2.1生活中的变量关系
高中数学 第二章 函数 2.1 生活中的变量关系问题导学案 北师大版必修1-北师大版高一必修1数学学
![高中数学 第二章 函数 2.1 生活中的变量关系问题导学案 北师大版必修1-北师大版高一必修1数学学](https://img.taocdn.com/s3/m/1d7a7b08f705cc17542709a7.png)
2.1 生活中的变量关系问题导学一、依赖关系与函数关系的判断活动与探究1下列过程中,各变量之间是否存在依赖关系?其中哪些是函数关系?(1)将保温瓶中的热水倒入茶杯中缓慢冷却,并将一温度计放入茶杯中,每隔一段时间,观察温度计示数的变化,冷却时间与温度计示数的关系;(2)商品的销售额与广告费之间的关系;(3)家庭的食品支出与电视机价格之间的关系;(4)高速公路上行驶的汽车所走的路程与时间的关系.迁移与应用1.下面的变量与变量之间是否具有依赖关系?是否具有函数关系?①一天中温度与时间的关系;②汽车在行驶过程中的耗油量与时间的关系;③油菜在生长期内株高与施肥量的关系;④人的身高与体重之间的关系;⑤一枚炮弹发射后,飞行高度与时间的关系.(1)判断两个变量之间是否具有依赖关系,只需分析当其中一个变量变化时,另一个变量是否也发生变化即可,如果发生变化,则它们具有依赖关系,如果不发生变化,则它们不具有依赖关系.(2)判断两个具有依赖关系的变量是否具有函数关系时,可分以下两个步骤:①确定因变量和自变量.②判断对于自变量的每一个确定值,因变量是否有唯一确定的值与之对应.若满足,则是函数关系,否则不是函数关系.二、结合图像分析两个变量之间的关系活动与探究2如图所示为某市一天24小时内的气温变化图.(1)上午8时的气温是多少?全天的最高、最低气温分别是多少?(2)大约在什么时刻,气温为0 °C?(3)大约在什么时刻内,气温在0 °C以上?两个变量有什么特点,它们具有怎样的对应关系?迁移与应用如图所示,小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况.(1)图像表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)在10时和13时,他离家分别有多远?(3)他在什么时间段离家最远?(4)小明离家的时刻是离家的距离的函数吗?(1)结合图像分析两个变量之间的关系时,首先要清楚横轴、纵轴的含义,明确单位等;其次要注意观察,分析图像中蕴含的数据信息,特别注意发现图像中的关键点,如图像与横轴、纵轴的交点,图像的最高点、最低点等.(2)由图像判断两个变量是否具有函数关系时,首先要区分好自变量和因变量,其次要看对于自变量的每一个值,因变量是否都有唯一确定的值与之对应.三、结合表格分析两个变量之间的关系活动与探究3口香糖的生产已有很长的历史,咀嚼口香糖有很多益处,但其残留物也会带来污染,为了研究口香糖的黏附力与温度的关系,一位同学通过实验,测定了不同温度下除去糖分的口香糖与瓷砖地面的黏附力,得到了如下表所示的一组数据:(1)请根据上述数据,绘制出口香糖黏附力F随温度t变化的图像;(2)根据上述数据以及得到的图像,你能得到怎样的实验结论呢?迁移与应用x 1 921 1 927 1 949 1 949<x<1 997 1 997 1 999 2 010y 12345672.以下是某电视台的广告价格表(2013年1月报价,单位:元)试问:广告价格与播出时间之间的关系是否是函数关系?具有依赖关系的两个变量在实际问题中常常需要用图像或式子表示出来,通过有限的数据关系,我们可以表示出两个变量的依赖关系,从而得到其余各个数据之间的依赖关系,从而指导我们的生活,使我们的利益取得最优化.当堂检测1.下列说法不正确的是( ).A.依赖关系不一定是函数关系B.函数关系是依赖关系C.如果变量m是变量n的函数,那么变量n也是变量m的函数D.如果变量m是变量n的函数,那么变量n不一定是变量m的函数2.李明骑车上学,一开始以某一速度前进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上学时间,于是就加快了车速,在下面给出的四个函数示意图中(s为距离,t为时间)符合以上情况的是( ).3.给出下列关系:①人的年龄与他(她)拥有的财富之间的关系;②抛物线上的点的纵坐标与该点的横坐标之间的关系;③橘子的产量与气候之间的关系;④某同学在6次考试中的数学成绩与他的考试号之间的关系.其中不是函数关系的有__________.(只填序号)4.下图是我国2012年某地降雨量的统计情况,图中横轴为月份(单位:月),纵轴为降雨量(单位:cm).由图中曲线可判断该地2012年的降雨量与时间是否具有函数关系?5.判断下列变量间是否存在函数关系:(1)矩形的面积一定时,其长与宽;(2)等腰三角形的底边边长与周长;(3)关系式y2=x中的y与x.答案:课前预习导学【预习导引】1.依赖关系因变量自变量2.(1)函数(2)每一个值唯一确定预习交流1 提示:根据定义,函数关系是特殊的依赖关系,具有依赖关系的两个变量有的是函数关系,有的不是函数关系.因此说依赖关系不一定是函数关系,但函数关系一定是依赖关系.预习交流2 提示:人的健康状况和饮食之间有一定的依赖关系,但这种关系并不是函数关系,因为健康状况并不单纯由人的饮食而定,还受环境、锻炼等因素的影响.课堂合作探究【问题导学】活动与探究1 思路分析:两个变量中的一个变量发生变化时,如果另一个变量也发生变化,则它们具有依赖关系;如果另一个变量发生变化且取值唯一,则它们具有函数关系.解:(1)冷却时间与温度计示数具有依赖关系,根据函数的定义知,二者之间存在函数关系,且冷却时间是自变量,温度计示数是因变量.反之不行.(2)商品的销售额与广告费这两个变量在现实生活中存在依赖关系,但商品的销售额还受其他因素的影响,比如产品的质量、价格、售后服务等,所以商品的销售额与广告费之间是不确定性关系,即不是函数关系.(3)家庭的食品支出与电视机价格之间没有依赖关系,更不具有函数关系.(4)高速公路上行驶的汽车所走的路程与时间这两个变量存在依赖关系,且对于每一个时间的值,路程是唯一确定的,因此它们之间存在函数关系,且时间是自变量,路程是因变量.反之也是.综上可知,(1)(4)中的变量间具有依赖关系,且是函数关系;(2)中变量间存在依赖关系,但不是函数关系;(3)中两个变量不存在依赖关系,也不具有函数关系.迁移与应用1.解:①②③④⑤中变量与变量之间都具有依赖关系.其中①②⑤中两个变量之间的依赖关系都具有一个共同的特点,即任给一个时间的值,该时的温度、汽车的耗油量、炮弹飞行的高度就唯一确定,也就是说,对于一个变量的每一个值,另一个变量都有唯一确定的值与之对应,所以它们之间的关系是确定性关系,即是函数关系.其中①中的自变量是时间,因变量是温度,反之不行,②中的自变量是时间,因变量是耗油量,反之也是,⑤中的自变量是时间,因变量是飞行高度,反之不行.而③④中两个变量尽管具有依赖关系,但油菜生长期内的株高除与施肥量有关外,还与灌水、光照等因素有关,人的身高越高,其体重不一定越重,所以它们之间的关系不具有确定性,不是函数关系.活动与探究2 思路分析:对照图像,分析时间t与气温θ的取值情况以及它们之间的对应关系,结合函数关系的定义判断它们之间的关系.解:(1)上午8时的气温是0 °C,全天最高气温大约是9 °C,在14时达到.全天最低气温大约是-2 °C,在4时达到.(2)大约在8时和22时,气温为0 °C.(3)在8时到22时之间,气温在0 °C以上,变量0≤t≤24,变量-2≤θ≤9,由于图像是连续的,可知它们之间具有随着时间的增加,气温先降再升再降的变化趋势,所以气温与时间具有依赖关系,也具有函数关系.迁移与应用解:(1)图像表示了时间与距离两个变量之间的关系,时间是自变量,距离是因变量.(2)在10时和13时,他离家分别为10千米和30千米.(3)他在12时至13时离家最远.(4)不是,因为对于某一个确定的离家距离,与之对应的时间的值不是唯一的.活动与探究3 思路分析:用横轴表示温度t,用纵轴表示口香糖黏附力F,根据表格中的数据在坐标系中描出各点,即可画出图像;结合图像可分析黏附力F与温度t之间的关系.解:(1)图像如下:(2)实验结论:①随着温度的升高,口香糖的黏附力先增大后减小;②当温度在37 °C 时,口香糖的黏附力最大.迁移与应用1.解:x,y的取值范围分别是A={1 921,1 927,1 949,1 997,1 999,2 010}∪{x|1 949<x<1 997},B={1,2,3,4,5,6,7},它们都是非空数集,且按照表格中给出的对应关系,对任意的x∈A,在B中都有唯一确定的值与之对应,所以y是x的函数,即y与x是函数关系.2.解:不是函数关系,因为广告价格既与播出时间段有关,也与播出时长有关.【当堂检测】1.C2.C 解析:因为李明骑车上学路上停留了一段时间,故该段图像平行于横轴,所以只有C符合条件.3.①③④4.解:因为对于2012年的每一个月都有唯一的降雨量与之对应,故可得2012年的降雨量与时间具有函数关系,且自变量是时间,因变量是降雨量.5.解:(1)矩形的面积一定时,其长取每一个确定的值,其宽都有唯一确定的值与之对应,所以长与宽存在函数关系,且长是自变量,宽是因变量,反之也是.(2)等腰三角形的周长受底边边长和腰长两个因素的影响,当其底边长取每一个确定的值时,其周长不能唯一确定,故周长与底边边长之间不具有函数关系.(3)在关系式y2=x中,当y取每一个值时,x都有唯一的值与之对应,所以y与x存在函数关系,且y是自变量,x是因变量,反之不行.。
生活中的变量关系
![生活中的变量关系](https://img.taocdn.com/s3/m/bf0953d17f1922791688e81e.png)
一枚炮弹发射后,经过26 s落在地面击中目 标.炮弹的射高为845 m,且炮弹距地面的高度h(单位: m)随时间t(单位:s)变化的规律是h=130 t-5 t2. 问题1:炮弹飞行时间t的变化范围的数集A是什
么?
提示:A={t|0≤t≤26}.
问题2:炮弹距地面的高度h的变化范围的数集B
是什么? 提示:B={h|0≤h≤845}. 问题3:高度h与时间t是否具有依赖关系?是函 数关系吗?为什么?
提示:具有,且是函数关系.因为对于数集A中
的任意一个时间t,按照h=130 t-5 t2,在数集B中都 有唯一确定的高度h和它对应.
给定两个非空数集A和B,如果按照某个对应关系f,对 于集合A中 任何一个 数x,在集合B中都存在 唯一确定 的
数f(x)与之对应,那么就把 对应关系 f叫做定义在集合A上
[一点通]
1.求函数定义域的方法:
(1)如果f(x)是整式,那么函数的定义域是实数集R; (2)如果f(x)是分式,那么函数的定义域是使分母不为0的 实数的集合; (3)如果f(x)为偶次根式,那么函数的定义域是使根号内 的式子大于或等于0的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数
(
)
1 D.[-4,+∞) 12 1 2 解析:∵f(x)=x +x=(x+2) -4,-1≤x<1,
1 ∴-4≤f(x)<2, 1 即值域为[-4,2).
答案:C
8.函数 y=2x- x-1的值域是________.
解析:函数的定义域是{x|x≥1}. 令 x-1=t,则 t∈[0,+∞),x=t2+1, ∴y=2(t +1)-t=2t 15 ∵t≥0,∴y≥ 8 .
[例1]
《生活中的变量关系》示范公开课教案【高中数学必修第一册北师大】
![《生活中的变量关系》示范公开课教案【高中数学必修第一册北师大】](https://img.taocdn.com/s3/m/5fac55ee09a1284ac850ad02de80d4d8d15a01f5.png)
第二章 函数2.1生活中的变量关系1.从实际生活中的例子出发,让学生认识到日常生活中各种变量之间的依赖关系,能利初中对函数的认识,了解依赖关系与函数关系的联系与区别.2.在观察事物的变量间关系过程中,培养学生发现问题、提出问题的能力,发展数学应用意识.重点:感受生活中处处有变量,加深理解初中的函数概念.难点:依赖关系和函数关系的差别. 一、新课导入 生活中变化的事物无处不在,你感受到了哪些事物的变化?请举例并加以说明? 例如:温度随四季的变化,身高随年龄的变化,汽车行驶里程随时间的变化等. 设计意图:引导学生用数学的眼光,关注生活中的变量.二、新知探究活动1:分析生活中的变化现象,认识变量之间的关系.问题1:生活中温度的变化.我们能感受到每天温度的变化,怎么刻画这种变化呢?在一个标准大气压下定义了摄氏零度的概念,这样就可以用温度值的大小表示温度的变化,温度的变化与季节、时间、地点、空气湿度、海拔高度等很多客观因素都有关系.引导学生依据生活中的情境,围绕以下问题进行小组讨论交流:⑴生活情境是什么?其中的变化怎样描述?这种变化有什么需要说明的条件吗? ⑵变化的过程中存在哪些变量?哪些常量?⑶变量之间是什么关系?这种关系是怎样描述的?答案:⑴生活情境是每天温度的变化,这种变化用温度值描述,这种变化要限制季节、时间、地点、空气湿度、海拔高度等客观因素.⑵变化过程中一个标准大气压下摄氏零度是常量,季节、时间、地点、空气湿度、海拔高度等是变量.⑶对于季节、时间、地点、空气湿度、海拔高度等每一个不同的值都对应一个温度. 设计意图:通过一个简单的例子,引导学生用数学的方式分析生活现象.◆教学目标 ◆教学重难点 ◆ ◆教学过程问题2:高速公路的加油站经过高速公路的加油站时,你是否想过,汽油存在哪儿?是怎么储存的?如图是某高速公路加油站的图片.加油站的油是存放在地下,常用圆柱体罐储存.储油罐的长度为d,截面半径为r,油面高度为h、油面宽度为w、储油量记作V.这些量哪些是常量,哪些是变量?量与量之间存在着怎样的关系?这些关系是同一类关系吗?有什么不同?答案:储油罐的长度d、截面半径r是常量,油面高度h、油面宽度w、储油量V是变量.当油面高度h和油面宽度w发生变化时,储油量V也随之改变即油面高度h和油面宽度w与储油量V是依赖关系.但这两种关系又不完全相同,对于油面高度h的每一个取值,都有唯一的储油量V与它对应.而对于油面宽度w取定一个值可以有两种油面高度和它对应.设计意图:在较为复杂的问题情境中,理解变量之间的依赖关系和函数关系,提升对函数概念的认识.问题3:阅读下面材料,回答问题.自2008年京津城际列车开通运营以来,高速铁路在中国大陆迅速发展,截至2017年年底运营里程突破25 000 km.下图表示的是中国高铁年运营里程的变化.从图中可以看出:随着时间的变化,高铁运营里程与年份存在着依赖关系.依据图中的数据,你能得出哪些结论?答案:通过观察图不难看出,(1)从2008年到2017年,高铁年运营里程是不断增加的,与前一年相比,2014年增长得最多.(2)随着时间的变化,高铁运营里程在变化,它与年份存在着依赖关系.对于年份的每一个取值,都有唯一的运营里程与它对应.初中我们学习过函数的概念:如果在一个变化过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它相对应,那么y就是x的函数,其中x是自变量,y是因变量.判断两个变量是否有函数关系:对于变量x的每一个值,变量y都有唯一确定的值和它相对应.因此在问题2与问题3中,储油量V是油面高度h的函数,高铁运营里程是年份时间的函数,但是储油量V不是油面宽度w的函数.设计意图:通过以上三个问题的分析,复习初中的函数概念,即在一个变化的过程中,有两个变量x,y,对于变量x的每一个取值,变量y都有唯一确定的值与之对应,那么y是x的函数,其中x是自变量.另外,在现实生活中,要确定两个变量之间是否具有函数关系,关键是判断对于变量x的每一个取值,变量y是否都有唯一确定的值与之对应,这点非常重要,需要学生认真理解.活动2:分析事物中变量间的函数关系,叙述刻画函数关系的不同方法.阅读下面的材料,思考以下问题,学生之间交流讨论.(1)确认变量之间是否存在函数关系.(2)材料中采用什么方法描述函数关系的?材料1:表2-1记录了几个不同气压下水的沸点:条曲线画在同一平面直角坐标系中,每一条曲线表示在一个观测点的观测情况.材料3:某地电力公司为鼓励市民节约用电,采取阶梯电价,即按月用电量分段计费办法.居民每月应缴电费y(单位:元)与用电量x(单位:kW•h)的关系是y={0.4883x,0≤x≤240,0.5383x−12,240<x≤400,0.7883x−112,x>400.答案:(1)材料1,2,3中的变量之间均存在着函数关系.(2)材料1,2,3分别用列表法、图象法和解析法来表示函数.尤其是在材料3中,给定范围内,对于自变量x的取值范围不同所对应的函数关系也不同,我们称这样的函数为分段函数.设计意图:通过分析学生理解材料中隐含着函数的三种表示法:列表法、图象法和解析法.活动3:1.对于问题2中的储油罐的问题中还有很多量,如储油罐长度、油面面积等,找出这些量中的常量和变量,并指出哪些变量之间是函数关系.答案:(1)常量有圆柱底面积、油罐容积、油的密度等;变量有油的体积、圆柱底面上的弓形面积等;(2)储油量和油的体积、储油量和圆柱底面上弓形的面积、油的体积和油面宽度之间都存在依赖关系;(3)储油量是油体积的函数,油的体积也是储油量的函数,储油量是圆柱底面上弓形面积的函数.2.选定超市、邮局、公路或其他一个场景,观察分析其中有哪些常量和变量,哪些变量之间是函数关系?答案:略.结论很开放,由学生交流各自的结论.设计意图:鼓励学生积极思考,让学生体会到生活中的函数关系非常普遍,数学源于生活,用于生活.三、应用举例1.某电器商店以2 000元/台的价格购进了一批电视机,然后以2100元/台的价格售出,随着售出台数的变化,商店的利润是怎样变化的?利润和售出的台数之间存在函数关系吗?答案:随着售出台数的变化,商店的利润也会增加,利润和售出的台数间存在函数关系.2.坐电梯时,电梯距地面的高度与时间之间存在怎样的依赖关系?答案:坐电梯时,电梯距地面的高度随时间的确定而确定.3.在一定量的水中加入蔗糖,糖水的质量分数与所加蔗糖的质量之间存在怎样的依赖关系?答案:在一定量的水中加人燕糖,糖水的浓度随所加蔗糖的质量的确定而确定.四、课堂练习1.下列各组中两个变量间之间是否存在依赖关系?其中哪些是函数关系?(1)球的体积和它的半径;(2)速度不变的情况下,汽车行驶的路程与行驶时间;(3)家庭的收入与其消费支出;(4)正三角形的面积和它的边长.πr3的关系.答案:(1)中,球的体积V与半径r间存在V=43(2)中,在速度不变的情况下,行驶路程s与行驶时间t之间存在正比例关系.(3)中,家庭收入与其消费支出间存在关系,但具有不确定性.a2的关系.(4)中,正三角形的面积s与其边长a间存在s=√34综上可知(1)(2)(3)(4)中两个变量间都存在依赖关系,其中(1)(2)(4)是函数关系.2.下图是我国某年某地降雨量的统计情况,图中横轴为月份(单位:月),纵轴为降雨量(单位:cm).由图中曲线可判断该地该年的降雨量与时间是否具有函数关系?答案:因为对于该年的每一个月都有唯一的降雨量与之对应,故可得该年的降雨量与时间具有函数关系,且自变量是时间,因变量是降雨量.五、课堂小结1.依赖关系:如果在一个变化过程中,有两个变量x和y,对于变量x的改变引起变量y的改变,则这两个变量是依赖关系.2.函数关系:如果在一个变化过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,则这两个变量是函数关系,在现实生活中,凡是要确定两个变量具有函数关系,就要判断“对于变量x的每一个值,变量y都有唯一确定的值和它对应”.3.依赖关系不一定是函数关系,但函数关系一定是依赖关系.六、布置作业教材第51页习题2-1A组、B组.。
2013-2014学年高中数学北师大版必修一示范教案_2.1生活中的变量关系
![2013-2014学年高中数学北师大版必修一示范教案_2.1生活中的变量关系](https://img.taocdn.com/s3/m/21bf928dbceb19e8b8f6ba70.png)
第二章函数通过本章的学习,使学生关注现实,了解函数、映射等知识产生的背景.发展对变量的认识,了解现实世界充满变量间的相互依赖关系.通过操作和思考,感受抽象出函数概念的过程和方法.理解函数和映射等概念的本质,并掌握函数的单调性等性质.在初中学习的基础上,能熟练地说出二次函数图像的大小、位置和单调性、最大(小)值等性质.对幂函数和函数的奇偶性有所了解.使学生能借助图像想象出函数的单调性、奇偶性等性质,也能用解析式的特点抽象地得出函数的性质,能熟练地对二次函数配方,会用解析式证明函数的单调性和奇偶性,能根据需要对各种函数的解析式作变形,会对一些有关函数的应用题求解,会对有关数据作相应的处理.培养学生提出、分析、解决问题的能力,表达交流的能力,独立获取数学知识的能力,同时发展学生的应用意识、创新意识和数学地思考问题的意识.引导学生形成批判性、崇尚理性的思维习惯,体会数学美,树立辩证唯物主义的世界观.引导学生热爱数学,帮助他们建立学好数学的信心,并具有一定的数学视野;使其树立坚韧不拔的态度和崇尚科学的理性精神,强化对真善美的追求.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图像、性质等.本章学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在章头语里,把函数的地位和意义作了简单说明.有作为背景的意图,也是想让学生在无形中想到曲线、图像和函数.本书从高速公路的里程和加油站的思考引入,一方面,让学生认识现实中处处充满变量间的依赖关系,另一方面,希望学生能由此及彼想到邮局、机场等实例.函数概念从实际引入,让学生在现实情境中体验和理解数学.函数是核心概念,初中讲了,高中还要深化.它将贯穿整个高中阶段,希望使学生遇到问题的时候,马上会有一种想到函数的潜意识产生.这种意识和函数观点是至关重要的.教材对函数概念,努力改变过去把因变量叫作自变量的函数的做法,而明确提出把对应关系f叫作函数.只是为了与学生过去的认识接轨,才又补充说:习惯上我们称y是x的函数.教材中,提到函数的时候,必须要说明函数的定义域.但是,教材有意弱化了求定义域和值域的技巧,不在这里浪费学生过多时间.本教材力图突出本质,而不在技巧上下更多工夫.考虑到分段函数在实际中会经常出现,明确给出了“分段函数”的概念.一般到特殊、特殊到一般,都是人类创造的重要思维方法,都很重要,只是要根据所遇到的具体情况而决定选用哪一种.考虑到与初中知识的衔接,同时又考虑到学生的认知次序,在函数概念和映射概念的处理上,特意先给出函数的概念再引出映射概念,从特殊到一般地安排了这段教材.在函数性质中,教材突出了更具本质的单调性,而弱化了函数的奇偶性.如前所说,我们没有把奇偶性专门列出一节,而是把它和幂函数放在了一起.有意把幂函数留了个尾巴到下一章,意在顺理成章.因为,此前学生只有整数幂,而分数指数幂、无理数指数幂在下章出现,所以,到下一章再重复一下幂函数,也十分自然.整体设计教学分析在学生学习用集合语言刻画函数之前,学生已经把函数看成变量之间的依赖关系.生活中的变量关系一节,从高速公路的实例引入,“思考交流”则引导学生对类似的情境,如邮局、机场等进行思考并与同伴交流.安排了函数关系与非函数关系的对比.教学中一定要注意以人为本,要尊重学生,为了学生,调动学生参与到教学中.值得注意的是在本节的教学中,一定要给学生“留白”,即为学生留下必要的时间和空间让其自主地活动.当然,学生的数学活动必须以学生的思维为基础,可以是动手实践,也可以是平静的思考.思维,必须以学生独立的悟为前提,在独立思考的前提下,再强调必须与同伴的交流与合作;思维,必须以抓住知识的本质为目的,不能只求热闹.对教材中的“思考交流”应该组织学生进行讨论,不能一说而过.三维目标1.通过公路上的实际例子,引起积极的思考和交流,从而使学生认识到生活中处处可以遇到变量间的依赖关系.2.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.培养学生广泛的联想能力,树立热爱数学的态度.重点难点区分生活中的变量关系是否为函数关系.课时安排1课时教学过程导入新课思路 1.现实世界中充满了变化,静止是相对的,运动是永恒的.我们的生活中存在着各种各样的变量关系,其中函数关系是描述这种变化的重要数学模型,也是数学的基本概念,函数思想是研究问题的重要数学思想之一.今天我们学习如何确定函数关系,教师引出课题.思路 2.人的体重和身高是函数关系吗?小麦的亩产量与亩施肥量是函数关系吗?正方体的体积和棱长是函数关系吗?如何判断呢?这就是本节课学习的内容,教师引出课题.推进新课新知探究提出问题1说出初中所学函数定义?2如何确定两个变量之间是函数关系?讨论结果:(1)函数定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数,y是因变量.(2)定义法:当且仅当变量x每取一个值,另一个变量y总有唯一确定的值与之对应时,变量x,y之间具有函数关系,并且,y是x的函数.应用示例思路1例1 我国自1998年开始建设高速公路,全国高速公路通车总里程,于1998年底,位居世界第八;1999年底,位居世界第四;2000年底,位居世界第三;2001年底,超过了加拿大,跃居世界第二位.(如下表)771问:(1)高速公路里程数是年度的函数吗?(2)高速公路里程数与年度的变化有什么特点?活动:学生回顾函数的定义及确定函数关系的方法,教师适当提示或点拨.解:不难看出:(1)高速公路里程数随年度的变化而变化.所以,高速公路里程数可以看成因变量,年度看成自变量,从而高速公路里程数是年度的函数.(2)从1988年到2001年,里程数是不断增加的,其中从1999年到2000年增长得最快.点评:本题主要考查函数的定义.变式训练一辆汽车在高速公路上行驶的过程中,请指出哪些变量是时间的函数.解:一辆汽车在高速公路上行驶的过程中,每个时刻都有唯一的行驶路程与它对应.行驶路程(因变量)随时间(自变量)的变化而变化,故行驶路程是时间的函数.同样,汽车的速度、耗油量也是时间的函数.例2 图2是某高速公路加油站的图片,加油站常用圆柱体储油罐储存汽油.储油罐的长度d、截面半径r是常量;油面高度h、油面宽度ω、储油量v是变量.这些变量中,请指出哪两个具有依赖关系,哪两个变量具有函数关系.图2活动:学生结合生活经验思考.教师可提示,也可介绍相关知识.解:储油量v与油面高度h存在着依赖关系,储油量v与油面宽度ω也存在着依赖关系.并非有依赖关系的两个变量都有函数关系.只有满足对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称它们之间有函数关系.对于油面高度h的每一个取值,都有唯一的储油量v和它对应,所以,储油量v是油面高度h的函数.而对于油面宽度ω的一个值可以有两种油面高度和它对应,于是可以有两种储油量v和它对应,所以,储油量v不是油面宽度ω的函数.点评:本题主要考查依赖关系和函数关系及其区别.由本题可见,函数关系一定是依赖关系,而依赖关系不一定是函数关系.变式训练1.进一步分析上述储油罐的问题,讨论:(1)还有哪些常量?哪些变量?(2)哪些变量之间存在依赖关系?(3)哪些依赖关系是函数关系?哪些依赖关系不是函数关系?解:(1)常量有圆柱底面积、油罐容积、油的密度等,变量有油的体积、圆柱底面上的弓形面积等;(2)依赖关系有:储油量和油的体积,储油量和圆柱底面上的弓形面积,油的体积和油面宽度;(3)储油量是油的体积的函数,油的体积也是储油量的函数,储油量是圆柱底面上的弓形面积的函数,油的体积不是油面宽度的函数.2.请列举一些与公路交通有关的函数关系.解:如修路中所花的费用和所修公路长度是函数关系等.3.请思考在其他情境下存在的函数关系,例如邮局、机场等.解:在邮局中,邮资是邮件重量的函数等.在机场,飞机票价是路程的函数等.思路2例1 在学校里你能发现哪些函数关系?活动:仔细观察,联系学校中老师、学生、师生的生活、校内物品等.解:(1)学生的学号是学生的函数;(2)教学任务是老师的函数;(3)学校的用电量是时间的函数,用水量也是时间的函数.点评:本题考查观察能力及发现问题、分析问题的能力.变式训练1.已知集合A={1,2,3,4,5},集合B={2,4,6,8}.集合A中的元素乘2.若A中的元素为自变量,B中的元素为因变量,能形成函数吗?答案:不能.因为A中的元素5的2倍为10,并没有在集合B中.2.在矩形中,若面积值作为自变量,其中一边长为因变量,能形成函数吗?答案:不能.因为面积一定时,其中一边的长不确定.3.某人骑车的速度是20千米/时.他骑1.5小时,走的路程是多少?你能写出时间与路程的函数吗?答案:1.5小时走的路程是20×1.5=30(千米).设时间为t,路程为s,则s=20t(t≥0).4.由下列式子是否能确定y是x的函数?(1)x2+y2=2;(2)x-1+y-1=1;(3)y=x-2+1-x.解:(1)由x2+y2=2,得y=±2-x2,因此由它不能确定y是x的函数;(2)由x-1+y-1=1,得y=(1-x-1)2+1,所以当x在{x|x≥1}中任取一值时,由它可以确定一个唯一的y与之对应,故由它可以确定y是x的函数;(3)由{x-2≥0, 1-x≥0得x∈ ,故x无值可取,y不是x的函数.例2 新华网北京2006年3月24日电:中国卫生部24日通报,上海市确诊一例人感染高致病性禽流感病例,患者3月13日发病,后因病情加重,经抢救无效,于3月21日死亡.为了更好地对付禽流感病毒,某医药研究所开发一种新药,如果成人按规定的剂量服用,据检测,服药后每毫升血液中含药量y(毫克)与时间x(小时)之间近似满足图3所示的曲线关系.请根据图3中给出的变化曲线,试判断每毫升血液中含药量y(毫克)与时间x(小时)之间是否构成函数关系.图3解:时间的变化范围是数集A={x|x≥0},每毫升血液中含药量y(毫克)的变化范围是数集B={y|4≥y≥0},并且,对于数集A中的每一个时间x,按照图中的曲线,数集B中都有唯一确定的y与它相对应.所以每毫升血液中含药量y(毫克)是时间x(小时)的函数.点评:本题主要考查实际问题中的函数关系.变式训练从20世纪70年代开始,我国就致力于控制人口过快增长,并逐步制定和完善了严格控制人口增长的政策措施.2002年我国颁布了第一部《人口与计划生育法》,将计划生育从一项基本国策上升为国家法律.根据国家统计局普查资料显示,我国人口再生产类型已经转入低生育、低死亡、低增长的发展阶段,进入了世界低生育水平国家行列.2005年底,我国总人口为13.075 6亿人,约占世界人口的20.12%.自实行计划生育以来,全国累计少生人口近3.1个亿.图4请根据图4中给出的我国人口出生率变化曲线,试判断我国人口出生率p和时间t(年)是否构成函数关系.解:时间t的变化范围是数集A={t|t≥1950},我国人口出生率p的变化范围是数集B={p|p≥0},并且,对于数集A中的每一个时间t,按照图中的曲线,数集B中都有唯一确定的p与它相对应,所以我国人口的出生率p是时间t(年)的函数.知能训练1.自由落体运动中,有哪几个常量,哪几个变量?这些变量之间有怎样的关系?答案:常量有:自由落体的质量和重力加速度;变量有:时间t、速度v和位移s,其中,速度依赖时间变化,关系是v=gt;位移也依赖时间变化,关系是s=12gt2.2.银行的存款利息表算不算函数?答案:是函数关系.拓展提升思考:字母一定是变量吗?探究:一般地,在研究一个问题的变化过程中,变量通常是一个字母,也就是说,只有字母才可以取不同的值来表示不同的量,那就是变量.但能否这样说,在变化过程中,字母就一定是变量呢?答案是否定的.例如,我们所熟悉的二次函数y=ax2(a≠0),它表示y与x之间存在依赖关系,这时,x、y都是变量,它表示的是y关于x的函数.虽然函数随着a的变化而表示不同的函数,但它是二次项的系数,是一个常量.如果把y=ax2看作表示y与a只存在依赖关系,则y=ax2=x2a在x≠0时是一个y关于a的一次函数,这里y,a是变量,x是常量.课堂小结本节课学习了:用定义法判断变量之间的函数关系.作业习题2—1 A组1,2.设计感想本节课内容比较简单,在设计过程中,注重了与下节函数概念的联系.备课资料[备选例题]【例1】答案:是函数关系.【例2】农业科学家研究玉米的生长过程,把生长过程分为32个时间段,通过实验得到了各时间段与植株高度之间的相关数据,如图5所示.图5观察上图,植株高度是时间的函数吗?答案:是函数关系.。
函数集体备课
![函数集体备课](https://img.taocdn.com/s3/m/d9914e03bb68a98271fefa72.png)
《函数》集体备课集体备课时间:2010/09/21集体备课年级:高一数学组集体备课编辑人:杨勇财,赖小生知识框图:课时安排教学要求:1)新教材在内容和要求上的表述是:a 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合有对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
b在实际情境中,会根据不同是需要选择恰当的方法表示函数c通过具体的实例,了解简单的分段函数,并能简单应用;2,理解函数的单调性,最值及其几何意义,结合具体函数,了解奇偶性的含义3,运用函数图象理解和研究函数的性质, 教学要求发生变化的知识点教学重点:1,函数的概念 2,函数的单调性教学建议:1,本教材是以“函数”为核心展开,教学中必须对本章的重要性的足够的重视。
2,注意从实际引入,让学生在现实情境中体验和理解数学,注意相关知识的强化,提升和增加。
3,突出函数图形的作用,培养作图、用图思考分析问题的习惯,强化数形结合的思想。
4,突出重点,强调更具本质的单调性,帮助学生在头脑中建立起几个重要的模型,2.1 生活中的变量关系 教案:1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以2.培养广泛联想的能力和热爱数学的态度. : 一、知识探索:1、 阅读课文P25页。
实例分析:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?2.对问题3,储油量v 对油面高度h 、油面宽度w 都存在依赖关系,两种依赖关系都有函数关系吗? 问题小结:1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。
生活中的变量关系课件高一数学北师大版(2019(完整版)
![生活中的变量关系课件高一数学北师大版(2019(完整版)](https://img.taocdn.com/s3/m/ecfb566466ec102de2bd960590c69ec3d5bbdba9.png)
典例剖析
例6:某地电公司为励市民节约用电,采取阶梯电价,即按月用电量分段 计费办法居民每月应缴电费y(单位:元)与用电量x(单位kW·h)的关系是
对于变量“用电(x)”的每一个值,变量“应缴电费(y)” 都有唯一的值与之对应,所以应缴电费是用电量的函数,如图2-4.
探究新知
例如:一定量的水银,温度与其体积间存在函数关系,温度越高水银 的体积越大.因此,可以用这个体积表示温度,这就是制造温度计的 依据. 在银行,给定本金和利率后,活期存款的利息依存款的天数而定,利 息是天数的函数,天离和出手速度、出手角度出手高 度均有关系当出手速度和出手高度确定之后,调整好出手角度,会使 铅球掷得更远一些这时,运动员的掷远距离是出手角度的函数.
探究新知
总结:形如上述的函数,一般叫作分段函数。 生活中存在着许许多多的函数关系。正是函数概念中的关键词”
每一个” “唯一”“对应”恰当地反映了事物特征。
探究新知
总结:形如上述的函数,一般叫作分段函数。 生活中存在着许许多多的函数关系。正是函数概念中的关键词”
每一个” “唯一”“对应”恰当地反映了事物特征。
巩固练习
1.某电器商店以2000元/台的价格购进了一批电视剧,然后以2100 元/台的价格售出,随着售出台数的变化,商店的利润是怎样变化 的?利润和售出的台数之间存在函数关系吗? 2.坐电梯时,电梯地面的高度与时间之间存在怎样的依赖关系? 3.在一定量的水中加人蔗糖,糖水的质量分数与所加蔗糖的质量之 间存在怎样的依赖关系?
2.1 生活中的变量关系
典例剖析
例1、图2-1是某高速公路加油站的图片,加油站在地下常用圆柱体 储油罐储存汽油等燃料。储油罐的长度d、截面半径r是常量,油面高 度h,油面宽度w、储油量V是变量。
《生活中的变量关系》示范教学方案北师大新课标
![《生活中的变量关系》示范教学方案北师大新课标](https://img.taocdn.com/s3/m/a7550abedbef5ef7ba0d4a7302768e9951e76e82.png)
第二章函数2.1生活中的变量关系◆教学目标1.从实际生活中的例子出发,让学生认识到日常生活中各种变量之间的依赖关系.2.能利用初中对函数的认识,了解依赖关系与函数关系的联系与区别.3.在观察事物的变量间关系过程中,培养学生发现问题、提出问题的能力,发展数学应用意识.◆教学重难点◆重点:生活中的变量关系与函数关系的区分.难点:生活中的变量关系与函数关系的区分.◆课前准备PPT课件.◆教学过程一、导入新课★资源名称:【情景演示】函数概念的发展.★使用说明:本资源简单讲解了函数概念的发展过程,适用于函数知识的引入或者拓展教学.注:此图片为“情景演示”缩略图,如需使用资源,请于资源库调用.问题1:实例分析,匀速直线运动中,速度、时间、路程哪个是变量?哪个是常量?时间、路程是否有关系,什么关系?师生活动:学生独立思考,师生合作分析、概括这些实例共同特征,共同总结出变量和常量以及依赖关系的概念.数值保持不变的量叫做常量,可以取不同数值的量叫做变量.当一个变量的变化从某个角度影响另一个变量的变化时,说明两个变量有依赖关系.预设答案:速度是常量,时间和路程是变量;时间越久,路程越长.设计意图:教师列举生活中的实例,激发学生的学习热情,又为新知作好铺垫.二、新知探究问题2:两个变量之间的对应关系让你联想到什么?预设答案:函数关系.追问:初中学过的函数怎么定义的?和,对于变量x的每一个值,变量预设答案:如果在一个变化过程中,有两个变量x yy都有唯一确定的值和它对应,那么y就是x的函数,其中x是自变量,y是因变量.表示两个变量关系的函数的代数式,叫函数解析式.问题3:经过高速公路的加油站时,你是否想过,汽油存在哪里?怎样存储的?如图,是某高速公路加油站的图片,加油站在地下常用圆柱体储油罐储存汽油等燃料.储油罐的长度d、截面半径r,油面高度h、油面宽度w、储油量v.(1)哪些是变量?哪些是常量?(2)哪些变量之间存在依赖关系?(3)哪些依赖关系是函数关系?哪些依赖关系不是函数关系?师生活动:教师提问,学生独立思考并回答.预设答案:(1)d,r为常量,h,w,v为变量.(2)储油量v与油面高度h存在着依赖关系;储油量v与油面宽度w也存在着依赖关系.(3)对于油面高度h的每一个取值,都有唯一的储油量v和它对应,但是每一个油面宽度w的值,却对应着两个储油量v;储油量v是油面高度h的函数,储油量v不是油面宽度w的函数.设计意图:在较为复杂的问题情境中,理解变量之间的依赖关系和函数关系,提升对函数概念的认识.问题4:自2008年京津城际列车开通运营以来,高速铁路在中国大陆迅猛发展.截至2017年年底,中国高铁运营里程突破25000km.图中表示的是中国高铁年运营里程的变化.(1)哪些是变量?哪些是常量?(2)哪些变量之间存在依赖关系?(3)哪些依赖关系是函数关系?哪些依赖关系不是函数关系?师生活动:教师提问,学生独立思考并回答.预设答案:从图中可看出:(1)时间、高铁运营里程是变量.(2)随着时间的变化,高铁运营里程在变化,它与年份存在着依赖关系.(3)从2008年到2017年,高铁年运营里程是不断增加的,与前一年相比,2014年增长得最多;高铁年运营里程是时间的函数.教师总结:在现实生活中,要确定两个变量之间是否具有函数关系,关键是判断对于变量x的每一个取值,变量y是否都有唯一确定的值与它对应;这一点非常重要,需要认真理解.设计意图:通过以上三个问题的分析,加强学生对函数关系的理解和认识,突破本节课的难点.★资源名称:【知识点解析】函数的概念.★使用说明:本资源为《函数的概念》的讲解视频,其目的是帮助学生更好的理解函数的概念,有利于学生预习或复习所学知识,为学生(教师)解惑,启发教学.注:此图片为“微课”缩略图,如需使用资源,请于资源库调用.追问1:两个变量的依赖关系与函数关系有什么联系?研究函数关系时,应该注意什么问题?师生活动:师生共同发现总结依赖关系和函数关系的区别与联系.预设答案:(1)函数关系一定是依赖关系,依赖关系不一定是函数关系.(2)若两个变量间存在依赖关系,且对于其中一个变量的每一个值都有另一个变量的唯一值和它对应,则两个变量有函数关系.(3)研究函数关系时,应首先确定自变量x的取值范围.设计意图:明确函数关系与依赖关系的区分从而突破难点.三、巩固练习例1分析材料中的变量的函数关系,其中k为劲度系数.材料1:弹簧的伸长量x与弹力y满足函数关系:y kx材料2:如下表,记录了几个不同气压下水的沸点:材料3:绿化可以改变小环境气候.某市有甲、乙两个气温观测点,观测点甲的绿化优于观测点乙,图中是这两个观测点某一天的气温曲线图.材料4:国内某快递公司邮寄普通货物限重30kg,从A城市到B城市的快递资费标准是,质量1kg及以下收费12元,以后质量每增加1kg收费增加8元,质量不足1kg按1kg 计算.请写出邮件的质量m kg与邮资M元的函数解析式,并画出局部图象.师生活动:小组合作交流,用自己的文字语言陈述变量之间的函数关系,教师归纳总结.再次巩固函数关系的概念,同时引入分段函数.预设答案:材料1中,对于变量“伸长量x ”的每一个值,变量“弹力y ”都有唯一确定的值和它对应,弹力y 是伸长量x 的函数.材料2中,对于变量“气压”的每一个值,变量“沸点”都有唯一确定的值和它对应,沸点是气压的函数.材料3中,图中反映的都是对于“时间”的每一个值,都有唯一确定的“气温”值和它对应,所以每一条曲线都表示了一个函数关系.材料4中,邮件的质量m kg 与邮资M 元的函数解析式为12,0120,1228,23244,2930m m M m m <≤⎧⎪<≤⎪⎪=<≤⎨⎪⎪<≤⎪⎩.该函数的局部图象如图所示:注意:形如上述的函数,称为分段函数.设计意图:鼓励学生积极思考,让学生体会到生活中的函数关系非常普遍,数学源于生活,用于生活.例2“距离地面越高,温度越低”,下表反映了距离地面高度与温度之间的变化关系:(1)上表反映的变化关系中, 是自变量, 是因变量;(2)如果用h 表示距离地面的高度,用t 表示温度,那么用h 表示t 的关系式是 ; (3)你能猜出距离地面7千米的高空温度是多少吗?师生活动:学生独立完成,核对答案.预设答案:(1)距离地面的高度,温度;(2)620t h =-+;(3)22C -︒.解析:(1)由图可知,表中自变量是距离地面的高度,因变量是温度;(2)设b kh t +=,则2014b k b =⎧⎨+=⎩,解得620k b =-⎧⎨=⎩,即h 与t 关系为t =−6h +20;(3)当h =7时,t =−6×7+20=−22℃,所以距离地面7千米的高空温度是−22℃. 设计意图:巩固两个变量的关系.例3一辆汽车出发后,前320km 在柏油路面行驶,速度为100/km h ,然后转入沙石路面,速度为60/km h ,行驶了240km ,到达目的地,写出行驶总路程)(km y 与行驶时间)(h t 的函数表达式.师生活动:学生到黑板板书过程,教师指导点拨.预设答案:100,0 3.260128,3.27.2t t y t t ≤≤⎧=⎨+<≤⎩.设计意图:加强学生对分段函数的理解.四、归纳小结问题5:本节课你学到哪些数学知识?有什么生活感悟?师生活动:学生自己先总结,教师帮助梳理,提升学生研究问题的能力.预设答案:本节课我们学习了量与量之间的关系、两个变量之间的依赖关系、函数关系;生活中处处有数学,数学帮我们解决了很多实际问题,我们一定要努力学好数学这门学科.设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,再次巩固依赖关系与函数关系的概念和区分.作业布置:1.自己寻找一个实际生活中的变量关系,写一份报告.要求:①有现实意义和研究价值;②变量简单的函数关系.2.教材P51页,习题2-1,A 组1、2、3.五、目标检测设计1.下列变量间的关系是函数关系的是( )A .匀速航行的轮船在2小时内航行的路程B .某地蔬菜的价格与蔬菜的供应量的关系C .正方形的面积S 与其边长a 之间的关系D .光照时间和苹果的亩产量设计意图:巩固变量之间的函数关系的概念.2.下图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是()A.这天15时的温度最高B.这天3时的温度最低C.这天的最高温度与最低温度相差13℃D.这天21时的温度是30℃设计意图:强化看图识别两个变量的关系.3.谚语“瑞雪兆丰年”说明()A.下雪与来年的丰收具有依赖关系B.下雪与来年的丰收具有函数关系C.下雪是丰收的函数D.丰收是下雪的函数设计意图:突出数学的应用意识.4.一天,亮亮发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时的体温基本正常,但是下午他的体温又开始上升,晚上体温渐渐下降直到半夜亮亮才感觉身上不那么发烫了.下列各图中能基本上反映出亮亮这一天(0~24时)体温的变化情况的是()设计意图:引导学生运用所学知识解决生活实际问题.5.如图所示为某市一天24小时内的气温变化图.(1)上午8时的气温是多少?全天的最高、最低气温分别是多少?(2)大约在什么时刻,气温为0℃?(3)大约在什么时刻内,气温在0℃以上?两个变量有什么特点,它们具有怎样的对应关系?设计意图:引导学生运用所学知识解决生活实际问题,强化解答题的解题步骤.参考答案:1.答案:C.解析:A是常量,B是依赖关系,C是函数关系,D是依赖关系.2.答案:C.解析:这天的最高温度与最低温度相差为36-22=14℃,故C错.3.答案:A.解析:下雪与来年的丰收具有依赖关系,但不是函数关系.4.C.解析:从亮亮的体温变化,可以看出图象应为:早晨37℃以上,中午37℃以下,下午37℃以上,半夜37℃以下,结合图象可知,只有C项符合.5.解:(1)上午8时气温是0℃;全天最高气温大约是9℃,在14时达到;全天最低气温大约是-2℃,在4时达到.(2)大约在0时、8时、22时,气温为0℃.(3)在8时到22时之间,气温在0℃以上,变量0≤t≤24,变量-2≤θ≤9,由于图象是连续的,可知它们之间具有函数关系;随着时间的增加,气温呈现先降再升再降的变化趋势,所以θ与t既具有依赖关系,也具有函数关系.。
正反比例在实际生活中的应用
![正反比例在实际生活中的应用](https://img.taocdn.com/s3/m/61b9bcbef80f76c66137ee06eff9aef8941e48e8.png)
正反比例在实际生活中的应用1. 简介正反比例是数学中的一个重要概念,主要用于描述两个变量之间的相互关系。
当我们说两个变量 X 和 Y 成正比时,意味着当 X 的值增加(或减少)时,Y 的值也会相应地增加(或减少);而当我们说两个变量 X 和 Y 成反比时,则意味着当 X 的值增加时,Y 的值会相应地减少,反之亦然。
2. 正比例在实际生活中的应用2.1 例子 1:油耗与行驶里程假设某辆车的油耗为 8L/100km,这意味着当车辆行驶 100 公里时,需要消耗 8 升汽油。
这里的行驶里程和油耗成正比关系。
如果要提高行驶里程,可以考虑降低油耗,或者使用更高效的车辆。
2.2 例子 2:工资与工作量在一个公司中,员工的工资通常与其完成的工作量成正比。
工作量越大,工资越高;工作量越小,工资越低。
这种关系有助于激励员工提高工作效率,从而提高公司的整体竞争力。
3. 反比例在实际生活中的应用3.1 例子 1:时间和速度假设一个人以 60km/h 的速度行驶,那么他行驶 100 公里需要的时间为 1.67 小时。
这里的速度和时间成反比关系。
如果要提高行驶速度,可以考虑减少行驶时间,或者使用更高效的交通工具。
3.2 例子 2:电阻和电流在电路中,电阻和电流成反比关系。
当电阻增加时,电流会相应地减少;当电阻减少时,电流会相应地增加。
这一关系在设计和调试电路时具有重要意义。
4. 总结正反比例在实际生活中有着广泛的应用,涉及诸多领域,如工业生产、交通运输、经济管理、科学研究等。
理解和掌握正反比例关系,有助于我们更好地分析和解决实际问题。
【精品推荐】高中数学北师大版必修一课后训练2.1生活中的变量关系 Word版含答案
![【精品推荐】高中数学北师大版必修一课后训练2.1生活中的变量关系 Word版含答案](https://img.taocdn.com/s3/m/91abd77127284b73f242508a.png)
课后训练基础巩固1.下列说法不正确的是().A.依赖关系不一定是函数关系B.函数关系是依赖关系C.如果变量m是变量n的函数,那么变量n也是变量m的函数D.如果变量m是变量n的函数,那么变量n不一定是变量m的函数2.张大明种植了10亩小麦,每亩施肥x千克,小麦总产量y千克,则().A.x,y之间有依赖关系B.x,y之间有函数关系C.y是x的函数D.x是y的函数3.星期天,小明从家出发,出去散步,图中描述了他散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,根据图像,下面的描述符合小明散步情况的是().A.从家出发,到一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了C.从家出发,散了一会儿步(没有停留),然后回家了D.从家出发,散了一会儿步,就找同学去了,18 min后才回家4.下列变量之间的关系是函数关系的是().A.光照时间与果树亩产量B.台风的级数与交通事故C.水稻的产量与用肥量D.已知二次函数y=ax2+bx+c,其中a,c是常数,取b为自变量,因变量是这个函数的判别式Δ=b2-4ac5.如图,将一个“瘦长”的圆柱钢锭经过多次锻压成一个“矮胖”的圆柱钢锭(不计损耗),则在锻压过程中,圆柱体积与高的关系可用图像表示为().6.我们知道,溶液的酸碱度由pH确定.当pH>7时,溶液呈碱性;当pH<7时,溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图像中,能反映HCl溶液的pH与所加水的体积V的变化关系的图像是().7.某公司生产某种产品的成本为1 000元,以1 100元的价格批发出去,随生产产品数量的增加,公司收入__________,它们之间是__________关系.8.圆柱的高为10 cm,当圆柱底面半径变化时,圆柱的体积也随之发生变化,在这个变化过程中,__________是自变量,__________是因变量.设圆柱底面半径为r(cm),圆柱的体积V(cm3)与r(cm)的关系式为__________,当底面半径从2 cm变化到5 cm时,圆柱的体积由__________(cm3)变化到__________(cm3).能力提升9.向平静的湖面投一块石子,便会形成以落水点为圆心的一系列同心圆.(1)在这个变化过程中,有哪些变量?(2)若圆的面积用S表示,半径用R表示,则S和R的关系是什么?它们是常量还是变量?(3)若圆的周长用C表示,半径用R表示,则C与R的关系是什么?10.如图表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回到家,根据这个图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息了多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少?(6)他在哪段时间内停止前进并休息用午餐?11.在工作的状态下,饮水机会通过自动对水加热使机中水的温度保持在一定范围内.下图表示在饮水机的水温达到最高后,饮水机处于工作状态中的水的温度的变化情况:根据下图,设计一个问题,并解答所设计的问题.参考答案1.C点拨:根据依赖关系与函数关系的区别可知A,B正确.若变量m是变量n的函数.因为满足函数关系的自变量n对因变量m可以是多对一,此时若把m换成自变量,n 换成因变量,显然对于m的每一个取值,会有多个n与之对应,所以变量n不是变量m的函数.2.A点拨:虽然小麦总产量y与每亩施肥量x之间存在依赖关系,但小麦总产量y 还受气候、管理等其他因素的影响,所以x,y之间无函数关系.3.B点拨:水平的一段线段表明小明离家的距离始终是300米,然后离家距离达到500米,说明小明从家出发后,到一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了.故答案为B.4.D点拨:果树的亩产量不仅与光照时间有关,还与施肥量、管理等因素有关,故二者不是函数关系;交通事故与很多因素有关,如道路状况、司机的技术和状态等,故这两个变量不是函数关系;同理,水稻的产量与用肥量也不是函数关系;当a,c是常数,b为自变量时,由判别式Δ=b2-4ac可以知道,对于b的每一个取值,都有唯一确定的Δ与之对应,这说明Δ是b的函数,故选D.5.B点拨:圆柱钢锭的体积不随高的变化而变化.6.C点拨:HCl溶液呈酸性,其pH值总小于7,随着加入水的体积增大,其pH值会越来越接近7.7.增加函数8.圆柱底面半径圆柱体积V=10πr240π250π点拨:圆柱的体积为V=πr2h(其中r表示圆柱的底面半径,h表示圆柱的高).9.解:(1)形成的一系列同心圆的半径、周长、面积都是变量.(2)圆的面积S与半径R存在着依赖关系,对于半径R的每一个取值,都有唯一的面积S与之对应,所以圆的面积S是半径R的函数,其函数关系式是S=πR2.圆的面积S.半径R 都是变量.(3)C=2πR.10.解:(1)最初到达离家最远的地方是在12时,此时离家30千米.(2)10:30时开始第一次休息,休息了半小时.(3)第一次休息时,离家17千米.(4)从11:00到12:00,他离家的距离由17千米增加到30千米,所以他骑了13千米.(5)在9:00~10:00行驶的路程为10千米,所用时间为1小时,他的平均速度101=10(千米/时);在10:00~10:30行驶的路程为17-10=7(千米),所用时间为0.5小时,他的平均速度为70.5=14(千米/时).(6)在12:00~13:00停止前进并休息用午餐.11.解:设计问题就是从图像中获取有关信息.例如,提出下列问题:问题1:饮水机中水的最高温度是多少?最低温度是多少?解:水的最高温度为96 ℃,最低温度为91 ℃.问题2:水温上升到最高温度后,再经过10分钟饮水机中水的温度多高?35分钟时水的温度多高?解:10分钟后水的温度约93 ℃高,35分钟时水的温度约95 ℃高.问题3:哪段时间水的温度在不断下降?哪段时间水的温度在持续上升?解:约从开始到27分钟时水的温度在不断下降,从27分钟到32分钟时水的温度在不断上升,后面又有一个相同的下降与上升的过程.。
2016秋数学北师大版必修1练习:2.1 生活中的变量关系 含解析
![2016秋数学北师大版必修1练习:2.1 生活中的变量关系 含解析](https://img.taocdn.com/s3/m/b173ae0f04a1b0717ed5dd94.png)
[A基础达标]1.下列说法不正确的是( )A.依赖关系不一定是函数关系B.函数关系是依赖关系C.如果变量m是变量n的函数,那么变量n也是变量m的函数D.如果变量m是变量n的函数,那么变量n不一定是变量m 的函数解析:选C。
由依赖关系及函数关系的定义知A、B正确;对于C、D,如m=n2,则n=±错误!,不是函数关系,故C错误,D正确.2.明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( )A.明明B.电话费C.时间D.爷爷解析:选B。
拨通时间为自变量,电话费为因变量.3.下列等式中的变量x,y不具有函数关系的是( )A.y=x-1 B.y=错误!C.y=3x2+错误!D.y2=x2解析:选D。
选项D中,当x=1时,y=±1;当y=2时,x=±2,不符合函数的定义.故选D。
4.某学生从家去学校,由于怕迟到,所以一开始跑步,等跑累了再走余下的路程,如图所示,纵轴表示该生离学校的距离(用d表示),横轴表示出发后的时间(用t表示),则四个图中符合题意的是()解析:选D.因为该生离学校越来越近,所以只有B,D符合,又先跑再走,故选D.5.变量x与变量y,w,z的对应关系如下表所示:x123156y -1-2-3-4-1-6w201248z000000 A.y是x的函数B.w不是x的函数C.z是x的函数D.z不是x的函数解析:选C。
观察表格可以看出,当x=1时,y=-1,-4,则y 不是x的函数;很明显w是x的函数,z是x的函数.6.某公司生产某种产品的成本为1 000元,并以1 100元的价格批发出去,公司收入随生产产品数量的增加而________(填“增加"或“减少"),它们之间________(填“是”或“不是”)函数关系.答案:增加是7.假定甲、乙两人在一次百米赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是________.(2)乙在这次赛跑中的速度为________m/s。
【数学】2.1《生活中的变量关系》课件(北师必修1)
![【数学】2.1《生活中的变量关系》课件(北师必修1)](https://img.taocdn.com/s3/m/b33e7b87cc22bcd126ff0cd9.png)
世界是变化的.变量与变量的依 赖关系在生活中随处可见,与我们 息息相关.
函 数
它描述了因变量随自变量而变化
பைடு நூலகம்的依赖关系.
P 25 P27
生活中的变量关系
问题提出 在我们生活中,变量与变量之 间存在依赖关系的实例有哪些?
初中学习过的函数描述了两个变量: 因变量y与自变量x之间什么样的依赖关系? 因变量y随自变量x的变化而变化: 即一个x的取值有唯一确定的值y与之对应 则称 y是x的函数.
都有函数关系.
教材P.25 A组T2.
设在一个变化过程中有两个变量 x与y, 如果对于x的每一个值, y都有
唯一的值与它对应, 那么就说 y是 x
的函数. x叫做自变量.
问题提出 在高速公路的情景下,你能发 现哪些函数关系?
思考交流 1. 请列举一些与公路有关 的函数关系.
2. 请思考在其它环境下存 在的函数关系.
注 意
并非有依赖关系的两个变量
2014-2015学年北师大版高中数学必修一课时训练 第二章 函 数
![2014-2015学年北师大版高中数学必修一课时训练 第二章 函 数](https://img.taocdn.com/s3/m/9b4769e7856a561252d36f6a.png)
第二章函数§1生活中的变量关系§2对函数的进一步认识2.1函数概念(教师用书独具)●三维目标1.知识与技能函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2.过程与方法(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的要素.(3)会求一些简单函数的定义域和值域.(4)能够正确使用“区间”的符号表示某些函数的定义域.3.情感、态度与价值观使学生感受到学习函数的必要性的重要性,激发学习的积极性.●重点难点重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示.本节的重点的突破方法是通过教材中的实例让学生自己尝试用集合与对应的语言进行描述.对难点来说,学生不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值,其突破方法是可以列举一些对应关系相同但定义域不同的函数,或定义域、值域相同但对应关系不同的函数,让学生在比较、判断中体会.在函数教学中,应强调对函数概念本质的理解,避免求函数的定义域时出现过于烦琐的技巧训练,避免人为地编制一些求定义域的偏题,以便学生有时间重点理解函数的概念及符号“y=f(x)”的含义.(教师用书独具)●教学建议函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图像、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是函数学习的第二阶段,这是对函数概念的再认识阶段.第三阶段是选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,教材采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数的概念.●教学流程复习引入初中学过的函数有哪些,它们分别有哪些变量⇒新课讲解,给出函数的概念及其表示方法⇒完成例1、例2及其变式训练,加深学生对函数概念的理解⇒给出区间的概念,并注意表示过程中区间的开闭⇒质疑答辨,排难解惑,发展思维,完成例3及变式训练,强化对定义域的理解⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正世界是千变万化的,变量与变量之间有的有依赖关系,而具有依赖关系的两个变量并不一定具有函数关系.1.某十字路口,通过汽车的数量与时间的关系是否具有依赖关系?是函数关系吗?【提示】没有依赖关系.不是函数关系.2.储油罐的储油量Q与油面宽度W的关系是否具有依赖关系?是函数关系吗?【提示】具有依赖关系,但不是函数关系.3.在公路上匀速行驶的汽车,它行驶的里程s与时间t具有依赖关系吗?是函数关系吗?【提示】具有依赖关系,也是函数关系.并非有依赖关系的两个变量都有函数关系.只有满足对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称它们之间具有函数关系.1.初中我们学习过哪些函数?你能说出函数描述了几个变量之间的关系?它们分别是什么变量?【提示】初中学过正比例函数,一次函数、反比例函数和二次函数;函数描述了两个变量之间的关系,一个是自变量,另一个是因变量.2.因变量y与自变量x之间是怎样的依赖关系?【提示】因变量y随自变量x的变化而变化.给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B或y=f(x),x∈A.此时,x叫作自变量,集合A叫作函数的定义域,集合{f(x)|x∈A}叫作函数的值域.习惯上我们称y是x的函数.1.区间:设a,b是两个实数,而且a<b,规定如下表:这里实数a ,b 都叫作相应区间的端点. 2.无穷大的概念及无穷区间:下列过程中,各变量之间是否存在依赖关系?其中哪些是函数关系?(1)将保温瓶中的热水倒入茶杯中缓慢冷却,并将一温度计放入茶杯中,每隔一段时间,观察温度计示数的变化.冷却时间与温度计示数的关系;(2)做自由落体运动的物体下落的距离与时间的关系; (3)商品的销售额与广告费之间的关系; (4)家庭的食品支出与电视价格之间的关系;(5)在高速公路上匀速行驶的汽车所走的路程与时间的关系. 【思路探究】 两个变量中的一个变量发生变化时,根据另一个变量是否发生变化来确定依赖关系;根据另一个变量发生变化且取值唯一来确定函数关系.【自主解答】 (1)温度计示数随冷却时间的变化而变化,所以冷却时间与温度计示数存在着依赖关系.又因为对于冷却时间的每一个取值,都有唯一的温度计示数与之对应,所以,温度计示数是冷却时间的函数;(2)科学家通过实验发现,做自由落体运动的物体下落的距离(h )与时间(t )具有关系h =12gt 2,其中g 是常量,很显然,对于时间t 在其变化范围内的每一个取值,都有唯一的下落距离h 与之对应,故这两个变量存在依赖关系,且距离是时间的函数;(3)商品的销售额与广告费这两个变量在现实生活中存在依赖关系,但商品的销售额还受其他因素的影响,比如产品的质量、价格、售后服务等,所以商品的销售额与广告费之间不是函数关系;(4)家庭的食品支出与电视价格之间不存在依赖关系;(5)在高速公路上匀速行驶的汽车所走路程(因变量)随时间(自变量)的变化而变化,所以它们之间存在着依赖关系,且路程是时间的函数.综上可知,(1)(2)(5)中的变量间存在依赖关系,且是函数关系;(3)中变量间存在依赖关系,不是函数关系;(4)中两个变量间不存在依赖关系.1.判断两个变量之间是否存在依赖关系,只需看一个变量发生变化时,另一个变量是否会随之变化.2.判断两个具有依赖关系的变量是否是函数关系,关键是看二者之间的关系是否具有确定性,即验证对于一个变量的每一个值,另一个变量是否都有唯一确定的值与之对应.(1)下列说法不正确的是()A.依赖关系不一定是函数关系B.函数关系是依赖关系C.如果变量m是变量n的函数,那么变量n也是变量m的函数D.如果变量m是变量n的函数,那么变量n不一定是变量m的函数(2)张大明种植了10亩小麦,每亩施肥x千克,小麦总产量y千克,则()A.x,y之间有依赖关系B.x,y之间有函数关系C.y是x的函数D.x是y的函数【解析】(1)根据依赖关系与函数关系的区别可知A、B正确.若变量m是变量n的函数.因为满足函数关系的自变量n对因变量m可以是多对一,此时若把m换成自变量,n 换成因变量,显然对于m的每一个取值,会有多个n与之对应,所以变量n不是变量m的函数.(2)虽然小麦总产量y与每亩施肥量x之间存在依赖关系,但小麦总产量y还受气候、管理等其他因素的影响,所以x,y之间无函数关系.【答案】(1)C(2)A下列对应关系是否为A到B的函数.(1)A=R,B={x|x>0},f:x→y=|x|;(2)A=Z,B=Z,f:x→y=x2;(3)A=R,B=Z,f:x→y=x.【思路探究】解答本题可从函数的定义入手,即对于A中的任何一个元素在确定的对应关系之下,是否有唯一的y 值与之对应.【自主解答】 (1)A 中的元素0在B 中没有对应元素,故不是A 到B 的函数; (2)对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2,在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数;(3)A 中元素负数没有平方根,故在B 中没有对应的元素且x 不一定为整数,故此对应关系不是A 到B 的函数.1.判断一个对应关系是否是函数,要从以下三个方面去判断,即A 、B 必须是非空数集;A 中任何一个元素在B 中必有元素与其对应;A 中任一元素在B 中必有唯一元素与其对应.2.函数的定义中“任一x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”而不能是“一对多”.下列说法正确的是( ) A .f (x )=1-x +x -2是函数B .A =N ,B =Z ,f :x →y =±x ,则f 是从集合A 到集合B 的一个函数C .A ={-1,1,2,-2},B ={1,2,4},f :x →y =x 2,则f 是从A 到B 的一个函数D .y 2=x 是函数【解析】 对于A ,由于⎩⎪⎨⎪⎧ 1-x ≥0x -2≥0,则⎩⎪⎨⎪⎧x ≤1x ≥2无解,所以f (x )不是函数.对于B ,对集合A 中的元素4,在B 中有2个元素与之对应,不是函数. 对于D ,当x =4时,y =±2两个值与之对应,不满足函数定义.对于C ,A 中每一个元素在B 中都有唯一元素与之对应,符合函数的概念. 【答案】 C求下列函数的定义域:(1)f (x )=2x +3;(2)f (x )=x -1·4-x +2; (3)y =1-x 21+x.【思路探究】 对于用解析式表示的函数,如果没有给出定义域,那么就认为函数的定义域是使函数表达式有意义的自变量取值的集合.【自主解答】 (1)函数f (x )=2x +3的定义域为R.(2)要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,4-x ≥0,解得1≤x ≤4.所以函数f (x )=x -1·4-x +2的定义域为{x |1≤x ≤4}. (3)要使函数有意义,需满足1+x ≠0,解得x ≠-1. 所以函数y =1-x 21+x 的定义域为(-∞,-1)∪(-1,+∞).1.求函数的定义域,其实质就是以使函数的解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.其准则一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负; (3)对于y =x 0要求x ≠0;(4)由实际问题确定的函数,其定义域要受实际问题的约束.2.如果已知函数是由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.求下列函数的定义域 (1)f (x )=1x -2;(2)f (x )=3x +2; (3)f (x )=x +1+12-x. 【解】 (1)当x -2≠0,即x ≠2时,1x -2有意义, ∴这个函数的定义域是{x |x ≠2}.(2)当3x +2≥0,即x ≥-23时,3x +2有意义,∴函数f (x )=3x +2的定义域是[-23,+∞).(3)由题意⎩⎪⎨⎪⎧ x +1≥0,2-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠2.∴这个函数的定义域是{x |x ≥-1}∩{x |x ≠2}=[-1,2)∪(2,+∞).求定义域时盲目化简函数解析式致误求函数f (x )=(x +1)2x +1-1-x 的定义域.【错解】 f (x )=(x +1)2x +1-1-x =x +1-1-x .要使函数有意义,需满足. 1-x ≥0,即x ≤1.故f (x )的定义域为(-∞,1].【错因分析】 本题错误的原因是化简了函数的解析式而使定义域发生变化. 【防范措施】 讨论函数问题时要保持定义域优先考虑的原则,求函数的定义域之前,不要化简解析式.【正解】 要使函数f (x )有意义,需满足:⎩⎪⎨⎪⎧1-x ≥0,x +1≠0,解得x ≤1且x ≠-1.所以函数的定义域为:(-∞,-1)∪(-1,1].1.函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图像.2.函数的三要素包括:定义域、对应法则和值域.因为值域由定义域和对应法则完全确定,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.1.设M ={x |0≤x ≤2},N ={ y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到N 的函数关系的有( )A .1个B .2个C .3个D .4个【解析】 由函数的定义,M 中任意一个x ,N 中都有唯一y 对应,故(1)(2)(4)正确. 【答案】 C2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3.【解析】 A 、C 、D 的定义域均不同. 【答案】 B3.(2012·四川高考)函数f (x )=11-2x的定义域是________.(用区间表示) 【解析】 由题意,需1-2x >0,解得x <12.故f (x )的定义域为(-∞,12).【答案】 (-∞,12)4.已知函数f (x )=6x -1-x +4,(1)求函数f (x )的定义域;(用区间表示) (2)求f (-1),f (12)的值.【解】 (1)根据题意知x -1≠0且x +4≥0,∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.一、选择题1.已知f (x )=x -1x +1,则f (2)=( )A .1 B.12 C.13 D.14【解析】 f (2)=2-12+1=13.【答案】 C2.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .y =x 2和y =(x +1)2D .f (x )=(x )2x 和g (x )=x(x )2【解析】 A 中y =x -1定义域为R ,而y =x 2-1x +1定义域为{x |x ≠1};B 中函数y =x 0定义域{x |x ≠0},而y =1定义域为R ;C 中两函数的解析式不同;D 中f (x )与g (x )定义域都为(0,+∞),化简后f (x )=1,g (x )=1,所以是同一个函数. 【答案】 D3.用固定的速度向如图2-2-1所示形状的瓶子中注水,则水面的高度h 和时间t 之间的关系是( )图2-2-1【解析】 水面的高度h 随时间t 的增加而增加,而且增加的速度越来越快. 【答案】 B 4.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2] D .[1,+∞) 【解析】 要使函数有意义,需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2, 所以函数的定义域是{x |x ≥1且x ≠2}. 【答案】 A5.函数f (x )=1x 2+1(x ∈R)的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]【解析】 由于x ∈R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1. 【答案】 B 二、填空题6.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. 【解析】 结合区间的定义知, 用区间表示为[-1,0)∪(1,2]. 【答案】 [-1,0)∪(1,2]7.函数y =31-x -1的定义域为________.【解析】 要使函数有意义,自变量x 须满足⎩⎨⎧x -1≥01-x -1≠0解得:x ≥1且x ≠2.∴函数的定义域为[1,2)∪(2,+∞). 【答案】 [1,2)∪(2,+∞)8.设函数f (x )=41-x,若f (a )=2,则实数a =________. 【解析】 由f (a )=2,得41-a =2,解得a =-1.【答案】 -1 三、解答题9.已知函数f (x )=x +1x ,求:(1)函数f (x )的定义域; (2)f (4)的值.【解】 (1)由⎩⎪⎨⎪⎧x ≥0,x ≠0,得x >0,所以函数f (x )的定义域为(0,+∞).(2)f (4)=4+14=2+14=94.10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.【解】 (1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12,故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义, 则必须3x -2>0,即x >23,故所求函数的定义域为{x |x >23}.11.已知f (x )=x 21+x 2,x ∈R ,(1)计算f (a )+f (1a)的值;(2)计算f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)的值.【解】 (1)由于f (a )=a 21+a 2,f (1a )=11+a 2,所以f (a )+f (1a)=1.(2)法一 因为f (1)=121+12=12,f (2)=221+22=45,f (12)=(12)21+(12)2=15,f (3)=321+32=910,f (13)=(13)21+(13)2=110,f (4)=421+42=1617,f (14)=(14)21+(14)2=117,所以f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=12+45+15+910+110+1617+117=72.法二 由(1)知,f (a )+f (1a )=1,则f (2)+f (12)=f (3)+f (13)=f (4)+f (14)=1,即[f (2)+f (12)]+[f (3)+f (13)]+[f (4)+f (14)]=3,而f (1)=12,所以f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=72.(教师用书独具)求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4}; (2)y =1-x 2; (3)y =1+1x +1(x >0).【思路探究】 求函数的值域就是求函数值的取值集合.【自主解答】 (1)x =1时,y =3;x =2时,y =5;x =3时,y =7;x =4时,y =9. 所以函数y =2x +1,x ∈{1,2,3,4}的值域为{3,5,7,9}. (2)因为1-x 2≤1,所以y =1-x 2的值域为(-∞,1]. (3)∵x +1>1,∴0<1x +1<1,∴1<1+1x +1<2,∴y =1+1x +1的值域为(1,2).求函数值域的常用方法1.观察法:对于一些比较简单的函数,其值域可通过观察法得到. 2.配方法:是求“二次函数”类值域的基本方法.3.分离常数法:分子、分母是一次函数的有理式函数,即形如y =ax +bcx +d (c ≠0)的函数可用分离常数法,即将有理分式转化为“反比例函数”类的形式,便于求值域.4.换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.(1)函数y =x 2-4x +1,x ∈[2,5]的值域是( ) A .[1,6] B .[-3,1] C .[-3,6] D .[-3,+∞)【解析】 函数y =x 2-4x +1是二次函数形式,配方得y =(x -2)2-3,画出函数y =(x -2)2-3,x ∈[2,5]的图像(如图),由图像可知,函数的值域为{y |-3≤y ≤6},用区间可表示为[-3,6].【答案】 C(2)函数y =2xx +1的值域为________.【解析】 ∵y =2x x +1=2(x +1)-2x +1=2-2x +1,又∵2x +1≠0,∴y ≠2.∴函数y =2xx +1的值域为{y |y ≠2}.【答案】 {y |y ≠2}知识拓展 函数值域的求法函数的值域是函数值的集合,它是由函数的定义域与对应关系确定的.函数的最值是函数值域的端点值,求最值与求值域的思路是基本相同的.求函数值域的常用方法有:(1)观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出所求函数的值域;如求函数y =4-x 2的值域时,由x 2≥0及4-x 2≥0知4-x 2∈[0,2],故所求的函数值域为[0,2].(2)数形结合法:利用函数所表示的几何意义,借助于图像的直观性来求函数的值域,是一种常见的方法.如何将给定函数转化为我们熟悉的模型是解答此类问题的关键.如求函数y =1x 2+2的值域时,若令u =x 2+2,则y =1u (u ≥2),可借助反比例函数的图像,易得0<y ≤12,所以函数y =1x 2+2的值域为(0,12].(3)配方法:若函数是二次函数形式,即可化为y =ax 2+bx +c (a ≠0)型的函数,则可通过配方后再结合二次函数的性质求值域,这里要特别注意给定区间求二次函数的值域问题.如求函数y =x -2x +3的值域,因为y =x -2x +3=(x -1)2+2≥2,故所求的值域为[2,+∞).(4)换元法:对于形如y =ax +b ±cx +d (a ,b ,c ,d ∈R ,ac ≠0)的函数,往往通过换元,将其转化为二次函数的形式求值域.如求函数y =x -2x +3的值域,我们可以令x =t (t ≥0),得y =t 2-2t +3,即y =(t -1)2+2(t ≥0),结合二次函数的图像可知,所求函数的值域为[2,+∞).(5)判别式法:把函数转化成关于x 的二次方程F (x ,y )=0,通过方程有实数根,判别式Δ≥0,从而求得原函数的值域,形如y =a 1x 2+b 1x +c 1a 2x 2+b 2x +c 2(a 1,a 2不同时为零)的函数的值域,常用此方法求解.(6)分离常数法:对于形如y =cx +d ax +b 的函数,可将其变形为y =k +hax +b的形式,结合反比例函数的图像和图像平移的有关知识求出值域.例如:求函数y =1-x2x +5的值域.由于y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5,因为722x +5≠0,所以y ≠-12.所以函数y =1-x 2x +5的值域为{y |y ∈R ,且y ≠-12}.2.2 函数的表示法(教师用书独具)●三维目标1.知识与技能(1)明确函数的三种表示方法.(2)会根据不同实际情境选择合适的方法表示函数.(3)通过具体实例,了解简单的分段函数及应用.2.过程与方法学习函数的表示形式,其目的不仅是为研究函数的性质和应用,而且是为加深理解函数概念的形成过程.3.情感、态度与价值观让学生感受到学习函数表示的必要性,渗透数形结合思想方法●重点难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图像.本节课重点的突破方法是充分利用信息技术,为学生创设丰富的数形结合环境,帮助学生更深刻地理解函数表示法.例如,可以补充部分函数,让学生用计算机或计算器画出它们的图像.对于难点,其突破方法是教学中不必要求学生一次完成认识,可以根据学生的具体情况,采取不同的要求,要遵循循序渐进的原则.(教师用书独具)●教学建议教材从引进函数概念开始就比较注重函数的不同表示方法:解析法、图像法、列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图像的直观作用.在研究图像时,又要注意代数刻画,以求思考和表述的精确性.●教学流程创设情景,揭示课题,通过已学过的函数的概念引出其表示方法⇒研究新知,明确三种表示方法的优缺点⇒完成例1及其变式训练,掌握函数图像的作法⇒通过例2及其变式训练,掌握待定系数法、换元法、配凑法等方法求函数的解析式⇒学习分段函数及其表示,明确分段函数也是一个函数,只是自变量范围不同表达式不一样⇒完成例3及变式训练,注意根据函数值求自变量时所求得的值是否在相应的自变量的取值范围内⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正某同学计划买x(x∈{1,2,3,4,5})支2B铅笔.每支铅笔的价格为0.5元,共需y元.于是y与x间建立起了一个函数关系.1.函数的定义域是什么?【提示】{1,2,3,4,5}.2.y与x的关系是什么?【提示】y=0.5x,x∈{1,2,3,4,5}.3.试用表格表示铅笔数x与钱数y之间的关系.【提示】4.【提示】如果笔记本数不超过5本时,每本按5元,如果笔记本数超过5本时,超出的部分按每本4.5元(买的笔记本数不超过10本).1.该函数能用解析法表示吗?怎样表示? 【提示】 能.y =⎩⎪⎨⎪⎧5x ,x ∈{1,2,3,4,5},25+(x -5)×4.5,x ∈{6,7,8,9,10}. 2.上面解析法表示的两段函数能说成是两个函数吗? 【提示】 不能.在函数的定义域内,如果对于自变量x 的不同取值范围有着不同的对应关系,那么这样的函数通常叫做分段函数.作出下列函数的图像.(1)y =1+x (x ∈Z); (2)y =x 2-2x (x ∈[0,3)); (3)y =2x,x ∈[2,+∞).【思路探究】 用描点法作图,但要注意定义域对图像的影响.【自主解答】 (1)这个函数的图像由一些点组成,这些点都在直线y =1+x 上,如图(1)所示.(1) (2) (3)(2)因为0≤x <3,所以这个函数的图像是抛物线y =x 2-x 介于0≤x <3之间的一部分,如图(2)所示.(3)当x =2时,y =1,其图像如图(3)所示.1.描点法作函数图像的“三步曲”:一列二描三连线用平滑的曲线将描出的点连接起来,得到函数图像在平面直角坐标系中描出表中相应的点取自变量的若干个值,求出相应函数值,列表2.作函数图像的注意事项:(1)应先确定函数的定义域,在定义域内作图;(2)图像是实线或实点,定义域外的部分有时可用虚线来衬托整个图像;(3)要标出某些关键点.例如,图像的顶点、端点、与坐标轴的交点等,注意分清这些关键的点是实心点还是空心点.求作y =|x 2+3x -4|的图像.【解】 作出二次函数y =x 2+3x -4的图像如图(1),将x 轴下方的部分翻折到x 轴上方即得所求函数图像如图(2).(1) (2)(1)已知f (x )是一次函数,且f [f (x )]=4x -1,求函数f (x )的解析式.(2)若f (x +1)=x +2x ,求f (x ).【思路探究】 (1)由于f (x )是一次函数,所以可设f (x )=kx +b (k ≠0),然后用待定系数法恒等求解;(2)可用换元法(或配凑法)求解.【自主解答】 (1)由于f (x )是一次函数,可设f (x )=kx +b (k ≠0),依题意知,f [f (x )]=4x -1,所以k (kx +b )+b =4x -1, 即k 2x +kb +b =4x -1,所以⎩⎪⎨⎪⎧k 2=4,(k +1)b =-1,解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎪⎨⎪⎧k =-2,b =1. 所以f (x )=2x -13或f (x )=-2x +1.(2)法一 (换元法)设x +1=t ,则x =(t -1)2(t ≥1), 则f (t )=(t -1)2+2(t -1)=t 2-1. 故f (x )=x 2-1(x ≥1). 法二 (配凑法)f (x +1)=(x +1)2-1, 又x +1≥1, 所以f (x )=x 2-1,x ≥1.1.已知函数模型(如一次函数、二次函数、反比例函数等)求函数的解析式,常用待定系数法,其步骤为:(1)根据函数模型设出函数解析式; (2)根据题设求待定系数.2.已知f [g (x )]的解析式,求f (x )的解析式,常用方法如下:(1)换元法:令t =g (x ),然后求出f (t )的解析式,最后用x 代替t 即可.(2)配凑法:可通过配凑把f [g (x )]的解析式用g (x )来表示,再将解析式两边的g (x )用x 代替即可.(1)已知f (x +1)=3x +2,则f (x )的解析式为________. (2)已知2f (x )+f (1x )=x ,求f (x ).【解】 (1)令x +1=t ,则x =t -1,由题意得f (t )=3(t -1)+2=3t -1, ∴f (x )=3x -1. (2)∵2f (x )+f (1x )=x ,以1x 代替x 得2f (1x )+f (x )=1x, 于是可得⎩⎨⎧2f (x )+f (1x )=x ,2f (1x )+f (x )=1x,解得f (x )=23x -13x ,∴f (x )=23x -13x.【答案】 (1)f (x )=3x -1 (2)f (x )=23x -13x已知f (x )=⎩⎪⎨⎪⎧x +1,x >0,π,x =0,0,x <0求f (-1),f (f (-1)),f (f (f (-1))).【思路探究】 由f (x )的解析式令x =-1求出f (-1)及f (f (-1))的值,进而求出f (f (f (-1)))的值.【自主解答】 x =-1<0,∴f (-1)=0, f (f -1))=f (0)=π, f (f (f (-1)))=f (π)=π+1.1.给定自变量求函数值时,应根据自变量所在的范围,利用相应的解析式直接求值; 2.若给函数值求自变量,则应根据每一段的解析式分别求解,但应注意要检验求得的值是否在相应的自变量取值范围内.(1)(2012·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.139(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1 (x ≥0),-2x (x <0),若f (x )=10,则x =________.【解析】 (1)f (3)=23,f (f (3))=f (23)=139.(2)当x ≥0时,f (x )=x 2+1=10,解得x =3或x =-3(舍去); 当x <0时,f (x )=-2x =10,解得x =-5.综上得x =-5或3.【答案】(1)(2)-5或3忽略变量的实际意义而致误如图2-2-2所示,在矩形ABCD中,BA=3,CB=4,点P在AD 上移动,CQ⊥BP,Q为垂足.设BP=x,CQ=y,试求y关于x的函数表达式,并画出函数的图像.图2-2-2【错解】由题意得△CQB∽△BAP,所以CQ BA =CB BP ,即y 3=4x ,所以y =12x.故所求的函数表达式为y =12x,其图像如图所示.【错因分析】 没有考虑x 的实际意义,扩大了x 的取值范围导致出错.【防范措施】 从实际问题中得到的函数,求其定义域时,不仅要使函数有意义,而且还要使实际问题有意义.【正解】 由题意得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x .所以y =12x .因为BA ≤BP ≤BD ,而BA =3,BD =32+42=5,所以3≤x ≤5,故所求的函数表达式为y =12x (3≤x ≤5).如图所示,曲线MN 就是所求的图像.1.一般地,作函数图像主要有三步:列表、描点、连线.作图像时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图像,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.2.求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).3.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.程中,汽车速度v是关于刹车时间t的函数,其图像可能是()汽车速度下降非常快,则图像较陡,排除选项B,故选A.【答案】 A2.若f [g (x )]=6x +3,且g (x )=2x +1,则f (x )等于( ) A .3 B .3x C .3x +6 D .6x +3 【解析】 由已知,得f [g (x )]=6x +3 =3(2x +1)=3g (x ), 所以f (x )=3x . 【答案】 B3.已知f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥0,1x ,x <0,则f [f (12)]=________.【解析】 f (12)=(12)2-1=-34,故f [f (12)]=f (-34)=1-34=-43.【答案】 -434.2013赛季中国足球超级联赛拉开了大幕.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的首场比赛的门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.【解】 (1)列表法:(2)(3)解析法:y =20x ,x ∈{1,2,3,4,5}.一、选择题。
精 品 教 学 设 计2.1生活中的变量关系
![精 品 教 学 设 计2.1生活中的变量关系](https://img.taocdn.com/s3/m/b1031686d0d233d4b14e69a3.png)
高一数学必修一第二章第一节生活中的变量关系设计理念:这节课是新教材新增内容,目的是加强数学的应用意识,强调理论来源于实际,在教学过程中应充分发挥学生的主观能动性,让学生多从周围的实际生活中举些例子,引导他们进行分析,正确理解这节课的内容。
教学目标:知识目标:学会分析什么是常量?什么是变量?会判断变量之间的依赖关系是否是函数关系能力目标:提高学生分析问题解决问题的能力情感目标:学会用辩证的观点看待生活中的现象,加强数学与实际生活的联系,增强学习数学的兴趣。
教学重点,难点:判断变量间的依赖关系是否为函数关系教学准备:制作ppt,几何画板制作例题片段教学过程:一、生活中的常量与变量世界上万事万物都是相互联系,运动和发展的.常量,是相对于某一过程或另一变量而言的 ,绝对的常量是没有的。
变量与变量的依赖关系在生活中随处可见与我们息息相关。
例如向平静的湖面投一石子,便会形成以落水点为圆心的一系列同心圆,在这一变化过程中圆的面积,半径,周长都是变量.随着半径增大,面积和周长也都会增大,因此他们之间存在着依赖关系。
引导学生举出生活中具体实例并分析什么是常量?什么是变量?比如某同学在每天上学,放学回家的路上骑自行车的过程中,什么是常量?什么是变量?;汽车在高速公路上行驶的过程中,什么是常量?什么是变量?老师提问:初中学习过的函数描述了两个变量:因变量y与自变量x之间什么样的依赖关系?它描述了因变量随自变量变化而变化的依赖关系.二、怎样判断两个变量间的依赖关系是否为函数关系问:一辆长途汽车在高速公路上行驶的过程中,有哪些常量?哪些变量?他们之间有函数关系吗?答:本题中的汽车在行驶过程中常量有汽车的大小,颜色,车牌号等,变量有汽车的速度,时间,路程,耗油量等 路程与速度,路程与时间,路程与耗油量,速度与耗油量之间都有依赖关系,当速度一定时路程与时间之间是函数关系,速度与耗油量之间,速度过快或过慢有相同的耗油量,即对于一个耗油量存在两个不同速度与之对应,速度不是耗油量的函数。
北师大版高中数学目录
![北师大版高中数学目录](https://img.taocdn.com/s3/m/0b3cc11eb80d6c85ec3a87c24028915f804d840c.png)
北师大版高中数学目录篇一:高中数学目录——北师大版北师大版高中数学必修一· 第一章集合· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算· 第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性· 4、二次函数性质的再研究· 5、简单的幂函数· 第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数· 4、对数· 5、对数函数· 6、指数函数、幂函数、对数函数增· 第四章函数应用· 1、函数与方程· 2、实际问题的函数建模北师大版高中数学必修二· 第一章立体几何初步· 1、简单几何体· 2、三视图· 3、直观图· 4、空间图形的基本关系与公理· 5、平行关系· 6、垂直关系· 7、简单几何体的面积和体积· 8、面积公式和体积公式的简单应用· 第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系北师大版高中数学必修三· 第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法· 第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计· 3、排序问题· 4、几种基本语句· 第三章概率· 1、随机事件的概率· 2、古典概型· 3、模拟方法――概率的应用北师大版高中数学必修四· 第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数· 5、余弦函数· 6、正切函数· 7、函数的图像· 8、同角三角函数的基本关系· 第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法· 3、从速度的倍数到数乘向量· 4、平面向量的坐标· 5、从力做的功到向量的数量积· 6、平面向量数量积的坐标表示· 7、向量应用举例· 第三章三角恒等变形· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用北师大版高中数学必修五· 第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列· 4、等差数列的前n项和· 5、等比数列· 6、等比数列的前n项和· 7、数列在日常经济生活中的应用· 第二章解三角形· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算· 5、解三角形的实际应用举例· 第三章不等式· 1、不等关系· 1.1、不等式关系· 1.2、比较大小2,一元二次不等式· 2.1、一元二次不等式的解法· 2.2、一元二次不等式的应用· 3、基本不等式3.1 基本不等式· 3.2、基本不等式与最大(小)值 4 线性规划· 4.1、二元一次不等式(组)与平面区· 4.2、简单线性规划· 4.3、简单线性规划的应用选修1-1第一章常用逻辑用语1命题2充分条件与必要条件2.1充分条件2.2必要条件2.3充要条件3全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定 4逻辑联结词“且或…?非4.1逻辑联结词“且4.2逻辑联结词“或4.3逻辑联结词??非第二章圆锥曲线与方程1椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3 曲线3.1双曲线及其标准方程3.2双曲线的简单性质第三章变化率与导数1变化的快慢与变化率2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义3计算导数4导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则第四章导数应用4.1导数的加法与减法法则4.2导数的乘法与除法法则选修1-2第一章统计案例1 回归分析1.1 回归分析1.2相关系数1.3可线性化的回归分析2独立性检验2.1条件概率与独立事件2.2 独立性检验2.3独立性检验的基本思想2.4独立性检验的应用第二章框图1 流程图2结构图第三章推理与证明1 归纳与类比1.1归纳推理1.2类比推理2 数学证明3 综合法与分析法3.1综合法3.2分析法4反证法第四章数系的扩充与复数的引入 1 数系的扩充与复数的引入1.1数的概念的扩充1.2复数的有关概念2复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法选修2-1第一章常用逻辑用语1 命题2 充分条件与必要条件3 全称量词与存在量词4 逻辑联结词“且”“或”“非”&…&…(第二章空间向量与立体几何 1 从平面向量到空间向量2 空间向量的运算3 向量的坐标表示和空间向量基本定理4 用向量讨论垂直与平行5 夹角的计算6 距离的计算第三章圆锥曲线与方程1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点选修2-2第一章推理与证明1 归纳与类比2 综合法与分析法3 反证法4 数学归纳法第二章变化率与导数1 变化的快慢与变化率篇二:北师大版高中数学详细教材目录4.1二次函数的图像北师大版高中数学详细教材目录4.2二次函数的性质 5 简单的幂函数《数学1》(必修)阅读材料函数概念的发展课题学习个人所得税的计算全书共分四章:第一章集合;第二章函数;第三章指数函数和对数函数;第四章函数的应用第三章指数函数和对数函数1 正整数指数函数2 指数扩充及其运算性质2.1指数概念的扩充全书目录:2.2指数运算的性质 3 指数函数第一章集合3.1指数函数的概念3.2指数函数y=2*x和y=(1/2)*2的图1 集合的含义与表示像和性质3.3指数函数的图像和性质2 集合的基本关系4 对数 4.1对数及其运算 4.2换底公式5 对数函数 5.1对数函数的概念5.2对数函数y=log2x的图像和性质 5.3对数函数的图像和性质6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用 1 函数与方程1.1利用函数性质判定方程解的存在13 集合的基本运算 3.1交集与并集 3.2全集与补集阅读材料康托与集合论第二章函数1 生活中的变量关系2 对函数的进一步认识 2.1函数概念2.2函数的表示方法 2.3映射阅读材料生活中的映射 3 函数的单调性4 二次函数性质的再研究1.2利用二分法求方程的近似解 2 实际问题的函数建模2.1实际问题的函数刻画 2.2用函数模型解决实际问题 2.3 函数建模案例阅读材料函数与中学数学探究活动同种商品不同型号的价格问题《数学2》(必修)本书是根据《普通高中数学课程标准(实验)》编写的,包括两部分内容:第一部分是立体几何初步,第二部分是解析几何初步。
生活中的变量关系
![生活中的变量关系](https://img.taocdn.com/s3/m/929e220e580102020740be1e650e52ea5518ced8.png)
, < ≤ .
(2)在给定范围内,对于自变量x的不同取值,
对应关系也不同.
分段函数定义
在自变量的不同取值范围内,有不同的对应法则,
需要用不同的解析式来表示的函数叫作分段函数.
环节五
小结
课堂小结
1.核心要点
2.数学素养
体会数学抽象的过程,加强数学抽象能力的
素养的培养.
谢谢观看
定性.
(4)中,正三角形的面积S与其边长a间存在 =
的关系.
综上可知(1)(2)(3)(4)中两个变量间都存在依赖关系,其
中(1)(2)(4)是函数关系.
判断两个变量间有无依赖关系,主要看其中一个变量变
化时,是否会导致另一个变量随之变化.而判断两个具有
依赖关系的变量是否具有函数关系,关键是看两个变量
天的气温曲线图。为了方便比较,将两条曲线画在了同一
直角坐标系中。
问题:分析每一条曲线是
否表示了一个函数关系
每一条曲线都表示了一个函数关系,反映的都
是对于“时间”的每一个值,都有唯一确定的
“气温”值和它对应。
微练
分析:弹簧的伸长量x与弹力y的关系
弹簧的伸长量x与弹力y满足函数关系y=kx,其中
k为劲度系数。对于变量“伸长量”的每一个值,变
(2)速度不变的情况下,汽车行驶的路程与行驶时间;
(3)家庭的收入与其消费支出;
(4)正三角形的面积和它的边长.
解:(1)中,球的体积V与半径r间存在 =
的关系.
(2)中,在速度不变的情况下,行驶路程s与行驶时间t之
间存在正比例关系.
(3)中,家庭收入与其消费支出间存在关系,但具有不确
用于描述两个变量之间相关关系
![用于描述两个变量之间相关关系](https://img.taocdn.com/s3/m/467d8fa6760bf78a6529647d27284b73f24236e6.png)
用于描述两个变量之间相关关系1. 引言嘿,大家好!今天我们要聊聊一个听起来有点严肃,但其实超级有趣的话题:两个变量之间的相关关系。
可能你会想,哎呀,什么是相关关系呢?别担心,我来给你捋一捋。
简单来说,相关关系就是当一个东西变化时,另一个东西也会跟着变化的情况。
就像吃冰淇淋的时候,天气变热一样,哈哈,没错,就是这么简单!1.1 相关关系的类型那么,相关关系其实可以分为几种类型哦。
首先是正相关,意思是当一个变量增加时,另一个变量也增加,听起来是不是很美好?比如说,运动量和快乐感,这两者常常是成正比的,越运动越开心,真是“越努力,越幸福”嘛!反过来,如果你懒得动,躺在沙发上追剧,那你的快乐感可能就会缩水,嘿嘿。
然后还有负相关,这就有点意思了。
当一个变量增加时,另一个变量却减少。
想象一下,当你加班到深夜,疲劳感飙升,而你的精神状态就像气球一样瘪下去,真是“越加班,越心累”呀!还有个经典的例子就是,吃得太多和体重,简直是一对“冤家”。
吃得多,体重就跟着上升,没办法,真是“羊肉串越吃越多,肚子也跟着鼓”!2. 生活中的相关关系2.1 亲密关系与快乐说到生活中的相关关系,我们不妨从人际关系开始。
研究发现,朋友越多,快乐感往往越高。
哎,真是“朋友多了路好走”!想象一下,你约上三五好友一起吃饭、唱歌,那种感觉简直是“乐在其中”。
但是如果朋友少得可怜,周末的聚会就是一场孤独的旅行,唉,孤单的感觉就像海绵一样吸水,越吸越重,越发难受。
当然,相关关系并不意味着因果关系哦。
你可能会想,朋友多了就一定快乐,但实际上,快乐的人可能更容易交到朋友,这就像是一个好人缘的循环。
就像一颗美丽的种子,发芽后就会吸引到更多的阳光和水分,形成一个良性循环,真是“良性互动,事半功倍”!2.2 学习与成绩再来看看学习和成绩之间的关系。
大家都知道,努力学习通常能带来好的成绩,但这其中的相关性可真复杂。
有时候,你拼命复习,结果考试却不理想,真是“付出与收获不成正比”!反之,有些同学轻轻松松就能考高分,这不禁让人心中感慨:“天上掉馅饼,真是天上有个王老五!”所以,学习的态度、方法和时间管理都在其中起着重要的作用。
生活中的变量关系
![生活中的变量关系](https://img.taocdn.com/s3/m/5143d4dbf46527d3250ce05b.png)
2.1生活中的变量关系【学习目标】通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系。
能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系。
培养广泛联想的能力和热爱数学的态度。
让学生领悟生活中处处有变量,变量间充满了联系。
【学习重点】生活中变量间依赖关系和函数关系的区分。
【学习难点】依赖关系和函数关系的差别。
【课前预习案】一、温故知新:◇初中学习的函数定义是什么?答:________________________________________________________________________________________________________◇下图为运行中的电梯,它离地面高度h与时间t是否存在函数关系?◇下图为行驶中的汽车,它行驶速度v与时间t是否存在函数关系?二、课本导读:阅读课文23—24页,在高速公路情境下的函数问题1.课本高速公路情景下研究了哪些函数关系?请指出它们的自变量和因变量。
2.对实例分析3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?3.请以高速公路为背景再研究一些函数关系,并思考自变量与因变量交换后是否为函数关系。
4.请同学们尝试归纳依赖关系与函数关系的区别与联系。
区别:_______________________________联系:________________________________三、预习自测1.给出下列关系:①(她)拥有的财富之间的关系;②橘子的产量与气候之间的关系;③某同学在6次考试中的数学成绩与他的考试次数之间的关系;其中不是函数关系的有____________2.小明从北京给榆林的爷爷打电话,电话费和时间这两个变量间存在依赖关系吗?这种关系是函数关系吗?3.一年之中有许多节日,如春节、元宵节、清明节等,试问:今年的各个节日和日期(公历)之间是否存在依赖关系?这是一种函数关系吗?4.某校建立学生电子档案,主要信息有:档案序号、姓名、学号、照片、家庭住址等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 生活中的变量关系
【学习目标】1.通过学习结合实例来理解生活中变量之间的依赖关系和函数关系,特别要注
意这两种关系之间的区别和联系;
2. 2.结合初中学习过的函数,能描述因变量随自变量而变化的依赖关系;
3. 3.激情投入,高效学习,踊跃展示,大胆质疑,体验成功,创想快乐。
【学习重点】判断变量与变量间是否存在函数关系
【学习难点】生活中变量关系与函数关系的区分
预习案 一、相关知识 知识链接1:初中阶段我们已经知道常量与变量的含义,即在某个变化过程中,数值保存不变的量叫作______,可以取不同数值的量叫作______。
知识链接2:初中数学中函数的定义:设在一个变化过程中有两个变量x 与y ,如果当变 量x 在某变化范围内任意取一个数值时,变量y 按照一定的法则总有_______确定的数值与它 对应,则称y 是x 的函数,通常_______叫自变量,_______叫因变量。
知识链接3:现实生活充满变化,在初中数学、物理等学科中我们都接触过一个变量随着 另一个变量而变化的实例,这些变量之间都有依赖关系吗?都是函数关系吗? 二、教材助读 阅读课本p23实例分析,思考在高速公路的情况下,有哪些变量存在?哪些变量与变量之间无依赖关系,哪些变量与变量之间有依赖关系?它们是函数关系吗? 问题1:高速公路的里程数与修建的年数之间有无依赖关系?若有它们是函数关系吗? 问题2:一辆汽车在高速公路上行驶的过程中,行驶的路程与时间有无依赖关系?若有,它们是函数关系吗?
问题3:观察课本 p24图2-2的高速公路加油站的图片,探究储油量v 与油面高度h ;储油量v 与油面宽度w 是否存在依赖关系?若有依赖关系,那它们是函数关系吗?为什么?
问题4.进一步分析上述储油罐问题,讨论:
还有哪些常量?哪些变量? 哪些变量之间存在依赖关系? 导
学
案
装 订
线
哪些依赖关系是函数关系?哪些依赖关系不是函数关系?
自主整理:
非依赖关系:在变化过程中有两个变量,如果其中一个变量的值发生了变化,另一个变量的值_______发生任何变化,这两个变量间具有非依赖关系。
依赖关系:在变化过程中有两个变量,如果其中一个变量的值发生了变化,另一个变量的值也会随之发生_______,就称这另个变量具有依赖关系。
函数关系:若两个变量x,y具有依赖关系,如果其中一个变量x的每一个值,另一变量y都有_______的值时,则称变量y是变量x的函数。
三、预习自测
1. 下列各量不存在依赖关系的是()
A、某人的衣着与智力
B、商品房的面积与总的价格
C、球的半径与体积
D、树木的高度与土壤的关系
2. 炼钢时,钢水的含碳量与冶炼时间()
A、有确定关系
B、无任何关系
C、有函数关系 D 、有依赖关系
3.判断小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,应怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(米)与时间t(分)的关系的图象,那么符合这个同学行驶情况的图象大概是()
A B C
D
探究案
探究一:生活中的变量关系实例
例1.请举出现实生活中有关系的变量实例。
探究二:判断变量之间的函数关系
例2.给出下列情境与关系
(1)某护士从上午8:00到下午2:00每小时量一次病人的体温,结果如下表:
(2)班上45位同学,每人都有一个不同的学号,某次数学测验共有36个不同的分数.关系为:学生的分数与学号的关系;
(3)某电视台广告价格表(2001年1月份报价,单位:元)
关系:广告价格与播出时间长短的关系.
属于函数关系的有____________.
注:判断函数关系的关键_________________________________________________________。
探究三:数形结合确定变量间的关系
如图表示一辆汽车的速度随时间变化而变化的情况.
(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?
(2)汽车在哪段时间保持匀速行驶?时速是多少?
(3)汽车在哪段时间停止?可能发生了什么情况?
(4)请大致描述这辆汽车的行驶情况。
当堂检测
1、下列关系中具有函数关系的是
①正方形的边长与面积之间的关系;②水稻产量和施肥量之间的关系;
③人的身高与年龄之间的关系;④人的身高与右手一拃长之间的关系。
2.下列关系中,变量之间存在依赖关系的有其中是函数关系的
有 。
①地球绕太阳公转的过程中,二者的距离与时间的关系;
②在空中作抛物运动的铅球,铅球距地面的高度与时间的关系;
③某水文观测点记录的水位与时间的关系;④某十字路口。
通过汽车的数量与时间的关系。
3.已知变量x,y 满足x y ,则下列说法错误的是( )
A.x,y 之间有依赖关系
B.x,y 之间有函数关系
C.y 是x 的函数
D.x 是y 的函数
4.12.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s (米)与散步所用的时间t
(分)之间的关系,依据图象,下面描述符合小红散步情景的是( ) A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了. B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走 了一段后,然后回家了. C.从家里出发,一直散步(没有停留),然后回家了 D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开 始返回.
我的收获:
训练案
1. “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…….用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )
2.甲、乙二人在一次赛跑中,路程s (米)与时间t(分)的关系如图所示,从图中可以看出,下列结论错误的是( ) A.这是一次100米赛跑 B.甲比乙先到达终点 C.乙跑完全程需12.5秒 D.甲的速度为8米/秒
3.已知长方形的面积为10,则它的长y 与宽x•之间的关系
用图像大致可表示为图中的( )
4.请列举生活中与时间有关的函数关系(至少三个): · · · · · · · · · · · · · · 2 4 6 8 11111100 300 400
500 200 S
t (分) s t S 1 S 2 A s t B S 1 S 2 s t S 1 S 2 C s t
S 2 S 1 D 100
12 12.5 t/秒 s/米 甲 乙。