中考数学复习最短路径问题专项训练题(2020年整理)课件
类型11 最短路径类问题(精选20题) 2020年中考数学 三轮冲刺 难点题型突破
最短路径类问题1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm2.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.354.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20B.25C.30D.355.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.46.如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13B.3C.D.27.已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A.B.C.D.8.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)9.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.11.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.12.如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AC=4,D是AC的中点,P是AB上一动点,则CP+PD的最小值为.14.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=12,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,D为BC中点,AD=4,P为AB 上一个动点,当P点运动时,PC+PD的最小值为.16.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.17.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.18.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积19.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.虫乙如果沿路径A﹣E﹣C1爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1,以1厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)20.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.试题解析1.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.2.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2dm,∴这圈金属丝的周长最小为2AC=4dm.故选:A.3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.4.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()dm.A.20B.25C.30D.35解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故选:B.5.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.4解:如图,AB==.故选:C.6.如图所示,是一圆柱体,已知圆柱的高AB=3,底面直径BC=10,现在有一只蚂蚁想要从A处沿圆柱表面爬行到对角C处去捕食,则它爬行最短路径是()(本题π取3).A.13B.3C.D.2解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=5π=15,所以AC==3,此时考虑一种情况就是蚂蚁在圆柱体上方走直径这一情况:即路程为AB+R BC=3+10=13∵13<3∴最短路径为13.故选:A.7.已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A.B.C.D.解:由题意知,底面圆的直径为2r,故底面周长等于2rπ,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得,2rπ=,解得n=120,所以展开图中扇形的圆心角为120°,∴∠AOA′=120°,∴∠1=60°,过C作CF⊥OA,∵C为OB中点,BO=3r,∴OC=r,∵∠1=60°,∴∠OCF=30°,∴FO=r,∴CF2=CO2﹣OF2=r2,∵AO=3r,FO=r,∴AF=r,∴AC2=AF2+FC2=r2+r2=r2,∴AC=,故选:B.8.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为3cm.(结果保留π)解:如图所示,∵无弹性的丝带从A至C,绕了1.5圈,∴展开后AB=1.5×2π=3πcm,BC=3cm,由勾股定理得:AC===3cm.故答案为:3.9.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.解:∵P A=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).11.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.解:过点D作DE⊥AB于点E,过点E作EQ⊥AC于点Q,EQ交AD于点P,连接CP,此时PC+PQ=EQ取最小值,如图所示.在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴AB=═15.∵AD是∠BAC的平分线,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,∴,即,∴EQ=,故答案为.12.如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB平移得到△A'B'D',连接B′C,D′C,则B'C+D'C的最小值是.解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=90°,∴=2,∵将△ABD沿射线DB平移得到△A'B'D',∴B′D′=BD=2,作点C关于BD的对称点G,连接CG交BD于E,连接D′G,则CD′=GD′CE⊥BD,CG=2CE,∵CE===,∴CG=,以B′D′,GD′为邻边作平行四边形B′D′GH,则B′H=D′G=CD′,当C,B′,H在同一条直线上时,CB′+B′H最短,则B'C+D'C的最小值=CH,∵四边形B′D′GH是平行四边形,∴HG=B′D′=2,HG∥B′D′,∴HG⊥CG,∴CH==,故答案为:.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AC=4,D是AC的中点,P是AB上一动点,则CP+PD的最小值为2.本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=12,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为44.解:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G,由两点之间线段最短,此时C′B的值最小最小值为==50,则GH+CH的最小值=50﹣6=44,故答案为:44.15.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,D为BC中点,AD=4,P为AB 上一个动点,当P点运动时,PC+PD的最小值为4.解:设CD=x,∵AC=BC,∠ACB=90°,D为BC中点,∴AC=BC=2x,∵AD=4,∴(2x)2+x2=42,∴x=(负值舍去),∴CD=,∴AC=BC=,作点C关于AB对称点C′,则OC′=OC,连接DC′,交AB于P,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵BD=CD=,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=,根据勾股定理可得DC′==4.故答案为:4.16.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.解:(1)方案1:AC+AB=1+5=6,方案2:,∵,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,(或)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4﹣x)2+128x=1∴,即:;故当DQ=3或时,△ABQ为等腰三角形.17.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是50度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.18.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线.(1)求证:∠BAD=∠CAD;(2)连接CE,写出BD和CE的数量关系.并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积解:(1)∵AB=AC,AD是中线,∴∠BAD=∠CAD;(2)连接EC.结论:BD=CE.理由:∵AD是中线,∴BD=CD,∵AD,AE关于AC对称,∴CD=CE,∴BD=CE;(3)连接BE交AD于点P,此时PE+PC的值最小.∵AB=AC,∠BAC=90°,BD=DC=4,∴AD=AE=4,由题意AE∥BD,AE=AD=BD,∴四边形ABDE是平行四边形,∴P A=PD=2,∵PD⊥BC,∴S△BCP=×8×2=819.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连接AE、EC1.虫乙如果沿路径A﹣E﹣C1爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1,以1厘米/秒的速度在盒子的内部沿棱C1C向下爬行,同时昆虫乙从顶点A以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)解:(1)画出图①中A⇒E2⇒C1,A⇒E3⇒C1,A⇒E4⇒C1中任意一条路径;(E1、E2、E3分别为各棱中点)(说明:无画法,扣2分)(2)由(1)可知,当昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙可以沿下列四种路径中的任意一种爬行:可以看出,图②﹣1与图②﹣2中的路径相等,图②﹣3与图②﹣4中的路径相等.①设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E→F 爬行捕捉到昆虫甲需x秒钟,如图②﹣1,在Rt△ACF中,(2x)2=(10﹣x)2+202,解得x=10;设昆虫甲从顶点C1沿棱C1C向顶点C爬行的同时,昆虫乙从顶点A按路径A→E2→F 爬行捕捉到昆虫甲需y秒钟,如图④﹣4,在Rt△ABF中,(2y)2=(20﹣y)2+102,解得y≈8;所以昆虫乙从顶点A爬行捕捉到昆虫甲至少需8秒钟.[说明]未考虑到A→E→F和图④中其它路径,而直接按路径A→E→F(或A→E→F)计算,并求出正确答案的不扣分.20.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.解:(1)(cm);(2)画图分两种情况:①当横向剪开时:(cm),②当竖向剪开时:(cm);∵,∴最短路程为cm.(3)如图所示:连接AA1,过点O作OD⊥AA1于点D,在Rt△ADO和Rt△A1DO中,∵OA=OA1,∴AD=A1D,∠AOD=∠AOA1=60°,∴AD=OA sin60°=4×=2(cm),∴AA1=2AD=4(cm),∴所求的最短的路程为AA1=cm.。
初中数学中考复习专题 最短路径问题 (24张PPT)
【例题分层探究】 问题 1:边 CD 是定值,此问题可转化为计算 CE+DE 的最小值问题. 问题 2:线段 CD,EF 均为定值,此问题可借助轴对称 求最短路径的方法计算出 DE+CF 的最小值.
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT) 初中数学中考复习专题 最短路径问题 (24张PPT)
∵C(0,-5) ∴C′(0,5) ∴直线C′D为y=-7x+5
D(2,-9)
ME
x
AO
B
∴y=0 , 即-7x+5=0 ∴m=5 ∕ 7
∴x=5 ∕ 7
C D
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT)
中考链接
24 如图 Z8-3,在平面直角坐标系中,矩形 OACB 的
A
B l
在直线l上求一 点P,使 PA+PB值最小
作B关于l 的对称点 B',连A B'与l交 点即为P
图形
原理
两点之间线段 最短
PA+PB最小值 为AB
原理
两点之间线段 最短
PA+PB最小值 为AB
问题3
作法
l1
P
分别作点P关于
l2
两直线的对称
在直线l1、l2上 点P'和P",连 分别求点M P'P"与两直线
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的
初中数学中考复习专题 最短路径问题PPT下载
初中数学中考复习专题 最短路径问题PPT下载
∵ OE∥BC,∴ Rt△D′OE∽Rt△D′BG, 有 OBGE=DD′′OB, ∴ OE=D′DO′·BBG=D′O·(DB′BC-CG)=2×6 1=13, ∴ OF=OE+EF=13+2=73. ∴ 点 E 的坐标为13,0,点 F 的坐标为73,0.
,交l1于N.
初中数学中考复习专题 最短路径问题PPT下载
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的
长
初中数学中考复习专题 最短路径问题PPT下载
问题9
作法
A
B l
在直线l上求一 点P,使︱PAPB︱的值最小
连AB, 作AB的 中垂线与 直线l的交 点即为P
问题10
作法
初中数学中考复习专题 最短路径问题PPT下载
初中数学中考复习专题 最短路径问题PPT下载 初中数学中考复习专题 最短路径问题PPT下载
初中数学中考复习专题 最短路径问题PPT下载
1应该认识到,阅读是学校教育的重要 组成部 分,一 个孩子 如果在 十多年 的教育 历程中 没有养 成阅读 的习惯 、兴趣 和能力 ,一旦 离开校 园,很 可能把 书永远 丢弃在 一边, 这样的 结果一 定是我 们所有 的教育 工作者 不想看 到的。 2对教育来说,阅读是最基础的教学手 段,教 育里最 关键、 最重要 的基石 就是阅 读。 3但是现在,我们的教育在一定程度上 ,还不 够重视 阅读, 尤其是 延伸阅 读和课 外阅读 。 4. “山不在高,有仙则名。水不在深 ,有龙 则灵” 四句, 简洁有 力,类 比“斯 是陋室 ,惟吾 德馨” ,说明 陋室也 可借高 尚之士 散发芬 芳 5. 这是一篇托物言志的铭文,本文言 简义丰 、讲究 修辞。 文章骈 散结合 ,以骈 句为主 ,句式 整齐, 节奏分 明,音 韵和谐 。 6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。 7.能够根据所提供的有关文学名著的 相关语 言信息 推断作 品的作 者、作 品的名 称和人 物形象 ,分析 人物形 象的性 格和作 品的思 想内容 并进行 简要评 价。 8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。 9巧妙结合故事情节,在尖锐的矛盾冲 突中, 充分深 刻显示 人物复 杂内心 世界, 突出了 对人物 性格的 刻画, 使其有 血有肉 ,栩栩 如生。 10保尔身上的人格特征或完美的精神 操守: 自我献 身的精 神、坚 定不移 的信念 、顽强 坚韧的 意志 11把记叙、描写、抒情和议论有机地 融合为 一体, 充满诗 情画意 。如描 写百草 园的景 致,绘 声绘色 ,令人 神往。 12简·爱人生追求有两个基本旋律:富 有激情 、幻想 、反抗 和坚持 不懈的 精神; 对人间 自由幸 福的渴 望和对 更高精 神境界 的追求 。
人教版初中数学 2020年中考数学复习 专题 最短路径问题(36张ppt)
课后精练 6.如图,在锐角△ABC中,AB=4,∠BAC=45°, ∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动 点,则BM+MN的最小值是___2___.
第6题图
课后精练 7.如图,在平面直角坐标系中,平行四边形ABCD 的坐标分别为A(-1,0),B(0,2),C(3,2),D(2,0), 点P是AD边上的一个动点,若点A关于BP的对称点为A′, 则A′C的最小值为__________.
单击此处编辑母版标题样式
的最小值是( C )
A.3
B.4
第 3 题图 C.5 D.6
课后精练
4.如图,矩形 ABCD 中,AB=4,AD=2,E 为边 AD 上一个动点,连接 BE,取 BE 的中点 G,点 G 绕点 E 逆时针旋转 90°得到点 F,连接 CF,则△CEF 面积
的最小值是( B )
答案图
第 4 题图
【提示】如图,过点F作AD的垂线交AD 的延长线于点H;证明△FEH∽△EBA,
∴C(0,-k),OC=k.
∵点 P 在第一象限内的抛物线上,∴∠ABP 为钝角.
因此若两个三角形相似,只可能是△ABC∽△APB
或△ABC∽△PAB.
①若△ABC∽△APB,则有∠BAC=∠PAB.
设 P(x,y),过点 P 作 PN⊥x 轴于点 N,如图 1,
图1
则 ON=x,PN=y.
课堂精讲
中考·数学
2020版
第一部分 系统复习
专题11 最短路径问题
考点解读
最短路径问题在近三年成都中考中都占了重要地位, 都是在大题中结合题目的背景进行综合考查,重在考查 学生对知识应用能力.考查的基本类型有:线段和最小、 差最大、多条线段和最小、点到点的距离与点到直线距 离之和最小、多条线路上速度不同时的最短时间问题, 这些问题大多是利用数形结合、转化思想将问题转化为 两点间线段最短或者垂线段最短来加以解决.
中考数学《最短路径问题2》专题复习
中考压轴题(5)最短路径问题2【典型例题】1.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_______.2.图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.点A、B、M、N均在格点上.要求只用无刻度的直尺,在给定的网格中按要求画图,保留作图痕迹.(1)在图①中的线段MN上确定一点P,使PA+PB的值最小.(2)在图②中的线段MN上确定两点C、D,使CD=2,且AC+CD+DB的值最小.知识点思想方法步骤其他【对应练习】3.如图,在Rt ABC中,90ACB∠︒=,6AC=,8BC=,AD平分CAB∠交BC于D点,E,F分别是AD,AC上的动点,求CE EF+的最小值.4.如图,在锐角ABC中,7AC cm=,221ABCS cm=,AD平分BAC∠,M N、分别是AD和AB 上的动点,求BM MN+的最小值并说明理由.5.如图1,△ABC中AB=AC,DE垂直平分AB分别交AB,AC于点D,E.(1)若∠C=70°,则∠A的大小为;(2)若AE=BC,求∠A的度数;(3)如图2,点M是边BC上的一个定点,若点N在直线DE上,当BN+MN最小时,点N在何处?请用无刻度直尺作出点N的位置.(不需要说明理由,保留作图痕迹)6.如图,在平面直角坐标系xOy 中,点O 为坐标原点,点A 在x 轴上,点(0,6)B ,AB AC =,AB AC ⊥,30BAO ∠=︒.(1)如图①,若点D 为AB 的中点,求OD 的长;(2)如图②,若点E 在x 轴上,且45OEB ∠=︒,求ACE ∠的度数;(3)如图③,设BF 平分ABO ∠交x 轴于点P ,点M 是射线BF 上一动点,点N 是射线PA 上一动点,OM MN -的最大值为m ,判断是否存在这样点M ,N ,使m 的值最小?若存在,请在答题卷上作出点M ,N ,并直接写出作法和m 的最小值;若不存在,请说明理由.7.阅读理解:在平面直角坐标系中,任意两点()11,A x y ,()22,B x y 之间的位置关系有以下三种情形; ①如果ABx 轴,则12y y =,12AB x x =-②如果AB y ∥轴,则12x x =,12AB y y =-③如果AB 与x 轴、y 轴均不平行,如图,过点A 作与x 轴的平行线与过点B 作与y 轴的平行线相交于点C ,则点C 坐标为()21,x y ,由①得12AC x x =-;由②得12BC y y =-;根据勾股定理可得平面直角坐标系中任意两点的距离公式()()221212AB x x y y =-+-. (1)若点A 坐标为(4,6),点B 坐标为(1,2)则AB =________; (2)若点A 坐标为(3,3),点B 坐标为(6,6),点P 是x 轴上的动点,直接写出AP PB +最小值=_______;(3)已知22(6)16(3)4M x x =-++-+,22(6)16(3)4N x x =-+--+根据数形结合,求出M的最小值?N 的最大值?。
2023年九年级数学中考专题复习---最短距离问题课件
挑战自我
某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困 难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。 如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计), 点M表示这所中学。点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点 M的南偏西60°的 km处。为使供水站铺设到另两处的管道长度之和最短,现有如下三种 方案:综上,你认为把供水站建在何处,所需铺设的管道最短? 方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画 出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值.
挑战自我
某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问 题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。如图,甲、 乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这 所中学。点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60° 的 km处。为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:综上,你认 为把供水站建在何处,所需铺设的管道最短? 方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值
学以致用
2:如图,在菱形ABCD中,AB=4,E为BC 上的任意一点,∠BAD=1200,点P在BD 上,则PE+PC的最小值是_____.
A
B
P'
∟
PD
E '
E
C
跟上题一样吗?
小组讨论
3.菱形ABCD中,AB=4,∠A=120°,点E,P,F分别为线 段BC,CD,BD上的任意一点,则PE+PF的最小值是_____
2020年中考专项复习 最短路径问题 课件 (共13张PPT)
M
C
●
A N
F
D
●
A1 E
B
●
平移、对称
最短路径问题
案二例2:
如图,A(2,-3),B(4,-1),
若P(p,0)是x轴上的一个动点,则当 p=____时, △PAB的周长最短。
解:B 点关于x轴的对称点B(1 4,1) PA+PB的和最短。
令直线yAB1 kx b, 则
y ● B1
解
4k 2k
要求四边形MNFE F/
F
的周长最小?
N
E
M
E/
把三条线段转移 到同一条直线上 就好了!
第二步 计算——勾股定理
E' F' 32 42 5
EF 12 22 5
根据两点之间线段最短 找到动点的位置,
因此四边形MNFE的周长的最小值为5 5.
例2.如图,∠AOB=45,角内有一动 点P ,PO=10,在AO,BO上有两动点 Q,R,求△PQR周长的最小值。
D
B
R P
O
Q
A
E
(1,2)
(3,1)
思维拓展:在x轴、y轴上是否分别存 在点M、N,使得四边形MNFE的周长最
小?如果存在,求出周长的最小值; 如果不存在,请说明理由.
第一步 寻找、构造几何模型
解决平面几何最值问题的常用的方法有: (1)应用两点间线段最短的公理(含应用三角形 的三边关系)求最值; (2)应用垂线段最短的性质求最值; (3)应用轴对称的性质求最值; (4)应用二次函数求最值; (5)应用其它知识求最值。
解题步骤 第一步 寻找、构造几何模型
第二步 计算
基本问题类型
A
初中数学最短路径问题专练习题附答案
最短路径问题专练学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A1B 12C .1D .12【答案】B【解析】【分析】 如图所示,取AB 的中点N ,连接ON ,MN ,根据三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB 的中点N ,连接ON ,MN ,三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,∵(2,0),(0,2)A B ,则∵ABO 为等腰直角三角形,N 为AB 的中点,∵ON=12AB = 又∵M 为AC 的中点,∵MN 为∵ABC 的中位线,BC=1,则MN=1212BC =,12,∵OM 12【点睛】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大.2.如图,在∵ABC中,AB=2,∵ABC=60°,∵ACB=45°,D是BC的中点,直线l经过点D,AE∵l,BF∵l,垂足分别为E,F,则AE+BF的最大值为()B.C.D.A【答案】A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【详解】解:如图,过点C作CK∵l于点K,过点A作AH∵BC于点H,在Rt∵AHB中,∵BH =1,AH在Rt∵AHC 中,∵ACB =45°,∵AC=∵点D 为BC 中点,∵BD =CD ,在∵BFD 与∵CKD 中,90BFD CKD BDF CDK BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∵∵BFD∵∵CKD (AAS ),∵BF =CK ,延长AE ,过点C 作CN∵AE 于点N ,可得AE+BF =AE+CK =AE+EN =AN ,在Rt∵ACN 中,AN <AC ,当直线l∵AC,综上所述,AE+BF.故选:A .【点睛】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.3.如图,在ABC 中,AB AC =,边AC 的垂直平分线MN 分别交AB ,AC 于点M ,N ,点D 是边BC 的中点,点P 是MN 上任意一点,连接PD ,PC ,若A α∠=,CPD β∠=,PCD 周长最小时,α,β之间的关系是( )A .αβ>B .αβ<C .αβ=D .90αβ=︒-【答案】C连接AP ,根据线段垂直垂直平分线的性质可知P A =PC ,PAC PCA ∠=∠.由PCD L DP PC CD =++,即得出PCD LDP PA CD =++,由此可知当A 、P 、D 在同一直线上时,PCD L 最小.再根据等腰三角形“三线合一”的性质可知AD 为BAC ∠的平分线,即1122PAC A α∠=∠=.最后根据三角形外角性质即得出PAC PCA β=∠+∠,由此即可判断αβ=.【详解】如图,连接AP ,∵直线MN 是线段AC 的垂直平分线,且P 在线段MN 上,∵P A =PC ,PAC PCA ∠=∠.∵PCD LDP PC CD =++, ∵PCDL DP PA CD =++. 由图可知CD 为定值,当A 、P 、D 在同一直线上时,DP PA +最小,即为AD 的长, ∵此时PCD L 最小.∵D 是边BC 的中点,AB =AC ,∵AD 为BAC ∠的平分线, ∵1122PAC A α∠=∠=. ∵CPD PAC PCA ∠=∠+∠,即PAC PCA β=∠+∠,∵αβ=.本题考查线段垂直垂直平分线的性质,等腰三角形的性质,角平分线的定义以及三角形外角性质.根据题意理解当A 、P 、D 在同一直线上时PCD L 最小是解题关键. 4.如图,在ABC 中,3AB =,4AC =,AB AC ⊥,EF 垂直平分BC ,点P 为直线EF 上一动点,则ABP △周长的最小值是( )A .6B .7C .8D .128【答案】B【解析】【分析】 根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点E 重合时,AP BP +的最小值,求出AC 长度即可得到结论.【详解】解:设AC 交EF 于点E ,连接CP ,EF 垂直平分BC ,B ∴、C 关于EF 对称,∵CP BP =,∵CP AP AC +≥∵BP AP AC +≥,∴当P 和E 重合时,AP BP +的值最小,最小值等于AC 的长,ABP ∴∆周长的最小值是437AC AB +=+=.故选:B .【点睛】题的关键是找出P的位置.5.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()cmA B.13cm C.D.【答案】B【解析】【分析】将容器侧面展开,作A点关于EF的对称点A′,根据两点之间线段最短即可知A′B的长度即为最短距离.利用勾股定理求出A′B即可.【详解】如图:将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∵A′D=5cm,A′E=AE=3,BD=12﹣3+A′E=12cm,∵A′B13cm.故选:B.【点睛】和勾股定理进行求解是解题的关键.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则MC+MD的最小值为()A.6B.8C.10D.12【答案】B【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD∵BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵∵ABC是等腰三角形,点D是BC边的中点,∵AD∵BC,∵S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∵点C关于直线EF的对称点为点A,∵AD的长为CM+MD的最小值,∵MC+MD的最小值为8.故选:B.【点睛】7.如图,在ABC 中,10AB AC BC ==,,60ABC S =△,AD BC ⊥于点D ,EF 垂直平分AB ,在EF 上确定一点P ,使PB PD +最小( )A .10B .11C .12D .13【答案】C【解析】【分析】 根据三角形的面积公式得到6AD =,由EF 垂直平分AB ,得到点A ,B 关于直线EF 对称,于是得到AD 的长度PB PD =+的最小值,即可得到结论.【详解】解:∵AB AC =,10BC =,60ABC S =△,AD BC ⊥, ∵1=602BC AD ⨯, ∵12AD =,∵EF 垂直平分AB ,∵点A ,B 关于直线EF 对称,∵EF 与AD 的交点即为P 的,此时PA PB =,AD 的长度PB PD =+的最小值, 即PB PD +的最小值为12,故选:C .【点睛】本题考查了轴对称﹣最短路线问题,线段的垂直平分线的性质,等腰三角形的性质,知道AD 的长度PB PD =+的最小值是解题的关键.分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则∵CDM周长的最小值为()A.6B.8C.10D.12【答案】C【解析】【分析】根据题意,点A,点C关于EF对称,连接AD,交EF于点M,则△CDM周长的最小值AD+DC,利用三角形面积公式计算AD即可.【详解】∵AC的垂直平分线EF分别交AC,AB边于E,F点,∵点A,点C关于EF对称,连接AD,交EF于点M,则△CDM周长的最小值是AD+DC,∵AB=AC,BC=4,△ABC的面积是16,点D为BC边的中点,∵AD∵BC,DC=2,11416 22BC AD AD=⨯⨯=,解得AD=8,∵△CDM周长的最小值为:AD+DC=8+2=10,故选C.【点睛】本题考查了线段的垂直平分线,等腰三角形的性质,将军饮马河原理,三角形的面积公式,熟练掌握等腰三角形的性质,将军饮马河原理是解题的关键.9.如图,菱形ABCD的边长为9,面积为P、E分别为线段BD、BC上的动点,则PE+PC的最小值为___.【答案】【解析】【分析】如图,连接AP,过点A作AH∵BC于H.说明P A=PC,再根据垂线段最短,解决问题即可.【详解】解:如图,连接AP,过点A作AH∵BC于H.∵四边形ABCD是菱形,∵A、C关于BD对称,∵P A=PC,∵PE+PC=AP+PE,∵AP+PE≥AH,∵S菱形ABCD=BC•AH,∵AH ,∵PE+PC∵PE+PC的最小值为故答案为:.垂线段最短解决最值问题,属于中考常考题型.三、解答题10.在平面直角坐标系xOy 中,点A 、B 分别在y 轴和x 轴上,已知点A (0,4).以AB 为直角边在AB 左侧作等腰直角△ABC ,∵CAB =90°.(1)当点B 在x 轴正半轴上,且AB =8时∵求AB 解析式;∵求C 点坐标;(2)当点B 在x 轴上运动时,连接OC ,求AC +OC 的最小值及此时B 点坐标.【答案】(1)∵4y =+;∵C (4,4--(2)(2,0)B【解析】【分析】(1)∵根据(0,4)A ,8AB =,推出OB B ,0),设直线AB 的解析式为4y kx =+,将A 、B 坐标代入即可求出AB 解析式;∵过点A 作x 轴的平行线,分别过点C 、B 作y 轴的平行线,交于G 、H .则AHB CGA ∆∆,所以4AG HB ==,CG AH ==C (4,4--; (2)由AGC BHA ∆≅∆可知4AG =,点C 在直线4x =-上运动,作点O 关于直线4x =-的对称点O ',所以AC OC AC O C '+=+,AC OC +的最小值为AO '的长度,此时2OB AH CG ===,即可求出B 坐标.(1)解:∵(0,4)A ,8AB =,OB ∴B ∴0),设直线AB 的解析式为4y kx =+,04∴=+,k =AB ∴解析式:4y x =+; ∵过点A 作x 轴的平行线,与分别过点C 、B 作y 轴的平行线交于G 、H .则AHB CGA ∆∆()AAS4AG HB ∴==,CG AH ==C ∴(4,4--;(2)由AGC BHA ∆≅∆可知4AG =,(B 在x 轴负半轴同理可说明)点C 在直线4x =-上运动,作点O 关于直线4x =-的对称点O ',4OC O C '∴==,448OO '=+=,AC OC AC O C '∴+=+.AC OC +的最小值为AO '=此时2OB AH CG ===,(2,0)B ∴.【点睛】 本题主要考查等腰直角三角形的性质、利用轴对称求最短线路.这里构造三角形全等找到点C的运动轨迹是关键.。
中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)
中考数学复习《填空压轴题——最短路径问题》专项测试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________1.如图所示,某乡镇A、B、C、D、E五个村庄位于同一条笔直的公路边,相邻两个村庄的距离分别为AB =1千米,BC=3千米,CD=2千米,DE=1.5千米.乡村扶贫改造期间,该乡镇打算在此间新建一个便民服务点M,使得五个村庄到便民服务点的距离之和最小,则这个最小值为千米.2.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万元,若在河流CD上选择水厂的位置M,使铺设水管的费用最节省,则总费用是万元.3.已知点A(2,-4),直线y=-x-2与y轴交于点B,在x轴上找一点P,使得P A+PB的值最小,则点P的坐标为.4.如图,长方体的长、宽、高分别为8、4、5,一只蚂蚁沿长方体表面从顶点A爬到顶点B,则它走过的路程最短为.5.如图,圆柱的底面半径为4cm,高为7cm,蚂蚁在圆柱侧面爬行,从A点到B点,最短的路程是厘米.(保留π)6.如图,在等腰△ABC中AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.7.如图,在矩形ABCD中AB=4,AD=6点P在边AD上,点Q在边BC上,且AP=CQ,连接CP,QD则PC+QD 的最小值等于.8.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF则DF+CF的最小值是.9.如图,在平行四边形ABCD中AB=6,BC=8,∠ABC=60°,在线段AD上取一点E,使得DE=2,连接BQ的最小值为.BE,在线段AE,BE上分别取一点P,Q,则PQ+1210.如图,在菱形ABCD中AB=4 ∠DAB=60° 点E是对角线AC上一个动点点F是边AB上一个动点连接EF EB则EB+EF的最小值为.11.等腰直角∠ABC中∠C=90° AC=BC=6 D为线段AC上一动点连接BD过点C作CH∠BD于H连接AH则AH的最小值为.12.如图1 一只蚂蚁从圆锥底端点A出发绕圆锥表面爬行一周后回到点A将圆锥沿母线OA剪开其侧面展开图如图2所示若∠AOA′=120° OA=√3则蚂蚁爬行的最短距离是.13.如图已知⊙O中直径AB=8√3半径OC⊥AB点D是半圆AB的三等分点点P是半径OC上的动点当PB+PD的值最小时PO的长为.14.如图矩形OABC在平面直角坐标系中的位置如图所示点B的坐标为(3,4)D是OA的中点点E在AB上当△CDE的周长最小时则点E的坐标为.15.如图等边△ABC和等边△A′B′C的边长都是4 点B,C,B′在同一条直线上点P在线段A′C上则AP+BP的最小值为.16.如图∠ABC=20∘点D E分别在射线BC BA上且BD=3BE=3点M N分别是射线BA BC上的动点求DM+MN+NE的最小值为.17.如图直线y=x+1与x轴y轴分别相交于点A和点B若点P(1 m)使得P A+PB的值最小点Q(1 n)使得|QA−QB|的值最大则m+n=.18.如图已知A(1 1)B(3 9)是抛物线y=x2上的两点在y轴上有一动点P当△P AB的周长最小时则此时△P AB的面积为.19.如图在四边形ABCD中∠BAD=∠B=∠D=90° AD=AB=4 E是AD中点M是边BC上的一个动点N是边CD上的一个动点则AM+MN+EN的最小值是.20.已知如图:抛物线y=12x2−32x−2与x轴的交点为A B.与y轴的交点为C.以AB为直径的⊙P交y轴于C D.点M为线段AB上一动点点N为线段BC一动点则MC+MN的最小值是.参考答案1.解:当便民服务点在A或E时由A E为两端点可知此时五个村庄到便民服务点的距离之和最长;当便民服务点M在B时五个村庄到便民服务点的距离之和为AB+BC+BD+BE=1+3+(3+2)+(3+2+1.5) =15.5千米;当便民服务点M在C时五个村庄到便民服务点的距离之和为AC+BC+CD+CE=(1+3)+3+2+ (2+1.5)=12.5千米;当便民服务点M在D时五个村庄到便民服务点的距离之和为AD+BD+CD+DE=(1+3+2)+(3+2) +2+1.5=14.5千米.综上可知当便民服务点M在C时五个村庄到便民服务点的距离之和最小最小值为12.5千米.故答案为:12.5.2.解:作点A关于CD的对称点A′连接A′B与CD交于点M过点A′作A′K⊥BD交BD延长线于点K∠A′C=AC=10千米AM=A′M∠AM+BM=A′M+BM≥A′B即AM+BM的最小值为A′B的长此时铺设水管的费用最节省∠BD⊥CD,AA′⊥CD,A′C⊥A′K∠∠A′CD=∠CDK=∠CA′K=90°∠四边形A′CDK是矩形∠DK=A ′C=10千米 A ′K=CD=30千米∠BK=BD+DK=40千米∠A ′B=√302+402=50千米∠此时总费用为50×3=150万元.故答案为:1503.解:作点B 关于x 轴的对称点B ′ 连接AB ′ 交x 轴于P 连接PB 此时P A +PB 的值最小.当x =2时 y =﹣2-2=﹣4∠点A (2 ﹣4)在直线y =﹣x -2上当x =0时,y =﹣2∠点B 的坐标是(0 ﹣2)∠点B ′的坐标是(0 2)设直线AB ′的解析式为y =kx +b把A (2 ﹣4) B ′(0 2)代入得到{b =22k +b =−4解得{k =−3b =2∠直线AB ′的解析式为y =﹣3x +2令y =0 得到x =23 ∠P (23 0)故答案为:(23 0).4.解:第一种情况:把我们所看到的前面和右面组成一个平面则这个长方形的长和宽分别是12和5则所走的最短线段是√122+52=13;第二种情况:把我们看到的右面与上面组成一个长方形则这个长方形的长和宽分别是13和4所以走的最短线段是√132+42=√185;第三种情况:把我们所看到的上面和后面组成一个长方形则这个长方形的长和宽分别是9和8所以走的最短线段是√92+82=√145;三种情况比较而言第三种情况最短.故答案为:√145.5.解:沿过A点和过B点的母线剪开展成平面连接AB则A B的长是蚂蚁在圆柱表面从A点爬到B点的最短路程×2×4π=4πcm BC = 7cm∠AC = 12∠AB=√AC2+BC2=√(4π)2+72=√49+16π2故答案为:√49+16π26.解:如图作BH⊥AC垂足为H交AD于N′点过N′点作M′N′⊥AB垂足为M′则BN′+M′N′为所求的最小值.∠AB=AC=6AD⊥BC∠AD是∠BAC的平分线∠N′H=M′N′∠BN′+M′N′=BN′+N′H=BH∠BH⊥AC∠BH是点B到直线AC的最短距离∠AB=AC=6∠ACB=75°∠∠ABC=∠ACB=75°∠∠BAC=180°−∠ABC−∠ACB=30°∠BH=12AB=12×6=3.∠MN+BN的最小值是3.故答案为:3.7.解:如图连接BP在矩形ABCD中AD∥BC AD=BC=6∠AP=CQ∠AD−AP=BC−CQ∠DP=QB DP∥BQ∠四边形DPBQ是平行四边形∠PB∥DQ PB=DQ则PC+QD=PC+PB则PC+QD的最小值转化为PC+PB的最小值在BA的延长线上截取AE=AB=4 连接PE则BE=2AB=8∠P A∠BE∠P A是BE的垂直平分线∠PB=PE∠PC+PB=PC+PE连接CE则PC+QD=PC+PB=PC+PE≥CE∠CE=√BE2+BC2=√82+62=10∠PC+PB的最小值为10即PC+QD的最小值为10故答案为:10.8.解:连接BF过点F作FG⊥AB交AB延长线于点G∵EF⊥DE ∴∠AED+∠FEG=90°∵∠AED+∠EDA=90°∴∠EDA=∠FEG在△AED和△GFE中{∠A=∠FGE∠EDA=∠FEGDE=EF∴ΔAED≌ΔGFE∴FG=AE ∴F点在射线BF上运动作点C关于BF的对称点C′∵EG=DA FG=AE∴AE=BG∴BG=FG∴∠FBG=45°∴∠CBF=45°∴C′点在AB的延长线上当D F C′三点共线时DF+CF=DC′最小在RtΔADC′中AD=4AC′=AB+BC′=AB+BC=8∴DC′=4√5∴DF+CF的最小值为4√5.故答案为:4√5.9.解:在平行四边形ABCD中AD∠BC AD=BC∠∠AEB=∠EBC∠AB=6 BC=8 DE=2∠AE=8-2=6∠AE=AB∠∠AEB=∠ABE∠∠ABE=∠EBC∠∠ABC=60°∠∠EBC=30°过点Q作QM∠BC于点M过点P作PN∠BC于点N过点A作AH∠BC于点H如图所示:BQ则QM=12BQ最小值即为PN的长∠PQ+12∠AD∠BC∠PN=AH∠∠BAH=30° AB=6∠BH=3根据勾股定理可得AH=PN=3√3BQ的最小值为3√3∠PQ+12故答案为:3√3.10.解:连接DE DF.∠四边形ABCD是菱形∠DE=BE∠EB+EF=ED+EF当D E F在同一直线上且DF⊥AB时EB+EF最短∠AB=4 ∠DAB=60°∠AFD=90°∠∠ADF=30°AD=2∠AF=12∠DF=√AD2−AF2=√42−22=2√3即EB+EF的最小值为2√3.故答案为:2√3.11.解:如图以BC为直径作圆∠CH∠BD∠CHB=90°∠点H在圆上OA=√62+32=3√5OH=3当点O,H,A三点共线时AH最小为OA−OH=3√5−3故答案为:3√5−312.解:如图连接AA′作OB⊥AA′于点B∠AA′即为蚂蚁爬行的最短距离∠OA =OA′ ∠AOA′=120°∠∠OAB =30°在△OAB 中OB ⊥AA′ ∠OAB =30°∠OB =12OA =12×√3=√32 ∠AB =√OA 2−OB 2=√(√3)2−(√32)2=32在△AOA′中OA =OA′ OB ⊥AA′∠AB =A′B∠AA′=2AB =2×32=3. ∠蚂蚁爬行的最短距离为3.故答案为:313.解:连接DO ,DA ,DA 与OC 交于点P∠OC ⊥AB 点O 为AB 的中点∠点B 关于OC 的对称点是点A∠DA 与OC 的交点P 使得PB +PD 的值最小∠点D 是半圆AB ⏜的三等分点∠∠DOB =60°∠∠DAB =30°∠∠AOP =90°,OA =12AB AB =8√3 ∠PAO =30°∠OA =4√3∠OP=OA·tan30°=4√3×√33=4故答案为:4.14.解:如图作点D关于直线AB的对称点H连接CH与AB的交点为E此时△CDE的周长最小.∠点B的坐标为(3,4)D OH=是OA的中点∠A(3,0)D(32,0)C(0,4)∠OH=3+32=92∠H(92,0)设直线CH的解析式为y=kx+4把H(92,0)代入得0=92k+4∠k=−89∠直线CH的解析式为y=−89x+4∠x=3时y=43∠点E坐标(3,43)故答案为:(3,43).15.解:如图连接PB′∠△ABC和△A′B′C都是边长为4的等边三角形∠AC=B′C,∠ACB=∠A′CB′=60°∠∠ACA′=60°∠∠ACA′=∠A′CB′在△ACP和△B′CP中{AC=B′C∠ACA′=∠A′CB′CP=CP∠△ACP≌△B′CP(SAS)∠AP=B′P∠AP+BP=BP+B′P∠当点P与点C重合时点A与点B′关于A′C对称AP+BP的值最小正好等于BB′的长∠AP+BP的最小值为4+4=8故答案为:8.16.解:如图所示:作点D关于AB的对称点G作点E关于BC的对称点H连接GH交AB于点M交BC于点N连接DM EN此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3∠GBE=∠DBE=20°BH=BE=3∠HBD=∠EBD=20°∠∠GBH=60°∠ΔBGH是等边三角形∠GH=GB=HB=3∠DM+MN+NE的最小值为3.故答案为:3.17.解:过点(1 0)作x轴的垂线l则点P(1 m)点Q(1 n)在直线l上直线l交直线AB于点Q此时|QA-QB|=AB的值最大∠直线AB 的解析式为y =x +1令x =1 则y =2∠Q 的坐标为(1 2)∠n =2作出A 点关于x 轴的对称点A ′ 连接A ′B 交直线l 于点P 此时P A +PB 的值最小; 设直线A ′B 的解析式为y =kx +b∠直线AB 的解析式为y =x +1∠A (-1 0) B (0 1)∠A ′(3 0)∠{3k +b =0b =1 解得{k =13b =1∠直线A ′B 的解析式为y =-13x +1 令x =1 则y =23∠P 的坐标为(1 23). ∠m =23 ∠m +n =2+23=83. 故答案为:83.18.解:如图 作出B 关于y 轴的对称点B ′ 则BB ′∠y 轴于点H 连接AB ′交y 轴于P则点P 就是使△P AB 的周长最小时的位置.∠抛物线y =x 2的对称轴是y 轴 B B ′关于y 轴对称∠点P 在抛物线y =x 2上 且PB =PB ′∠PA +PB =PA +PB ′=AB ′∠此时△P AB 的周长最小∠B (3 9)∠B ′(﹣3 9)∠BB ′=6 点H 的坐标是(0 9)∠A (1 1)∠点A 到BB ′的距离为9-1=8设直线A B ′的直线方程为y =kx +b 把点A 和点B ′的坐标代入后得到 ∠{−3k +b =9k +b =1解得{k =−2b =3∠直线A B ′的解析式为y =﹣2x +3当x =0时 y =3∠P 点的坐标为(0 3)∠PH =OH -OP =6此时S △PAB =S △ABB ′−S △PBB ′=12×6×8−12×6×6=6即△P AB 的面积为6故答案为:6.19.解:如图 作A 点关于BC 的对称点A 1 连接A 1M 作E 点关于DC 的对称点E 1连接E 1N∠∠B =∠D =90° 点A 和点A 1关于BC 对称 点E 和点E 1关于DC 对称 ∠AM =A 1M EN =E 1N∠AM +MN +EN =A 1M +MN +E 1N ≥A 1E 1∠AM +MN +EN 的最小值是A 1E 1∠AD=AB=4 E是AD中点∠AB=A1B=4ED=E1D=2∠AA1=8AE1=6∠∠BAD=90°∠A1E1=√62+82=10故答案为:10.20.解:当y=0时12x2−32x−2=0解得x1=−1x2=4∠A(−1,0)B(4,0)当x=0时y=−2∠C(0,−2)∠AB⊥CD∠OD=OC=2∠BC=√22+42=2√5过点D作DN′⊥BC于N′交AB于M′连接BD如图∠AB⊥CD∠M′C=M′D∠M′C+M′N′=M′D+M′N′=DN′此时MC+MN的值最小∠1 2BC·DN′=12CD·OB∠DN′=2√5=8√55即MC+MN的最小值为8√55故答案为:8√55.。
初中数学中考复习专题 最短路径问题 24张
●
A' ●
P
B ● l
最短路径问题是初中阶段图论研究中的经典算 法问题,旨在寻找图(有结点和路径组成的)中两 结点之间的最短路径算法形式包括:
一、确定起点的最短路径问题
二、确定终点的最短路径问题
三、确定起点、终点的最短路径问题
四、全局最短路径问题
问题原型 “将军饮马”,“造桥选址”,“费马点”
作B关于l 的对称点B ',作直线 A B'与l 交点即为P
.
图形
原理
三角形任意两边 之差小于第三边 ︱PA-PB︱≤AB'. ︱PA-PB︱最大值 =AB'
问题12 “费马点”
作法
图形
原理
所求点为“费马点”,
既满足
△ABC中每一 内角都小于
∠APB=∠BPC=∠ APC=1200.以AB、
1200,在 △ABC内求一
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的
长
问题9
作法
A
B l
在直线l上求一 点P,使︱PAPB︱的值最小
连AB, 作AB的 中垂线与 直线l的交 点即为P
AC为边向外作等边 △ABD、△ACE,连
点P,使
CD、BE相交于P,
PA+PB+PC最 点P即为所求点.
小.
两点之间 线段最
短.PA+PB+ PC最小值
=CD.
随堂练习一
如图,已知正方形ABCD,点M为BC边的中点,
人教版初中数学《中考专题复习最短路径问题》
复习目标
1.能够利用垂线段最短原理确定最 短路径 2.能够利用“两点之间、线段最短” 原理确定最短路径 3.熟练构建“对称模型”确定最短 路径
垂线段最短
两点之间, 线段最短
两点之间, 线段最短
问题1:如图1所示,A为植树地点,L为水渠, 图1 图2 图3 将取水口 C设在L上何处,才能使铺设的水管 最短? 问题2:如图 2所示,A、B两点为植树地点,L为 我们通常利用轴对称、平移等变换把不在 水渠,将取水口 C设在L上何处,才能使铺设的水管 一条直线上的两条线段转化到一条直线上, 总和AC+BC 最短? 从而作出最短路径的方法来解决问题. 问题3:如图3所示,A、B两点为植树地点,L为 水渠,将取水口C设在L上何处,才能使铺设的水管 总和AC+BC最短?
课堂小结
这节课你有哪些收获呢? 与大家分享一下吧!
拓广探索
如图,正方形ABCD的边长是4,∠DAC的平分线 交DC于点E,若点P、Q分别是AD和AE上的动点, 则DQ+PQ的最小值( C ) A.2 B.4 C. 2 2 D. 4 2
作业布置: 如图,MN是半径为1的⊙O的直径,点A在⊙O上, ∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点, 则PA题目已知的两个定点中,先 找原图中是否存在已知定点的对称 1.如图,等边△ABC 中,AB=2,点E是AB的中点, 点,若有,直接连接即可。 AD是高,P为AD上一点,则 BP+PE的最小值等 (先找后作)
.
步骤: 1.抽象模型 2.作或者找对称点 3.连线段定交点 4.求线段长度
2.如图所示,正方形ABCD的面积为16,△ABE是等边三角形, 点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的 和最小,则这个最小值为( )
培训教材《课题学习最短路径问题》完美版PPT1
轴转 对 称化
直线同侧两点到直线上 一点的距离和最小问题
问题解决
八年级(3)班同学做游戏,在活动 区域边放了一些球(如下图),则小明 按怎样的路线跑,去捡哪个位置的球, 才能最快拿到球跑到目的地A?
A/
。
A
C B小明
l
巩固新知
龟兔赛跑新规则:参赛者从A点出发到达直线
练 a上任意一点后,再回到直线a同侧的终点B,最
一点C,使它到A、B两点的距离之和最小?
A C L
两点之间,线段最短。 B
探究二
如图,直线L同侧有两点A、B。 在直线L上求一点C,使它到A、B两
点的距离之和最小? B
A
l
C
B/
探究1与探究2的区别与联系
探究1 A.
C
直线异侧两点到直线上 L 一点的距离和最小问题
探究2 A.
.B
B.
L
C . B’
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
谢谢! ②指数是1时,不要误以为没有指数;
(第3三)步锐:角解三这角个函一数元一次方程,得到一个未知数的值. 【注详意解 以】下解几:点(:1) 分两种情况: (A.1平)均角数的大小B与. 中边位的数长短无C关. 众,数只与构成D角. 方的差两条射线的幅度大小有关。 2②2相.我同们字规母定相,乘若,关运于用x的同一底元数一的次乘方法程法a则x=;b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程 2∴xO=A4=是OC差;解方程. ○柱1求解析式:解析式未知,但知道直线上两个点坐标,将点坐标看作x、y值代入解析式组成含有k、b两个未知数的方程组,求出k、b 的3、值由在函带数回关解系析式式画中其就图求像出的解一析般式步了骤。 ①②单相项 同式字:母都相是乘数,字运和用字同母底乘数积的的乘形法式法的则代;数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做 这Ste个p单2:项描式点的(系在数直。角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 【单点项睛 式】乘此以题多考项查式了,一是次通函过数乘与法一对元加一法次的不分等配式律的,关把系它:转从化函为数单的项角式度乘看以,单就项是式寻,求即使单一项次式函与数多项y=式kx相+b乘的,值就大是于用(单或项小式于去)乘0的多自项变式量 x的的每取一值项范,围再;把从所函得数的图积象相的加角。度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点 坐此标题以 主及要利考用查数学形生结对合平的行思四想边.形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须 是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
《课题学习最短路径问题》PPT精品实用版初中数学1
AC上的点,你能在BC上确定一点P,
为什么要做它的对称点呢?
阿拉尔中学 黎莉 如图,王亮同学从A点到B点有三条线路,哪条最短?
情境1:如图,小明家和小强家分别在直线公路的两侧,在L上求一点C,使得这个点到小明家和小强家的距离和最短,即AC+BC最小 。
活动1:两点在一条直线异侧:
情境1:如图,小明家和小强家分别在直线公路 的两侧,在L上求一点C,使得这个点到小明家和 小强家的距离和最短,即AC+BC最小。
当点C在直线 l 一条直线异侧:
轴对称
在△AB′C′中,AB′< AC′+B′C′,
证明:(1)两点在一条直线异侧:
证明:(1)两点在一条直线异侧:
课题学习 情境1:如图,小明家和小强家分别在直线公路的两侧,在L上求一点C,使得这个点到小明家和小强家的距离和最短,即AC+BC最小
②感悟和体会转化的思想
连接AC',BC' 你能否证明 点拨第30页习题1,2,5题.
如图,王亮同学从A点到B点有三条线路,哪条最短?
C′ C
AC'+BC'>AC+BC 如图,点A是直线 l 外一点,点A到直线的所有线路中,最短的是?
①学习了利用轴对称解决最短路径问题
当点C在直线 l 的什么位置时,AC与CB′的和最小?
新课引入
问题1 相传,古希腊亚历山大城里有一位久负盛名 的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
如图,牧马人从A地出发,到一条笔直的河边 l 饮马, 然后到B地.牧马人到河边的什么地方饮马,可使所走 的路径最短?
B A
l
追问1:这是一个实际问题,你能抽象为数
《课题学习最短路径问题》PPT精品实用版初中数学3
重合),连接AC′,BC′,B′C′.
如图,已知直线MN同侧有两点A、B,在直线MN上
B
则点C 即为所求.
4、如图,在四边形ABCD中,∠BAD=110°,∠B=∠D=90°.
活动二
由轴对称的性质知,
在BC、CD上分别找一点M、N,使得△AMN的周长最小,此时∠AMN+∠ANM的度数为_________.
活动一图 活动二图 2、如图,在Rt∆ABC中,∠A=30º,∠C=90º且BC=1,MN为AC的垂直平分线,设P为直线MN上任一点,PB+PC的最小值为
_________.
在△AB′C′中, 对比下活动一,你能找到两个问题的相同点与不同点
B
2、如图,在Rt∆ABC中,∠A=30º,∠C=90º且BC=1,MN为AC的垂直平分线,设P为直线MN上任一点,PB+PC的最小值为
2、如图所示,M、N是△ABC边AB与AC上两点,在BC边上求作一点P,使△PMN的周长最小. 在BC、CD上分别找一点M、N,使得△AMN的周长最小,此时∠AMN+∠ANM的度数为_________. 4、如图,在四边形ABCD中,∠BAD=110°,∠B=∠D=90°. 课题学习 最短路径问题
3、如图,点A是∠MON内一定点,且满足 OA=5cm,点B和点C分别是射线OM和射线ON上 的动点,试在图中找到合适的点B、C,使得 ∆ABC的周长最小?若∆ABC周长的最小值为5cm, 则∠MON=_________.
_________.
A
课题学习 最短路径问题
C l 2、如图,在Rt∆ABC中,∠A=30º,∠C=90º且BC=1,MN为AC的垂直平分线,设P为直线MN上任一点,PB+PC的最小值为
最短路径问题中考复习课件
.
几何画板
最短路径问题中考复习
6
上次更新: 2020年12月24日星期四
随堂练习二
中学数学复习——最短路径问题
最短路径问题 1. 架桥问题:如图,A、B两地在一条河的两岸,现要在河上 造
一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的
温温故故而而知知新新一
两岸是平行的直线,桥要与河垂直。)
几何画板
最短路径问题中考复习
13
上次更新: 2020年12月24日星期四
中学数学复习——最短路径问题
中考链接
2. 如图,以矩形OABC的顶点,OA所在的直线为x轴,OC所在的 最短路径问题 直线为y轴,建立平面直角坐标系,已知OA=4, OC=2,点E、F分 温温故故而而知知新新一 别是边AB、BC的中点, 在x轴、y轴上是否分别存在点N、M,
中学数学复习——最短路径问题
最短路径问题
2. 饮马问题: 如图牧马人从A地出发,先到草地边某一处牧马,
温温故故而而知知新新一 再到河边饮马,然后回到B处,请画出最短路径。
随温堂故练而习知一新 温探故究而(知一新)二
解:如图所示 分别作出点A关于MN的对称点A1, 点B关于l 的对称点B1,连接A1 B1, 与MN和l分别交于点C,D,则线路 ACDB即为所求。
最短路径问题
温温故故而而知知新新一 随温堂故练而习知一新
温探故究而(知一新)二 随探堂究练(习二二) 探究(二) 中考链接 课课堂堂小小结结
数 无 形 时 少 直 观
; ——
A●
●
P
形
少
数
时
●B
难
入
微
l
。
A’ ● 最短路径问题中考复习