离散型随机变量的期望与方差

合集下载

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差

(3)一次英语测验由50道选择题构成,每道 有4个选项,其中有且仅有一个是正确的, 每个选对得3分,选错或不选均不得分,满 分150分,某学生选对每一道题的概率为 0.7,求该生在这次测验中的成绩的期望与 方差。
说明:可根据离散型随机变量的期望和方 差的概念、公式及性质解答。
三、课堂小结:
1、利用离散型随机变量的方差与期望的知 识,可以解决实际问题。利用所学知识分析 和解决实际问题的题型,越来越成为高考的 热点,应予重视。
60
乙厂 55 65 55 65
60
试分析两厂上缴利税状况,并予以说明。
说明:本题考查利用离散型随机变量的方
差与期望的知识,分析解决实际问题的能
力。
例6、(1)设随机变量ξ具有分布列为 P(ξ=k)= 1 (k=1,2,3,4,5,6),求Eξ、 E(2ξ+3)和6 Dξ。
(2) 设随机变量ξ的分布列为P(ξ=k)= 1(k=1,2,3,…,n),求Eξ和Dξ。 n
量的标准差。
随机变量的方差与标准差都反映了:随机变 量取值的稳定与波动、集中与离散的程度。
且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2(Eξ)2。 若ξ~B(n,p),则Dξ=npq,其中q=1-p.
3、特别注意:在计算离散型随机变量的期 望和方差时,首先要搞清其分布特征及分 布列,然后要准确应用公式,特别是充分 利用性质解题,能避免繁琐的运算过程, 提高运算速度和准确度。
若η=aξ+b(a、b为常数),则η也 是随机变量,且Eη=aEξ+b。 E(c)= c
特别地,若ξ~B(n,P),则 Eξ=nP
2、方差、标准差定义:
Dξ=(X1-Eξ)2·P1+(X2-Eξ)2·P2+…+(XnEξ)2·Pn+…称为随机变量ξ的方差。

12.2 离散型随机变量的期望与方差

12.2  离散型随机变量的期望与方差
3.由题意知A1,A2,A3相互独立,B1,B2,B3相互独立, C1,C2,C3相互独立,Ai ,Bj ,Ck(i、j、k=1,2,3且i ,j、k
互不相同)相互独立,且 P ( A1 ) 1 , P ( B2 ) 1 , P (C3 ) 1 .
2 3 6
(1)他们选择的项目所属类别互不相同的概率
0 3
故ξ 的分布列是 1 2 3 2 4 8 P 9 27 9 1 2 4 8 2. ξ 的数学期望 E 0 1 2 3 27 9 9 27 探究提高 (1)求离散型随机变量的期望与方差关键

0 1 27
是确定随机变量的所有可能值,写出随机变量的分布
列,正确运用期望、方差公式进行计算. (2)要注意观察随机变量的概率分布特征,若属二项 分布的,可用二项分布的期望与方差公式计算,则更为 简单.
P=3!P(A1B2C3)=6P(A1)P(B2)P(C3) 1 1 1 1 6 . 2 3 6 6 (2)设3名工人中选择的项目属于民生工程的人数为
η ,由已知, ~ B(3, ), 且 3 ,
1 3 1 1 所 以P ( 0) P ( 3) C3 ( )3 , 3 3 27
又E(η )=aE(ξ )+b,
所以当a=2时,由1=2×1.5+b,得b=-2. 当a=-2时,由1=-2×1.5+b,得b=4.
a 2, a 2, 或 即为所求. b 2, b 4.
题型三
期望与方差的实际应用
【例3】 (12分)(2008·广东理,17)随机抽取某厂的
[1分]
[5分]
故ξ 的 分布列为
6 P 0.63 2 0.25 1 0.1 -2 0.02 [6分] (2)Eξ =6×0.63+2×0.25+1×0.1+(-2)×0.02 =4.34(万元). [8分]

期望与方差公式离散型随机变量连续型随机变量

期望与方差公式离散型随机变量连续型随机变量

期望与方差公式离散型随机变量连续型随机变量概述:在概率论和数理统计中,期望和方差是两个重要的统计量。

它们用于描述随机变量的集中程度和离散程度。

本文将介绍期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。

一、离散型随机变量的期望和方差公式:离散型随机变量是指在有限或可数的样本空间内取值的随机变量。

对于一个离散型随机变量X,其期望和方差的公式如下:1. 期望公式:期望是用来衡量随机变量取值的中心位置,常表示为E(X)。

对于离散型随机变量X,其期望的计算公式为:E(X) = ∑[x * P(X = x)]其中,x表示随机变量X取到的每个可能值,P(X = x)表示相应取值的概率。

2. 方差公式:方差是用来衡量随机变量取值的离散程度,常表示为Var(X)或σ²。

方差的计算公式为:Var(X) = ∑[(x - E(X))² * P(X = x)]其中,x表示随机变量X的每个可能值,P(X = x)表示相应取值的概率,E(X)表示X的期望。

二、连续型随机变量的期望和方差公式:连续型随机变量是指取值在某一连续区间内的随机变量。

对于一个连续型随机变量X,其期望和方差的公式如下:1. 期望公式:连续型随机变量的期望的计算公式为:E(X) = ∫[x * f(x)] dx其中,f(x)表示随机变量X的概率密度函数。

2. 方差公式:连续型随机变量的方差的计算公式为:Var(X) = ∫[(x - E(X))² * f(x)] dx其中,f(x)表示随机变量X的概率密度函数,E(X)表示X的期望。

总结:本文介绍了期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。

对于离散型随机变量,期望的计算公式为E(X) = ∑[x * P(X = x)],方差的计算公式为Var(X) = ∑[(x - E(X))² * P(X = x)]。

对于连续型随机变量,期望的计算公式为E(X) = ∫[x * f(x)] dx,方差的计算公式为Var(X) = ∫[(x - E(X))² * f(x)] dx。

离散型随机变量的期望与方差

离散型随机变量的期望与方差

Text in here
Add Your Title in here
Add your text in here
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
Add your text in here
2004
2005
2006
• Contents
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
Click to add Text
Click to add Text
Click to add Text
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
Text in here
Text in here
Text in here
Title Title Title Title
text in here text in here text in here
Click to add Text
Click to add Text
Click to add Text Click to add Text
Click to add Text
Click to add Text Click to add Text
对离散型 随机变量X —概率分布为
• Contents
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.

离散型随机变量的期望和方差

离散型随机变量的期望和方差

岚山一中导学学案学习改写人生,反思启迪智慧离散型随机变量的期望和方差【怎么考】1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题.【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 【知识梳理】1、离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )= 为随机变量X 的均值或 ,它反映了离散型随机变量取值的 . (2)方差称D (X )= i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 的 ,其 为随机变量X 的标准差. 2、三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p );(2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(3)若X 服从超几何分布,则E (X )=n MN. 3、六条性质(1)E (C )=C (C 为常数)(2)E (aX +b )=aE (X )+b (a 、b 为常数)(3)E (X 1+X 2)=EX 1+EX 2(4)D (aX +b )=a 2·D (X ) 【基础自测】1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 2、已知X 的分布列为设Y =2X +3,则E (Y )的值为( ).A.73 B .4 C .-1 D .13、(2010·湖北)某射手射击所得环数ξ的分布列如下: 已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.94.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 【考向透析】【例1】(2012济南一模)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第k 号卡片恰好落入第k 号小盒中,则称其为一个匹对,用ξ表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数ξ的分布列和数学期望ξE .【例2】(2012日照一模)某校高二年级甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名乒乓球选手,学校计划从甲、乙两班各选2名选手参加体育交流活动。

离散型随机变量的期望与方差

离散型随机变量的期望与方差

点评:当ξ的所有可能取值为x1,x2,…,xn这n个值时,若p1= p2=…=pn= ,则x1,x2,…,xn的方差就是我们初中学过 的方差.因此,现在学的方差是对初中学过的方差作了进一步 拓展.
4.方差的性质 (1)D(C)=0(C 为常数). (2)D(aξ+b)=a2Dξ. (3)Dξ=Eξ2-(Eξ)2. (4)如果 ξ~B(n,p),那么 Dξ=npq.这里 q=1-p. (5)如果随机变量 ξ 服从几何分布,且 P(ξ=k)=g(k,p),q=1 -p,那么 Dξ=pq2.
B.1
C.2
D.4
解析:由ξ=2η+3得Dξ=4Dη,而Dξ=4,Dη=1.故选B.
答案:B
5.(2011·安徽蚌埠二中练习)若随机变量 ξ 的分布列为:P(ξ
=m)=13,P(ξ=n)=a,若 Eξ=2,则 Dξ 的最小值等于(
)
A.0 B.2
C.4 D.无法计算
解析:由题意得13+a=1,m×13+n×a=2, a=23,m+2n=6,Dξ=13×(2-m)2+23×(2-n)2=13×(2n-4)2 +23×(2-n)2=2(n-2)2≥0,则 Dξ 的最小值等于 0.故选 A.

考点陪练 1.下面说法中正确的是( ) A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值 B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平 C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平 D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值 答案:C
【典例2】 编号1,2,3的三位学生随意入座编号为1,2,3的三个 座位,每位学生坐一个座位,设与座位编号相同的学生的个数 是ξ.
(1)求随机变量ξ的概率分布;

离散型随机变量的期望及方差

离散型随机变量的期望及方差

3.一个均匀小正方体的六个面中,三个面上标以数0,两个 面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上 的数之积的数学期望________.
解析:随机变量 ξ 的取值为 0,1,2,4,P(ξ=0)=34,P(ξ=1)=19,P(ξ =2)=19,P(ξ=4)=316,因此 Eξ=49.
(1)X的概率分布;
(2)X的数学期望.
解:摸球的情形有以下5种:甲1白,乙2白(0元);甲1红,乙2 白或甲1白,乙1红1白(10元);甲1红,乙1红1白(20元);甲1白,乙 2红(50元);甲1红,乙2红(60元).
(1)X的所有可能的取值为0,10,20,50,60, P(X=0)=(190)3=1702090; P(X=10)=110×(190)2+190×11082=1204030; P(X=20)=110×11082=110800;
[例1] 袋中有20个大小相同的球,其中记上0号的有10个,记 上n号的有n个(n=1,2,3,4).现从袋中任取一个,ξ表示所取球的标 号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,Eη=1,Dη=11,试求a,b的值. [课堂记录] (1)ξ 的分布列为
ξ0 1 2 3 4
P
1 2
P(X=50)=190×1102=10900; P(X=60)=1103=10100; ∴X 的概率分布为
(2)EX=0×1702090+10×1204030+20×110800+50×10900+60×10100= 3.3(元).
热点之二 期望与方差的性质及应用 利用均值和方差的性质,可以避免复杂的运算.常用性质 有: (1)EC=C(C为常数); (2)E(aX+b)=aEX+b(a,b为常数); (3)E(X1+X2)=EX1+EX2;E(aX1+bX2)=aE(X1)+bE(X2);

离散型随机变量的期望和方差

离散型随机变量的期望和方差

离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。

期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。

在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。

期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。

离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。

方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。

运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。

可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。

总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。

以上就是关于离散型随机变量期望和方差的主要内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开锁次数的数学期望和方差
例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.
分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.
解:ξ的可能取值为1,2,3,…,n .
;12112121)111()11()3(;111111)11()2(,1)1(n
n n n n n n n n P n
n n n n n P n
P =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ n
k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:
2
31211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-
= ξ ⎥⎦
⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦
⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.
次品个数的期望
例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品的个数,求ξE .
分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.
解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .
说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些
值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察
到这是()05.0,10~B ξ.
根据分布列求期望和方差
例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E 、.
分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E 、只须按定义代公式即可.
解: 离散型随机变量的分布满足
(1),,3,2,1,0
=≥i P i (2).1321=+++
P P P 所以有⎪⎪⎩
⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为
⎪⎭⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122
321 -=-+-= ⎪⎭
⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭
⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=
小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.
产品中次品数分布列与期望值
例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)
分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.
解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数. 抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为
5
100590
10)(C C C k P k k -⋅==ξ
按照这个公式计算,并要求精确到0.001,则有
.
0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为
.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E
由分布列可知,
.
007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P 这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.
评定两保护区的管理水平
例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:
乙保护区:
试评定这两个保护区的管理水平.
分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)
解:甲保护区的违规次数1ξ的数学期望和方差为:
;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE
;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD 乙保护区的违规次数2ξ的数学期望和方差为:
;3.14.025.011.002=⨯+⨯+⨯=ξE
41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;
因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.
(标准差64.0,1.12211≈===
ξσξξσξD D 这两个值在科学计算器上容易获得,
显然,σξσξ>1)
说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够
的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.
射击练习中耗用子弹数的分布列、期望及方差
例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D (保留两位小数)
. 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.
ξ =1,表示一发即中,故概率为
;8.0)1(==ξ P
ξ =2,表示第一发未中,第二发命中,故
;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P
ξ =3,表示第一、二发未中,第三发命中,故
;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P
ξ =4,表示第一、二、三发未中,第四发命中,故
0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P
ξ =5,表示第五发命中,故
.0016.02.01)8.01()5(44==⋅-==ξ P
因此,ξ 的分布列为
0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E
,25.1008.00256.0096.032.08.0 =++++=
0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=
说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.
准备礼品的个数
例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?
分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.
解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以
k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000~B ξ,所以,
12004.03000=⨯=ξE (人)100>(人)
. 答:不能,寻呼台至少应准备120份礼品.
说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。

相关文档
最新文档