中考数学三轮易错复习:最短路径问题(含解析)
类型11 最短路径类问题(精选20题) 2020年中考数学 三轮冲刺 难点题型突破
最短路径类问题1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm2.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.354.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20B.25C.30D.355.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.46.如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13B.3C.D.27.已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A.B.C.D.8.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)9.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.11.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.12.如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AC=4,D是AC的中点,P是AB上一动点,则CP+PD的最小值为.14.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=12,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,D为BC中点,AD=4,P为AB 上一个动点,当P点运动时,PC+PD的最小值为.16.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.17.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.18.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积19.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.虫乙如果沿路径A﹣E﹣C1爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1,以1厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)20.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.试题解析1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.2.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2dm,∴这圈金属丝的周长最小为2AC=4dm.故选:A.3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.4.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20B.25C.30D.35解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故选:B.5.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.4解:如图,AB==.故选:C.6.如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13B.3C.D.2解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=5π=15,所以AC==3,此时考虑一种情况就是蚂蚁在圆柱体上方走直径这一情况:即路程为AB+R BC=3+10=13∵13<3∴最短路径为13.故选:A.7.已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A.B.C.D.解:由题意知,底面圆的直径为2r,故底面周长等于2rπ,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得,2rπ=,解得n=120,所以展开图中扇形的圆心角为120°,∴∠AOA′=120°,∴∠1=60°,过C作CF⊥OA,∵C为OB中点,BO=3r,∴OC=r,∵∠1=60°,∴∠OCF=30°,∴FO=r,∴CF2=CO2﹣OF2=r2,∵AO=3r,FO=r,∴AF=r,∴AC2=AF2+FC2=r2+r2=r2,∴AC=,故选:B.8.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为3cm.(结果保留π)解:如图所示,∵无弹性的丝带从A至C,绕了1.5圈,∴展开后AB=1.5×2π=3πcm,BC=3cm,由勾股定理得:AC===3cm.故答案为:3.9.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.解:∵P A=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).11.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.解:过点D作DE⊥AB于点E,过点E作EQ⊥AC于点Q,EQ交AD于点P,连接CP,此时PC+PQ=EQ取最小值,如图所示.在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴AB=═15.∵AD是∠BAC的平分线,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,∴,即,∴EQ=,故答案为.12.如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是.解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=90°,∴=2,∵将△ABD沿射线DB平移得到△A'B'D',∴B′D′=BD=2,作点C关于BD的对称点G,连接CG交BD于E,连接D′G,则CD′=GD′CE⊥BD,CG=2CE,∵CE===,∴CG=,以B′D′,GD′为邻边作平行四边形B′D′GH,则B′H=D′G=CD′,当C,B′,H在同一条直线上时,CB′+B′H最短,则B'C+D'C的最小值=CH,∵四边形B′D′GH是平行四边形,∴HG=B′D′=2,HG∥B′D′,∴HG⊥CG,∴CH==,故答案为:.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AC=4,D是AC的中点,P是AB上一动点,则CP+PD的最小值为2.本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=12,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为44.解:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G,由两点之间线段最短,此时C′B的值最小最小值为==50,则GH+CH的最小值=50﹣6=44,故答案为:44.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,D为BC中点,AD=4,P为AB 上一个动点,当P点运动时,PC+PD的最小值为4.解:设CD=x,∵AC=BC,∠ACB=90°,D为BC中点,∴AC=BC=2x,∵AD=4,∴(2x)2+x2=42,∴x=(负值舍去),∴CD=,∴AC=BC=,作点C关于AB对称点C′,则OC′=OC,连接DC′,交AB于P,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵BD=CD=,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=,根据勾股定理可得DC′==4.故答案为:4.16.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.解:(1)方案1:AC+AB=1+5=6,方案2:,∵,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,(或)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4﹣x)2+128x=1∴,即:;故当DQ=3或时,△ABQ为等腰三角形.17.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.18.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积解:(1)∵AB=AC,AD是中线,∴∠BAD=∠CAD;(2)连接EC.结论:BD=CE.理由:∵AD是中线,∴BD=CD,∵AD,AE关于AC对称,∴CD=CE,∴BD=CE;(3)连接BE交AD于点P,此时PE+PC的值最小.∵AB=AC,∠BAC=90°,BD=DC=4,∴AD=AE=4,由题意AE∥BD,AE=AD=BD,∴四边形ABDE是平行四边形,∴P A=PD=2,∵PD⊥BC,∴S△BCP=×8×2=819.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.虫乙如果沿路径A﹣E﹣C1爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1,以1厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)解:(1)画出图①中A⇒E2⇒C1,A⇒E3⇒C1,A⇒E4⇒C1中任意一条路径;(E1、E2、E3分别为各棱中点)(说明:无画法,扣2分)(2)由(1)可知,当昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙可以沿下列四种路径中的任意一种爬行:可以看出,图②﹣1与图②﹣2中的路径相等,图②﹣3与图②﹣4中的路径相等.①设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E→F 爬行捕捉到昆虫甲需x秒钟,如图②﹣1,在Rt△ACF中,(2x)2=(10﹣x)2+202,解得x=10;设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E2→F 爬行捕捉到昆虫甲需y秒钟,如图④﹣4,在Rt△ABF中,(2y)2=(20﹣y)2+102,解得y≈8;所以昆虫乙从顶点A爬行捕捉到昆虫甲至少需8秒钟.[说明]未考虑到A→E→F和图④中其它路径,而直接按路径A→E→F(或A→E→F)计算,并求出正确答案的不扣分.20.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.解:(1)(cm);(2)画图分两种情况:①当横向剪开时:(cm),②当竖向剪开时:(cm);∵,∴最短路程为cm.(3)如图所示:连接AA1,过点O作OD⊥AA1于点D,在Rt△ADO和Rt△A1DO中,∵OA=OA1,∴AD=A1D,∠AOD=∠AOA1=60°,∴AD=OA sin60°=4×=2(cm),∴AA1=2AD=4(cm),∴所求的最短的路程为AA1=cm.。
专题—最短路径问题(含解答)
专题—最短路径问题一.选择题(共7小题)1.如图所示,四边形OABC为正方形,边长为3,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(1,0),P是OB上的一动点,则“求PD+PA和的最小值”要用到的数理依据是()A.“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确解:∵四边形OABC为正方形,∴A、C两点关于直线OB对称(轴对称的性质),∴连接CD,则CD即为PD+PA和的最小值(两点之间,线段最短),∴用到的数理依据是“两点之间,线段最短”以及“轴对称的性质”.故选:C.2.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得|PA﹣PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP•OQ=()A.5B.4C.3D.2解:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PA﹣PB|的值最大的点,∵点B是矩形ACPD的中心,∴点P即为AB延长线上的点,此时P(3,0)即OP=3;作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值,∵A′(﹣1,2),B(2,1),设过A′B的直线为:y=kx+b,则,解得,∴Q(0,),即OQ=,∴OP•OQ=3×=5.故选:A.3.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故选:B.4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.5.如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,则△PMN周长的最小值为()A.5B.6C.8D.10解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=5.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=5,故选:A.6.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B 的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.二.填空题(共9小题)7.如图所示,点A在直线a外,点B在直线a上,在直线a上找一点P,使AP+BP 最小的点P有1个,其位置是B点.解:由题意得使AP+BP最小的点P有1个,其位置是B点,故答案为:1,B点.8.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N为OB上一动点,当PM+PN最小,∠PMO=45°.解:∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.9.四边形ABCD中,∠BAD=136°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为88度.解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD 分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=136°,∴∠A′+∠A″=180°﹣∠BAD=44°∴∠AMN+∠ANM=2×44°=88°.故答案为:8810.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是2.解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA 交于点Q,与OB交于点R,此时△PQR的周长最小.从图上可看出△PQR的周长就是P1P2的长,∵∠AOB=30°,∴∠P1OP2=60°.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2.∴△PQR周长的最小值是2.即PQ+QR+RP的最小值是2故答案为:2.11.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.解:根据线段垂直平分线的性质和两点之间线段最短作图;故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短12.如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°13.如图,△ABC中,∠A=15°,AB是定长.点D,E分别在AB,AC上运动,连结BE,ED.若BE+ED的最小值是2,则AB的长是4.解;作点B关于AC的对称点B',过B作BF⊥AB',∵点B关于AC的对称点B',∴∠B'AE=∠CAB=15°,∵BF⊥AB',∵BF即为BE+ED的最小值,即BF=2,∴AB=4,故答案为:414.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR周长最小,则最小周长是12解:设∠PO A=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=12,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=12,即在保持OP=12的条件下△PQR的最小周长为12.故答案为:12三.解答题(共9小题)15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B两村供水.若铺设水管的工程费用为每千米1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.解:连接AB,作AF⊥BD于点F,则BF=BD﹣AE=0.5km,∴AF=1.2,作A关于直线L的对称点A′,连接A′B到L交于点C,则C点为水厂所在地,如图,过B作BD⊥L于D,作A′G⊥BD于点G,∵BG=BD+DG=3.5,A′G=AF=1.2,CD=2÷3.5×1.2=,EC=1.2﹣=,∴AC+BC=A′C+BC=A′B=3.7km,∴总费用为3.7×1.8=6.66万元.16.如图,一个人从C点骑马出发到D点,但他必须先到河岸边l1的P1点去让马饮水,然后再到河岸边l2的P2点去,再次让马饮水,最后骑马到D点,他应如何选择饮水点P1,P2.才能使所走的路程CP1+P1P2+P2D最短?解:如图,作点C关于l1的对称点C′,点D关于l2的对称点D′,连接C′D′,交于l1,l2于点P1,点P2,连接CP1,P1P2,P2D,所以路程CP1+P1P2+P2D最短.17.八(二)班举行元旦文艺晚会,桌子摆成两条直线(如图中所示的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的小花先拿桔子再拿糖果,然后送给D处的小红,最后回到C处.请你帮助她设计一条行走路线,使其所走的总路程最短(尺规作图,并写出作法,不需说明理由)解:如图所示,小花所走的行走路线为:CM﹣MN﹣ND,所走的总路程最短.18.尺规作图:(1)如图①,江边A,B两个村庄准备集资建造一个自来水厂,请你确定一个厂址,使得从自来水厂到A,B两村所用的水管最短.(2)如图②,P是∠A0B内部一点,试在角的两边上各找一个点E,F,使△PEF 的周长最小.解:(1)如图①,过A点关于江边的对称点C,再连接CB,BC与江边的交点Q 即为自来水厂厂址;(2)如图②,作点P关于OA对称的点M,作点P关于OB对称的点N,连接MN,与OA交于点E,与OB交于点F,此时△PEF的周长最小.19.如图,为了做好2013年沈阳全运会起降的交通安全工作,某交警执勤小队从A处出发,先到公路l1上设卡检查,再到公路l2上设卡检查,最后再到B 地执行任务,他们应如何走才能使总路程最短?【解答】解:如图所示,交警小队沿A→C→D→B走才能使总路程最短.20.如图所示,A、B为公路l同旁的两个村庄,在l上找一点P.(1)当P到A、B等距离时,P在何处?(2)当P到两村距离之和最小时,P在何处?解:(1)因为点P到两个村庄A,B的距离相等,所以P应建在AB的垂直平分线和l的交点处,理由是到线段两个端点距离相等的点在线段的垂直平分线上,如图1:,(2)作点A关于直线l的对称点,连接A′B交直线于点P,点P就是设置的点,如图2:21.如图,A、B两城市之间有一条国道,国道的宽为a,现要在国道上修建一座垂直于国道的立交桥,使通过A、B两城市路程最近,请你设计建桥的位置,并说明理论依据.解:如图,过点B作BC垂直国道,且使BC等于国道宽a,连接AC交国道边缘与M,作MN∥BC即可.理由:两点之间线段最短.22.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于M,作MN⊥GH,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故NB=MB′.根据“两点之间线段最短”,AB′最短,即AM+BN最短.故桥建立在MN处符合题意.23.如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.解:(1)如图1所示,(2)如图2,作AA'垂直于河岸a,使AA′等于河宽,连接BA′,与另一条河岸相交于M,作MN⊥直线a,则MN∥AA′且MN=AA′,于是MNAA′为平行四边形,故MA′=NA.根据“两点之间线段最短”,BA′最短,即AN+BM最短.故桥建立在M、N处符合题意.。
中考专题复习——最短路径问题
word专业资料-可复制编辑-欢迎下载A B C DABABL A BCDDO CP中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。
(构建“对称模型”实现转化)三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。
请在图中找出点P的位置,并计算PA+PB的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。
四、练习题(巩固提高)(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。
2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食物,知圆柱体的高为5 cm,底面圆的周长为24cm,则蚂蚁爬行的最短路径为。
4、正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN第2题张村李庄张村李庄AABB第1题第3题图(2)EBDACP+MN 的最小值为 。
第4题 第5题 第6题 第7题 5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
初中数学中考复习专题 最短路径问题 (24张PPT)
【例题分层探究】 问题 1:边 CD 是定值,此问题可转化为计算 CE+DE 的最小值问题. 问题 2:线段 CD,EF 均为定值,此问题可借助轴对称 求最短路径的方法计算出 DE+CF 的最小值.
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT) 初中数学中考复习专题 最短路径问题 (24张PPT)
∵C(0,-5) ∴C′(0,5) ∴直线C′D为y=-7x+5
D(2,-9)
ME
x
AO
B
∴y=0 , 即-7x+5=0 ∴m=5 ∕ 7
∴x=5 ∕ 7
C D
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT)
中考链接
24 如图 Z8-3,在平面直角坐标系中,矩形 OACB 的
A
B l
在直线l上求一 点P,使 PA+PB值最小
作B关于l 的对称点 B',连A B'与l交 点即为P
图形
原理
两点之间线段 最短
PA+PB最小值 为AB
原理
两点之间线段 最短
PA+PB最小值 为AB
问题3
作法
l1
P
分别作点P关于
l2
两直线的对称
在直线l1、l2上 点P'和P",连 分别求点M P'P"与两直线
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的
最短路径问题例题与讲解
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
中考数学蚂蚁爬行的最短路径试题(带解析)
蚂蚁爬行的最短路径1.一只蚂蚁从原点 0 出发来回爬行,爬行的各段路程依次为: +5,-3,+10,-8 ,-9,+12, -10.回答下列问题:(1)蚂蚁最后是否回到出发点 0;(2)在爬行过程中,如果每爬一个单位长度奖励 2 粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:( 1)否, 0+5-3+10-8-9+12-10=-3 ,故没有回到 0; (2)( |+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114 粒2. 如图,边长为 1 的正方体中,一只蚂蚁从顶点 A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3.(2006?茂名)如图,点 A 、B 分别是棱长为 2 的正方体左、右两侧面的中心,一蚂蚁从点 A 沿其表面爬到点 B 的最短路程是 cm解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB= 22 12 5 .AB 即为最短路线.B 的最短路程是两个棱长的长,即 2+2=4.4.如图,一只蚂蚁从正方体的底面 A 点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A? P? B B .A? Q? B C .A? R? B D .A? S? B解:根据两点之间线段最短可知选A.故选A.5.如图,点 A 的正方体左侧面的中心,点 B 是正方体的一个顶点,正方体的棱长为2,蚂蚁从点A沿其表面爬到点 B 的最短路程是()解:如图,AB= 1 2 2 12 10 .故选C.6.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从 A 点爬行到M点的最短距离为()解:展开正方体的点M所在的面,∵BC的中点为M,1所以MC= BC=1,2在直角三角形中AM= = .7.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向 B 处爬行,所走最短路程是cm 。
故选C.8. 正方体盒子的棱长为2,BC 的中点为M,一只蚂蚁从A 点爬行到M 点的最短距离解:将正方体展开,连接M、D1,根据两点之间线段最短,MD=MC+CD=1+2,=3MD1= MD 2 DD1232 22139.如图所示一棱长为 3cm 的正方体, 把所有的面均分成 3×3个小正方形. 其边长都为 1cm ,假设一只蚂蚁每秒爬行 2cm ,则它从下底面点 A 沿表面爬行至侧面的 B 点,最少要用 2.5 秒钟解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短 的路线.( 1)展开前面右面由勾股定理得 AB= = cm ;(2)展开底面右面由勾股定理得 AB==5cm ;所以最短路径长为 5cm ,用时最少: 5÷2=2.5 秒.10.(2009?恩施州)如图,长方体的长为 15,宽为 10,高为 20,点 B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是 。
初中数学[最短路径问题]典型题型及解题技巧
初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。
这对于我们解决此类问题有事半功倍的作用。
理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。
教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。
考的较多的还是“饮马问题”。
知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
解:连接AB,线段AB与直线L的交点P ,就是所求。
(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。
【配套K12】中考数学 专题复习六 求最短路径问题
中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。
中考数学考试题答案与解析之最短路径问题
中考数学考试题答案与解析之最短路径问题姓名:__________指导:__________日期:__________早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的B 地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马” 的问题广泛流传.知识储备:利用轴对称知识解决最短路径问题.典型解析:【例题1】如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为cm (杯壁厚度不计).【答案】20.【分析】解:如图,将杯子侧面展开,作点A 关于EF 的对称点A′,连接A′B,则A′B 即为最短距离,A′B = √(A′D²+BD²)=20(cm).当蚂蚁在一个几何体的表面上爬行时,通常情况下都会考虑将其展开成一个平面,运用勾股定理计算其最短路程,也就是运用“化曲为平” 或“化折为直” 的思想来解决问题.【例题2】如图,∠AOB = 60°,点P 是∠AOB 内的定点且OP = √3,若点M、N 分别是射线OA、OB 上异于点O 的动点,则△PMN 周长的最小值是()A.3√6/2B.3√3/2C.6D.3【答案】D.【分析】解:如图作P 点分别关于OA、OB 的对称点C、D,连接CD 分别交OA、OB 于M、N,则MP = MC,NP = ND,OP = OD = OC = √3,∠BOP = ∠BOD,∠AOP = ∠AOC,∴ PN + PM + MN = ND + MN + NC = DC,∠COD = ∠BOP + ∠BOD + ∠AOP + ∠AOC = 2∠AOB = 120°,∴ 此时△PMN 周长最小,作OH⊥CD 于H,则CH = DH,∵ ∠OCH = 30°,∴ OH = 1/2OC = √3/2,CH = √3OH= 3/2,∴ CD = 2CH = 3.【例题3】如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA⊥PB,且PA、PB 与x 轴分别交于A、B 两点,若点A、点B 关于原点O 对称,则AB 的最小值为()A.3B.4C.6D.8【答案】C.【分析】解:∵ PA⊥PB,∴ ∠APB = 90°,∵ AO=BO,∴ AB = 2PO,若要使AB 取得最小值,则PO 需取得最小值,连接OM,交⊙M 于点P′,当点P 位于P′ 位时,OP′ 取得最小值,过点M 作MQ⊥x 轴于点Q,则OQ = 3、MQ = 4,∴ OM = 5,又∵ MP′ = 2,∴ OP′ = 3,∴ AB = 2OP′ = 6.【例题4】如图,点P 是边长为1 的菱形ABCD 对角线AC 上的一个动点,点M、N 分别是AB、BC 边上的中点,则MP + PN 的最小值是()A.1/2B.1C.√2D.2【答案】B.【分析】解:如图,作点M 关于AC 的对称点M′,连接M′N 交AC 于P,此时MP + NP 有最小值,最小值为M′N 的长.∵ 菱形ABCD 关于AC 对称,M 是AB 边上的中点,∴ M′ 是AD 的中点,又∵ N 是BC 边上的中点,∴ AM′∥BN,AM′=BN,∴ 四边形ABNM′ 是平行四边形,∴ M′N = AB = 1,∴ MP + NP = M′N =1,即MP + NP 的最小值为1.。
初中数学《最短路径问题》典型题型复习
初中数学《最短路径问题》典型题型知识点:“两点之间线段最短",“垂线段最短”,“点关于线对称",“线段的平移"。
“饮马问题”,“造桥选址问题"。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直",近两年出现“三折线”转“直”等变式问题考查。
一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
解:连接AB,线段AB与直线L的交点P ,就是所求.(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B沿垂直与河岸的方向平移一个河宽到E,2。
连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。
证明:由平移的性质,得BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, A·MNE所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC 。
中考复习之——《最短路径问题》
中考复习之——《最短路径问题》【问题概述】最短路径问题是图形研究中的一个经典算法问题,旨在寻找图中两点之间的最短(长)路径.算法具体形式包括:①确定起点的最短路径问题 —— 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 ——与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 —— 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 —— 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”,“点圆距离”,“捆绑旋转(瓜豆原理)”等. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十四个基本问题】图形在直线 l 上求一点 P ,使PB 值最小.图形在直线 l 1 、l 2 上分别求点图形图形在直线l 上求两点M、在左),使MN = a ,图形图形在直线l 上求一点P在直线l 上求一点P,使在直线l 上求一点P,使PB 的值最大.图形图形造正△ADE,使HE最小。
1.(2017徐州模拟)如图,MN 是半径为1的⊙O 的直径,点C 在⊙O 上,且C B 为60°,D 为C B的中点,P 是直径AB 上一动点,则PC +PD 的最小值为 。
2.(2017南通中考)如图,矩形ABCD 中,AB=10,BC=5,点E 、F 、G 、H 分别在矩形ABCD 的各边上,且AE=CG ,BF=DH ,则四边形EFGH 周长的最小值为 。
3.(2017徐州模拟)如图,已知N (1,0),直线2+-=x y 与两坐标轴分别交于A 、B 两点,M 、P 分别是线段OB 、AB 上的动点,则PM+MN 的最小值是 。
4.(2016无锡模拟)如图,在△ABC 中,AC=6,∠BAC=22.5°,M 、N 分别是射线AB 和AC 上的动点,则CM+MN 的最小值是 。
2021备战中考数学基础必练-最短路径问题(含解析)
2021 备战中考数学基础必练-最短路径问题(含解析)一、单选题1.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是()A. 30°B. 15°C. 20°D. 35°2.如图,将正方形ABCD 的一角折叠,折痕为AE,∠FAD 比∠FAE 大48°,设∠FAE 和∠FAD 的度数分别为x°,y°,那么x,y 所适合的一个方程组是()A. B. C. D.3.如图,已知直线a∥b,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为.试在直线a 上找一点M,在直线b 上找一点N,满足MN⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A. 6B. 8C. 10D. 124.如图,Rt△ABC 中,AB=BC=2,D 为BC 的中点,在AC 边上存在一点E,连接ED,EB,则EB+ED 的最小值为()A. B. C. D. 5.在平面直角坐标系中,以点A(2,4)为圆心,1 为半径作⊙A,以点B(3,5)为圆心,3 为半径作⊙B,M、N 分别是⊙A,⊙B 上的动点,P 为x 轴上的动点,则PM+PN 的最小值为()A. -4B. -1C. 6-2D. -36.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为()A. 2B. 2C. 4D. 47.如图,∠AOB=30°,点P 为∠AOB 内一点,OP=10,点M、N 分别在OA、OB 上,求△PMN 周长的最小值()A. 5B. 10C. 15D. 208.平面直角坐标系中,O是坐标原点,点A(1,1)、点B(2,﹣5),P是y轴上一动点,当△PAB 的周长最小时,求∠APO 的正切值()A. 2B. 0.5C. -5D. 59.在平面直角坐标系中,矩形OABC 如图所示.点A 在x 轴正半轴上,点C 在y 轴正半轴上,且OA=6,OC=4,D 为OC 中点,点E、F 在线段OA 上,点E 在点F 左侧,EF=3.当四边形BDEF 的周长最小时,点E 的坐标是()A. (,0)B. (1,0)C. (,0)D. (2,0)二、填空题10.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB 的最小值为.11.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为12.如图,矩形ABCO 中,OA 在x 轴上,OC 在y 轴上,且OA=2,AB=5,把△ABC 沿着AC 对折得到△AB′C,AB′交y 轴于D 点,则D 点的坐标为13.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE,过点B 作BG⊥CE 于点G,点P 是AB 边上另一动点,则PD+PG 的最小值为.14.如图,正方形ABCD 的边长为4,点E 在边BC 上且CE=1,长为的线段MN 在AC 上运动,当四边形BMNE 的周长最小时,则tan∠MBC 的值是.15.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为16.如图,四边形ABCD 是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC 重合,折痕为EF;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N,折痕BM 与EF 相交于点Q;再次展平,连接BN,MN,延长MN 交BC 于点G.有如下结论:①∠ABN=60°;②AM=1;③QN= ;④△BMG 是等边三角形;⑤P为线段BM 上一动点,H 是BN 的中点,则PN+PH 的最小值是.其中正确结论的序号是.17.如图,∠AOB=30°,点M、N 分别是射线OA、OB 上的动点,OP 平分∠AOB,且OP=6,△PMN 的周长最小值为.18.如图,△ABC 中,AC=8,AB=10,△ABC 的面积为30,AD 平分∠BAC,F、E 分别为AC、AD 上两动点,连接CE、EF,则CE+EF 的最小值为.三、解答题19.A、B 为直线MN 外两点,且在MN 异侧,A、B 到MN 的距离不相等,试求一点P,满足下条件:①P在MN 上;②|PA﹣PB|最大.四、综合题20.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B 在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为﹣1,试求A、B 两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;(4)平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF 的最短长度.21.问题探究:探究与应用(1)如图1,在正方形ABCD 中,AB=2,点E 是边AD 的中点,请在对角线AC 上找一点P,使得PE+PD的值最小,并求出这个最小值;(不用写作法,保留作图痕迹)(2)如图2,在矩形ABCD 中,AB=6,BC=8,点E 是边BC 的中点,若点P 是边AB 上一动点,当△PED 的周长最小时,求BP 的长度;问题解决:(3)某市规划在市中心广场内修建一个矩形的活动中心,如图3,矩形OABC 是它的规划图纸,其中A 为入口,已知OA=30,OC=20,点E 是边AB 的中点,以顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系,点D 是边OA 上一点,若将△ABD 沿BD 翻折,点A 恰好落在边BC 上的点F 处,在点F 处设一出口,点M、N 分别是边OA、OC 上的点,现规划在点M、N、F、E 四处各安置一个健身器材,并依次修建MN、NF、FE 及EM 四条小路,则是否存在点M、N,使得这四条小路的总长度最小?若存在,求出这个最小值;若不存在,请说明理由.22.用直尺、圆规作图,不写作法,但要保留作图痕迹.(1)如图(1),要在河边修建一个水泵站,向A、B两村供水,建泵地点M应选在何处,才能使水泵站到两村的距离相等;(2)如图(2),要在河边修建一个水泵站,向C、D两村供水,建泵地点N应选在何处,才能使水泵站到两村的距离和最短.23.如图,是由每个边长都是1 的小正方形构成的网格,点O,A,B,M 均为格点,P 为线段OM 上的一个动点.(1)点B 到OM 的距离等于;(2)当点P 在线段OM 上运动,且使PA2+PB2 取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P 的位置,并简要说明你是怎么画的.答案解析部分一、单选题1.【答案】A【考点】轴对称的应用-最短距离问题【解析】【解答】解:连结PB有题意知,∵B、C 关于直线MN 对称,∴PB=PC,∴PC+PD=PB+PD当B、P、D 三点位于同一直线时,PC+PD 取最小值,连接BD 交MN 于P,∵△ABC 是等边三角形,D 为AC 的中点,∴BD⊥AC,∴PA=PC,∴故答案为:A【分析】找第一次后新图形与原图形的边长的关系,连接BD 交MN 于P,根据等腰三角形的三线合一得出BD⊥AC,根据中垂线上的点到线段两端的距离相等得出PA=PC,根据等边对等角即可得出答案。
考点13 轴对称-最短路径问题(解析版)
考点13 轴对称——最短路径问题一.选择题(共12小题)1.(2020·四川成都)如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒【答案】B【解析】 如图,作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N ''交OA 于Q ,交OB 于P ,则此时MP PQ QN ++的值最小.易知'∠=∠=∠OPM OPM NPQ ,'∠=∠=∠OQP AQN AQN .∵18030∠=︒-︒-∠OQN ONQ ,30∠=∠=︒+∠OPM NPQ OQP30∠=∠=︒+∠OQP AQN ONQ ,∵303018030210+=︒+︒+∠+︒-︒-∠=︒ONQ ONQ αβ.故选:B.【点睛】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.(2020·银川)如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m 上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A .B .C .D .【答案】D【解析】作点M 关于直线m 的对称点M ',连接NM '交直线m 于P ,则P 处即为给水站位置.根据“两点之间,线段最短”可排除A 、B 、C 选项,可知D 选项管道最短.故选:D .3.(2020·河北武安期末)如图,∵ABC 中,AB=AC=10,BC=16,AD 是BC 边上的中线且AD=6,F 是AD 上的动点,E 是AC 边上的动点,则CF EF +的最小值是( ).A .485B .16C .6D .10【答案】A【解析】解:如下图所示,作BG∵AM 于M ,交AD 于F ,∵∵ABC 中,AB=AC=10,AD 是BC 边上的中线,∵∵ABC 是等腰三角形,AD BC ⊥,BD=DC ,∵ AD 是BC 的垂直平分线,∵ BF=CF .则BF EF +有最小值时,CF EF +有相同的最小值.根据垂线段最短可得出CF EF +=BF EF +≥=BF FM BM +,则CF EF +取最小值时,=CF EF BM +.根据三角形的面积公式,可得:11==22ABC S AD BC AC BM ⨯⨯△,解得:48=5BM , 即CF EF +的最小值为485. 故答案选:A .4.(2020·河南永城)如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 、E 分别在边AC 、AB 上,14AD =,点P 是边BC 上一动点,当PD PE +的值最小时,15AE =,则BE 为( )A .30B .29C .28D .27【答案】B【解析】 如图,延长AC 至点M ,使CM CD =,过点M 作ME AB ⊥于点E ,交BC 于点P ,则此时PD PE +的值最小.在Rt ABC △中,30B ∠=︒,60A ∴∠=︒.ME AB ⊥,90AEM ∴∠=︒,90A M ∴∠+∠=︒,90M ∴∠=︒.15AE =,230AM AE ∴==.AM AD DM =+,14AD =,16DM ∴=.CM CD =,8CD CM ∴==,22AC AD CD ∴=+=.在Rt ABC △中,30B ∠=︒,244AB AC ∴==.AB AE BE =+,15AE =,29BE ∴=.故选B.5.(2020·山西孝义)如图,等腰ABC ∆中,=⊥AB AC AD BC ,EF 垂直平分AB ,交AB 于点E ,交BC 于点F ,点G 是线段EF 上的一动点,若ABC ∆的面积是26cm ,6BC cm =,则ADG ∆的周长最小值是( )A .4.5cmB .5cmC .5.5cmD .6cm【答案】B【解析】解:如图,连接BG .∵AB=AC ,AD∵BC ,6BC cm∵BD=DC=3cm ,∵S ∵ABC =12•BC•AD=6, ∵AD=2,∵EF 垂直平分AB ,∵BG=AG ,∵AG+DG=BG+GD ,∵BG+GD≥BD ,,∵GA+GD≥3,∵GA+GD 的最小值为3,∵∵ADG 的最小值为2+3=5,故选:B .【点睛】本题考查轴对称-最短问题,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(2020·安徽利辛月考)已知点M(-4,2),若点N 是y 轴上一动点,则M ,N 两点之间的距离最小值为( )A .-4B .2C .4D .-2【答案】C【解析】解:过直线外一点,到直线上的所有点的连线中,垂线段最短∵点N在y轴上的纵坐标为2,此时二者之间的距离最小值为0-(-4)=4故选C7.(2020·安徽安庆期末)如图,∵MON=45°,P为∵MON内一点,A为OM上一点,B为ON上一点,当PAB的周长取最小值时,∵APB的度数为( )A.80°B.90°C.110°D.120°【答案】B【解析】作出P点关于OM、ON的对称点A′、B′,然后连接A′B′∵点A′与点P关于直线OM对称,点B′与点P关于ON对称∵A′P∵OM,B′P∵ON,A′A=AP,B′B=BP∵∵A′=∵APA′,∵B′=∵BPB′∵A′P∵OM,B′P∵ON,∵∵MON+∵A′P B′=180°∵∵A′P B′=180°-45°=135°在∵A′B′P中,由三角形的内角和定理可知:∵A′+∵B′=180°-135°=45°∵∵A′PA+∵BP B′=45°∵∵APB=135°-45°=90°故答案选择:B=,AD、BE分别是底边BC和8.(2020·山西文水期末)如图,在∵ABC中,AB AC+的最小值等于()腰AC上的中线,点P为AD上一动点,则PE PCA.线段AB的长B.线段BC的长C.线段AD的长D.线段BE的长【答案】D【解析】解:如图,连接BP,则PE+PC=PE+BP,所以BE就是PE+PC的最小值,故选D.9.(2020·辽宁连山期中)如图,等腰∵ABC的底边BC长为6,面积是36,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则∵CDM周长的最小值为()A.6B.10C.15D.16【答案】C【解析】如图:连接AD交EF于点M,∵等腰∵ABC的底边BC长为6,点D为BC边的中点,∵AD∵BC,BD=CD=3,∵EF是腰AC的垂直平分线,连接CM,∵AM=CM,此时∵CDM的周长为:CM+DM+CD=AM+DM+CD=AD+CD CD的长为3固定,∵根据两点之间线段最短,∵CDM的周长最小.∵S∵ABC=12 BC•AD,∵12×6•AD=36,∵AD=12,∵AD+CD=12+3=15.故选:C.10.(2020·山西平遥月考)如图,等腰ABC∆的面积为9,底边BC的长为3,腰AC的垂直平分线EF分别交AC、AB边于点E、F,点D为BC边的中点,点M为直线EF上一动点,则DM CM+的最小值为()A.12B.9C.6D.3【答案】C【解析】∵∵ABC是等腰三角形,点D是BC的中点∵AD∵BC∵AD=6∵EF是线段AC的垂直平分线∵点C关于直线EF的对称点为A∵AD的长为CM+MD的最小值∵CM+MD的最小值为6故答案选择:C.11.(2020·山东武城期中)如图,∵AOB=30°,∵AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若∵PQR周长最小,则最小周长是()A.10B.15C.20D.30【答案】A【解析】设∵POA=θ,则∵POB=30°﹣θ,作PM∵OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN∵OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则∵PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∵EQ=QP;同理,OB是PF的垂直平分线,∵FR=RP,∵∵PQR的周长=EF.∵OE=OF=OP=10,且∵EOF=∵EOP+∵POF=2θ+2(30°﹣θ)=60°,∵∵EOF是正三角形,∵EF=10,即在保持OP=10的条件下∵PQR的最小周长为10.故选A.12.(2020·广东期中)如图,在∵ABC中,AB=AC,BC=4,∵ABC的面积是16,AC边的垂直平分线EF分别交AC,AB边于点E,F,若点D为BC边的中点,点M为线段EF上一动点,则∵CDM周长的最小值为()A.4B.5C.10D.8【答案】C【解析】连接AD,AM.∵∵ABC是等腰三角形,点D是BC边的中点,∵AD∵BC,∵S∵ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∵点C关于直线EF的对称点为点A,∵MA=MC,∵AD≤AM+MD,∵AD的长为CM+MD的最小值,∵∵CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=10.故选C.二.填空题(共6小题)13.(2020·南京师范大学附属中学月考)如图,已知∵MON=40°,P为∵MON内一定点,OM上有一点A,ON上有一点B,当∵P AB的周长取最小值时,∵APB的度数是_____°.【答案】100【解析】分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接P A、PB,此时∵P AB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∵P′OA=∵POA,∵P″OB=∵POB,∵∵P′OP″=2∵MON=2×40°=80°,∵∵OP′P″=∵OP″P′=(180°﹣80°)÷2=50°,又∵∵BPO=∵OP″B=50°,∵APO=∵AP′O=50°,∵∵APB=∵APO+∵BPO=100°.故答案为100.14.(2020·江苏省靖江市月考)如图,∵ABC中,AB=AC=5,BC=6,AD是BC边上的中线且AD=4,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为_____.【答案】24 5【解析】解:作BM∵AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∵BD=DC=3,AD∵BC,AD平分∵BAC,∵B、C关于AD对称,∵BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S∵ABC=12×BC×AD=12×AC×BM,∵BM=BC ADAC⨯=645⨯=245,即CF+EF的最小值是245,故答案为:245.15.(2020·南通市月考)如图,在∵ABC中,AD平分∵BAC交BC于点D,点M,N分别是AD和AB上的动点,当S∵ABC=12,AC=8时,BM+MN的最小值等于_____.【答案】3【解析】解:如图,作点B关于AD的对称点B′∵AD是∵BAC的平分线,∵点B关于AD的对称点B′在AC上,过点B′作B′N∵AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE∵AC于E,∵AC=8,S∵ABC=20,∵12×8•BE=12,解得BE=3,∵AD是∵BAC的平分线,B′与B关于AD对称,∵AB=AB′,∵∵ABB′是等腰三角形,∵B′N=BE=3,即BM+MN的最小值是3.故答案为:3.16.(2020·江苏省锡山高级中学)如图,已知∵AOB的大小为α,P是∵AOB内部的一个定点,且OP=4,点E、F分别是OA、OB上的动点,若∵PEF周长的最小值等于4,则α=_____.【答案】30°【解析】解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F.此时,∵PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∵OA垂直平分PC,∵∵COA=∵AOP,PE=CE,OC=OP,同理,可得∵DOB=∵BOP,PF=DF,OD=OP.∵∵COA+∵DOB=∵AOP+∵BOP=∵AOB=α,OC=OD=4,∵∵COD=2α.又∵∵PEF的周长=PE+EF+FP=CE+EF+FD=CD=4,∵OC=OD=CD=4,∵∵COD是等边三角形,∵2α=60°,∵α=30°.故答案为30°17.(2020·广东肇庆期中)如图,四边形ABCD中,∵BAD=130°,∵B=∵D=90°,在BC、CD上分别找一点M、N,使∵AMN周长最小时,则∵AMN+∵ANM的度数为.【答案】100°【解析】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为∵AMN 的周长最小值.作DA延长线AH,∵∵DAB=120°,∵∵HAA′=60°,∵∵AA′M+∵A″=∵HAA′=60°,∵∵MA′A=∵MAA′,∵NAD=∵A″,且∵MA′A+∵MAA′=∵AMN,∵NAD+∵A″=∵ANM,∵∵AMN+∵ANM=∵MA′A+∵MAA′+∵NAD+∵A''=2(∵AA′M+∵A'')=2×60°=120°.故答案为120°.18.(2020·广西青秀期中)如图,等腰∵ABC中,AB=AC=4,BC=6,∵ABD是等边三角形,点P是∵BAC的角平分线上一动点,连PC、PD,则PD+PC的最小值为_____.【答案】4【解析】如图,连接BP,∵点P是∵BAC的角平分线上一动点,AB=AC,∵AP垂直平分BC,∵CP=BP,∵PD+PC=PD+PB,∵当B,P,D在在同一直线上时,BP+PD的最小值为线段BD长,又∵∵ABD是等边三角形,AB=BD=4,∵PD+PC的最小值为4,故答案为4.三.解析题(共6小题)19.(2020·江苏东台月考)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与∵ABC关于直线l成轴对称的∵A′B′C′;(2)在直线l上找一点P,使PB+PC的长最短.【解析】解:(1)如图所示:∵A′B′C′,即为所求;(2)如图所示:点P即为所求.20.(2020·华东师范大学青岛实验中学期中)如图,在∵ABC中,AB=10,BC=12,BC 边上的中线AD=8.(1)证明:∵ABC为等腰三角形;(2)点H在线段AC上,试求AH+BH+CH的最小值.【答案】(1)证明见解析;(2)19.6【解析】(1)证明:∵AD是BC边上的中线,∵BD=DC=6,∵AB=10,BD=6,AD=8,∵BD 2+AD 2=62+82=102,∵∵ABD 是直角三角形,∵AD∵BC ,∵AD∵BC ,BD=DC ,∵AB=AC ,∵∵ABC 是等腰三角形.(2)解:∵AH+BH+CH=BH+AC=BH+10,∵当BH 最小时,AH+BH+HC 有最小值,由垂线段的性质可知:当BH∵AC 时,BH 有最小值, ∵1122BH AC BC AD ⨯⨯=⨯⨯, ∵111012822BH ⨯⨯=⨯⨯, ∵BH=9.6,∵AH+BH+HC 的最小值为:10+9.6=19.6.21.(2020·山东高唐期中)如图,在锐角ABC 中,7AC cm =,221ABC S cm =,AD 平分BAC ∠,M N 、分别是AD 和AB 上的动点,求BM MN +的最小值并说明理由.【答案】6cm【解析】解:如图,作N 关于AD 对称点为R ,作AC 边上的高BE (E 在AC 上), AD 平分CAB ∠,ABC 为锐角三角形,R ∴必在AC 上, N 关于AD 的对称点为R ,MR MN ∴=,BM MN BM MR ∴+=+,即BM MN BR BE +=≥(垂线段最短), ABC 的面积是221cm ,7AC =,17212BE ∴⨯⨯=, 6BE ∴=,即BM MN +的最小值为6cm .22.(2020·辽宁连山期中)如图,四边形ABCD 中,∵BAD =110°,∵B =∵D =90°,在BC ,CD 上分别找一点M ,N ,使∵AMN 周长最小,请在图中画出∵AMN ,写出画图过程并直接写出∵MAN 的度数.【答案】作图见解析,∵MAN的度数为40°.【解析】解:如图所示:作点A关于BC和DC的对称点E和F,连接EF,与BC和DC相交于点M和N,连接AM和AN,根据对称性得:AM=EM,AN=FN,AM+AN+MN=EM+FN+MN=EF,根据两点之间线段最短,此时∵AMN的周长最小,∵∵BAD=110°,∵∵E+∵F=180°﹣110°=70°,∵∵EAM+∵F AN=70°,∵∵MAN=∵EAF-(∵EAM+∵F AN)=40°.答:∵MAN的度数为40°.23.(2020·浙江萧山月考)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作∵ACD和∵BCE,且CA=CD,CB=CE,∵ACD=∵BCE,直线AE与BD交于点F,(1)如图1,若∵ACD=60°,则∵AFB=;如图2,若∵ACD=90°,则∵AFB=;如图3,若∵ACD=120°,则∵AFB=;(2)如图4,若∵ACD=α,则∵AFB=(用含α的式子表示);(3)将图4中的∵ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∵ACD=α,则∵AFB与α的有何数量关系?并给予证明.【答案】(1)120°,90°,60°;(2)180°﹣α;(3)∵AFB=180°﹣α,证明详见解析.【解析】解:(1)如图1,CA=CD,∵ACD=60°,所以∵ACD是等边三角形.∵CB=CE,∵ACD=∵BCE=60°,所以∵ECB是等边三角形.∵AC=DC,∵ACE=∵ACD+∵DCE,∵BCD=∵BCE+∵DCE,又∵∵ACD=∵BCE,∵∵ACE=∵BCD.∵AC=DC,CE=BC,∵∵ACE∵∵DCB.∵∵EAC=∵BDC.∵AFB是∵ADF的外角.∵∵AFB=∵ADF+∵FAD=∵ADC+∵CDB+∵FAD=∵ADC+∵EAC+∵FAD=∵ADC+∵DAC=120°.如图2,∵AC=CD,∵ACE=∵DCB=90°,EC=CB,∵∵ACE∵∵DCB.∵∵AEC=∵DBC,又∵∵FDE=∵CDB,∵DCB=90°,∵∵EFD=90°.∵∵AFB=90°.如图3,∵∵ACD=∵BCE,∵∵ACD﹣∵DCE=∵BCE﹣∵DCE.∵∵ACE=∵DCB.又∵CA=CD,CE=CB,∵∵ACE∵∵DCB.∵∵EAC=∵BDC.∵∵BDC+∵FBA=180°﹣∵DCB=180°﹣(180﹣∵ACD)=120°,∵∵FAB+∵FBA=120°.∵∵AFB=60°.故填120°,90°,60°.(2)∵∵ACD=∵BCE,∵∵ACD+∵DCE=∵BCE+∵DCE.∵∵ACE=∵DCB.∵∵CAE=∵CDB.∵∵DFA=∵ACD.∵∵AFB=180°﹣∵DFA=180°﹣∵ACD=180°﹣α.(3)∵AFB=180°﹣α;证明:∵∵ACD=∵BCE=α,则∵ACD+∵DCE=∵BCE+∵DCE,即∵ACE=∵DCB.在∵ACE和∵DCB中,则∵ACE∵∵DCB(SAS).则∵CBD=∵CEA,由三角形内角和知∵EFB=∵ECB=α.∵AFB=180°﹣∵EFB=180°﹣α.24.(2020·上海同济大学附属实验中学月考)已知:在ABC中,AB=AC,点E在AB上,以BE为底边作等腰DBE,取CE的中点为G,连接AG、DG.(1)如图1,若BE=AE,∵BDE=120°,∵BAC=60°,求证:AG∵DG;(2)如图2,若BE≠AE ,∵BDE +∵BAC=180°,则(1)中结论仍然成立吗?说明理由.【答案】(1)证明见解析;(2)(1)中结论AG DG ⊥仍然成立,理由见解析.【解析】解:(1)如图,延长DG 至H ,使,DG GH = 连接,,AD AH G 为CE 的中点,,EG CG ∴=,EGD CGH ∠=∠,EGD CGH ∴≌,,ED CH DEG GCH ∴=∠=∠等腰DBE ,BE 为底边,120,BDE ∠=︒,BD DE ∴= 30,DBE DEB ∠=∠=︒ BD CH ∴=,,60,AB AC BAC =∠=︒ABC ∴为等边三角形,,BE AE =,30,CE AB ACE BCE ∴⊥∠=∠=︒ 60,DEG HCG ∴∠=∠=︒30,ACH ∴∠=︒在ABD △与ACH 中,,30AB AC ABD ACH BD CH =⎧⎪∠=∠=︒⎨⎪=⎩,ABD ACH ∴≌,AD AH ∴=,DG GH =.AG DG ∴⊥(2)(1)中结论AG DG ⊥成立,理由如下: 如图,延长DG 至H ,使,DG GH = 连接,,AD AH G 为CE 的中点,,EG CG ∴=,EGD CGH ∠=∠,EGD CGH ∴≌,,ED CH DEG GCH ∴=∠=∠等腰DBE ,BE 为底边,设,BDE α∠=1,90,2BD DE DBE DEB α∴=∠=∠=︒- 180,BDE BAC ∠+=︒180,BAC α∴∠=︒-,AB AC =1,2ABC ACB α∴∠=∠=119090,22DBC ααα⎛⎫∴∠=-︒-=-︒ ⎪⎝⎭ 180,BEC EBC C ∠+∠+∠=︒ 1190180,22DEG BCE αα∴+︒-+∠+∠=︒ 90,DEG BCE ∴∠+∠=︒90,HCG BCE ∴∠+∠=︒190,2ACH ABD α∴∠=︒-=∠ 同(1)可得:,ABD ACH ≌ ,AD AH ∴=,DG GH =.AG DG ∴⊥。
中考数学试题解析之最短路径问题
中考数学试题解析之最短路径问题知识储备:利用轴对称知识解决最短路径问题.典型解析:【例题 1】如图,圆柱形玻璃杯高为14 cm,底面周长为 32 cm,在杯内壁离杯底 5 cm 的点 B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 3 cm 与蜂蜜相对的点 A 处,则蚂蚁从外壁 A 处到内壁 B 处的最短距离为 cm(杯壁厚度不计).【答案】20.【分析】解:如图,将杯子侧面展开,作点 A 关于 EF 的对称点A′,连接A′B,则A′B 即为最短距离,A′B = √(A′D²+BD²)=20(cm).当蚂蚁在一个几何体的表面上爬行时,通常情况下都会考虑将其展开成一个平面,运用勾股定理计算其最短路程,也就是运用“化曲为平” 或“化折为直” 的思想来解决问题.【例题 2】如图,∠AOB = 60°,点 P 是∠AOB 内的定点且OP = √3,若点 M、N 分别是射线OA、OB 上异于点 O 的动点,则△PMN 周长的最小值是()A.3√6/2B.3√3/2C.6D.3【答案】D.【分析】解:如图作 P 点分别关于 OA、OB 的对称点 C、D,连接 CD 分别交 OA、OB 于 M、N,则 MP = MC,NP = ND,OP = OD = OC = √3,∠BOP = ∠BOD,∠AOP = ∠AOC,∴ PN + PM + MN = ND + MN + NC = DC,∠COD = ∠BOP + ∠BOD + ∠AOP + ∠AOC = 2∠AOB = 120°,∴ 此时△PMN 周长最小,作OH⊥CD 于 H,则 CH = DH,∵ ∠OCH = 30°,∴ OH = 1/2OC = √3/2,CH = √3OH= 3/2,∴ CD = 2CH = 3.【例题 3】如图,⊙M 的半径为 2,圆心 M 的坐标为(3,4),点 P 是⊙M 上的任意一点,PA⊥PB,且 PA、PB 与 x 轴分别交于 A、B 两点,若点 A、点 B 关于原点 O 对称,则AB 的最小值为()A.3B.4C.6D.8【答案】C.【分析】解:∵ PA⊥PB,∴ ∠APB = 90°,∵ AO=BO,∴ AB = 2PO,若要使 AB 取得最小值,则 PO 需取得最小值,连接 OM,交⊙M 于点P′,当点 P 位于P′ 位时,OP′ 取得最小值,过点 M 作MQ⊥x 轴于点 Q,则 OQ = 3、MQ = 4,∴ OM = 5,又∵ MP′ = 2,∴ OP′ = 3,∴ AB = 2OP′ = 6.【例题 4】如图,点 P 是边长为 1 的菱形 ABCD 对角线 AC 上的一个动点,点 M、N 分别是 AB、BC 边上的中点,则 MP + PN 的最小值是()A.1/2B.1C.√2D.2【答案】B.【分析】解:如图,作点 M 关于 AC 的对称点M′,连接M′N 交 AC 于 P,此时 MP + NP 有最小值,最小值为M′N 的长.∵ 菱形 ABCD 关于 AC 对称,M 是 AB 边上的中点,∴ M′ 是 AD 的中点,又∵ N 是 BC 边上的中点,∴ AM′∥BN,AM′=BN,∴ 四边形ABNM′ 是平行四边形,∴ M′N = AB = 1,∴ MP + NP = M′N =1,即 MP + NP 的最小值为 1.。
中考数学狙击重难点系列专题25----与平面展开有关的最短路径问题(含答案)
与平面展开有关的最短路径问题1. 如图是一块长、宽、高分别为6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A. cmB. cmC. cmD. 9cm2. 如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A. (4+)cm B. 5cm C. 2cm D. 7cmπ3. 如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A. 15 dmB. 20dmC. 25dmD. 30dm4. 已知AB是圆锥(如图1)底面的直径,P是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从A点出发,沿着圆锥侧面经过PB上一点,最后回到A点.若此蚂蚁所走的路线最短,那么M,N,S,T(M,N,S,T均在PB上)四个点中,它最有可能经过的点是()A. MB. NC. SD. T5. 2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为()A. 8cmB. 10cmC. 12cmD. 15cm6. 如图,圆柱形容器的底面周长是24cm,高为17cm,在外侧底面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A. 20cmB. 8 cmC. cmD. 24cm7. 如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A. 20cmB. 2 cmC. (12+2 )cmD. 18cm8. 如图,长方体的底面是边长为1cm的正方形,高为3cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少________cm.9. 在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为 ________cm.(结果保留π)10. 如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是________.11. 如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m的半圆,其边缘AB=CD=20cm,小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为________m.(π取3)12. 如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面。
初中数学中考复习专题 最短路径问题 24张
●
A' ●
P
B ● l
最短路径问题是初中阶段图论研究中的经典算 法问题,旨在寻找图(有结点和路径组成的)中两 结点之间的最短路径算法形式包括:
一、确定起点的最短路径问题
二、确定终点的最短路径问题
三、确定起点、终点的最短路径问题
四、全局最短路径问题
问题原型 “将军饮马”,“造桥选址”,“费马点”
作B关于l 的对称点B ',作直线 A B'与l 交点即为P
.
图形
原理
三角形任意两边 之差小于第三边 ︱PA-PB︱≤AB'. ︱PA-PB︱最大值 =AB'
问题12 “费马点”
作法
图形
原理
所求点为“费马点”,
既满足
△ABC中每一 内角都小于
∠APB=∠BPC=∠ APC=1200.以AB、
1200,在 △ABC内求一
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的
长
问题9
作法
A
B l
在直线l上求一 点P,使︱PAPB︱的值最小
连AB, 作AB的 中垂线与 直线l的交 点即为P
AC为边向外作等边 △ABD、△ACE,连
点P,使
CD、BE相交于P,
PA+PB+PC最 点P即为所求点.
小.
两点之间 线段最
短.PA+PB+ PC最小值
=CD.
随堂练习一
如图,已知正方形ABCD,点M为BC边的中点,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学三轮易错复习:专题15最短路径问题【例1】(2019·河南南阳一模)如图,已知一次函数y=12x+2的图象与x轴、y轴交于点A、C,与反比例函数y=kx的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.(1)点A的坐标为,点C的坐标为,点P的坐标为;(2)已知点Q在反比例函数y=kx的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周长最小,求出点M的坐标.【变式1-1】(2017·新野一模)已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【变式1-2】(2019·三门峡二模)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA =6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.图1 图2强化精炼:1.(2018·焦作一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标;(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标;(3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标.图1 图22.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c 与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)(1)求抛物线的解析式;(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.3.(2017·预测卷)已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),C(m,6)为反比例函数y 图象上一点.将△AOB绕B点旋转至△A′O′B处.(1)求m的值;(2)求当AO′最短和最长时A′点的坐标.4.(2017·郑州一模)如图,⊙O的半径为2,点O到直线l距离为3,点P是直线l上的一个动点,PQ 切⊙O于点Q,则PQ的最小值为()A B C.2 D.35.(2019·许昌月考)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.6.(2019·郑州外国语模拟)在平面直角坐标系中,抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图,抛物线的顶点为E,EF⊥x轴于F,N是直线EF上一动点,M(m,0)是x轴上一个动点,请直接写出CN+MN+12MB的最小值.7.(2019·郑州实验中学模拟)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出△ANM周长的最小值;若不存在,请说明理由.8.(2018·郑州预测卷)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.9. (2019·郑州联考)如图,在平面直角坐标系中,抛物线y2-与x轴交于A,C (A在C的左侧),点B在抛物线上,其横坐标为1,连接BC,BO,点F为OB中点.(1)求直线BC的函数表达式;(2)若点D为抛物线第四象限上的一个动点,连接BD,CD,点E为x轴上一动点,当△BCD的面积的最大时,求点D的坐标,及|FE﹣DE|的最大值.10.(2019·三门峡一模)反比例函数kyx=(k为常数,且k≠0)的图象经过点A(1,3),B(3,m).(1)求反比例函数的解析式及点B的坐标;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标.参考答案【例1】(2019·河南南阳一模)如图,已知一次函数y=12x+2的图象与x轴、y轴交于点A、C,与反比例函数y=kx的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.(1)点A的坐标为,点C的坐标为,点P的坐标为;(2)已知点Q在反比例函数y=kx的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周长最小,求出点M的坐标.【分析】(1)根据一次函数的解析式求得A、C坐标,由S△ABP=12·AB·BP=9,设P点坐标为(m,12m+2),代入得到点P坐标;(2)先根据反比例函数解析式求得Q点坐标,作Q点(或P点)关于x轴的对称点Q’(P’),连接PQ’(QP’)与x轴的交点即为点M,用待定系数法求出直线PQ’(QP’的解析式).【解析】解:(1)在y=12x+2中,当x=0时,y=2;y=0时,x=-4,∴A点坐标为(-4,0),C点坐标为(0,2),设P点坐标为(m,12m+2),m>0,则AB=m+4,BP=12m+2,∵S△ABP=12·AB·BP=9,即12×(m+4)(12m+2)=9,解得:m=2或m=-10(舍),∴点P的坐标为(2,3);(2)如图,作点Q关于x轴的对称点Q’,连接PQ’交x轴于点M,此时,△PQM的周长最小,,-1),设直线PQ’的解析式为:y=mx+b,得:2361m bm b+=⎧⎨+=-⎩,解得:15mb=-⎧⎨=⎩,即直线PQ’的解析式为:y=-x+5,当y=0时,x=5,即M点坐标为(5,0),∴当△PQM的周长最小时,M点坐标为(5,0).【变式1-1】(2017·新野一模)已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+ 12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴20 4220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,将A(﹣1,0)代入得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12,∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,舍去.故点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).∵A、C关于直线DE对称,∴连接AM交直线DE与点G,连接CG、CM,此时,△CMG的周长最小,设直线AM的函数解析式为y=kx+b,将A(﹣1,0),M(12,94)代入并解得:k=32,b=32,∴直线AM的函数解析式为y=32x+32,∵D为AC的中点,∴D(﹣12,1).可得直线AC的解析式为:y=2x+2,直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在点G,使△CMG的周长最小,G(﹣38,1516).【变式1-2】(2019·三门峡二模)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA =6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.图1 图2【答案】见解析.【解析】解:(1)证明:由旋转性质,得:∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=∴△BDE的周长最小值为:强化精炼:1.(2018·焦作一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标;(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标;(3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标.图1 图2【答案】(1)y=﹣x2+3x+4,(﹣1,0);(2)(3)见解析.【解析】解:(1)∵抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),∴-16a+4b+c=0,c=4,解得:b=3,c=4,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x=﹣1,x=4,即C(﹣1,0);答案为:y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴AQ AOPQ CO=4,即AQ=4PQ,设P(m,﹣m2+3m+4),则PQ=|4﹣(﹣m2+3m+4|=|m2﹣3m|,∴4|m2﹣3m|=m,解得:m1=0(舍去),m2=134,m3=114,∴P点坐标为(134,5116)或(114,7516).(3)设P(m,﹣m2+3m+4),∵抛物线对称轴为:x=32,∴m>32,①当点Q′落在x轴上时,延长QP交x轴于H,则PQ =m 2﹣3m ,由折叠性质知:∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m , ∵∠AQ ′O =∠Q ′PH , ∴△AOQ ′∽△Q ′HP , ∴'''OA AQ Q B PQ =, 即24'3m Q B m m=-,得:Q ′B =4m ﹣12, ∴OQ ′=12﹣3m ,在Rt △AOQ ′中,由勾股定理得:42+(12﹣3m )2=m 2, 解得:m 1=4,m 2=5,即P 点坐标为(4,0),(5,﹣6); ②当点Q ′落在y 轴上,此时以点A 、Q ′、P 、Q 所组成的四边形为正方形, ∴PQ =PQ ′, 即|m 2﹣3m |=m ,得m 1=0(舍去),m 2=4,m 3=2, P 点坐标为(4,0),(2,6), 综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6).2.(2019·中原名校大联考)如图,直线y =﹣x +5与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 与直线y =﹣x +5交于B ,C 两点,已知点D 的坐标为(0,3)(1)求抛物线的解析式;(2)点M ,N 分别是直线BC 和x 轴上的动点,则当△DMN 的周长最小时,求点M ,N 的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0,y=5,当y=0,x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时,x=﹣1或5,∴A(﹣1,0),OB=OC=2,∴∠OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,∵∠OCB=45°,∴CD″∥x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).3.(2017·预测卷)已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),C(m,6)为反比例函数123y=图象上一点.将△AOB绕B点旋转至△A′O′B处.(1)求m的值;(2)求当AO′最短和最长时A′点的坐标.【答案】见解析.【解析】解:(1)∵C(m,6)为反比例函数123y=图象上一点,∴m=23;(2)当AO′最短时A′点的坐标(2+65,85),当AO′最长时A′点的坐标(2﹣65,﹣85).①当点O′在线段AB上时,AO′最短,过点O′作O′N⊥x轴于N,过点A′作A′M⊥O′N于M,∵O′N∥OA,∴''BN O N O B OB OA AB==,即'2425 BN O N==∴BN O ′N 由∠A ′MO ′=∠A ′O ′B =∠O ′NB =90°,得:∠MA ′O ′=∠NO ′B , ∴△A ′MO ′∽△O ′NB , ∴''2'A M O M O N BN==,∴A ′M ,O ′M ,即A ’();②当点O ′在线段AB 延长线上时,AO ′最长,同理可得:(2-5,-5). 4.(2017·郑州一模)如图,⊙O 的半径为2,点O 到直线l 距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )ABC .2D .3【答案】A .【解析】解:由垂线段最短知,当OP ⊥l 时,OP 取最小值,而由PQ PQ 取最小值,过点O 作OP ⊥l 于P ,过P 作⊙O 的切线PQ ,切点为Q ,连接OQ ,则OP =3,OQ =2, ∵PQ 切⊙O 于点Q , ∴∠OQP =90°,由勾股定理得:PQ即PQ故答案为:A.5.(2019·许昌月考)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.【答案】 2.【解析】解:(1)BC为腰,且∠PCB为顶角时,以C为圆心,以BC为半径画弧,点P在弧上,由题意知,点P在菱形外或与A、D重合,不符合题意;(2)以BC为腰,且∠PBC为顶角时,点P在以B为圆心,以AB为半径的圆上,则PD的最小值为:BD-BC BC-BC2;(3)BC为底时,则点P在线段BC的垂直平分线上,由垂线段最短知,PD最小为:1+1=2;∵﹣2<2,∴PD的最小值为: 2.6.(2019·郑州外国语模拟)在平面直角坐标系中,抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图,抛物线的顶点为E,EF⊥x轴于F,N是直线EF上一动点,M(m,0)是x轴上一个动点,请直接写出CN+MN+12MB的最小值.【答案】见解析.【解析】解:(1)将A (-1,0),C (0,3)代入y =-x 2+bx +c 得:103b c c --+=⎧⎨=⎩,解得:23b c =⎧⎨=⎩, 即抛物线的解析式为:y =-x 2+2x +3;(2)首先构造出12MB ,将AB 绕点B 顺时针旋转30°,交y 轴于H ,过M 作MG ⊥BH 于G ,则MG =12MB ,CN +MN +12MB 的最小值即CN +MN +MG 的最小值,由图可知,当C 、N 、M 、G 共线,且CG ⊥BH 时,取得最小值, 即∠HCG =30°, ∵OB =3,∠ABH =30°,∴AH H (0),∴CH∴CG =CH ·cos 30°=32,即CN +MN +12MB .7.(2019·郑州实验中学模拟)如图,已知抛物线y =﹣x 2+bx +c 与一直线相交于A (1,0)、C (﹣2,3)两点,与y 轴交于点N ,其顶点为D .(1)求抛物线及直线AC 的函数关系式;(2)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值;(3)在对称轴上是否存在一点M ,使△ANM 的周长最小.若存在,请求出△ANM 周长的最小值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (1,0),C (﹣2,3)代入y =﹣x 2+bx +c ,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数解析式为:y =﹣x 2﹣2x +3; 设直线AC 的解析式为:y =kx +n ,将A (1,0),C (﹣2,3)代入y =kx +n ,得: k +n =0,-2k +n =3,解得:k =-1,n =1, 即直线AC 的解析式为y =﹣x +1.(2)过点P 作PF ∥y 轴交直线AC 于点F ,设点P (x ,﹣x 2﹣2x +3),则点F (x ,﹣x +1),(﹣2<x <1) ∴PF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∴S △APC =12(x A -x C )•PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278.∴当x =﹣12时,△APC 的面积取最大值,最大值为278.(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).由y=﹣x2﹣2x+3=﹣(x+1)2+4,得:抛物线的对称轴为x=﹣1.∴点C,N关于抛物线的对称轴对称,设直线AC与抛物线的对称轴的交点为点M,∴MN=CM,∴AM+MN=AM+MC=AC,此时△ANM周长有最小值.由勾股定理得:AC=AN∴C△ANM=AM+MN+AN=AC+AN=∴△ANM周长的最小值为8.(2018·郑州预测卷)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.【答案】见解析.【解析】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴C (0,3),E (2,3).将C (0,3),E (2,3)代入y=-x2+bx+c得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3;(2)在y=-x2+2x+3中,当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0),∵AO=1,CO=3,∴在Rt△AOC中,由勾股定理得:AC∵CO=BO=3,∴∠OBC=∠OCB=45°,∴FM=BF=1,∵RO∥MF,∠RAO=∠MAF,∴△ARO∽△AMF,∴RO AOMF AF=,得RO=13,∴CR=OC-OR=3-13=83,AR,∴△ACR的周长为:AC+CR+AR(3)取OF中点A′,连接A′G交直线EF的延长线于点H,过点H作HP′⊥y轴于点P′,连接AP′,当P在P′处时,AP+PH+HG最小,A′(1,0),设直线A′G的解析式为:y=kx+m,将G(4,-5),A′(1,0)代入得:k =53-,b =53, ∴直线A ′G 的解析式为:y =53-x +53. 当x =2时,y =53-, 即点H 的坐标为(2,53-), ∴符合题意的点P 的坐标为(0,53-). 9. (2019·郑州联考)如图,在平面直角坐标系中,抛物线y2-与x 轴交于A ,C (A 在C 的左侧),点B 在抛物线上,其横坐标为1,连接BC ,BO ,点F 为OB 中点.(1)求直线BC 的函数表达式;(2)若点D 为抛物线第四象限上的一个动点,连接BD ,CD ,点E 为x 轴上一动点,当△BCD 的面积的最大时,求点D 的坐标,及|FE ﹣DE |的最大值.【答案】见解析.【解析】解:(1)在y2-中,当y =0,解得:x 1=32,x 2=72, ∴A (32,0),C (72,0) 当x =1时,y =即B (1,),设直线BC 的解析式为y =kx +b得:702k b k b ⎧+=⎪⎨+=⎪⎩,解得k b ⎧=⎪⎪⎨⎪=⎪⎩,直线BC 的解析式为y =x .(2)设点D (m 2-),则点H (m ,m )过点D 作DH ⊥x 轴交BC 于点H ,HD =m 2-+)=29542m ⎫--+⎪⎝⎭,S △BCD =12×DH ×(x C -x B ) =54DH ,∴当m =94时,HD 取最大值,此时S △BCD 的面积取最大值.此时D (94,﹣2).作D 关于x 轴的对称点D ′则D ′(94,连接D ′H 交x 轴于一点E ,此时|D ′E ﹣FE |最大,最大值为D ′F 的长度,∵F (12)∴D ′F ,即|FE ﹣DE |.10.(2019·三门峡一模)反比例函数ky x =(k 为常数,且k ≠0)的图象经过点A (1,3),B (3,m ).(1)求反比例函数的解析式及点B 的坐标;(2)在x 轴上找一点P ,使P A +PB 的值最小,求满足条件的点P 的坐标.【答案】见解析.【解析】解:(1)将点A(1,3)代入kyx=得:k=3,即反比例函数解析式为:3yx=,将点B(3,m)代入3yx=得:m=1,即B(3,1).(2)作点A关于x轴的对称点A’(1,-3),连接A’B交x轴于点P,此时P A+PB最小,如图所示,设直线A’B的解析式为:y=kx+b,∴331k bk b+=-⎧⎨+=⎩,解得:25kb=⎧⎨=-⎩,即直线A’B的解析式为:y=2x-5,当y=0时,x=52,即P(52,0).。