生:自行车占圆心角度数=360°× 60% =216°;公交车占圆心角度数=360°× 30% =108°;其他占圆心角度数=360°× 10% =36°.扇形图如右图所示.(教学说明:从不同角度设计练习,巩固学生所学)四、反思总结情意发展(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。
人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课
第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
3.教师可以引导学生回顾之前学过的数据处理方法,如用表格整理数据,用图表展示数据等,激发学生的学习兴趣和回忆。
4.教师可以总结之前的知识,并提出本节课的学习目标,引导学生明确本节课的学习内容和要求。
3.游戏情境:设计有趣的数学游戏,如数据接龙、图表猜猜看等,让学生在游戏中体验数据的收集、整理与描述的过程,提高学生的实践能力。
4.媒体情境:利用多媒体课件、视频等资源,为学生提供丰富的数据资源,丰富学生的数据感知,帮助学生更好地理解和掌握数据处理的方法。
(二)问题导向
1.教师可以通过设计具有挑战性和启发性的问题,引导学生主动思考,激发学生的求知欲,激发学生解决问题的动力。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第十章“数据的收集、整理与描述”为主题,旨在通过实际教学案例,探讨如何在数学教学中有效地引导学生掌握数据的收集、整理与描述的方法,提高学生的数据处理能力,培养学生的逻辑思维和分析问题的能力。
在实际教学中,教师可以通过设计丰富多样的教学活动,如小组合作、动手操作、问题探究等,激发学生的学习兴趣,引导学生主动参与,从而更好地理解和掌握数据收集、整理与描述的方法。同时,教师还需关注学生的个体差异,给予不同程度的学生个性化的指导,确保每个学生都能在课堂上得到有效的锻炼和提升。
(二)讲授新知
1.教师可以通过讲解和示例,向学生介绍数据的收集方法,如调查、实验等,并解释每种方法的优缺点。
2.教师可以通过讲解和示例,向学生介绍图表的制作方法,如条形图、折线图、饼图等,并解释每种图表的特点和适用场景。
七年级下册数学_第十章_数据的收集、整理与描述全章导学案[1]
第十章数据的收集、整理与描述10.1.1 统计调查(1)一、学习目标:1、了解通过全面调查收集数据的方法。
2、会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据,并体会表格在整理数据中的重要作用;会画扇形图,并会用扇形图描述数据。
(重点、难点)3、体验统计图与生活的联系,感受统计图在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
二、自主学习:请认真阅读课本第150页的内容,独立思考并回答以下问题:1.在实际生活中,你了解过统计数据、统计图表吗?2.你知道统计数据是怎么得到的吗?它们表示什么呢?三、合作学习:1、阅读课本第151页问题1,分组讨论,合作交流,并回答以下问题:(1)我们都可以通过怎么样的方法收集数据?该怎样设计调查问卷呢?(2)如果我们得到数据之后,该怎么来整理这些数据呢?说一说你的方法,它们各有什么好处呢?(3)为了更直观地看出划记法表中的信息,可以用哪些方法来描述数据?2、分组合作――探究扇形统计图的画法:阅读课本第152页图10.1-1.(1)扇形统计图中的整个圆代表什么?(2)你认为图中的各个百分比是如何得到的?所有的百分比的和是多少?(3)图中各个扇形分别代表了什么?它的圆心角是怎样确定的?(4)你认为扇形统计图有什么特点?3、分组讨论,并归纳统计调查的一般过程.四、巩固提高:1、王聪一家三口随旅游团去九寨沟旅游,王聪把这次旅游的费用支出情况制成了如下的统计图:①你能说出王聪一家这次旅游的费用支出情况吗?哪方面的费用支出最高?②若他们共花费人民币8 600元,则在食宿上用去多少元?往返的路费又是多少元?2、如图是某报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,有105个,请回答下列问题:(1)这一周“百姓热线”共接到多少个电话?(2)有关道路交通问题的电话有多少个?(32、就“父母回家后,你会主动为他们倒一杯水吗?”调查你们班的同学,并用统计图表表示你们的调查结果,4人一组完成。
人教版七年级数学下册第十章《数据的收集、整理与描述》同步教学设计
(四)课堂练习
1.教学内容:设计具有针对性和实用性的练习题,巩固学生对数据收集、整理和描述方法的掌握。
2.教学活动设计:教师根据教学内容,设计不同难度的练习题,让学生在课堂上完成。
3.教学实施:学生独立完成练习题,教师对答案进行讲解,针对学生的错误进行纠正和指导。
5. **反思与总结**:
-学生需要在本章节学习结束后,写一份学习反思,内容包括自己在数据收集、整理与描述方面的收获、遇到的困难以及解决问题的策略。
作业布置的目的是让学生在实践中加深对统计学知识的理解,培养数据分析能力,并鼓励学生将所学知识应用到生活中。教师在批改作业时,应关注学生的思考过程和方法运用,及时给予反馈,帮助学生不断提高。
-教学活动:课堂讲解,互动问答,课后练习。
4.培养学生的数据分析能力,通过实际问题引导学生运用所学知识进行数据分析,解决实际问题。
-教学活动:小组合作,项目研究,成果展示。
5.注重学生个体差异,实施分层教学。针对不同学生的需求,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
-教学策略:个性化指导,课后辅导,小组互助。
-教学活动:小组讨论,分享数据收集的方法和经验。
2.结合课本内容,系统地讲解数据整理与描述的方法。以图表、统计图为载体,引导学生掌握各类整理方式的优缺点,并能根据数据特点选择合适的方式。
-教学活动:课堂讲解,案例分析,小组合作完成数据整理任务。
3.强化统计学基本概念的学习,通过实例解析,帮助学生理解并掌握频数、频率、众数、中位数、平均数等概念。
人教版七年级数学下册第十章《数据的收集、整理与描述》同步教学设计
人教七下数学第十章-数据的收集-整理与描述教案
4.为了了解某校学生每日运动量,收集数据正确的是()
A.调查该校七年级学生每日运动量B.调查该校女生每日的运动量
C.调查该校男生每日的运动量D.从七、八,九年级各抽调100人调查他们每日的运动量
5.如图是某公司四个部门的营业情况,则销售情况最好的是()
A.甲B.乙C.丙D.丁
公式: .
由以上公式还可得出两个变形公式:
(1)频数=频率×数据总数.
(2) .
注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.
2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.
知识点二:全面调查与抽样调查
调查的方式有两种:全面调查和抽样调查:
1.全面调查:考察全面对象的调查叫全面调查.全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.
全面调查的步骤:
(1)收集数据;
(2)整理数据(划记法);
(3)描述数据(条形图或扇形图等).
2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查.抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.
16.某校七年级(1)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是度;表示良好的扇形圆心角是120°,则良好的学生有.
17.某校九年级部分学生做引体向上的成绩进行整理,分成四组,
其中15次以下占比例为5%,16~19次占15%,20~27次占30%,28次以上有25人,若20次以上为及格(包括20次),如果该校有600名学生,你估计能通过引体向上检测的约有人.
人教版数学七年级下册:(数据的收集、整理与描述)统计调查(教案)
第十章数据的收集、整理与描述10.1统计调查第1课时统计调查(1)【知识与技能】1.了解统计调查、收集数据、整理数据的意义.2.掌握用统计表整理数据的方法.3.掌握用条形图和扇形图来描述数据的方法.4.理解全面调查的概念.5.能用全面调查的方法做一次简单的统计调查.【过程与方法】由问题引入统计调查,在此基础上学习有关概念和方法,然后布置学生用全面调查的方法做一次简单的统计调查.【情感态度】培养学生合作交流的意识和探究精神,体会数学在实际生活中的作用,激发学生爱数学的热情.【教学重点】用统计表整理数据,用条形图和扇形图描述数据.【教学难点】设计调查问卷,收集数据,扇形统计图的画法.一、情景导入,初步认识问题如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?为了解决这个问题,需要做________.首先设计问卷,用问卷调查法_____数据.为了使被调查的人易于答卷,也为了收集数据便于操作,所以最好将问卷的题目设计成______题,请设计问卷.二、思考探究,获取新知提前提出问题,出示设计、制出的调查问卷,然后下发调查问卷,3分钟后收集数据.用表格统计数据.用条形图和扇形图来描述数据.思考:1.条形图和扇形图各自的特点是怎样的?2.怎样画扇形统计图?【归纳结论】1.条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图用扇形的大小表示部分在总体中所占百分比,易于显示每组数据相对于总数的大小,但不能直接判断出每组数的绝对大小.2.扇形图通过扇形的大小来反映各个部分占总体的百分比.画扇形图时,用圆代表总体,每一个扇形代表总体的一部分,画扇形时,先确定扇形圆心角的度数,如果某部分占20%,则它所在扇形的圆心角为360°×20%=72°.扇形图画好后,要标明各部分的名称及相应的百分比.3.全面调查:考察全体对象的调查叫做全面调查.三、运用新知,深化理解.1.对“天宫一号”空间站的零部件合格性的调查应采用的调查方式是_____.2.在暑假社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____,每人每小时组装C型玩具____套.3.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最喜爱的“阳光体育”运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如下的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.120°B.144°C.180°D.72°4.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下如图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图①中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【教学说明】题1可采用抢答方式练习,题2、3让学生分组讨论,然后给出正确答案,并说明理由,题4先让学生思考,然后教师给予提示,最后指派学生上台写出解题过程.【答案】1.全面调查2.(1)132 60 48 (2)4 6解析:(1)A型玩具有240×55%=132(套),C型玩具有240×25%=60(套),B型玩具有240-132-60=48(套);(2)由题意得:,解得a=4.故2a-2=6,即每人每小时组装C型玩具6套.3.B解析:喜爱打篮球的人数占总人数的百分比为20/50×100%=40%,因此所求的圆心角度数为360°×40%=144°.4.解:(1)60÷30%=200(名),即本次一共调查了200名学生;(2)选项B的学生有200-60-30-10=100(名),补图略;(3)3000×5%=150(名)四、师生互动,课堂小结统计调查,全面调查,条形图,扇形图1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.统计与现实生活的联系是非常紧密的,通过选择学生感兴趣的典型例题对教学课堂概念进行拓展.在教学过程中,充分体现学生是学习的主体,通过让学生亲自动手收集和整理数据,让学生体会到数学活动充满了乐趣,使学生更好地体会统计思想,建立统计概念,培养学生的创新精神与实践能力.第十章数据的收集、整理与描述10.1统计调查第2课时统计调查(2)【知识与技能】1.理解为什么要进行抽样调查.2.掌握总体、个体、样本、样本容量等概念.3.理解简单随机抽样、分层抽样的概念及它们在抽样调查中的合理性,并能设计出简单随机抽样或分层抽样的方法进行抽样调查.4.掌握折线的画法,并能从折线图中获取信息.【过程与方法】由问题入手,理解抽样调查的合理性与必要性.从而理解总体、个体、样本、样本容量等概念.为了使抽样调查能较好地反映总体,我们必须使抽取的样本具有代表性,这样就顺理成章地引出了简单随机抽样和分层抽样两种简单的抽样方法.最后学习折线图,知道折线图也是描述数据的一种方法.【情感态度】在了解统计思想方法的基础上,锻炼用样本估计总体的本领,提高数学兴趣.【教学重点】抽样调查,简单随机抽样,分层抽样,折线统计图.【教学难点】抽样方案的制订,折线图.一、情境导入,初步认识问题1 某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?分析:如果采用全面调查,那么花费时间长,消耗人力、物力大.因此,需要寻找一种只要调查部分学生就能了解全体学生喜爱各类电视节目的情况的方法.达到省时省力又能解决问题的目的.这种调查方法就是________.这样,就必须引入总体、个体、样本及样本容量的概念.“总体”的定义:________.“个体”的定义:________.“样本”的定义:________.“样本容量”的定义:________.为了使样本能较好地反映总体的情况,除了有合适的________外,抽取时还要尽量使每一个个体都有________被抽到,这种抽样方法叫________.问题2 某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,应怎样调查?分析:由于这500万人个体差异大(如年龄段),所以不适合________抽样,而应当分成青少年、成年人、老年人三个层次,在每个层次进行________抽样,然后汇总调查结果,这种抽样方法叫________________.【教学说明】全班同学先阅读教材,再完成以上自学提纲.二、思考探究,获取新知思考 1.为什么要进行抽样调查?2.什么叫总体、个体、样本、样本容量?3.什么叫简单随机抽样?什么叫分层抽样?4.什么情况下适宜简单随机抽样?什么情况下适宜分层抽样?5.折线图的特点是什么?【归纳结论】抽样调查:从全体对象中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫抽样调查.总体:要考察的全体对象称为总体.个体:组成总体的每一个考察对象称为个体.样本:从总体抽取的一部分个体组成一个样本.样本容量:样本中个体的数目叫样本容量.(注意:样本容量是一个数目,不能带单位,样本容量一定要适当,太少,则不能较好地反映总体的情况,太多,达不到省时省力的目的.)适合抽样调查的情况:(1)总体数目巨大;(2)调查具有破坏性.简单随机抽样:总体中的每一个个体都有相等的机会被抽到,这样的抽样方法叫简单随机抽样.分层抽样:先将总体按一定的要求分成若干层次,在每个层次都进行简单的随机抽样.然后汇总调查结果,这种抽样方法叫分层抽样.简单随机抽样适合的情况:个体的差异不大.分层抽样适合的情况:个体的差异大.折线图的特点:能较好反映数据的变化趋势.三、运用新知,深化理解1.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中生视力情况D.为保证“神舟8号”成功发射,对其零部件进行检查2.要了解我国八年级学生的视力情况,你认为合适的调查方式是.3.如图是我市城乡居民储蓄存款余额的统计图,请你根据图写出两条正确的信息:(1)________________________;(2)________________________.城乡居民储蓄存款余额(亿元)4.如图是根据我市2007年至2011年财政收入绘制的折线统计图,观察统计图可得:同上年相比,我市财政收入增长速度最快的年份是_______年,比它的前一年增加_______亿元.5.某专业户要出售100只羊,现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业户从中随机抽取5只羊,每只羊的重量如下(单位:千克):26 31 32 36 37(1)在这个问题中,样本是指什么?总体是指什么?(2)估计这100只羊能卖多少钱?6.某种电脑在七个月之内销售量增长变化情况如图所示,下列结论中不正确的是()A.2~6月销售量逐月减少B.7月份的销售量开始回升C.这7个月中,每月的销售量不断上涨D.这7个月中销售量有涨有跌【教学说明】题1、2、5考查的是全面调查、抽样调查、样本、总体、个体等概念;题3、4、6考查的是从折线统计图中获取信息.【答案】1.D2.抽样调查3.(1)2011年我市城乡居民储蓄存款余额达到239.6亿元(2)我市城乡居民储蓄存款余额逐年增长(答案不唯一,合理即可)4. 2011 505.解:(1)样本是5只羊的重量;总体是100只羊的重量.(2)5只羊的平均重量是:(26+31+32+36+37)÷5=32.4(千克),故100只羊的重量约为100×32.4=3240(千克),可卖3240×11=35640(元)6.C四、师生互动,课堂小结点学生口答,老师将小结内容放映在屏幕上.1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.本课时主要讲解抽样调查问题,抽样调查要注意选取的样本应具有广泛性和代表性,由样本估计总体时,要搞清总体和样本的比例及样本容量的大小.通过这些问题,让学生学会用数据和事实说话,培养学生实事求是的科学态度,促进学生学习方式的转变,积极主动地参与活动.。
2024年人教版七年数学下册教案(全册)第10章 数据的收集、整理与描述直方图
课时目标1.通过经历数据整理的过程,能了解频数分布表的相关概念,会利用频数分布表整理数据,感受数据的整理过程,树立学生数据分析的观念.2.通过分组合作,动手绘图,尝试画出频数分布直方图,从频数分布直方图了解数据的分布情况,感受统计在生产生活中的应用,了解统计的作用,培养学生思考、操作、整理数据的能力以及增强学生的合作意识,进一步发展数据观念的核心素养.3.通过分析、解决问题,能利用直方图解释数据中蕴含的信息.通过频数分布直方图在数据中所起的作用,反映数据中蕴含的规律,感受和体会统计结果对决策的意义和作用,培养数学的模型意识.学习重点频数分布表和频数分布直方图的制作.学习难点如何确定组数和组距.课时活动设计知识回顾问题1:在前面我们学习了哪几种表示数据的方法?它们各自的优缺点是什么?预设1:用统计表整理数据,准确但不形象直观.预设2:条形图可以直观地表示各类数据的多少.预设3:我们还可以用扇形图表示出各类数据的百分比.预设4:我们还学习过折线图.折线统计图主要表示数据的变化趋势或数据的波动情况.用统计图表示数据资料,形象直观,各有特点.问题2:在统计中,我们关心总体中所有个体某个数量指标的分布情况.当这个数量指标取连续变化的值时,应如何整理和表示数据呢?设计意图:复习旧知,引出新知.以问题形式引入新课,引导学生积极思考,激发学生的学习兴趣.创设情境,导入新课为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑选身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:cm)如下:158158160168159159151158159168158154158154169158158158159167170153160160159159160149163163162172161153156162162163157162162161157157164155156165166156154166164165156157153165159157155164156选择身高在哪个范围的同学参加呢?请学生自由讨论,寻求可行的方法.设计意图:以学生身边的实例提出问题,引发学生的思考与讨论,激发学生的探究欲望.实践探究,交流新知为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即身高在哪个范围内的同学多,哪个范围内的同学少,因此需要对这些数据进行适当地分组整理.1.计算最大值与最小值的差最大值-最小值=172-149=23.这说明身高的变化范围是23.2.决定组距和组数把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.=组数,令各组的组距相同,那么将所有数据分为多少组可以用公式最大值-最小值组距=172-1493=233=723,例如:最大值-最小值组距所以可将这组数据分为8组:149≤x<152,152≤x<155,…,170≤x<173.这里组数和组距分别为8和3.注意:组距和组数没有固定的标准,要凭借经验和所研究的具体问题来决定将一批数据分组,一般数据越多分组的组数也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.3.列频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数).整理可以得到频数分布表:身高分组划记频数149≤x<1522152≤x<155正6155≤x<158正正12158≤x<161正正正19161≤x<164正正10164≤x<167正8167≤x<1704170≤x<1732从表中可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41(人),因此可以从身高在155cm至164cm(不含164cm)的同学中挑选参加比赛的同学.4.画频数分布直方图为了更直观形象地看出频数分布的情况,可以根据表中的数据画出频数分布直方图.在图中,横轴表示身高,纵轴表示频数与组距的比值.容易看出,=频数.小长方形的面积=组距×频数组距可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的大小.小长方形的高是频数与组距的比值.等距分组时,各小长方形的面积(频数)与高的比值是常数(组距),因此画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数.例如,上图表示的等距分组问题通常用下图的形式表示.设计意图:通过对实际问题的研讨,了解用频数分布直方图描述数据的意义和作用.在用统计方法解决问题的过程中学习用频数分布描述数据的方法,掌握列频数分布表和画频数分布直方图的一般步骤.典例训练,实例应用例为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100根麦穗,量得它们的长度如下表(单位:cm):6.56.46.75.85.95.95.24.05.44.65.85.56.06.55.16.55.35.95.55.86.25.45.05.06.86.05.05.76.05.56.86.06.35.55.06.35.26.07.06.46.45.85.95.76.86.66.06.45.77.46.05.46.56.06.85.86.36.06.35.65.36.45.76.76.25.66.06.76.76.05.56.26.15.36.26.86.64.75.75.75.85.37.06.06.05.95.46.05.26.06.35.76.86.14.55.66.36.05.86.3列出样本的频数分布表,画出频数分布直方图,从图表中可以得到什么信息?学生分组合作,按步进行.解:(1)计算最大值与最小值的差.在样本数据中,最大值是7.4,最小值是4.0,它们的差是7.4-4.0=3.4.(2)决定组距和组数.最大值与最小值的差是3.4,如果取组距为0.3,3.40.3=1113,可分成12组,组数适合.于是取组距为0.3,组数为12.(3)列频数分布表.分组划记频数4.0≤x<4.3一14.3≤x<4.6一14.6≤x<4.924.9≤x<5.2正55.2≤x<5.5正正一115.5≤x<5.8正正正155.8≤x<6.1正正正正正286.1≤x<6.4正正136.4≤x<6.7正正一116.7≤x<7.0正正107.0≤x<7.327.3≤x<7.6一1合计100(4)画频数分布直方图.从图表中可以得到以下结论:麦穗长度大部分落在5.2cm至7.0cm之间,其他范围较少.长度在5.8≤x<6.1范围内的麦穗根数最多,有28根,而长度4.0≤x<4.3,4.3≤x<4.6,4.6≤x<4.9,7.0≤x<7.3,7.3≤x<7.6范围内的麦穗根数很少,总共只有7根.变式:为了进一步了解七年级学生的身体素质情况,体育老师对七(1)班50名学生进行了一分钟跳绳次数测试,以测试数据为样本,绘制出了部分频数分布表和部分频数分布直方图如下所示.组别次数x频数第1组80≤x<1006第2组100≤x<1208第3组120≤x<140a第4组140≤x<16018第5组160≤x<1806请结合图表回答下列问题:(1)表中的a=12;(2)请把频数分布直方图补充完整;(3)若七年级学生一分钟跳绳次数x的评分标准是x<120为不合格;120≤x<140为合格;140≤x<160为良好;x≥160为优秀,根据以上信息,请你给学校或七年级学生提一条合理化的建议.解:(2)补充完整的频数分布直方图如下:(3)不合格人数占比为6+850=28%.建议:学校可以在体育课上增加跳绳这一项目.(答案不唯一,合理即可)师生活动:学生独立思考,举手回答,师生交流心得和方法.设计意图:通过典型例题和变式训练进一步巩固频数分布直方图的相关知识,形成学生数据分析观念,感受统计的实际价值,发展学生的应用意识.畅谈收获,分享心得教师引导学生,鼓励学生总结本节课的学习内容,归纳总结出重要知识、思想方法.(1)频数、组距、组数等概念;(2)频数分布表的制作、频数分布直方图的制作方法.谈谈自己的收获与感想,学生独立思考,班内汇报.设计意图:总结归纳出本节课的重难点,注重课堂小结,激发学生参与课堂总结的主动性,培养学生的概括能力,为每一个学生的发展与表现创造机会,发展学生数学核心素养.课堂8分钟.1.教材第150,151页习题10.2第1,2,3,4题.2.七彩作业.10.2直方图画频数分布直方图的步骤:(1)找最值;(2)定组距与组数;(3)列频数分布表;(4)画图:明确横轴和纵轴.例题.教学反思。
新人教版七年级数学下册《十章 数据的收集、整理与描述 数学活动》教案_10
数学活动:简单随机抽样学习目标:1.历经收集数据的过程,从中体会从事实际问题研究的辛苦与不易,增强实践能力.2.增强对简单随机抽样的认识,明了它的合理性.重点:归纳简单随机抽样优点及其合理性.难点:收集数据.教学过程一、创设情境,引入课题我们知道当调查的个体数目较多,或者是调查时具有破坏性时,通常采用抽样调查的方式来收集数据,然后再分析样本数据,用样本的情况去估计总体的情况.我们通常采用的抽样方法是简单随机抽样.这节课我们就用简单随机抽样的方法收集数据,并整理、分析,亲身验证一下这种调查方式的合理性.二、探究新知1、活动1:用简单随机抽样方法估计全班同学的平均身高根据本班人数准备相同数量的小纸片,这些小纸片没有明显差别.步骤一调查并记录全班每个同学的身高,分别写在不同小纸片上,算出全班同学的平均身高,然后把所有的小纸片放在一个纸盒里.步骤二充分搅拌盒中的纸片,随意抽取出15张纸片作为一个样本,计算纸片上数字的平均值,将抽取的纸片放回纸盒步骤三比较样本平均身高和全班平均身高,谈谈你对这个结果的看法.计算纸片上数字的平均值,和全班同学的平均身高作比较,极可能有误差步骤四重复上述步骤二若干次,把每次求得的样本平均身高和全班平均身高作比较,你有什么发现?会发现结果总是在全班同学的平均身高上下波动,且相差不大.如果求出这些样本的平均身高的平均值,则会非常接近(或等于)全班同学的平均身高2、活动2:谁的反应快准备一把带刻度的直尺,和一位同学合作来测量第一步:伸出一只手,拇指和其余四指分开;第二步:让同伴把直尺直立,刻度0在下方,拿到你的拇指和四指之间,使刻度0的位置与拇指在同一高度,然后松手,你要以最快的速度抓住直尺;第三步:记录手抓在直尺上的刻度l(单位:cm);第四步:重复试验10次,记录并整理试验所得数据.思考1. 在10次试验中,所得l的最大值和最小值各是多少?2. l的平均值是多少?l的值与反应速度有什么关系?与你的同伴对调,并重复上面的过程,看谁的反应三、课堂小结通过这节课的学习活动,你有什么收获?四、布置作业:完成练习册本课时的习题五、教学反思本课时主要讲了简单随机抽样,要搞清楚简单随机抽样的随机性,弄清样本的广泛性和代表性,培养学生的实践能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章数据的收集、整理与描述本章教学目标:1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息。
2.通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。
3.了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。
4.学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。
6.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
具体容和课时分配如下:10.1 统计调查约3课时10.2 直方图约2课时10.3课题学习从数据谈节水约2课时数学活动小结约2课时10.1统计调查(1)教学目标:1、了解通过全面调查收集数据的方法.2、会设计简单的调查问卷,收集数据.3、掌握划记法,会用表格整理数据;体会表格在整理数据中的作用.4、体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事的科学态度.教学重点:参与从收集数据到描述数据的全过程,利用统计图合理的描述数据,体会统计对决策的作用。
教学难点:组织有效的统计活动,使学生在活动中学会合作、学业全交流、学会描述。
解决重难点的方法:1、通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)。
2、引导学生感受渗透与体现于统计知识和方法之中的统计思想。
教学过程设计:一.问题引入问题:2008年奥运会即将在召开。
问国际奥委会是如何决定的?例:你最喜欢的季节是哪一个?在学校课程中你最喜欢的科目是什么?二.授新1.集数据,设计调查问卷。
2.整理数据。
三.描述数据为了更直观地看出表中的信息,还可以画出条形图和扇形图来描述数据。
四.小结在上面的活动中,全班同学是我们要考察的全体对象,对全体对象进行了调查。
像这样考察全体对象的调查属于全面调查。
(过程:收集数据、整理数据、描述数据)①全面调查──考查全体对象的调查;②收集数据的方法──问卷调查;③描述数据的方法──表格法、条形图、扇形图。
五.练习:王聪一家三口随旅游团去九寨沟旅游,王聪把这次旅游的费用支出情况制成了如下的统计图:①你能说出王聪一家这次旅游的费用支出情况吗?哪方面的费用支出最高?②若他们共花费人民币8 600元,则在食宿上用去多少元?往返的路费又是多少元?六.作业:教科书142页习题10.1第2、3题10.1统计调查(2)教学目标:1、通过具体的统计活动感受数据收集、整理、描述、分析的过程。
2、通过查阅资料获得数据,并能解决简单的问题。
教学重点:通过实例感受统计的必要性,进一步认识数据收集、整理、描述、分析的具体方法。
教学难点:合理运用全面调查法来解决实阿问题。
解决重难点的方法:1、教学中要注意让所有学生都能参与到统计的活动中去,在活动的过程中建立统计观念。
2、鼓励学生积极合作、充分交流,促进学生学习方式的改变。
教学过程设计:一、创设问题情境,激发学生学习的热情。
二、师生互动1、学生代表收集到的数据向全班同学展示,说明数据的方法。
2、由其他组员补充说明还有没有另外整理数据的方法?哪种方法更好三、描述数据1、各组讨论由数据及统计图表所反馈的信息及获取信息的依据。
2、感受其他小组对数据描述的情况。
3、你对别人的发言有何补充?有何更好的设想或建议?4、教师肯定和选择学生的展示成果,与学生共同分享成功喜悦四、收获感想1、分组讨论,学生畅想本节课的收获、感想。
2、代表发言。
五、布置作业:教科书143页习题10.1第6、7题10.1统计调查(3)教学目标:1、让学生经历数据的收集、整理和分析的模拟历程,从中了解抽样调查、样本与总体等统计概念.2、通过课堂上学生的讨论,初步感受抽样调查的必要性和可行性,初步体会用样本来估计总体的思想.3、鼓励学生自主探索、合作交流,意识到与同伴交流合作的重要性.教学重点:抽样、样本、总体等概念以及用样本反映总体的思想。
教学难点:样本特征的观察与归纳解决重难点的方法:1、注意借助案例让学生感受统计结果对决策的意义和作用,建立统计观2、让学生联亲身经历统计活动的基本过程,在收集、整理、描述和分析数据的统计活动中,逐步学会用数据说话,自觉地想到用统计的方法来解决一些问题。
教学过程:一、引入同学们,“近视”这种现象我们经常看到,也常发生在我们身边,近视会给我们生活、学习带来很多不便,我们能举例说说吗?二、提出问题为了了解情况某地区中小学生的视力情况,提出保护视力的建议,该地区准备对中小学生进行视力调查.那么如何调查呢?1.学生思考、讨论开展调查的方式?2.讨论(一):仅仅是从小学学校抽取部分同学作为调查的对象,妥当吗?初中学段、高中学段呢?3.讨论(二):(1)导致学生们近视的因素有哪些?(2)根据影响近视的因素,在设计调查问卷中应包括哪些问题?(3)请设计出一份调查问卷.三、解决问题1.你能根据所制的统计表与统计图,估计一下该地区中小学的视力情况吗?2.学习样本、总体、抽样、调查等概念.3.小组活动:你能再举出抽样调查的实例吗?四、课堂练习利用调查问卷对本班同学进行调查,集中视力不良同学的问卷,并用表格整理相关数据,针对形成视力不良的原因,请提出一些保护视力的合理性建议。
五、小结1.统计调查的两种常用方法. 2.具体调查的常用方法.3.抽样调查的重要性、必要性. 4.学习中讨论的重要性.5.表格与统计图在数据处理与分析中的作用.六、作业:教科书144页习题10.1第11、12题10.2直方图(1)教学目标:1、了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。
2、鼓励学生自主探索、合作交流,意识到与同伴交流合作的重要性.教学重点:组距和组数、频数及频数分布表教学难点:决定组距和组数解决重难点的方法:1、从解决实际问题的需要出发,根据频数分布直方图的特点和作用,学习制作这种统计图的方法。
2、结合具体问题,使学生在具体情境中感知频数、频数分布等概念。
教学过程:一.问题引入典型案例“选取广播操参赛者”来介绍直方图二.授新1、极差的概念:最大值与最小值的差2.组距和组数。
3、列频数分布表。
4、画频数分布直方图。
三、课堂练习四、小结画频数分布直方图的一般步骤:1、计算极差:最大值与最小值的差。
2.决定组距和组数。
3、列出频数分布表。
4、画频数分布直方图。
五、作业:教科书151页习题10.2第1题10.2直方图(2)教学目标:1、学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。
2、通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念培养重视调查研究的良好习惯和科学态度。
教学重点:频数分布直方图、频数折线图教学难点:频数分布直方图的绘制解决重难点的方法:1、在统计过程中学习统计,改进学生的学习方式。
2、突出数据处理的基本过程,注意统计思想的渗透与体现。
教学过程:一.复习上节课知识画频数分布直方图的一般步骤有哪些?二.授新讲解教材139页例题三、课堂练习四、小结1、频数分布直方图和折线图是描述数据的主要容,一般直方图是用矩形面积表示频数的,而对于等距分组的情形,为看图与画图方便可以改为用矩形的高表示频数。
2、怎样利用直方图来描述数据。
五、作业:教科书151页习题10.2第3、4题数据的收集、整理与描述(小结)一、背景与意义分析统计主要研究现实生活中的数据,它通过收集、整理、描述和分析数据来帮助人们对事物的发展作出合理的判断,能够利用数据信息和对数据进行处理已成为信息时代每一位公民必备的素质。
通过对本章全面调查和抽样调查的学习,学生可基本掌握收集和整理数据的方法。
二、学习与导学目标1 知识积累与疏导:通过复习小结,进一步领悟到现实生活过数据处理,对未知的事情作出合理的推断的事实。
2 技能掌握与指导:通过复习,进一步明确数据处理的一般过程。
3 智能提高与训导:在与他人交流合作的过程中学会设计调查问卷。
4 情感修炼与提高:积极创设情境,参与调查、整理数据,体会社会调查的艰辛与乐趣。
5 观念确认与引导:体会从实践中来到实践中去的辨证思想。
三、障碍与生成关注调查问卷的设计及根据调查总结的报告给出合理的预测。
四、学程与导程活动活动一回顾本章容,绘制知识结构图数据处理的一般过程:活动二例题:调查中学生课外阅读情况(时间)同学小组讨论,设计调查问卷。
(抽样调查)活动三调查我校初一学生最喜爱的球类活动设计问卷 (全面调查) 小组讨论,完善问卷。
六、练习与拓展选题数据的收集、整理与描述小结与复习考点呈现考点1:调查方式的选择例1 (2011年市)下列调查中,适宜采用全面调查方式的是()A.了解市的空气质量情况 B.了解闽江流域的水污染情况C.了解市居民的环保意识 D.了解全班同学每周体育锻炼的时间解析:选项A中,要调查的对象围广,无法全面调查,适合抽样调查;选项B中,要了解闽江流域的水污染情况,适合抽样调查;选项C中,市居民人数多,要了解居民环保意识应选用抽样调查;一个班的学生人数有限,要了解全班同学每周体育锻炼的时间,适合全面调查. 故选D.点评:调查的方式通常有全面调查、抽样调查两种,一般来说,受客观条件的限制,无法对所有的个体进行调查,或对调查对象调查时具有破坏性,不允许进行全面调查,只能用抽样调查.考点2:抽样调查中的概念例2 (2011年江市)为了解某市参加中考32 000名学生的体重情况,抽查了1600名学生的体重进行统计分析,下面叙述正确的是()A.32 000名学生是总体 B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体 D.以上调查是普查解析:选项A、C指明具体的调查对象都是学生,实际上调查对象是学生的体重,选项A、C均不正确;本题调查方式是抽样调查,不是普查,选项D不正确;本题中的一个样本是1600名学生的体重,选项B正确.故选B.点评:本题考查调查的有关概念,最容易错的就是对调查对象的叙述,做题时应注意.考点3:抽样调查的合理性例3 (2011年市)某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是( )A. 从该地区随机选取一所中学里的学生B. 从该地区30所中学生里随机选取800名学生C. 从该地区的一所高中和一所初中各选取一个年级的学生D. 从该地区的22所初中里随机选取400名学生解析:选项A、C、D所抽取的样本都不具有代表性,不能反映总体的一般情况,只有选项B所抽取的样本能反映该地区中学生视力情况.故选B.点评:本题考查了样本的抽样方法问题,调查数据要真实可信,关键是抽取的样本要注意:调查对象不能太少,要有一定的广泛性;调查对象是随机抽取的,具有代表性.考点4:统计图的选用例4 (2011年市)反映市某一周的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图解析:四种统计图的特点:条形统计图能清楚地表示出每个项目的具体数目;扇形统计图能清楚地表示出各部分在总体中所占的百分比;折线统计图能清楚地反映事物的变化情况;频数分布直方图以及频数分布折线图能清晰地表示出收集或调查到的数据分布情况. 根据题意,应选C.点评:只要明确这几种统计图的特点即可解题.考点5:数据的整理例5 (2011年市)以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25 000所,其中小学12 500所,初中2000所,高中450所,其他学校10 050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其他280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其他11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:图1是描述全省各级各类学校所数的扇形统计图,请将它补充完整.图1(3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数:在校学生数)②根据统计表中的相关数据,你还能从其他角度分析得出什么结论吗?③从扇形统计图中,你能得出什么结论?解析:(1)2010年全省教育发展情况统计表:小学初中高中其他合计学校所数(所)12 500 2000 450 10 050 25 000在校学生数(万人)440 200 75 280 995教师数(万人)20 12 5 11 48小学学校数量×360°,同理可求出(2)小学学校的扇形圆心角的大小=学校总数初中学校、其他学校的扇形圆心角的大小.扇形统计图如图2.(3)①小学师生比=1:22,初中师生比≈1:16.7,高中师生比=1:15,即小学学段的师生比最小.图2②答案不唯一,如小学在校学生数最多等.③答案不唯一,如高中学校所数偏少等.点评:调查收集数据的一般过程:①明确调查目的;②确定调查对象;③选择调查方法;④实施调查;⑤记录数据;⑥得出结论. 一般可以用表格整理数据,表格可以设计成不同式样,但要简单、清楚、有利于突出数据的分布规律.考点6:从统计图中获取信息例6 (2011年达州市)我市某中学七年级甲、乙、丙三个班中,每班的学生人数都为60名,某次数学考试的成绩统计图(每组分数含最小值,不含最大值)如图3.图3丙班数学成绩频数统计表如下表:分数50~60 60~70 70~80 80~90 90~100人数 2 9 18 17 14根据以上图、表提供的信息,则80~90分这一组人数最多的班是.解析:从频数分布直方图可求出甲班80~90分的人数为:60-3-7-12-18=20(人);从扇形图求出乙班80~90分的人数为:60×(1-35%-10%-5%-20%)=18(人);从频数统计表可看出丙班80~90分的人数为17人.所以80~90分人数最多的是甲班.点评:本题考对查频数分布直方图、扇形图以及频数表的认知能力. 直方图能够直接看出每组的人数,扇形图看出每部分占总体的百分比,频数表中频数就是每组的人数.误区点拨误区一:调查方式的选择不当例1 下列调查运用哪种调查方式合适:(1)了解全班学生中观看“梦想剧场”这一节目的人数;(2)了解全国七年级男生的身高情况;(3)了解一批袋装食品是否含有防腐剂;(4)了解全校九年级学生的学习压力情况.错解:(2)(3)用全面调查的方式;(1)(4)用抽样调查的方式.剖析:(1)由于调查围很小,用全面调查的方式合适;(2)由于调查围太大,并且对调查结果的精确度要求并不是太高,用抽样调查的方式合适;(3)采用全面调查方式了解一批袋装食品是否含有防腐剂,具有破坏性,用抽样调查的方式合适;(4)由于调查围不太大,用全面调查的方式合适.正解:(1)(4)用全面调查的方式;(2)(3)用抽样调查的方式.误区二:对总体、样本等概念理解不透例2 为了解本校七年级1000名男生的身高情况,从中抽取了200名学生的身高,在这个问题中,总体、个体、样本各是什么?错解:总体是1000名男生,个体是1000名男生中的每一名男生,样本是被抽取的200名男生.剖析:总体、个体、样本中所指的考察对象是数量指标,错解误将“男生”看成考察对象,实际上“七年级男生的身高”才是考察对象.解:总体是七年级1000名男生的身高,个体是1000名男生中的每一名男生的身高,样本是抽取的200名男生的身高.误区三:混淆增长率和增长量例 3 某市农村居民人均收入每年比上一年增长率的统计图如下图所示,下列说确的是()A. 2009年居民人均收入低于2008年B. 农村居民人均收入比上年增长率低于9%的有2年C. 农村居民人均收入最多的是2010年D. 农村居民人均收入比上一年的增长率有大有小,但农村居民人均收入在持续增加 错解:选A 或C.剖析:增长率降低不等于人均年收入降低,增长率最大不等于当年的人均收入最大.今年人均收入增长率= 去年人均收入去年人均收入今年人均收入-×100%.由折线图可知2007 ~2011年的增长率都是正数,即从2008年起每一年人均收入都比上一年有所增长,且2011年的人均收入最多.正解:选D.跟踪训练1.下列调查统计中,适合做全面调查的是( )A. 了解雪花牌电冰箱的市场占有率B. 了解飞马牌汽车每百公里的耗油量C. 了解某班参加课外兴趣小组的人数D. 了解某种药品的疗效2. 下列调查中,样本缺乏代表性的是( )A. 为了解植物园一年中游客的人数,小明利用十一长假做了5天的进园人数调查B. 从养鸡场中随机抽取种鸡10只,来估计这批种鸡体重的平均值C. 为了解我市读者到市图书馆借阅图书的情况,从全年的借读人数中随机抽查了20天每天到读书馆借阅图书的人数D. 调查某电影院单牌号的观众,以了解观众们对所有影片的评价情况3. 某校开展形式多样的“体育”活动,七年级(3)班同学积极响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形统计图(如右图所示),由图可知参加人数最多的体育项目是( )A .排球B .乒乓球C .篮球D .跳绳4. 在1000个数据中,用适当的方法抽取50个为样本进行统计,频数分布表中54.5~57.5这一组的频数是6,那么估计总体数据在54.5~57.5之间的约有( )A. 120个B. 60个C. 12个D. 6个5. 为了解某商品促销广告中所称中奖率的真实性,某人准备买100件该商品调查其中奖率,则他采用的调查方式是_______.(填“全面调查”或“抽样调查”)6. 某校九年级在期中考试后,从全年级200名学生中抽取了20名学生的考试成绩作为一个样本,用来分析全年级的考试情况,这个问题中的样本容量是_______.7. 某商城2011年1至6月销售联想笔记本电脑的数量分别是140台、125台、84台、91台、108台、116台,为了反映这几个月的销售量的变化情况,应选用_______统计图;为了反映各个月份销售量占上半年总销量的百分比,应选用_______统计图;为了能清楚、直观地反映各个月份的销售量,应选用_______统计图.8. 在数学、语文、英语3门学科中,某校对七年级200名学生开展了同学们最喜欢学习哪门学科的调查,每位学生只能选一门学科或选其他.(1)调查的问题是什么?调查的对象是谁?(2)在被调查的200名学生中,有40人最喜欢学语文,60人最喜欢学数学,80人最喜欢学英语,其余的人选择其他,求最喜欢数学这门学科的学生占学生总数的比例,并根据上述数据绘制扇形统计图.中考1.(2011年市)下列调查中,适宜采用抽样调查方式的是()A.调查我市中学生每天体育锻炼的时间B.调查某班学生对“五个”的知晓率C.调查一架“歼20”隐形战机各零部件的质量D.调查亚运会100米决赛参赛运动员兴奋剂的使用情况2.(2011年市)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校七、八、九年级中各班随机抽取10%的学生3.(2011年市)中学开展“体育活动”,九年级(1)班全体同学在2011年4月18 日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图1所示的条形图和扇形统计图. 根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()A. 50B. 25C. 15D. 10图14.(2011年乌兰察布市)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市 20 000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如图2所示的统计图和统计表:图2(1)表中a和b所表示的数分别为:a= ,b= .(2)请在图2中补全频数分布直方图.(3)如果把成绩在70分以上(含70分)定为合格,那么该市20 000名九年级考生数学成绩为合格的学生约有多少名?数据的收集、整理与描述小结与复习跟踪训练:1. C 2. A 3. C 4. A 5. 抽样调查 6. 20 7. 折线扇形条形8. 解:(1)调查的问题是:在数学、语文、英语3门学科中,你最喜欢学习哪一门学科?调查的对象是:某校七年级200名学生.(2)最喜欢数学的学生占总数的30%,扇形统计图略.中考:1. A 2. D 3. C4. 解:(1)由题意,抽取的部分学生数为:20÷0.10=200(名),所以a=200×0.20=40,b=28÷200=0.14.(2)如右图所示.(3)20 000×(1-0.10-0.14)=15 200(名).。