第一章 数制和码制

合集下载

数制与码制

数制与码制
13
【例】将十进制整数27转换为二进制数。 用除2取余法进行转换的操作示意图如图所示。 排列出转换的结果为(27)D=(11011)B

0
1/2
3/2 6/2 13/2 27/2 1 3 6 13 27
余数 1
1
0
1
1
14
【例】将十进制数0.21转换为二进制数,要求转
换误差小于2 。 用乘2取整法进行转换的操作示意图如图1-3所示。
第一章 数制和码制
学习目标 • 了解模拟信号和数字信号的处理特点 • 了解常用的数制及其之间的转换 • 了解常用的码制 • 了解文字符号在计算机中的表示
1
第一章 数制和码制
1.1 模拟信号和数字信号的处理特点 1.2 数制 1.2.1 十进制 1.2.2 二进制 1.2.3 数字技术中二进制的优点 1.3 数制间的转换 1.3.1 二进制转换为十进制 1.3.2 十进制转换为二进制 1.3.3 其他数制的转换 1.4 数字电路中数的表示方法与格式 1.4.1 码的概念 1.4.2 十进制数的表示 1.5 文字符号表示方法
1 0
1
d 2 1 0
2
d m 10
m
d
m
n )称为十进制数的按权展开式。
6
1.2.2 二进制
• 二进制就是权为2的进位制,其基数为2,它只有两个 数码,即0和1,做加、减运算时“逢二进一,借一当 二”。这样,两个二进制数的加法和减法运算如下:
3.运算规则简单 • 以加法为例,二进制的加法规则只有3条: 0+0=0,0+1=1和1+1=10; • 而十进制的加法规则却有55条。运算规则的繁 简也会影响到电路的繁简。结合上述设备用量 比较可知,二进制较十进制具有极大的优势。 • 相对于十进制而言,在数字电路中使用二进制 的优势十分突出,所以现在的数字电路基本都 采用二进制。

1章数制与编码1

1章数制与编码1

按权展开法:
例如:(11010.101)2=1×24+1×23+0×22+1×21+0×20 +1×2-1+0×2-2+1×2-3
=16+8+2+0.5+0.125 =(26.625)10 十进制数转换成二进制数时,将待转换的数分成整数部
分和小数部分,并分别加以转换。一个十进制数可写成: (N)10=(整数部分)10 . (小数部分)10 转换时,首先将(整数部分)10转换成(整数部分)2; 然
具体转化法:
2 58
2 29
2 14
27
23
21
0
k0=0 k1=1 k2=0 k3=1 k4=1 k5=1
632.45 = 6x102+3x101+2x100+4x10-1+5x10-2 一般说来,对于任意一个十进制数N,可用位置
计数表示如下: (N)10=( kn-1kn-2 … k1k0 .k-1k-2 … k-m )10
按权展开
的表示法:
(N)10=kn-1×10n-1+kn-2×10n-2+ … k1×101+k0 ×100 + K1 ×10-1 … K-m ×10-m
十进制数的表示
原则上说,一个数可以用任何一种进位计数制来 表示和运算,但不同数制其运算方法及难易程度 互不相同。选择什么样的进位计数制来表示数, 对数字系统的性能影响很大。例如:
632.45 = 6x102+3x101+2x100+4x10-1+5x10-2 一般说来,对于任意一个十进制数N,可用位置
=∑ki×10i (i=-m ∼ n-1) 1.1.2 二进制数的表示

第1章 预备知识(数制与码制)

第1章   预备知识(数制与码制)
其结果为4D5E.6FH=100110101011110.01101111B。
1.2
二进制数的运算
1.2.1二进制数的算术运算
二进制数不仅物理上容易实现,而且算术运算
也比较简单,其加、减法遵循“逢2进1”、“借1当2” 的原则。 以下通过4个例子说明二进制数的加、减、乘、 除运算过程。
1. 二进制加法
续2
2. 二进制减法
1位二进制数减法规则为: 1-0=1 1-1=0 0-0=0 0-1=1 例2: 求10101010B-10101B。 解: 被减数 10101010 (有借位)
减数
借位 -) 差
10101
00101010 10010101
则10101010B-10101B=10010101B。
它代表计数制中所用到的数码个数。
如:二进制计数中用到0和1两个数码; 八进制计数中用到0~7共八个数码。 一般地说,基数为R的计数制(简称R进制)中,包 含0、1、…、R-1个数码,进位规律为“逢R进1”。
续1
(2)位权W(Weight):
进位计数制中,某个数位的值是由这一位的数码值 乘以处在这一位的固定常数决定的,通常把这一固定常数 称之为位权值,简称位权。各位的位权是以R为底的幂。 如:十进制数基数R=10,则个位、十位、百位上的位
2D07.AH=2×163+13×162+0×161+7×160
+10×16-1
=8192+3328+7+0.625=11527.625
续2
2.十进制数转换为二、八、十六进制数
任一十进制数N转换成q进制数,先将整数部分与 小数部分分为两部分,并分别进行转换,然后再用小数 点将这两部分连接起来。
1)整数部分转换

第1章 数和码制

第1章 数和码制

*微机组成:CPU、MEM、I/O微机的基本结构微机原理(一):第一章数制和码制§1.1 数制(解决如何表示数值的问题)一、数制表示1、十进制数表达式为:A =∑-=•110 nmi iAi如:(34.6)10= 3×101 + 4×100 + 6×10-1 2、X进制数表达式为:B =∑-=•1 NM iiX Bi如:(11.01)2= 1×21 + 1×20 + 0×2-1+ 1×2-2(34.65)16= 3×161 + 4×160 + 6×16-1+ 5×16-2X进制要点:X为基数,逢X进1,X i为权重。

(X个数字符号:0,1,…,X-1)区分符号:D-decimal (0-9),通常D可略去,B-binary (0-1),Q-octal (0-7),H-hexadecimal (0-9, A-F)常用数字对应关系:D: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13,14,15B:0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111H: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F二、数制转换1、X →十方法:按权展开,逐项累加。

如: 34.6 Q= 3×81 + 4×80 + 6×8-1 = 24 + 4 + 0.75 = 28.75 D2、十→X即:A十进制=B X进制令整数相等,即得:A整数=(B N-1·X N-1 + … + B1·X1)+ B0·X0此式一次除以X可得余数B0,再次除以X可得B1,…,如此直至得到B N-1令小数相等,即得:A小数=B-1·X-1 +(B-2·X-2 + … + B-M·X-M)此式一次乘X可得整数B-1,再次乘X可得B-2,…,如此直至得到B-M.归纳即得转换方法:除X取余,乘X取整。

第一章数制和码制二进制正负数的表示法二进制正负数的表示法

第一章数制和码制二进制正负数的表示法二进制正负数的表示法

电子科学与应用物理学院School of Electronic Science & Applied Physics 电子科学与应用物理学院School of Electronic Science & Applied Physics电子科学与应用物理学院School of Electronic Science & Applied Physics 电子科学与应用物理学院School of Electronic Science & Applied Physics电子科学与应用物理学院School of Electronic Science & Applied Physics 电子科学与应用物理学院School of Electronic Science & Applied Physics电子科学与应用物理学院School of Electronic Science & Applied Physics 电子科学与应用物理学院School of Electronic Science & Applied Physics电子科学与应用物理学院School of Electronic Science & Applied Physics-循环二进制码(2m-1→0 仅一位之差)电子科学与应用物理学院School of Electronic Science & Applied Physics循环二进制码电子科学与应用物理学院School of Electronic Science & Applied Physics十进制符号“8”电子科学与应用物理学院School of Electronic Science & Applied Physics电子科学与应用物理学院School of Electronic Science & Applied Physics 电子科学与应用物理学院School of Electronic Science & Applied Physics电子科学与应用物理学院School of Electronic Science & Applied Physics。

第1次课——第1章 数制和码制

第1次课——第1章 数制和码制
整数部分除以16,取余数,读数顺序从下往上; 小数部分乘以16,取整数,读数顺序从上至下。 例如:
27. 125 10 1B.216
第1章 逻辑代数基础
二进制转换成十进制的方法:
将二进制数按权展开后,按十进制数相加。 【例】 将二进制数(11001101.11)2 转换为等值的十进制数。 解: 二进制数(11001101.11)2 各位对应的位权如下: 位权:27 26 25 24 23 22 21 20 2-1 2-2 二进制数:1 1 0 0 1 1 0 1. 1 1 等值十进制数为: 27 + 26 + 23 + 22 + 20 + 2-1 + 2-2 =128 + 64 + 8 + 4 + 1 + 0.5 + 0.25 = (205.75)10
第1章 逻辑代数基础
例如:
. 110110012 1 24 1 23 0 22 1 21 1 20 0 2-1 0 2-2 1 2-3 27.12510
八进制转换成十进制的方法:
将八进制数按权展开后,按十进制数相加。 例如:
33.18 3 81 3 80 1 8-1 27.12510
思考(0.0376)10 转换为十进制数?(保留小数点后8位有效数字)
第1章 逻辑代数基础
十进制转换成八进制的方法:
整数部分除以8,取余数,读数顺序从下往上; 小数部分乘以8,取整数,读数顺序从上至下。
例: (27.125) 10 = (33.1) 8
第1章 逻辑代数基础
十进制转换成十六进制的方法:
解:转换过程如下: 二进制数: 1110

01第一章 数制和码制

01第一章 数制和码制

系数
位权 .
i=−m
ki × 10 i ∑
n −1
(D)10=
基数
( D )10 = k n −1k n − 2 ⋯ k 0 k −1 ⋯ k − m = k n −1 × 10 n −1 + ⋯ + k o × 10 0 + k −1 × 10 −1 + ⋯ + k − m × 10 − m =
②初级阶段: ④第三阶段年代中期以后: ③第二阶段: 产生: ①初级阶段年代中期以后: 产生: 阶段 20世纪 第四阶段: 世纪80年代中期以后 ⑥第三阶段: ⑤第二阶段: 第四阶段 世纪 20世纪 年代在通讯技术(电报、 世纪70年代中期集成电路的出 世纪60年代晶体管的出现, 年代中期集成电路的出 年代晶体管的出现 世纪 年代电子计算机中的应用, 年代中期 年代晶体管 年代中期, 20世纪40年代在通讯技术(电报、, 世纪30年代在通讯技术 ,使 世纪70年代中期到 的出现 年代中期到80年代中期 年代中期到 年代中期 世纪40年代电子计算机中的应用 20世纪40年代电子计算机中的应用 产生一些专用和通用的集成芯片, 产生一些专用和通用的集成芯片, 此时以电子管(真空管)作为基本器件 得数字技术有一个飞跃发展,除了计算 使得数字技术有了更广泛的应用, 现,)首先引入二进制的信息存储技术 此时以电子管(真空管)作为基本器件。 得数字技术有一个飞跃发展,基本器件。 电话)首先引入二进制的信息存储技术。 以及一些可编程的数字芯片,并且制作 微电子技术的发展, 可编程的数字芯片 电话使得数字技术有了更广泛的应用, 以及一些可编程的数字芯片 除了计算 微电子技术的发展,使得数字技术得到 而在1847年由英国科学家乔治等领域都 年由英国科学家乔治.布尔 而在通讯领域应用外,在其它如也有应 年由英国科学家乔治 在各行各业医疗 使得数字电路的设计模 另外在电话交换和数字通讯方面也有应 在各行各业医疗、雷达、卫星 布尔 机、通讯领域应用外 在其它如测量领 另外在电话交换和数字通讯方面测量领 技术日益成熟, 迅猛的发展,应用外, 技术日益成熟产生了大规模和超大规模 迅猛的发展医疗、雷达、卫星等领域都 ,, 得到应用 域 用得到应用 创立布尔代数。 (George Boole)创立布尔代数。 创立布尔代数 块化和可编程的特点, 的集成数字芯片, ,提高了设备的性 块化和可编程的特点 的集成数字芯片,应用在各行各业和我 们的日常生活并降低成本,这是数字电 适用性, 能、适用性,并降低成本, 在电子电路中的得到应用, 并在电子电路中的得到应用,形成 路今后发展的趋势。 路今后发展的趋势。 开关代数, 开关代数,并有一套完整的数字逻辑电 路的分析和设计方法

数字电子技术基础第一章-数制和码制

数字电子技术基础第一章-数制和码制
• 请输入您的内容
05
结束语
本章总结
01 02
数制和码制的概念理解
通过本章的学习,我们深入理解了数制和码制的概念,掌握了二进制、 八进制、十进制和十六进制等数制的表示方法和转换规则,同时了解了 不同码制的特性和应用场景。
数制转换的实际操作
通过实例和实践操作,我们学会了如何进行不同数制之间的转换,包括 二进制、八进制、十进制和十六进制之间的转换,以及补码表示法等。
03
码制的优缺点分析
对比分析了二进制、八进制、十进制和十六进制等不同码制的优缺点,
理解了不同码制在计算机科学和技术中的重要性和应用范围。
下章预告
数字逻辑基础
在下一章中,我们将学习数字逻辑基础,了解逻辑门电路 的基本概念和原理,掌握逻辑代数的基本运算和逻辑函数 的表示方法。
逻辑门电路及其应用
进一步了解不同类型逻辑门电路的特性和工作原理,如与 门、或门、非门等,并探讨其在计算机硬件系统中的应用 和实践。
二进制转十进制
总结词
将二进制数转换为十进制数需要采用乘权求和法,即将二进制数的每一位乘以对应的权 值(2的幂次方),然后求和得到十进制数。
详细描述
将二进制数转换为十进制数的过程称为"乘权求和法"。具体步骤如下
二进制转十进制
2. 将得到的积相加,即为该 二进制数的十进制表示。
0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 0 + 4 + 0 +1=5
例如,将二进制数1010转换 为十进制数的计算过程如下
因此,二进制数1010等于十 进制数5。
八进制转十进制
总结词
将八进制数转换为十进制数需要采用乘权求 和法,即将八进制数的每一位乘以对应的权 值(8的幂次方),然后求和得到十进制数 。

数字电子技术基础电子课件第一章数制与码制PDF61.pdf

数字电子技术基础电子课件第一章数制与码制PDF61.pdf

前言第一章数制与码制: “数”在计算机中怎样表示。

第二章逻辑代数基础: 逻辑代数的基本概念、逻辑函数及其标准形式、逻辑函数的化简。

第三章组合逻辑电路: 组合电路的分析与设计。

第四章同步时序逻辑电路:触发器、同步时序电路的分析与设计。

第五章异步时序逻辑电路:脉冲异步电路的分析与设计。

第六章采用中,大规模集成电路的逻辑设计。

绪论一、数字系统1.模拟量:连续变化的物理量2.数字量:模拟→数字量(A/D)3.数字系统:使用数字量来传递、加工、处理信息的实际工程系统4.数字系统的任务:1) 将现实世界的信息转换成数字网络可以理解的二进制语言2)仅用0、1完成所要求的计算和操作3)将结果以我们可以理解的方式返回现实世界5.数字系统设计概况1 ) 层次:从小到大,原语单元、较复杂单元、复杂单元、更复杂单元2)逻辑网络:以二进制为基础描述逻辑功能的网络3)电子线路:物理构成4)形式描述:用硬件描述语言(HDL)描述数字系统的行为6.为什么采用数字系统1)安全可靠性高2)现代电子技术的发展为其提供了可能7.数字系统的特点1)二值逻辑(“0”低电平、“1”高电平)2)基本门电路及其扩展逻辑电路(组成)3)信号间符合算术运算或逻辑运算功能4)其主要方法为逻辑分析与逻辑设计(工具为布尔代数、卡诺图和状态化简)第一章数制与码制学习要求:•掌握二、十、八、十六进位计数制及相互换;•掌握二进制数的原码、反码和补码表示及其加减运算;•了解定点数与浮点数的基本概念;掌握常用的几种编码。

1.1 进位计数制1.1.1 十进制数的表示1、进位计数制数制:用一组统一的符号和规则表示数的方法2、记数法•位置计数法例:123.45 读作一百二十三点四五•按权展形式例:123.45=1×102+2×101+3×100+4×10-1+5×10-23、基与基数用来表示数的数码的集合称为基(0—9), 集合的大小称为基数(十进制10)。

第一章 数制与码制

第一章 数制与码制

五、八进制数与二进制数的转换
例:将(011110.010111)2化为八进制
例:将(52.43)8化为二进制
(5 2 . 4 3)8
(101
010 . 100
011 ) 2
《数字电子技术基础》第五版
六、十六进制数与十进制数的转换
十六进制转换为十进制
D

K i 16
i
K ( 0 ,1 15 )
1
2 3 4 5 6 7 8 9
0001
0010 0011 0100 0101 0110 0111 1000 1001
0100
0101 0110 0111 1000 1001 1010 1011 1100
0001
0010 0011 0100 1011 1100 1101 1110 1111
0001
0100 0101 0111 1000 1001 1100 1101 1111
0110
0111 0101 0100 1100 1101 1111 1110 1010
特点:1.每一位的状态变化都按一定的顺序循环。 2.编码顺序依次变化,按表中顺序变化时,相邻代码 只有一位改变状态。 应用:减少过渡噪声
编码顺 序 0 1 2 3 4 5 6 7 二进制 0000 0001 0010 0011 0100 0101 0110 0111 格雷码 0000 0001 0011 0010 0110 0111 0101 0100 编码顺序 8 9 10 11 12 13 14 15 二进制码 1000 1001 1010 1011 1100 1101 1110 1111 格雷码 1100 1101 1111 1110 1010 1011 1001 1000

第1章 数制和码制ppt

第1章 数制和码制ppt

21 2 157 128 29 16 13 8 5 4 1 1 0
22 4 27 24 23 22 20
23 8
24 16
25 32
26
27
28
29
210
64 128 256 512 1024
28 = 256 > 157 > 27 = 128
2 = 32 > 29 > 2 = 16
5 4
2 4 = 16 > 13 > 2 3 = 8
CopyRight @安阳师范学院物理与电气工程学院_2011
几种常用的BCD码 码 几种常用的 十进制数 0 1 2 3 4 5 6 7 8 9 权 8421码 余3码 码 码 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 8421 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 2421码 码 0000 0001 0010 0011 0100 1011 1100 1101 1110 1111 2421 5211码 码 0000 0001 0100 0101 0111 1000 1001 1100 1101 1111 5211

1. (1001)8421BCD=( ? )10 (1001)8421BCD=1×8+0×4+0×2+1×1=(9)10 2. (1011)2421BCD=( ? )10 (1011)2421BCD=1×2+0×4+1×2+1×1=(5)10
CopyRight @安阳师范学院物理与电气工程学院_2011
i =− m n −1

01数制与码制(数字电子技术)

01数制与码制(数字电子技术)

第1章数制与码制1.1 概述电子信号可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归为两类:模拟信号和数字信号。

模拟信号的特点是时间和幅度上都连续变化(连续的含义是在某一取值范围内可以取无限多个数值)。

交流放大电路的电信号就是模拟信号,如图1-1所示。

我们把工作在模拟信号下的电子电路称为模拟电路。

数字信号是时间和幅度上都不连续变化的离散的脉冲信号,例如图1-2所示。

用数字信号对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。

由于它具有逻辑运算和逻辑处理功能,所以又称为数字逻辑电路。

图1-1 图1-2数字电路通常是根据脉冲信号的有无来进行工作的,而与脉冲幅度无关,所以抗干扰能力强、准确度高。

虽然数字信号的处理电路比较复杂,但因信号本身的波形十分简单,只有两种状态—有或无,在电路中具体表现为高电位和低电位(通常用1和0表示),所以用于数字电路的半导体管不是工作在放大状态而是工作在开关状态,要么饱和导通,要么截止,因此制作时工艺要求相对低,易于集成化。

随着数字集成电路制作技术的发展,数字电路在通信、计算机、自动控制、航天等各个领域获得了广泛的应用。

数字信号通常都是用数码表示的。

数码不仅可以用来表示数量的大小,还可以用来表示事物或事物的不同状态。

用数码表示数量大小时,需要用多位数码表示。

通常把多位数码中每一位的构成方法及从低位到高位的进位规则称为数制。

在用于表示不同事物时,这些数码已经不再具有表示数量大小的含义,它们只是不同事物的代号。

比如,我们每个人的身份证号码,这些号码仅仅表示不同对象,没有数量大小的含义。

为了便于记忆和查找,在编制代码时总要遵循一定的规则,这些规则就称为码制。

考虑到信息交换的需要,通常会制定一些大家共同使用的通用代码。

例如:目前国际上通用的美国信息交换标准代码(ASCII码,见本章第1.5节)就属于这一种。

数字电子技术1.2 几种常用的数制任何一个数都可以用不同的进位体制来表示,但不同进位计数体制的运算方法和难易程度各不相同,这对数字系统的性能有很大影响。

数制和码制

数制和码制

十进制转换为R进制: 需要将整数部分和小数部 分分别进行转换,然后再将它们合并起来。
整数依次除以R,用余数构成各位。 小数依次乘以R,用积的整数部分构成各位。 小数部分的转换有一个精度问题,不可能都十分准确 只要满足所提要求即可。 例如要求精度为 0.1% ,二进制数的小数点后第九位为 1 / 512,第十位为 1/ 1024。所以要保留到小数点后第 十位,第九位达不到要求,第十一位太多了。
结论: 1)减法运算=两数的补码相加 例如:13-10 这样的减法运算等价于13的补码与-10 的补码相加 2)两个加数的符号位、最高有效数字位的进位 这三 个数相加,得到的结果就是和的符号位。
1.5 几种常用的编码
一、十进制代码 我们常用的数字1、2、3……9、0 通常有两大用途: 表示大小: 10000(一万), 8848米。 表示编码:000213班, 8341部队。 我们习惯使用十进制,计算机硬件却是基于二进制的 ,所以我们需要考虑: 如何用二进制编码来表示十进制的十个码元0 ~ 9?
低位
所以:(44.375)10=(101100.011)2
采用基数连除、连乘法,可将十进制数转换为任意的N进制数。
二、二进制数与八进制数的相互转换
(1)二进制数转换为八进制数: 将二进制数由小数点开始, 整数部分向左,小数部分向右,每3位分成一组,不够3位补 零,则每组二进制数便是一位八进制数。
0 0 1 1 0 1 0 1 0. 0 1 0
0.375 × 2 整数 0.750 „„„ 0=K-1 0.750 × 2 1.500 „„„ 1=K-2 0.500 × 2 1.000 „„„ 1=K-3 高位
22 „„„ 0=K0 11 „„„ 0=K1 5 „„„ 1=K2 2 „„„ 1=K3 1 „„„ 0=K4 0 „„„ 5 1=K 高位

数字电路 第一章数制和码制

数字电路 第一章数制和码制

( 0 1 1 0 1 0 1 0 . 0 1 )2
0
0
(2)八进制数转换为二进制数:将每位八进制数 用3位二进制数表示。
= (152.2)8
(
3
7
4 .
2
6)8
= ( 011 111 100 . 010 110)2
十六-二转换
二进制数与十六进制数的相互转换,按照每4位二进制数 对应于一位十六进制数进行转换。
( N )R
i m
a R
i
n 1
i
1 原码
又称"符号+数值表示", 对于正数, 符
号位为0, 对于负数、符号位为1, 其余各 位表示数值部分。
例: N1 = +10011
[ N1]原= 010011
N2 = – 01010
[N2]原= 101010
原码表示的特点: 真值0有两种原码表示形式, 即 [ +0]原= 00…0 [– 0]原= 1 0…0
求[ N1 +N2]原,绝对值相减,有
[ N1 +N2]原=01000
二、反码运算
[ N1 +N2]反= [ N1]反+ [ N2]反
[ N1 -N2]反= [ N1]反+ [- N2]反 当符号位有进位时,应在结果的最低位 再加"1".
例: N1 =-0011,N2 = 1011求[ N1 +N2]反 和 [ N1 -N2]反。
N10
i m
K i 10i
n 1
式中Ki为基数10的i次幂的系数,它可为0~9 中的任一个数字。
如 .58)10 2 102 3 101 4 100 5 101 (234 102 8

数字逻辑电路第1章 数制和码制

数字逻辑电路第1章  数制和码制

第1章 逻辑代数基础
287 17 16 17 1 16 1 0 16
余数
F
1
1
MSB← 1 1 F →LSB
因此,对应的十六进制整数为11FH。
第1章 逻辑代数基础
进行小数部分转换时,先将十进制小数乘以 16 ,
积的整数作为相应的十六进制小数,再对积的小数部 分乘以16。如此类推,直至小数部分为0,或按精度要 求确定小数位数。第一次积的整数为十六进制小数的 最高有效位,最后一次积的整数为十六进制小数的最 低有效位。 【例1.9】 将0.62890625D转换为十六进制数。 解:转换过程如下:
第1章 逻辑代数基础
4) 十—八转换
将十进制数转换为八进制数时,要分别对整数和 小数进行转换。进行整数部分转换时,先将十进制整 数除以8,再对每次得到的商除以8,直至商等于0为止。 然后将各次余数按倒序写出来,即第一次的余数为八 进制整数的最低有效位,最后一次的余数为八进制整 数的最高有效位,所得数值即为等值八进制整数。 【例1.5】 将1735D转换为八进制数。
第1章 逻辑代数基础
2) 二进制 基数R为2的进位计数制称为二进制(Binary),它 只有 0 和1 两个有效数码,低位向相邻高位“逢二进一, 借一为二”。二进制数一般用下标2或 B表示,如 1012, 1101B等。
3)八进制
基数R为8的进位计数制称为八进制(Oct al),它 有0、1、2、3、4、5、6、7共8个有效数码,低位向相 邻高位“逢八进一,借一为八”。八进制数一般用下 标8或O表示,如6178,547O等。
第1章 逻辑代数基础
第1章 逻辑代数基础
1.1
1.1.1 数字量和模拟量
概 述
在自然界中,存在着各种各样的物理量,这些物 理量可以分为两大类 :数字量和模拟量。数字量是指离 散变化的物理量,模拟量则是指连续变化的物理量。 处理数字信号的电路称为数字电路,而处理模拟信号

数字电子技术基础-第一章-数制和码制

数字电子技术基础-第一章-数制和码制

②格雷码
自然二进制码
先将格雷码的最高位直接抄下,做为二进制 数的最高位,然后将二进制数的最高位与格雷码 的次高位异或,得到二进制数的次高位,再将二 进制数的次高位与格雷码的下一位异或,得二进 制数的下一位,如此一直进行下去,直到最后。
奇偶校验码
组成
信 息 码 : 需要传送的信息本身。
1 位校验位:取值为 0 或 1,以使整个代码 中“1”的个数为奇数或偶数。
二、数字电路的特点
研究对象 输出信号与输入信号之间的逻辑关系
分析工具 逻辑代数
信 号 只有高电平和低电平两个取值
电子器件 工作状态
导通(开)、截止(关)
主要优点
便于高度集成化、工作可靠性高、 抗干扰能力强和保密性好等
1.1 数制和码制
主要要求:
掌握十进制数和二进制数的表示及其相互转换。 了解八进制和十六进制。 理解 BCD 码的含义,掌握 8421BCD 码, 了解其他常用 BCD 码。
(10011111011.111011)2 = ( ? )16
0100111111001111.111111001110 0
补 04 F B
E 补C 0
(10011111011.111011)2= (4FB.EC)16
十六进制→二进制 :
每位十六进制数用四位二进
制数代替,再按原顺序排列。
(3BE5.97D)16 = (11101111100101.100101111101)2
0000
0000
0011
1
0001 0001
0001
0001
0100
2
0010 0010
0010
0010
0101

第一章数制和码制

第一章数制和码制

第⼀章数制和码制第⼀章数制和码制本章教学⽬的、要求:1.掌握⼆进制、⼋进制、⼗进制、⼗六进制及其相互转换。

2.掌握原码、反码、补码的概念及转换,了解⼆进制补码的运算。

3.理解常⽤8421BCD 码和可靠性代码。

重点:不同进制数间的转换。

难点:补码的概念及⼆进制补码的运算。

第⼀节概述(⼀)数字量与模拟量数字量:物理量的变化在时间上和数量上都是离散的。

它们数值的⼤⼩和每次变化的增减变化都是某⼀个最⼩数量单位的整数倍,⽽⼩于这个最⼩数量单位的数值没有任何物理意义。

例如:统计通过某⼀个桥梁的汽车数量,得到的就是⼀个数字量,最⼩数量单位的“1”代表“⼀辆”汽车,⼩于1的数值已经没有任何物理意义。

数字信号:表⽰数字量的信号。

如矩形脉冲。

数字电路:⼯作在数字信号下的电⼦电路。

模拟量:物理量的变化在时间上和数值上都是连续的。

例如:热电偶⼯作时输出的电压或电流信号就是⼀种模拟信号,因为被测的温度不可能发⽣突跳,所以测得的电压或电流⽆论在时间上还是在数量上都是连续的。

模拟信号:表⽰模拟量的信号。

如正弦信号。

模拟电路:⼯作在模拟信号下的电⼦电路。

这个信号在连续变化过程中的任何⼀个取值都有具体的物理意义,即表⽰⼀个相应的温度。

(⼆)数字信号的⼀些特点数字信号通常都是以数码形式给出的。

不同的数码不仅可以⽤来表⽰数量的不同⼤⼩,⽽且可以⽤来表⽰不同的事物或事物的不同状态。

tu t第⼆节⼏种常⽤的数制数制:把多位数码中每⼀位的构成⽅法以及从低位到⾼位的进位规则称为数制。

在数字电路中经常使⽤的计数进制有⼗进制、⼆进制和⼗六进制。

有时也⽤到⼋进制。

⼀、⼗进制数(Decimal)⼗进制是⽇常⽣活中最常使⽤的进位计数制。

在⼗进制数中,每⼀位有0~9⼗个数码,所以计数的基数是10。

超过9的数必须⽤多位数表⽰,其中低位和相邻⾼位之间的进位关系是“逢⼗进⼀”。

任意⼗进制数 D 的展开式:i i k D 10∑= k i 是第 i 位的系数,可以是0~9中的任何⼀个。

第1章数制和码制

第1章数制和码制
十进制数为整数时
p 1
D c iri c p 1 rp 1 c p 1 rp 2 c 0r0 i 0
以十进制数除以
p 1
D /r c iri/r cp 1rp 2 cp 2rp 3 c 1r0 c 0/r i 0 Q c 0/r
数字电子技术
第章数制和码制
教学网址: 讨论空间:
概述
. 数制 定义:多位数码中每一位的构成方法以及从低位到 高位的进位规则。 数字信号往往是以二进制数码给出的。 当数码表示数值时,可以进行算术运算(加、减、 乘、除)。 常见的数制有十进制、二进制、十六进制等。
. 码制 数码还可以表示不同的事物或状态,此时,称这 些数码为代码。 定义:编制代码遵循的规则。
Digital Electronics Technolo31g.y08.2019
几种常用的数制
. 进位计数制
加权和
p1
权重ri
S ci ri
in
基数
. 十进制()
第位系数
由、…十个数码组成,进位规则是逢十进一, 计数基数为,按权展开式:
p1
D Ci 10i in
例:····
Digital Electronics Technolo31g.y08.2019
不同数制间的转换
则其商整数部分为,而其余数为第位系数; 按照同样方法,以其商除以得到第位系数 ;如此 重复进行,直至其商小于基数为止,得到所转换 进制的所有系数。
2
179 (1 (LSB)
2
89 (1
2
44 (0
2 22 (0
不同数制间的转换
. 二、八、十六进制到十进制的转换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 数制和码制本章教学目的、要求:1.掌握二进制、八进制、十进制、十六进制及其相互转换。

2.掌握原码、反码、补码的概念及转换,了解二进制补码的运算。

3.理解常用8421BCD 码和可靠性代码。

重点:不同进制数间的转换。

难点:补码的概念及二进制补码的运算。

第一节 概述(一)数字量与模拟量数字量:物理量的变化在时间上和数量上都是离散的。

它们数值的大小和每次变化的增减变化都是某一个最小数量单位的整数倍,而小于这个最小数量单位的数值没有任何物理意义。

例如:统计通过某一个桥梁的汽车数量,得到的就是一个数字量,最小数量单位的“1”代表“一辆”汽车,小于1的数值已经没有任何物理意义。

数字信号:表示数字量的信号。

如矩形脉冲。

数字电路:工作在数字信号下的电子电路。

模拟量:物理量的变化在时间上和数值上都是连续的。

例如:热电偶工作时输出的电压或电流信号就是一种模拟信号,因为被测的温度不可能发生突跳,所以测得的电压或电流无论在时间上还是在数量上都是连续的。

模拟信号:表示模拟量的信号。

如正弦信号。

模拟电路:工作在模拟信号下的电子电路。

这个信号在连续变化过程中的任何一个取值都有具体的物理意义,即表示一个相应的温度。

(二)数字信号的一些特点数字信号通常都是以数码形式给出的。

不同的数码不仅可以用来表示数量的不同大小,而且可以用来表示不同的事物或事物的不同状态。

tu t第二节 几种常用的数制数制:把多位数码中每一位的构成方法以及从低位到高位的进位规则称为数制。

在数字电路中经常使用的计数进制有十进制、二进制和十六进制。

有时也用到八进制。

一、十进制数(Decimal)十进制是日常生活中最常使用的进位计数制。

在十进制数中,每一位有0~9十个数码,所以计数的基数是10。

超过9的数必须用多位数表示,其中低位和相邻高位之间的进位关系是“逢十进一”。

任意十进制数 D 的展开式:i i k D 10∑= k i 是第 i 位的系数,可以是0~9中的任何一个。

例:将十进制数12.56展开为:21110610510210156.12--⨯+⨯+⨯+⨯=二、二进制数(Binary )二进制数的进位规则是“逢二进一”,其进位基数R=2, 每位数码的取值只能是0或1,每位的权是2的幂。

任何一个二进制数,可表示为:i i k D 2∑=例如:三、八进制数(Octal)八进制数的进位规则是“逢八进一”,其基数R =8,采用的数码是0、 1、 2、 3、 4、 5、 6、 7, 每位的权是 8 的幂。

任何一个八进制数也可以表示为:i i k D 8∑=例如:四、十六进制数(Hexadecimal)十六进制数的特点是:① 采用的 16 个数码为0、 1、 2、 …、 9、 A 、 B 、 C 、 D 、 E 、 F 。

符号A~F 分别代表十进制数的10~15。

② 进位规则是“逢十六进一”,基数R =16,每位的权是16的幂。

任何一个十六进制数, 可以表示为:i i k D 16∑= 例如:1032101232)375.11(21212021212021)011.1011(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=---1010128)5.254(5.068764384868783)4.376(=++⨯+⨯=⨯+⨯+⨯+⨯=-10211216)0664.939(16116116111610163)113(=⨯+⨯+⨯+⨯+⨯=⋅--AB任意 N 进制数展开式的普遍形式:i i N k D ∑=其中 k i 是第 i 位的系数;k i 可以是 0 ~ N-1 中的任何一个;N 称为计数的基数; N i 称为第 i 位的权。

五、不同进制数的对照表第三节 不同数制间的转换一、二—十转换二进制数转换成十进制数时,只要将二进制数按权展开,然后将各项数值按十进制数相加,便可得到等值的十进制数。

例如:同理,若将任意进制数转换为十进制数,只需将数(N )R 写成按权展开的多项式表示式,并按十进制规则进行运算, 便可求得相应的十进制数(N )10。

二、十—二转换① 整数转换——除2取余法。

例如:将(57)10转换为二进制数:10211242)75.22(2121212121)11.10110(=⨯+⨯+⨯+⨯+⨯=--② 小数转换——乘2取整法。

例如:将(0.724)10转换成二进制小数。

可见,小数部分乘2取整的过程,不一定能使最后乘积为0,因此转换值存在误差。

通常在二进制小数的精度已达到预定的要求时,运算便可结束。

将一个带有整数和小数的十进制数转换成二进制数时,必须将整数部分和小数部分分别按除2取余法和乘2取整法进行转换,然后再将两者的转换结果合并起来即可。

同理,若将十进制数转换成任意R 进制数(N )R ,则整数部分转换采用除R 取余法;小数部分转换采用乘R 取整法。

三、二进制数与八进制数、十六进制数之间的相互转换八进制数和十六进制数的基数分别为8=23,16=24, 所以三位二进制数恰好相当一位八进制数,四位二进制数相当一位十六进制数,它们之间的相互转换是很方便的。

二进制数转换成八进制数的方法是从小数点开始,分别向左、向右,将二进制数按每三位一组分组(不足三位的补0),然后写出每一组等值的八进制数。

例如,求(01101111010.1011)2的等值八进制数: 二进制 001 101 111 010 .101 100二进制数转换成十六进制数的方法和二进制数与八进制数的转换相似,从小数点开始分别向左、向右将二进制数按每四位一组分组(不足四位补0),然后写出每一组等值的十六进制数。

例如,将(1101101011.101)转换为十六进制数:八进制数、十六进制数转换为二进制数的方法可以采用与前面相反的步骤,即只要八进制 1 5 7 2 .. 5 4 二进制 001 101 111 010 . 101 100 所以 (01101111010.1011)2=(1572.54) 800 11 01 10 10 11 . 10 103 6 B . A按原来顺序将每一位八进制数(或十六进制数)用相应的三位(或四位)二进制数代替即可。

例如,分别求出(375.46)8、(678.A5)16的等值二进制数:二进制011 111 101 . 100 110二进制0110 0111 1000.1010 0101所以(375.46)8=(011111101.100110)2, (678.A5)16=(011001111000.10100101)2第四节二进制算数运算算术运算:当两个数码分别表示两个数量大小时,它们可以进行数量间的加、减、乘、除等运算。

这种运算称为算术运算。

一、二进制算数运算的特点:逢二进一二进制算术运算的两个特点:二进制的乘法运算可以通过若干次的“被乘数(或0)左移1位”和“被乘数(或0)与部分积相加”这两种操作完成;二进制数的除法运算能通过若干次的“除数右移1位”和“从被除数或余数中减去除数”这两种操作完成。

二、原码、反码和补码和补码运算二进制数的正、负表示方法通常采用的是在二进制数的前面增加一位符号位。

这种形式的数称为原码。

原码:符号位为0表示这个数是正数,符号位为1表示这个数是负数。

以下各位表示数值。

在做减法运算时,如果两个数是用原码表示的,则首先需要比较两数绝对值的大小,然后以绝对值大的一个作为被减数、绝对值小的一个作为减数,求出差值,并以绝对值大的一个数的符号作为差值的符号。

这个操作过程比较麻烦,而且需要使用数值比较电路和减法运算电路。

如果用两数的补码相加代替上述减法运算,则计算过程中就无需使用数值比较电路和减法运算电路了,从而使减法运算器的电路结构大为简化。

10-5的减法运算可以用10+7的加法运算代替。

因为5和7相加正好等于产生进位的模数12,所以称7为-5对模12 的补数,也称为补码(complement)。

在舍弃进位的条件下,减去某个数可以用加上它的补码来代替。

这个结论同样适用于二进制数的运算。

1011-0111=0100的减法运算,在舍弃进位的条件下,可以用1011+1001=0100的加法运算代替。

1001是0111对模16的补码。

对于有效数字(不包括符号位)为n 位的二进制数N ,它的补码(N)COMP 表示方法为⎩⎨⎧-=)(2)()(为负数当为正数当N NN N N nCOMP正数的补码与原码相同,负数的补码等于2n -N 。

为避免在求补码的过程中做减法运算,通常是先求出N 的反码,然后在负数的反码上加1而得到补码。

⎩⎨⎧--=)(12)()(为负数当为正数当N NN NN nINV反码:正数的反码等于原码,负数的反码:符号位不变,以下各位按位取反。

补码:正数的补码等于原码,负数的补码:符号位不变,以下各位按位取反,加1。

例1:写出带符号位二进制数00011010(+26)、10011010(-26)、00101101(+45)、和10101101(-45)的反码和补码。

解: 原码 反码 补码0001101000011010 0001101010011010 11100101 11100110 00101101 00101101 00101101 101011011101001011010011例2:用二进制补码运算求出13+10、13-10、-13+10、-13-10。

解:先分别求出补码,再按补码运算。

注意:在两个同符号数相加时,它们的绝对值之和不可超过有效数字位所能表示的最大值,否则会得出错误的计算结果。

第五节 几种常用的编码不同的数码不仅可以表示数量的大小,而且还可以表示不同事物或事物的不同状态在用于表示不同事物的情况下,这些数码已经不再具有表示数量大小的含义了,它们只是不同事物的代号而已。

这些数码称为代码。

例如:一位运动员编一个号码。

为了便于记忆和查找,在编制代码时总要遵循一定的规则,这些规则就称为码制。

一、十进制代码用四位二进制码的10 种组合表示十进制数0~9,简称BCD 码(Binary Coded Decimal)。

这种编码至少需要用四位二进制码元,而四位二进制码元可以有 16种组合。

当用这些组合表示十进制数0~9时, 有六种组合不用。

由 16 种组合中选用 10 种组合。

表:几种常用的BCD 码1. 8421 BCD 码8421 BCD 码是最基本和最常用的BCD 码, 它和四位自然二进制码相似, 各位的权值为8、 4、 2、 1, 故称为有权BCD 码。

和四位自然二进制码不同的是, 它只选用了四位二进制码中前 10 组代码,即用0000~1001分别代表它所对应的十进制数, 余下的六组代码不用。

2. 5211 BCD 码和2421 BCD 码5211 BCD 码和2421 BCD 码为有权BCD 码,它们从高位到低位的权值分别为5、 2、 1、 1和2、4、2、1。

相关文档
最新文档