人教版数学七年级下册垂线

合集下载

人教版七年级数学下册5.1.2.1《垂线》说课稿

人教版七年级数学下册5.1.2.1《垂线》说课稿

人教版七年级数学下册5.1.2.1《垂线》说课稿一. 教材分析《垂线》这一节的内容位于人教版七年级数学下册第五章第一节,主要介绍了垂线的定义、性质和应用。

通过这一节的学习,学生能够理解垂线的概念,掌握垂线的性质,并能够运用垂线解决实际问题。

在教材中,首先通过实例引入垂线的概念,让学生感知到垂线是与水平线相交且交点垂直的线段。

接着,通过探究垂线的性质,让学生发现垂线与水平线的交点是垂直的,并且垂线的长度是固定的。

最后,通过应用举例,让学生学会如何运用垂线解决实际问题。

二. 学情分析在七年级的学生中,他们已经具备了一定的几何基础,对于线段、直线等概念有一定的了解。

但是,对于垂线的定义和性质可能还没有完全理解,需要通过本节课的学习来进一步巩固。

在学生的学习过程中,他们可能对于垂线的概念和性质的理解存在一定的困难,需要通过实例和实际问题来加深理解。

同时,学生需要培养观察、思考和解决问题的能力,能够运用垂线解决实际问题。

三. 说教学目标1.知识与技能目标:学生能够理解垂线的定义,掌握垂线的性质,并能够运用垂线解决实际问题。

2.过程与方法目标:通过观察实例,学生能够感知垂线的概念,通过探究垂线的性质,学生能够培养观察、思考和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:垂线的定义和性质。

2.教学难点:垂线的性质的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和小组合作学习法。

2.教学手段:多媒体课件、几何模型和板书。

六. 说教学过程1.引入新课:通过展示实例,引导学生观察和思考,引入垂线的概念。

2.探究垂线的性质:学生分组讨论,通过实际操作和观察,发现垂线的性质。

3.讲解与演示:教师通过多媒体课件和几何模型,讲解垂线的性质,并进行演示。

4.练习与应用:学生进行练习题,运用垂线解决实际问题,教师进行指导和讲解。

人教版数学七年级下册5.1.2垂线 课件

人教版数学七年级下册5.1.2垂线 课件

感悟新知
例 1 如图5.1-11,直线AB,CD 相交于点O,OE ⊥ AB 于 点O,且∠ COE=40°,求∠ BOD 的度数. 解题秘方:利用垂直的定 义及对顶角的性质,将要 求的角向已知角转化.
感悟新知
解:因为OE ⊥ AB, 所以∠ AOE=90°. 又因为∠ AOE= ∠ AOC+ ∠ COE,∠ COE=40°, 所以∠ AOC=90°-40°=50°. 所以∠ BOD= ∠ AOC=50°
所以AC·BC=AB·CD,进而可得CD=2.4 cm.
感悟新知
(2)点P 为直线m 外一点,点A,B,C 为直线m 上的三点,
PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线m 的距
离( D )
A. 等于4 cm
B. 等于2 cm
C. 小于2 cm
D. 不大于2 cm
感悟新知
解题秘方:根据点到直线的距离的定义,找出垂线段. 解:点到直线的距离是该点到这条直线的垂线段的 长度,而垂线段是该点与直线上各点的连线中最短 的. 从条件看,PC是三条线段中最短的,但不一定 是所有连线中最短的,所以点P 到直线m 的距离应 该是不大于2 cm.
感悟新知
1-1. [中考·河南] 如图,直线AB,CD相交于点O,EO⊥ CD,垂足为O,若∠ 1=54°,则∠ 2 的度数为( B ) A. 26° B. 36° C. 44° D.54°
感悟新知
例2 将一张长方形纸片按如图5.1-12 所示方式折叠,EF, EG 为折痕,判断EF 与EG 的位置关系. 解题秘方:利用折叠的性 质求出两线的夹角,根据 夹角是90°判断两条直线 的位置关系.
1. 垂线段:
特别解读 垂线、垂直与垂线段之间的区别与联系: 1. 区别:垂线是一条与已知直线垂直的直线;垂

人教版七年级数学下《垂线》知识全解

人教版七年级数学下《垂线》知识全解

《垂线》知识全解课标要求1.理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线;2.理解点到直线的距离的意义,能度量点到直线的距离;3.识别同位角、内错角、同旁内角.知识结构内容解析1.垂线的定义:两条直线相交所成的四个角中有一个角是90°时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.2.垂线的性质一:过一点有且只有一条直线与已知直线垂直.3.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:垂线是一条直线,而垂线段是一条线段.4.垂线的性质二:连接直线外一点与直线上各点的所有线段中,垂线段最短.(垂线段最短)5.同位角、内错角、同旁内角(1)同位角:①位于两条被截直线AB、CD的同方;②在第三条直线EF的同侧.(2)内错角:①位于两条被截直线AB、CD的内部;②在第三条直线EF的两侧.(3)同旁内角:①位于两条被截直线AB、CD的内部;②在第三条直线EF的同侧.注意:(1)同位角、内错角、同旁内角都是成对出现的.(2)两条直线被第三条直线所截中共有4对同位角、2对内错角、2对同旁内角.重点难点本节的重点是:两条直线互相垂直的概念、性质和画法;点到直线的距离的概念及其简单应用.理解同位角,内错角,同旁内角的概念是本节的重点本节的难点是:对点到直线的距离的概念的理解.在“三线八角”中,学生不易分清角的类别,所以正确识别同位角,内错角,同旁内角是本节的难点教法导引在本节的教学中过程中要借助模型、实物、图形及计算机等学习手段使学生得到直观的感性认识,进而在感知的基础上进行抽象知识的学习,这样才能有助于培养逻辑思维的能力,同时应鼓励学生多观察、多动手、勤思考增强学生学习几何知识的兴趣.在本节的概念和相关结论的教学中,应结合图形去讲解并通过画图、度量等实践活动,让学生理解知识.教学中应继续渗透数形结合、转化、分类等数学思想方法.教学中要注意与以前学生学习过的相关知识进行衔接,比如在垂线段最短的教学中可以把上学期所学的“两点之间线段最短”的知识进行对比.教学中让学生把所学知识用准确、精炼的几何语言表述出来,同时还要注意培养学生的识图能力.学法建议学习中应结合具体实例深刻掌握垂线、点到直线的距离、同位角、内错角、同旁内角的概念,深刻理解垂线的两个性质,并且能够运用垂线的性质来解释生活中的具体实例,例如如何开挖沟渠能使输水管道最短的问题.本节的易错点是混淆垂线和垂线段,大家只要记住垂线是一条直线,垂线段是一条线段就能把他们区别了.本节的一个难点是“三线八角”中判断两个角的关系.解答此类问题把握以下两个方面即可:(1)要弄清楚每对角与哪三条直线有关,第三条直线就是这两个角的公共边所在的直线,另两条直线是角的另两边;(2)当图形比较复杂时,把这两个角有关的三条线画出来,注意图形的结构特点.。

人教版七年级数学课件《垂线》

人教版七年级数学课件《垂线》

人教版数学七年级下册
情景引入
人教版数学七年级下册
情景引入
人教版数学七年级下册
观察下面图片,你能找出其中相交的直线吗?它们有什么特
殊的位置关系?
知识精讲
人教版数学七年级下册
在相交线的模型中,固定木条a,转动木条b.当b的位置变化时,a、b
所成的角∠α也会发生变化.
当∠α=90°时,我们说a 与b互相垂直,记作a⊥b.
线,并且只能画出一条垂线.
即在同一平面内,过一点有且只有一条直线与已知直线垂直.
垂线的性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:垂线段最短.
点到直线的距离:直线外一点到这条直线的垂线
段的长度,叫做点到直线的距离.
人教版数学七年级下册
THE END!
祝各位同学们学业进步、天天向上!
连接直线外一点与直线上各点的所有线段中,垂线段
最短.
简单说成:垂线段最短.
直线外一点到这条直线的垂线段的长度,叫做点到直
线的距离.
知识精讲
人教版数学七年级下册
现在,你知道水渠该怎ቤተ መጻሕፍቲ ባይዱ挖了吗?在书中图5.1-8中画出来,如
果图中比例尺为1:100000,水渠大约要挖多长?
则:沿着垂线段PH挖渠能使渠道最短.
知识精讲
人教版数学七年级下册
如图,在灌溉时,要把河中的水引到农田P处如何挖渠能使
渠道最短?
知识精讲
人教版数学七年级下册
如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,A4,A5,
…,其中PO⊥l(我们称PO为点P到直线l的垂线段).比较线段PO,PA1,PA2,
PA3,PA4,PA5,…的长短,这些线段中,哪一条最短?

人教版七年级数学下册相交线,垂线(基础)知识讲解

人教版七年级数学下册相交线,垂线(基础)知识讲解

相交线,垂线(基础)知识讲解【学习目标】1.了解两直线相交所成的角的位置和大小关系,理解邻补角和对顶角概念,掌握对顶角的性质;2.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.【要点梳理】知识点一、邻补角与对顶角1.邻补角:如果两个角有一条公共边,并且它们的另一边互为反向延长线,那么具有这种关系的两个角叫做互为邻补角.要点诠释:(1)邻补角的定义既包含了位置关系,又包含了数量关系:“邻”指的是位置相邻,“补”指的是两个角的和为180°.(2)邻补角是成对出现的,而且是“互为”邻补角.(3)互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角.(4)邻补角满足的条件:①有公共顶点;②有一条公共边,另一边互为反向延长线.2.对顶角及性质:(1)定义:由两条直线相交构成的四个角中,有公共顶点没有公共边(相对)的两个角,互为对顶角.(2)性质:对顶角相等.要点诠释:(1)由定义可知只有两条直线相交时,才能产生对顶角.(2)对顶角满足的条件:①相等的两个角;②有公共顶点且一角的两边是另一角两边的反向延长线.【高清课堂:相交线两条直线垂直】知识点二、垂线1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.要点诠释:⊥;(1)记法:直线a与b垂直,记作:a b直线AB和CD垂直于点O,记作:AB⊥CD于点O.(2) 垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:∠=°判定90AOCCD⊥AB.性质2.垂线的画法:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).要点诠释:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.要点诠释:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点诠释:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、邻补角与对顶角1.如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?【答案与解析】解:∠1和∠2,∠3和∠4都不是对顶角.∠1与∠5,∠3与∠6也都不是邻补角.【总结升华】牢记两条直线相交,才能产生对顶角或邻补角.举一反三:【变式】判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ()(2)如果两个角相等,那么这两个角是对顶角.()(3)有一条公共边的两个角是邻补角. ()(4)如果两个角是邻补角,那么它们一定互补. ()(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角.()【答案】(1)×(2)×(3)×(4)√(5)×,反例:∠AOC为120°,射线OB为∠AOC的角平分线,∠AOB与∠AOC互补,且有边公共为AO,公共顶点为O,但它们不是邻补角.2.如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数【答案与解析】解:∵∠1是∠2的邻补角,∠1=65°,∴∠2=180°-65°=115°.又∵∠1和∠3是对顶角,∠2与∠4是对顶角∴∠3=∠1=65°,∠4=∠2=115°.【总结升华】 (1)两条直线相交所成的四个角中,只要已知其中一个角,就可以求出另外三角;(2)求出∠2后用“对顶角相等”,求∠3和∠4.举一反三:【变式】(2015•梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.解:∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠BON=∠DON=35°,∵∠BOC=∠AOD=110°,∴∠AON=∠AOD+∠DON=145°.3. 任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.【答案与解析】解:如图,任意两条相交直线,两两相配共组成6对角,在这6对角中,它们的位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线.这6对角为∠1与∠2,∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4,∠3与∠4,其中∠1=∠3,∠2=∠4,∠1+∠2=180°,∠3+∠4=180°,∠1+∠4=180°,∠2+∠3=180°.在位置上∠1与∠3,∠2与∠4是对顶角,∠1与∠2,∠3与∠4,∠l与∠4,∠2与∠3是邻补角.【总结升华】两条相交的直线,两两相配共组成6对角,这6对角中有:4对邻补角,2对对顶角类型二、垂线4.下列语句中,正确的有 ( )①一条直线的垂线只有一条;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直;③两直线相交,则交点叫垂足;④互相垂直的两条直线形成的四个角一定都是直角.A.0个 B.1个 C.2个 D.3个【答案】C【解析】正确的是:②④【总结升华】充分理解垂直的定义与性质.举一反三:【变式1】直线l外有一点P,则点P到直线l的距离是( ).A.点P到直线l的垂线的长度.B.点P到直线l的垂线段.C.点P到直线l的垂线段的长度.D.点P到直线l的垂线.【答案】C5.(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【答案】C.【解析】解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°.【总结升华】本题考查了垂线和邻补角的定义;弄清两个角之间的互补和互余关系是解题的关键.【高清课堂:相交线403101经典例题3】举一反三:【变式】如图, 直线AB和CD交于O点, OD平分∠BOF, OE ⊥CD于点O, ∠AOC=40 ,则∠EOF=_______.【答案】130°.6.(2016春•抚州校级期中)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点 B.B点 C.C点 D.D点【思路点拨】根据垂线段最短可得答案.【答案】A.【解析】解:根据垂线段最短可得:应建在A处,故选:A.【总结升华】此题主要考查了垂线段的性质,关键是掌握从直线外一点到这条直线所作的垂线段最短.举一反三:【变式】(1)用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上一点A画l的垂线,这样的垂线能画出几条?(3)经过直线l外一点B画l的垂线,这样的垂线能画出几条?【答案】解:(1)能画无数条;(2)能画一条;(3)能画一条.。

人教版七年级数学下册:垂线【精品课件】

人教版七年级数学下册:垂线【精品课件】

AD
B
C
课堂检测
2.如图, AC⊥BC, ∠C=90° ,线段AC、BC、CD中最短的是( ) C
A. AC B. BC
C. CD
D. 不能确定
C
A
D
B
课堂检测
3.若点P是直线m外一点,点A,B,C分别是直线m上不同的
三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不 可能是 ( D)
垂线段是垂线上的一部分,它是线段,一端是一个点, 另一端是垂足.
垂线
P
垂线段
A
B
D
探究新知
点到直线的距离的概念:
直线外一点到这条直线的垂线段的长度,叫做点到
直线的距离.
P
例如:如图,PA⊥m于点A ,垂线段
PA的长度叫做点P到直线m的距离.
m
例 如图,是一个同学跳远的位 置,跳远成绩怎么表示?
A
m
课堂小结 两 条 直 线 相 交
一 般 情 况
特殊 情况 垂 相交成 线 直角
对顶角:相等 邻补角:互补
垂线的存在 性和唯一性
人教版 数学 七年级 下册
导入新知
在灌溉时,要把河里的水引到农田里的P处,如何挖渠能 使渠道最短呢?
素养目标
3. 掌握垂线段最短的性质,并会利用所学知识解 决简单的实际问题. 2. 掌握点到直线的距离的概念,并会度量点到直 线的距离. 1. 理解垂线段的概念,会用三角尺或量角器 过一点画已知直线的垂线段 .
根据以上操
1.放
作,你能得
2.靠
B
出什么结论?
3.移
4.画
l
C
0
1
2
3
4

人教版七年级数学下册名校课堂课件:5.1.2垂线

人教版七年级数学下册名校课堂课件:5.1.2垂线

m
3.若直线m、n相交于点O, m⊥n 。 ∠1=90°,则__________ 4.若直线AB、CD相交于点O, 且AB⊥CD,那么∠BOD=90 ____ 。 ° 5.如图,BO⊥AO,∠BOC 与∠BOA的度数之比为1:5, 那么∠COA=_____, 72° ∠BOC的补角为______ 162 °。
一、垂直的定义
1.垂直定义:当两条直线相交所成的四个角 中,有一个角是直角(90度)时,这两条直线 互相垂直,其中一条直线叫另一条直线的垂 a 线,它们的交点叫垂足. 例如、如图,a、b互相垂 b 直,O叫垂足.a叫b的垂线, O b也叫a的垂线. 从垂直的定义可知, 判断两条直线互相垂直的关键: 只要找到两条直线相交时四个交角中 一个角是直角.
P
A
D
B
点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫 做点到直线的距离. P
例如:如图,PA⊥l于点A ,垂线 段PA的长度叫做点P到直线l的距离. 例:如图,是一个同学跳远的位置 跳远成绩怎么表示?
l A
l A
解:过P点作PA⊥l于点
A ,垂线段PA的长度就 是该同学的跳远成绩.
P
拓展应用1
A
0 1 2 3 4 5 6 7 8 9 10
l
1放:放直尺,直尺的一边要与已知直线重合; 2靠:靠三角板,把三角板的一直角边靠在直尺上; 孝感市文昌中学学生专用尺 3移:移动三角板到已知点; 4画线:沿着三角板的另一直角边画出垂线.
11 Cm
探究:
(1)画已知直线l的垂线能画几条 ? (2)过直线l上的一点A画l的垂线 ,这样的垂线能画几条? (3)过直线l外的一点B画l的垂线 ,这样的垂线能画几条?

人教版七年级数学下册《垂线》教学课件

人教版七年级数学下册《垂线》教学课件
点到直线的距离:直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
探究
你知道在体育课上老师是怎样测量跳远成绩的吗?
你能说说其中的道理吗?






际 应
P

垂线段最短
O
做一做
2、如图:在铁路旁边有一张庄,现在要建一火车站,为了使张庄
人乘火车最方便(即距离最近),请你在铁路上选一点来建火车站 ,并说明理由。
拓展延伸
2、如图,AC垂直BC于点C,CD垂直AB于点D,DE垂直BC于点E, 试比较四条线段AC,DC,DE和AB的大小。
解:∵AC⊥BC,(已知) ∴AC<AB,(垂线的性质二) ∵CD⊥AB,(已知) ∴DC<AC,(垂线的性质二) ∵DE⊥BC,(已知) ∴DE<DC,(垂线的性质二) ∴DC<DC<AC<AB.
4.如图, BO ⊥AO, ∠BOC与∠BOA的度数之 比为1:5,那么∠COA7=2° 。 ∠BOC的补角为 (16)2 度。
探究新知
活动二:探究垂线的画法
工具:直尺、三角板
如图,已知直线 l,作l的垂线.
A
问题1:这样画l的垂线
可以画几条?
O
无数条
1、靠 2、移 3、画线
l
版权所有 盗版必究
探究新知 如图,已知直线 l和l上的一点A ,作l的垂线.
D
∴∠AOD=90°(垂直的定义)
判断两条直线互相垂直的关键: 只要找到两条直线相交时四个交角中一个角是直角.
牛刀小试
1、如图,∠ACB=90°,D是AB上一点,且∠ADC=∠BDC,请写出
图中互相垂直的线段,并简要说明理由.
解:图中互相垂直的线段有

人教版七年级数学下册课件5.1.2垂线

人教版七年级数学下册课件5.1.2垂线
们(2)的判交断点ODO与叫A做B_的__位__置_关.系,并说明理由.
活动5 课堂小结
1.垂线的相关概念. 2.垂线的画法. 3.垂线的性质. 4.点到直线的距离.
四、作业布置与教学反思 1.作业布置
(1)教材P8 习题5.1第3,4,5,6题;
2.教学反思
A
C OD B 图5.1-5
2.教材P4 探究. 提出问题: (1)如何利用三角板过一点作已知直线的垂线? (2)通过画图,你认为过一点作已知直线的垂线,能作几条?
3.教材P5 探究. 提出问题: (1)观察图5.19,你能用哪些方法说明线段PO最短? (2)你从中能得出什么结论? (3)垂线段和点到直线的距离有哪些区别和联系?
1
1
∴∠FOC+∠EOC= =
2
1 2
∠AOC+ 2 ∠BOC (∠AOC+∠BOC)=
1 2
×180°=90°
即∠EOF=90°,
∴OE⊥OF.
练习
1.教材P5 练习第1,2题. 2.教材P6 练习. 3.下列选项中,过点P画AB的垂线,三角尺放法正确的是( C )
练习
4.如图,O为直线AB上一点,∠AOC= ∠13 BOC,OC是∠AOD的平分线. (1)求∠COD的度数; (2)判断OD与AB的位置关系,并说明理由.
__垂__线__段___最短.简单说成:__垂__线__段__最__短__.
3.直线外一点到这条直线的_垂__线__段__的__长____,叫做点到
直线的距离.

活动4 例题与练习
例1 (1)如图①,过点P画AB的垂线; (2)如图②,过点P分别画OA,OB的垂线; (3)如图③,过点A画BC的垂线.
又解∵:∠(1A)O∵C∠+AO∠CB=OC=∠1B8O0C°,, 例反1过来(1,)如如图果①AB,⊥过C点DP,画那A么B的∠A垂O线C等;于多少度? (垂2)直你定从义中、能垂得直出公什理么的结理论解?与运用.

人教版数学七年级下册5.1《垂线》名师教案

人教版数学七年级下册5.1《垂线》名师教案
探究二垂线的性质
活动一画图实践
1.作直线EF的垂线.
(1)直线EF,画出直线EF的垂线,能画几条?EF
小组内交流,明确直线EF的垂线有多少条?即存在,但位置有不______性.〔无数条〕〔不确定〕
(2)怎样才能确定直线EF的垂线位置呢?
在直线EF上取一点A,过点A画EF的垂线, 能画几条?再经过直线EF外一点B画直线EF的垂线,这样的垂线能画出几条?
垂线性质:
答案:1条,如图:
2条,如图:
垂线的性质:在同一平面内,过一点有且只有一条直线与直线垂直.
〔4〕如图AB与直线BC垂直。
点A与直线BC上各点的距离长短不一,我们可以
发现其中最短的应该是线段AB。线段AB的长度就
是点A到直线BC的距离。请量一量线段AB的长度.
结论:.
简记为:.
(5)直线外一点到这条直线的,叫做点到直线的距离.
(4)点到直线的距离是从直线外一点向这条直线所作的垂线段的长度,它是一个数量概念,只能量出或求出,而不能画出,画出的是垂线段,不是点到直线的距离;点到直线的距离问题通常伴随着过一点作直线的垂线,作图的准确性直接影响到计算与区分,务必仔细、标准.
4、随堂检测
一、选择题
1.如下图,以下说法不正确的选项是( )
4、学习难点
掌握垂线的性质,并会利用所学知识进展简单的推理.
二、教学设计
〔一〕课前设计
1、预习任务
任务1
阅读教材P3-4,思考:垂线的定义是什么?我们用符号语言怎么表示?
任务2
阅读教材P4-5垂线有哪些性质?过一点如何作直线的垂线?
任务3
阅读教材P5,什么是点到直线的距离?
2、预习自测
〔1〕、两条直线相交所成的四个角中,有一个角是时,这两条直线就互相垂直.其中一条直线叫做另一条直线的,它们的交点叫做.假设“直线AB垂直于直线CD,垂足为O〞,那么记为__________________,并在图中任意一个角处作上直角记号.

人教版初中数学七年级下册 垂线

人教版初中数学七年级下册 垂线
直.

1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.

1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.

1.贴 2.靠 3.移 4.画
二.垂线的性质
垂线的性质2:
连接直线外一点,与直线上各点的所有线段中,垂

线段最短.



探索新知
二.垂线的性质
垂线的性质2:
连接直线外一点,与直线上各点的所有线段中,垂

线段最短.



探索新知
点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫做点
到直线的距离.
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?

1.贴 2.靠 3.移
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.

1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
如图,线段PO的长度即为点P到直线l的距离。

注意:距离是一个数量.
PO是点P到直线l的距离


学以致用
1.已知,如图, ⊥ ,垂足为,为过点的
一条直线,则∠1与∠2的关系一定成立的是(
A.相等
B.互余
D.互为对顶角

人教版数学七年级下册第五章垂线段课件

人教版数学七年级下册第五章垂线段课件

导引:根据点到直线的距离的定义可知,点A到直线BC
的距离是线段AC的长,点B到直线AC的距离是线
段BC的长,点C到直线AB的距离是线段CD的长.
因为三角形ABC的面积S= 1AC·BC=1AB· CD,
2
2
所以AC·BC=AB·CD,进而可得CD=2.4 cm.
新知小结
正确理解点到直线的距离及两点间的距离是解决 此类问题的关键.解决此类问题应注意:(1)点到直线 的距离是点到直线的垂线段的长度,而不是垂线,也 不是垂线段;(2)距离表示线段的长度,是一个数量, 与线段不能等同;(3)用垂线段的长度表示点到直线的 距离,其实质是点与垂足两点间的距离,体现了数形 结合思想.
巩固新知
1 如图,三角形ABC中,∠C=90°. (1)分别指出点A到直线BC,点B到直线AC的距离 是哪些线段的长; (3)三条边AB,AC,BC中哪条边最长?为什么?
A
解:(1)点A到直线BC的距离是线段AC的长.点B到直 线AC的距离是线段BC的长.
(2)AB边最长.因为连接点B与AC上各点的所有线 段中,垂线段最短,已知BC⊥AC,所以 BC<AB. 连接点A与BC上各点的所有线段中, 垂线段最短,已知AC⊥BC,所以AC<AB. 综上所述,三条边AB,AC,BC中,AB边最长.
距离的概念作出正确的判断即可.所以记忆与理解相
到达,则下列判断正确的是( A ) ③两点之间,垂线最短;
PD不是垂线段,所以CE<PC,DF<PD,所以 简单说成:垂线段最短.
A.小亮骑车的速度快 如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,
③点C到AB的垂线段是线段AB; 直,点O为垂足,我们把线段PO叫做点P到直线l的

人教版七年级数学下册第五章《垂线段最短》优课件

人教版七年级数学下册第五章《垂线段最短》优课件

解决问题
在灌溉时,要把河中的水引到 农田P处,如何挖渠能使渠道 最短?
垂线段最短
C
例1
在下列语句中,正确的是( C ). A、在同一平面内,一条直线只有一条垂线 B、在同一平面内,过直线上一点的直线只有一条 C、在同一平面内,过直线上一点且垂直于这条直 线的直线有且只有一条 D、在同一平面内,垂线段就是点到直线的距离
A
答:不能。
B
D EC
例3
已知直线a、b,过点a上一点A作AB⊥a,交b于点B, 过B作BC⊥b交a于点C。请说出哪一条线段的长是 哪一点到哪一条直线的距离? 并且用刻度尺测量 这个距离。
课堂检测
1、如图,AC⊥AB,A为垂足,AD⊥BC,D为垂足,AB=8,
CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离
谢谢观赏
You made my day但是非常忠实。2022年2月17日星期四2022/2/172022/2/172022/2/17 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/172022/2/172022/2/172/17/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/172022/2/17February 17, 2022 •4、享受阅读快乐,提高生活质量。2022/2/172022/2/172022/2/172022/2/17
课堂检测
5、如图所示,能表示点到直线(线段)的距离的A 线
段有( C )
A.2条 B.3条 C.4条 D.5条

人教版七年级下册数学5.1.2垂线(含答案)

人教版七年级下册数学5.1.2垂线(含答案)

5.1.2垂线基础填空1.垂线:当两条直线相交所成的四个角中,有一个是_________时,就说这两条直线____________,其中一条直线叫做另一条直线的______线,它们的__________叫做__________。

2.符号:“⊥”读作“垂直于”,如AB⊥CD于O,含义是:直线AB与直线CD,是O.3.垂线性质:______________________________________________________________。

知识点1认识垂直1.如图,OA⊥OB,若∠1=55°,则∠2=( )A.35°B.40°C.45°D.60°2.如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是( )A.互为对顶角B.互补C.互余D.相等3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.知识点2画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是( )5.如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线PE,垂足为E.(2)过点P画CD的垂线,与AB相交于F点.知识点3垂线的性质6.如图,经过直线l外一点A画l的垂线,能画出( )A.1条B.2条C.3条D.4条7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是( )A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.下面可以得到在如图所示的直角三角形中斜边最长的原理是( )A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短9.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个知识点4点到直线的距离10.如图所示,点P到直线l的距离是( )A.线段P A的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度综合题1.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的有( )A .1个B .2个C .3个D .4个 2.已知直线AB ,CB ,l 在同一平面内,若AB ⊥l ,垂足为B ,CB ⊥l ,垂足也为B ,则符合题意的图形可以是( )3.如图所示,下列说法不正确的是( )A .点B 到AC 的垂线段是线段AB B .点C 到AB 的垂线段是线段AC C .线段AD 是点D 到BC 的垂线段 D .线段BD 是点B 到AD 的垂线段 4.点P 是直线l 外一点,A ,B ,C 为直线l 上的三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线l 的距离( )A .小于2 cmB .等于2 cmC .不大于2 cmD .等于4 cm 5.如图,当∠1与∠2满足条件 时,OA ⊥OB.6.已知OA ⊥OC ,过点O 作射线OB ,且∠AOB =30°,则∠BOC 的度数为 . 7.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM.若∠AOM =35°,则∠CON 的度数为 .8.如图所示,O 为直线AB 上一点,∠AOC=31∠BOC ,OC 是∠AOD 的平分线. ⑴求∠COD 的度数;⑵判断OD 与AB 的位置关系,并说明理由. 解:⑴∵∠AOC=31∠BOC 即∠AOC+∠BOC=_________°( ) ∴∠AOC =_________°∵OC 是∠AOD 的平分线∴∠COD=∠_________ =________( ) ⑵∵∠COD=∠_________ =________ ∴∠COD+∠AOC=________ ∴OD______AB9.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.10.如图,直线AB,CD相交于点O,EO⊥CD于点O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD∶∠BOC=1∶5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.5.1.2垂线答案基础填空1.垂线:当两条直线相交所成的四个角中,有一个是_直角_时,就说这两条直线_互相垂直__,其中一条直线叫做另一条直线的__垂__线,它们的___交点_叫做___垂足___。

人教版数学七年级下册教学设计5.1.2《 垂线》

人教版数学七年级下册教学设计5.1.2《 垂线》

人教版数学七年级下册教学设计5.1.2《垂线》一. 教材分析《垂线》这一节的内容是七年级下册人教版数学教材中的一个重要部分。

它主要介绍了垂线的定义、性质以及垂线段的概念。

学生通过学习这一节内容,应该能够理解垂线的含义,掌握垂线的性质,并能够运用垂线段的知识解决实际问题。

二. 学情分析七年级的学生已经具备了一定的几何知识,对线段、直线等基本概念有了初步的理解。

但是,他们对垂线的认识可能还比较模糊,对垂线段的运用也还不够熟练。

因此,在教学过程中,教师需要引导学生从实际情境中发现垂线,理解垂线的性质,并通过大量的练习来巩固所学知识。

三. 教学目标1.知识与技能:理解垂线的定义,掌握垂线的性质,能够运用垂线段的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:垂线的定义,垂线的性质。

2.教学难点:垂线段的运用,对垂线概念的理解。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等。

通过引导学生观察实际情境中的垂线,让学生在操作中体验和理解垂线的性质,通过合作学习,提高学生解决问题的能力。

六. 教学准备1.教具准备:直尺、三角板、多媒体课件等。

2.学具准备:每人一副直尺、三角板,一组学生一台计算器。

七. 教学过程导入(5分钟)教师通过展示一些生活中的垂线实例,如墙角、衣架、雨滴等,引导学生发现生活中的垂线,并提问:“什么是垂线?”让学生初步感知垂线的概念。

呈现(10分钟)教师通过多媒体课件,展示一些垂线的基本性质,如从一点到直线的垂线有且只有一条,垂线段是最短的等。

同时,让学生在纸上画出一条直线,并尝试画出它的垂线,从而加深对垂线概念的理解。

操练(15分钟)教师给出一些实际问题,如在平面直角坐标系中,找出一点P到x轴的垂线段的长度。

让学生独立完成,并在小组内交流解题过程。

人教版初一数学下册《垂线教学设计》

人教版初一数学下册《垂线教学设计》

5.1.2 垂线教学设计(第一课时)一、设计理念在平面几何的教学中教师应该根据认知规律,设计符合学生认知水平的教学活动,通过学生的感知、思考、归纳和抽象,形成对几何图形的认识。

由于本节课的内容在理解上较为容易,因此在本教案的内容安排上,尝试利用“发现法”教学,引导学生自己观察,分析特征猜想结论,通过和同学们一起讨论探究得出垂线和垂线段的有关性质。

二、教材分析《垂线》是人教版七年级数学第五章《相交线与平行线》中的内容,包括垂直概念、垂线概念、用数学符号表示垂直、垂线的两个性质和点到直线距离等知识。

它是在学生对基本图形点、线、角有了初步认识的基础上学习的一种特殊位置关系,初步向学生参透由一般到特殊的思想。

其学习方式和研究方法,对今后认识图形、形成空间观念起到奠基的作用,特别是对今后要学习的三角形、平行四边形和圆都有举足轻重的作用,在物理的领域也不缺少垂线性质的应用。

也是培养学生观察、动手、分析、归纳能力的重要内容,对学生的探究精神、学习兴趣的培养都具有重要意义。

三、学情分析学生在小学四年级学习过垂线,对垂线图形有了最基本的认识,也了解了垂直的一些简单性质,但对垂线并没有深入的研究,没对垂线给出严格的几何定义,也没对垂线的性质作深入的探讨。

学生在七年级第三章学习了基本的图形点、线、角,这使学生学习垂线有了基础。

但是由于学生的年龄较小,学习几何的时间太短,理论性的证明往往使他们觉得枯燥无味,因此根据教材的特点,创设问题情境,让他们自己去发现事物的特性,尝试数学家发现问题的思维过程,会使学生充满极大的乐趣去参与教学活动,课堂的效果将会很好。

四、重点和难点重点:垂线的定义,用三角尺或量角器过一点画已知直线垂线。

难点:过一点画已知直线的垂线。

五、教学目标知识与技能:知道垂直是相交的特殊情况,理解垂线的概念,会用三角尺或量角器过一点画已知直线的垂线。

过程与方法:通过操作、探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识。

人教版七年级数学下册第五章《垂 线》优质课课件

人教版七年级数学下册第五章《垂 线》优质课课件

变式训练1-1:点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大 小为( B ) (A)36°(B)54°(C)64°(D)72° 解析:根据OC⊥OD, 得出∠COD=90°, 根据∠AOC+∠COD+∠DOB=180°, 得∠DOB=180°-∠AOC-∠COD=180°-36°-90°=54°. 故选B.
。超








You made my day!
我们,还在路上……
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置 时,距离村庄D最近,请在公路AB上作出C′、D′的位置; 【导学探究】 连接直线外一点与直线上各点的所有线段中 垂线段 最短.
解:(1)如图所示. 过点 C 作 AB 的垂线,垂足为 C′, 过点 D 作 AB 的垂线,垂足为 D′.
5.1.2 垂 线
1.了解垂直的概念,掌握垂线的性质. 2.会过一点用三角板或量角器画已知直线的垂线.
1.垂直 两条直线相交所成的四个角中的任意一个角是 90° 时,我们说这两条直线互 相垂直. 如图:(1)直线AB、CD相交于点O,若∠AOC=90°,则 AB⊥CD .
(2)若AB⊥CD时,则∠COB= 90° . 2.垂线 垂直是相交的一种特殊情况,两直线 互相垂直 ,其中的一条直线叫做另一 条直线的垂线,它们的交点叫做垂足 .如图:AB⊥CD,垂足为O.
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄 D越来越近?(只叙述结论,不必说明理由)
解: (2)在线段C′D′这段路上,距离村庄C越来越远,而离村庄D越来越近. 点到直线的距离是指直线外一点到这条直线的垂线段的长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识热身
• 两条相交直线构成的角
邻补角 对顶角
• 性质
1
2
4 3
邻补角的和为180度。 对顶角相等
小练习
1、如图: 1 22
求出: 1, 2, 3
1
2
4 3
E
2、如图:OE平分,5 65
5 1
2
求出: 1, 2, 3
4
O
3
导入-发现知识
相交线模型
锐角
直角
变化: 斜 构成的角
竖直
形成知识
• 垂直的概念(定义)
相交的两条直线a,b构成的角
900
90 ,说a与b垂直。
符号表示: a b 读作:a垂直于b
概念推理形式:
因为 90
所以 a b
形成知识
• 垂线的概念(定义)
两条直线互相垂直,其中的一条叫做另一条
的垂线。交点叫垂足。
a
符号表示:
直角符号
因为 a b
O
所以 a是b的垂线(b是a的垂线)
展示解法
解:延长AO到E,则有 D DOE BOC
C B
AOD 3BOC
O
A
AOE 4BOC
4BOC 180
BOC 45
总结
• 学习了什么知识? • 掌握了什么方法?
实践出真知,动手画一画,你会有发现
把握知识-展示成果
运用做直角工具画直角
先定个点 画直角
延长得到直线
垂线
a
直角
b
直线a b,a是b的垂线,b也是a的垂线
把握知识-展示成果
两点确定一 直线
发现只能做一条 理由:运用两点确定一直线
形成知识
• 垂线的性质
在同一平面内,过一点有且只 有一条直线与已知直线垂直
垂足 b
巩固概念-运用知识
1、画两条直线垂直
C E
2、如图:
AB CD 垂足为O A
O

B
COE 57
F
则 AOF ________
D
它的补角是___________, FOD对顶角是______
探究垂线的性质
1、用三角尺或量角器画已知直线的垂线, 这样的垂线能画多少条? 2、经过直线l上一点画l垂线,这样能画多少条? 3、经过直线l外一点画l垂线,这样能画多少条?
相关文档
最新文档