动能定理解决变力做功-人教版[原创]
(新课标)高考物理一轮总复习 第五章 第二讲 动能定理及其应用教案-人教版高三全册物理教案
第二讲动能定理及其应用[小题快练]1.判断题(1)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.( √ )(2)动能不变的物体一定处于平衡状态.( × )(3)如果物体所受的合外力为零,那么合外力对物体做功一定为零.( √ )(4)物体在合外力作用下做变速运动时,动能一定变化.( × )(5)物体的动能不变,所受的合外力必定为零.( × )(6)做自由落体运动的物体,动能与时间的二次方成正比.( √ )2.(多选)关于动能定理的表达式W=E k2-E k1,下列说法正确的是( BC )A.公式中的W为不包含重力的其他力做的总功B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功C.公式中的E k2-E k1为动能的增量,当W>0时动能增加,当W<0时,动能减少D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功3.NBA篮球赛非常精彩,吸引了众多观众.比赛中经常有这样的场面:在临终场0.1 s的时候,运动员把球投出且准确命中,获得比赛的胜利.若运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为( C ) A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh1考点一 动能定理的理解及应用 (自主学习)1.动能定理公式中体现的“三个关系”(1)数量关系:即合力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力做的功,进而求得某一力做的功. (2)单位关系:等式两侧物理量的国际单位都是焦耳. (3)因果关系:合力做的功是引起物体动能变化的原因. 2.对“外力”的理解动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.应用动能定理的“四点注意”(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)动能定理的表达式是一个标量式,不能在某方向上应用动能定理.(3)动能定理往往用于单个物体的运动过程,由于不涉及加速度和时间,比动力学研究方法更简便.(4)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.1-1.[解决曲线运动问题] (2015·某某卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( ) A .一样大 B .水平抛的最大 C .斜向上抛的最大D .斜向下抛的最大解析:根据动能定理可知12mv 2末=mgh +12mv 20,得v 末=2gh +v 20,又因三个小球的初速度大小以及高度相等,则落地时的速度大小相等,A 项正确. 答案:A1-2.[解决直线运动问题] 一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示.当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为( )A .tan θ和H2B .(v 22gH -1)tan θ和H 2C .tan θ和H4D .(v 22gH -1)tan θ和H 4解析:由动能定理有-mgH -μmg cos θH sin θ=0-12mv 2-mgh -μmg cos θh sin θ=0-12m (v 2)2解得μ=(v 22gH -1)tan θ,h =H4,故D 正确.答案:D1-3.[解决变力做功问题] (2015·全国卷Ⅰ)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离解析:根据质点滑到轨道最低点N 时,对轨道压力为4mg ,利用牛顿第三定律可知,轨道对质点的支持力为4mg .在最低点,由牛顿第二定律得,4mg -mg =m v 2R,解得质点滑到最低点的速度v =3gR .对质点从开始下落到滑到最低点的过程,由动能定理得,2mgR -W =12mv 2,解得W =12mgR .对质点由最低点继续上滑的过程,到达Q 点时克服摩擦力做功W ′要小于W =12mgR .由此可知,质点到达Q 点后,可继续上升一段距离,C 正确.答案:C考点二 动能定理在多过程问题中的应用 (师生共研)1.应用动能定理解题应抓好“两状态,一过程”“两状态”即明确研究对象的始、末状态的速度或动能情况;“一过程”即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息. 2.应用动能定理解题的基本思路[典例] 如图,一个质量为0.6 kg 的小球以某一初速度从P 点水平抛出,恰好从光滑圆弧ABC 的A 点沿切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失).已知圆弧的半径R =0.3 m ,θ=60°,小球到达A 点时的速度v A =4 m/s.g 取10 m/s 2,求:(1)小球做平抛运动的初速度v 0; (2)P 点与A 点的高度差;(3)小球到达圆弧最高点C 时对轨道的压力.解析:(1)由题意知小球到A 点的速度v A 沿曲线上A 点的切线方向,对速度分解如图所示: 小球做平抛运动,由平抛运动规律得v 0=v x =v A cos θ=2 m/s.(2)小球由P 至A 的过程由动能定理得mgh =12mv 2A -12mv 2解得:h =0.6 m.(3)小球从A 点到C 点的过程中,由动能定理得 -mg (R cos θ+R )=12mv 2C -12mv 2A解得:v C =7 m/s小球在C 点由牛顿第二定律得F N C +mg =m v 2CR解得F N C =8 N由牛顿第三定律得F N C ′=F N C =8 N 方向竖直向上.答案:(1)2 m/s(2)0.6 m(3)8 N ,方向竖直向上 [反思总结]动能定理在多过程问题中的应用1.对于多个物理过程要仔细分析,将复杂的过程分割成多个子过程,分别对每个过程分析,得出每个过程遵循的规律.当每个过程都可以运用动能定理时,可以选择分段或全程应用动能定理,题目不涉及中间量时,选择全程应用动能定理更简单方便.2.应用全程法解题求功时,有些力可能不是全过程都作用的,必须根据不同的情况分别对待,弄清楚物体所受的力在哪段位移上做功,哪些力做功,做正功还是负功,正确写出总功.(2018·余姚中学模拟)如图所示装置由AB 、BC 、CD 三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度x =5 m ,轨道CD 足够长且倾角θ=37°,A 、D 两点离轨道BC 的高度分别为h 1=4.30 m ,h 2=1.35 m .现让质量为m 的小滑块自A 点由静止释放,小滑块与轨道BC 间的动摩擦因数μ=0.5,重力加速度取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块第一次到达D 点时的速度大小;(2)小滑块第二次通过C 点时的速度大小; (3)小滑块最终停止的位置距B 点的距离.解析:(1)小物块从A 到D 的过程中,由动能定理得:mg (h 1-h 2)-μmgx =12mv 2D -0,代入数据得:v D =3 m/s.(2)从D 到C 的过程,由动能定理得:mgh 2=12mv 2C -12mv 2D ,代入数据得:v C =6 m/s.(3)滑块最终静止在BC 上,对全过程,运用动能定理得:mgh 1-μmgs =0,代入数据解得:s =8.6 m ,则距离B 点的距离为:L =5 m -(8.6-5) m =1.4 m.答案:(1)3 m/s (2)6 m/s (3)1.4 m考点三 与图象相关的动能问题 (自主学习)图象所围“面积”的意义1.v -t 图:由公式x =vt 可知,v -t 图线与时间轴围成的面积表示物体的位移. 2.a -t 图:由公式Δv =at 可知,a -t 图线与时间轴围成的面积表示物体速度的变化量. 3.F -x 图:由公式W =Fx 可知,F -x 图线与位移轴围成的面积表示力所做的功. 4.P -t 图:由公式W =Pt 可知,P -t 图线与时间轴围成的面积表示力所做的功.3-1.[v -t 图象] A 、B 两物体分别在水平恒力F 1和F 2的作用下沿水平面运动,先后撤去F 1、F 2后,两物体最终停下,它们的v -t 图象如图所示.已知两物体与水平面间的滑动摩擦力大小相等.则下列说法正确的是( )A .F 1、F 2大小之比为1∶2B .F 1、F 2对A 、B 做功之比为1∶2C .A 、B 质量之比为2∶1D .全过程中A 、B 克服摩擦力做功之比为2∶1 答案:C3-2.[a -t 图象] 用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图所示.下列说法正确的是( )A .0~6 s 内物体先向正方向运动,后向负方向运动B .0~6 s 内物体在4 s 时的速度最大C .物体在2~4 s 内速度不变D .0~4 s 内合力对物体做的功等于0~6 s 内合力做的功解析:由a -t 图象可知:图线与时间轴围成的“面积”代表物体在相应时间内速度的变化情况,在时间轴上方为正,在时间轴下方为负.物体6 s 末的速度v 6=12×(2+5)×2 m/s-12×1×2 m/s=6 m/s ,则0~6 s 内物体一直向正方向运动,A 错误;由图象可知物体在5 s 末速度最大,v m =12×(2+5)×2 m/s=7 m/s ,B 错误;由图象可知在2~4 s 内物体加速度不变,物体做匀加速直线运动,速度变大,C 错误;在0~4 s 内合力对物体做的功由动能定理可知:W 合4=12mv 24-0,又v 4=12×(2+4)×2 m/s=6 m/s ,得W 合4=36 J ,0~6 s 内合力对物体做的功由动能定理可知:W 合6=12mv 26-0,又v 6=6 m/s ,得W 合6=36 J ,则W 合4=W 合6,D 正确. 答案:D1.(多选)(2019·第十九中学月考)将质量为m 的小球在距地面高度为h 处抛出,抛出时的速度大小为v 0.小球落到地面的速度大小为2v 0,若小球受到的空气阻力不能忽略,则对于小球下落的整个过程,下面说法中正确的是( BC ) A .小球克服空气阻力做的功大于mgh B .重力对小球做的功等于mgh C .合外力对小球做的功大于mv 20 D .合外力对小球做的功等于mv 20解析:根据动能定理得:12m (2v 0)2-12mv 20=mgh -W f ,解得:W f =mgh -32mv 20<mgh ,故A 错误;重力做的功为W G =mgh ,B 正确;合外力对小球做的功W 合=12m (2v 0)2-12mv 20=32mv 20,C 正确,D 错误.2.(2018·某某、某某联考)如图所示,斜面AB 竖直固定放置,物块(可视为质点)从A 点静止释放沿斜面下滑,最后停在水平面上的C 点,从释放到停止的过程中克服摩擦力做的功为W .因斜面塌陷,斜面变成APD 曲面,D 点与B 在同一水平面上,且在B 点左侧.已知各接触面粗糙程度均相同,不计物块经过B 、D 处时的机械能损失,忽略空气阻力,现仍将物块从A 点静止释放,则(B )A .物块将停在C 点B .物块将停在C 点左侧C .物块从释放到停止的过程中克服摩擦力做的功大于WD .物块从释放到停止的过程中克服摩擦力做的功小于W解析:物块在斜面上滑动时,克服摩擦力做的功为W f =μmg cos θ·L ,物块在曲面上滑动时,做曲线运动,根据牛顿第二定律有:F N -mg cos θ=m v 2R,即F N >mg cos θ,故此时的滑动摩擦力f ′=μF N >μmg cos θ,且物块在曲面上滑过路程等于在斜面上滑过的路程L ,故物块在曲面上克服摩擦力做的功W ′f >W f =μmg cos θ·L ,根据动能定理可知,物块将停在C 点左侧,故A 错误,B 正确;从释放到最终停止,动能的改变量为零,根据动能定理可知,物块克服摩擦力做的功等于重力做的功,而两种情况下,重力做的功相同,物块从释放到停止的过程中克服摩擦力做的功等于W ,故C 、D 错误.3.如图所示,水平平台上有一个质量m =50 kg 的物块,站在水平地面上的人用跨过定滑轮的细绳向右拉动物块,细绳不可伸长.不计滑轮的大小、质量和摩擦.在人以速度v 从平台边缘正下方匀速向右前进x 的过程中,始终保持桌面和手的竖直高度差h 不变.已知物块与平台间的动摩擦因数μ=0.5,v =0.5 m/s ,x =4 m ,h =3 m ,g 取10 m/s 2.求人克服细绳的拉力做的功.解析:设人发生x 的位移时,绳与水平方向的夹角为θ,由运动的分解可得,物块的速度v 1=v cos θ由几何关系得cos θ=xh 2+x 2在此过程中,物块的位移s =h 2+x 2-h =2 m 物块克服摩擦力做的功W f =μmgs 对物块,由动能定理得W T -W f =12mv 21所以人克服细绳的拉力做的功W T =mv 2x 22(h 2+x 2)+μmgs =504 J.答案:504 J[A 组·基础题]1.(2016·某某卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( C ) A .动能增加了1 900 J B .动能增加了2 000 J C .重力势能减小了1 900 J D .重力势能减小了2 000 J2. 质量为10 kg 的物体,在变力F 作用下沿x 轴做直线运动,力随坐标x 的变化情况如图所示.物体在x =0处,速度为1 m/s ,一切摩擦不计,则物体运动到x =16 m 处时,速度大小为( B )A .2 2 m/sB .3 m/sC .4 m/sD .17 m/s3. 如图所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为x 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,滑块经过的总路程是( A )A.1μ(v 202g cos θ+x 0tan θ) B .1μ(v 202g sin θ+x 0tan θ) C.2μ(v 202g cos θ+x 0tan θ)D .1μ(v 202g cos θ+x 0cot θ)4. 如图所示,质量为M =3 kg 的小滑块,从斜面顶点A 由静止沿ABC 下滑,最后停在水平面上的D 点,不计滑块从AB 面滑上BC 面以及从BC 面滑上CD 面时的机械能损失.已知AB =BC =5 m ,CD =9 m ,θ=53°,β=37°(sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2),在运动过程中,小滑块与所有接触面间的动摩擦因数相同.则( D )A .小滑块与接触面间的动摩擦因数μ=0.5B .小滑块在AB 面上运动的加速度a 1与小滑块在BC 面上运动的加速度a 2之比a 1a 2=53C .小滑块在AB 面上的运动时间小于小滑块在BC 面上运动时间D .小滑块在AB 面上运动时克服摩擦力做功小于小滑块在BC 面上运动时克服摩擦力做功 5.(多选) 某人通过光滑滑轮将质量为m 的物体,沿光滑斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示.则在此过程中( BD )A .物体所受的合力做功为mgh +12mv 2B .物体所受的合力做功为12mv 2C .人对物体做的功为mghD .人对物体做的功大于mgh6.(多选) 如图所示,竖直平面内固定着一个螺旋形光滑轨道,一个小球从足够高处落下,刚好从A 点进入轨道,则关于小球经过轨道上的B 点和C 点时,下列说法正确的是( ABC )A .轨道对小球不做功B .小球在B 点的速度小于在C 点的速度C .小球在B 点对轨道的压力小于在C 点对轨道的压力D .改变小球下落的高度,小球在B 、C 两点对轨道的压力差保持不变7.(多选) (2016·某某卷)如图所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则( AB )A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g8.(多选) 如图所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地有( BD )A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的5倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能相同[B 组·能力题]9.(多选)(2019·某某实验中学期中)如图,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.下列说法正确的是( ABD )A .小船从A 点运动到B 点的全过程克服阻力做的功W f =fd B .小船经过B 点时的速度大小v 1=v 20+2m (Pt 1-fd )C .小船经过B 点时的速度大小v 1=2v 20+2m (Pt 1-fd )D .小船经过B 点时的加速度大小a =P m 2v 20+2m (Pt 1-fd )-fm 解析:小船从A 点运动到B 点过程中克服阻力做功:W f =fd ,故A 正确;小船从A 点运动到B 点,电动机牵引缆绳对小船做功:W =Pt 1 ,由动能定理有:W -W f =12mv 21-12mv 20,联立解得:v 1=v 20+2(Pt 1-fd )m,故B 正确,C 错误;设小船经过B 点时绳的拉力大小为F ,绳与水平方向夹角为θ,绳的速度大小为v ′,则P =Fv ′, v ′=v 1cos θ,F cos θ-f =ma ,联立解得:a =P m 2v 20+2m (Pt 1-fd )-fm ,故D 正确.A .在运动过程中滑块A 的最大加速度是2.5 m/s 2B .在运动过程中滑块B 的最大加速度是3 m/s 2C .滑块在水平面上运动的最大位移是3 mD .物体运动的最大速度为 5 m/s解析:假设开始时A 、B 相对静止,对整体根据牛顿第二定律,有F =2Ma ,解得a =F 2M =102×2=2.5 m/s 2;隔离B ,B 受到重力、支持力和A 对B 的静摩擦力,根据牛顿第二定律,f =Ma =2×2.5=5 N <μMg =6 N ,所以A 、B 不会发生相对滑动,保持相对静止,最大加速度均为2.5 m/s 2,故A 正确,B 错误;当F =0时,加速度为0,之后A 、B 做匀速运动,位移继续增加,故C 错误;F -x 图象包围的面积等于力F 做的功,W =12×2×10=10 J ;当F =0,即a =0时达到最大速度,对A 、B 整体,根据动能定理,有W =12×2Mv 2m -0;代入数据得:v m = 5 m/s ,故D 正确.11. 为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角θ=60°,长L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道D ,如图所示.现将一个小球从距A点高h =0.9 m 的水平台面上以一定的初速度v 0水平弹出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33.g 取10 m/s 2,求:(1)小球初速度的大小; (2)小球滑过C 点时的速率;(3)要使小球不离开轨道,则竖直圆轨道的半径应该满足什么条件. 解析:(1)小球开始时做平抛运动,有v 2y =2gh 代入数据解得v y =2gh =2×10×0.9 m/s =3 2 m/s 在A 点有tan θ=v yv x得v x =v 0=v ytan θ=323m/s = 6 m/s. (2)从水平抛出到C 点的过程中,由动能定理得mg (h +L 1sin θ)-μmgL 1cos θ-μmgL 2=12mv 2C -12mv 2代入数据解得v C =3 6 m/s.(3)小球刚刚过最高点时,重力提供向心力,有mg =m v 2R 112mv 2C =2mgR 1+12mv 2 代入数据解得R 1=1.08 m.当小球刚能到达与圆心等高处时,有 12mv 2C =mgR 2 代入数据解得R 2=2.7 m.当圆轨道与AB 相切时R 3=L 2·tan 60°=1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是0<R ≤1.08 m. 答案:(1) 6 m/s (2)3 6 m/s (3)0<R ≤1.08 m。
高一物理 7.7 动能和动能定理教案 新人教版
第七节 动能和动能定理学习目标课标要求:1.知道动能定理,会用动能定理解决实际问题 2.会用动能定理求解变力的功 重点:动能、动能定理难点:运用动能定理求解变力的功巩固基础1.对于动能的理解,下列说法正确的是( ) A.动能是状态量,恒为正值B.动能不变的物体,一定处于平衡状态 C.一个物体的速度改变时,其动能必改变D.动能与势能是两种不同形式的物理量,可以相互转化 2.在下列几种情况中,甲、乙两物体的动能是相同的( )A.甲的速度是乙的2倍,甲的质量是乙的21 B.甲的质量是乙的4倍,甲的速度是乙的21C.甲的质量是乙的2倍,甲的速度是乙的21D.质量相同,速度的大小也相同,但方向不同 3.关于运动物体所受的合外力、合外力的功和动能变化的关系,下列说法正确的是( ) A.物体在合外力作用下做变速运动,则动能一定变化 B.如果合外力对物体所做的功为零,则合外力一定为零C.如果物体所受的合外力为零,则合外力对物体做的功一定为零 D.物体的动能不变,则所受的合外力必定为零4.如图所示,质量为m 的物块,在恒力F 的作用下,沿光滑水平面运动。
物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 点运动到B 点的过程中,力F 对物块做的功W 为( )A .222121AB mv mv W -〉B .222121A B mv mv W -=C .222121A B mv mv W -〈 D .由于F 的方向未知,W 无法求出5.一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s (取g =10 m/s 2)。
关于力对小孩做的功,以下结果正确的是 ( )A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J 6.两辆汽车在同一平直路面上匀速行驶,它们的质量之比m 1∶m 2=1∶2,速度之比v 1∶v 2=2∶1。
如何求变力做功
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
高中物理学习细节(人教版)之机械能守恒定律:动能定理的六种应用(含解析)
【方法技巧】
1.动能定理的应用技巧
(1) 一个物体的动能变化ΔE k与合外力对物体所做的功W具有等量关系。
①若ΔE k>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功。
②若ΔE k<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值。
③若ΔE k=0,表示物体的动能没有变化,合外力对物体所做的功等于零,反之亦然。
以上等量关系提供了求变力做功的一种简便方法。
(2) 动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的力学
问题时,往往优先考虑使用动能定理。
动能定理可以由牛顿第二定律导出,但由于动能定理不涉及物体运动过程中的细节,只需要考虑整个过程中外力做的功和始末两个状态动能的变
化,并且动能和功都是标量,无方向性,故无论是直线运动还是曲线运动,也无论是恒力还
是变力,用动能定理求解都会特别方便。
2. 应用动能定理解题的基本思路
【题型应用】
一、应用动能定理判断动能的变化或做功的情况
合外力做的功等于物体动能的变化,合外力做正功,动能增加;合外力做负功,动能减
少;合外力不做功,动能不变。
反之亦然。
因此,可利用动能定理判断动能的变化或做功的
情况。
【典例1】有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图所示。
若由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )。
专题2:变力做功(教学课件)高一物理(人教版2019必修第二册)
1 2
t1
,
选项 C 错误;
D.在t2 时刻,汽车达到最大速度,则有汽车的牵引力 F Kmg ,
则 vm
P0 F
P0 Kmg
,选项
D
正确;故选
BD。
三、关键点拨
涉及到机车的启动、吊车吊物体 等问题,如果在某个过程中保持功 率P恒定,随着机车或物体速度的 改变,牵引力也改变,要求该过程 中牵引力的功,可以通过W=Pt求 变力做功。
功通过绳子将能量转移到物体
上,故此恒力F做功应该等于绳
子对物体做的功。
W F( h h )
sin sin
Fh
A
B
二、变式训练
【变式1】人在A点拉着绳通过一个光滑定滑轮以加速度a匀加速吊起质量为m的物体, 如图所示,保持人手与滑轮间的竖直距离不变,大小为h,开始时绳与水平方向成 600 角,当人拉着绳由A点沿水平方向运动到B点时,绳与水平方向成300 角,求人 对绳的拉力做了多少功?(不计摩擦)
B.W3=W1+W2
C.W1=W2
D.W1>W2
【参考答案】BD
三、关键点拨
做曲线运动的物体,当力的大小不变,力的方向时刻与速度同向(或反向)时,把 物体的运动过程分为很多小段,这样每一小段可以看成直线,先求力在每一小段上做 的功,再求和即可。用微元累积法的关键是如何选择恰当的微元,如何对微元作恰 当的物理和数学处理。
量为m,额定功率为P0,汽车在行驶过程中所受阻力恒为车重的K倍,在t2时刻汽
车刚好获得最大速度。则下列说法正确的是( )
【参考答案】BD
A.在t1~t2时间内汽车做匀速直线运动
B.在0~t1时间内汽车平均功率为
1 2 P0
动能定理解决变力做功人教版原创
-mgl
30°
例3拓展
1、斜面的变化,可由斜面变成竖直面或水平面分析,仍要 靠向心力来源来分析处末两个状态的动能。 2、在原先斜面的基础上再加上一些场力以实现其综合 效应,如电场磁场等(小球会带电,斜面会绝缘)。 3、位置变化,由地球上的情况转移到其他星球,再配以一 些条件综合万有引力的知识。凡是和重力加速度相关的题目 都可以和万有引力结合。
强调:完成题目以后的反思至关重要 ,
“三分做,七分想”
二、利用动能定理解决问题应注意的问题
1 2 1 2 1、动能定理:W合 Ek2 Ek1 2 mv2 2 mv1
注:动能变化涉及两个状态, 做功涉及一个过程 2、求外力总功的方法
a 、先求合外力,再求合外力做的功 b 、先求各个力做的功,再求代数和
3、用动能定理解题的步骤:
a 、选择研究对象明确研究过程
动能定理解决变力做功1与势能相关的变力可以由势能的变化来求解如弹簧弹力万有引力和电场力2全程变力分段恒力如滑动摩擦力和空气阻力等3利用变力对位移的平均作用力来求解尤其是力与位移成正比时4利用fs图像中的面积来解决5利用功率来解决比如在机车以额定功率启动过程中牵引力的做功
动能定理解决变力做功
一 、 解 决 变 力 做 功 的 方 法
b、对研究对象进行受力分析, 分析各个力所做的功
c、分析这个过程的初末两个状态, 解决初末动能问题 d 、列动能定理表达式,求解问题
例1、以质量为60kg的跳伞运动员刚刚拉开伞 时的速度为40m/s,拉开伞后受到与速度相关 的空气阻力影响,下落200m后,速度变为 20m/s,求这个过程当中空气阻力做的功。
(完整)求解变力做功的十种方法
求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。
那么就可以用重力做的功替代拉力做的功。
解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。
小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。
二。
微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。
人教版高中物理必修第2册 第八章 3 动能和动能定理
B.该物体动能增加,增加量等于4 J
C.该物体重力势能减少,减少量等于2 J
D.该物体重力势能增加,增加量等于2 J
答案 BD
解析 重力做负功,重力势能增加,增加量等于克服重力做的功,选项C错误,
选项D正确;根据动能定理知该物体动能增加,增加量为4 J,选项A错误,选项
B正确。
课堂篇 探究学习
探究一
一个相对客车静止的质量为4 kg的行李,行李的动能是(
A.0 J
)
B.200 J
C.450 J D.900 J
答案 B
解析 行李的速度v=10 m/s,所以行李的动能Ek=
1 2
mv =200
2
J,选项B正确。
3.(多选)一物体在运动过程中,重力做了-2 J的功,合力做了4 J的功,则(
)
A.该物体动能减少,减少量等于4 J
答案 √
)
(3)合力不为零,物体的动能一定会变化。(
)
答案 ×
解析 合力不为零,合力做功可能为零,此时物体的动能不会变化。
(4)物体所受合力做正功,则它的动能一定增加。(
)
答案 √
(5)做匀速圆周运动的物体动能不变,速度变化。(
答案 √
)
2.在水平路面上,有一辆客车以10 m/s的速度匀速行驶,在车厢后座上放着
(2)应用牛顿运动定律和运动学规律时,涉及的有关物理量比较多,对运动
过程中的细节也要仔细研究,而应用动能定理只考虑合力做功和初、末两
个状态的动能,并且可以把不同的运动过程合并为一个全过程来处理。
2.应用动能定理解题的一般步骤
(1)选取研究对象(通常是单个物体),明确它的运动过程。
(2)对研究对象进行受力分析,明确各力做功的情况,即是否做功?做正功还
物理人教版必修二领学案7-7动能动能定理
题目《动能动能定理》导学案3课时学习目标1、知道动能的符号、单位和表达式,会根据动能的表达式计算运动物体的动能。
2、能从牛顿第二定律与运动学公式导出动能定理,理解动能定理的物理意义。
3、领会运用动能定理解题的优越性,理解做功的过程就是能量转化和转移的过程。
会用动能定理处理单个物体的有关问题。
4、知道动能定理也可以用于变力做功与曲线运动的情景,能用动能定理计算变力所做的功。
学习疑问学习建议【知识链接】1、恒力功的计算公式?2、牛顿第二定律的表达式?3、匀变速直线运动位移与速度的关系公式?【预学能掌握的内容】(查阅教材p71-75页完成下列问题)一、动能的表达式如图所示,质量为m的物体在一水平恒力F的作用下,在光滑水平面上运动位移l时,速度由v1变为v2,推导出力F对物体做功的表达式。
(用m、v1 、v2 表示)。
一、动能1、概念:物体由于_______________而具有的能叫做动能.与物体的_______和_____有关。
2、表达式:E k =_______________;①单位:____________,符号:________;1kg ·m 2/s 2=1N ·m =1J②动能是_________量(填“矢量”或“标量”):动能________于或______于零,且其大小与速度方向_____关。
③动能是________量(填“过程量”或“状态量”),式中,v 应为对应_________的____________速度;④动能大小与参考系的选择有关。
一般是相对_________的速度。
【典题探究】例1、下列几种情况中,甲、乙两物体的动能相等的是………………( ) A .甲的速度是乙的2倍,乙的质量是甲的2倍 B .甲的质量是乙的2倍,乙的速度是甲的2倍 C .甲的质量是乙的4倍,乙的速度是甲的2倍D .以上说法都不对例2、质量一定的物体( )A .速度发生变化时,动能一定发生变化B .速度发生变化时,动能不一定发生变化C .速度不变时,其动能一定不变D .动能不变时,速度一定不变 二、能定理有了动能的表达式后,前面我们推出的W =21222121mv mv ,,就可以写成W =E k2—E k1,其中E k2表示一个过程的末动能2221mv ,E k1表示一个过程的初动能2121mv .上式表明什么问题呢?请你用文字叙述一下.1、定理内容:____对物体所做的功,等于物体动能的________.2、表达式为:____ ______ 。
《利用动能定理分析变力做功和多过程问题》解题技巧
《利用动能定理分析变力做功和多过程问题》解题技巧一、利用动能定理求变力做功1.动能定理不仅适用于求恒力做的功,也适用于求变力做的功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W变+W其他=ΔE k.如图1所示,质量为m的小球由静止自由下落d后,沿竖直面内的固定轨道ABC运动,AB是半径为d的14光滑圆弧轨道,BC是直径为d的粗糙半圆弧轨道(B是轨道的最低点).小球恰能通过圆弧轨道的最高点C.重力加速度为g,求:图1(1)小球运动到B处时对轨道的压力大小(可认为此时小球处在轨道AB上);(2)小球在BC运动过程中,摩擦力对小球做的功.答案(1)5mg(2)-34 mgd解析(1)小球由静止运动到B点的过程,由动能定理得2mgd=12mv2,在B点,由牛顿第二定律得F N-mg=m v2 d,得:F N=5mg根据牛顿第三定律:小球在B处对轨道的压力大小FN′=F N=5mg;(2)小球恰能通过C点,则mg=mv2Cd2.小球从B运动到C的过程:-mgd+W f=12mvC2-12mv2,得Wf=-34mgd.针对训练1 如图2所示,有一半径为r=0.5 m的粗糙半圆轨道,A与圆心O等高,有一质量为m=0.2 kg的物块(可视为质点),从A点静止滑下,滑至最低点B时的速度为v=1 m/s,取g=10 m/s2,下列说法正确的是( )图2A.物块过B点时,对轨道的压力大小是0.4 NB.物块过B点时,对轨道的压力大小是2.0 NC.A到B的过程中,克服摩擦力做的功为0.9 JD.A到B的过程中,克服摩擦力做的功为0.1 J答案 C解析在B点由牛顿第二定律可知F N-mg=m v2r,解得:F N=2.4 N,由牛顿第三定律可知物块对轨道的压力大小为2.4 N,故A、B均错误;A到B的过程,由动能定理得mgr+W f=12mv2-0,解得Wf=-0.9 J,故克服摩擦力做功为0.9 J,故C正确,D错误.二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和.如图3所示,右端连有一个光滑弧形槽的水平桌面AB长L=1.5 m,一个质量为m=0.5 kg的木块在F=1.5 N的水平拉力作用下,从桌面上的A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽);(2)木块沿弧形槽滑回B端后,在水平桌面上滑行的最大距离.答案(1)0.15 m (2)0.75 m解析(1)设木块沿弧形槽上升的最大高度为h,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升到最大高度处,由动能定理得:FL-FfL-mgh=0其中F f=μF N=μmg=0.2×0.5×10 N=1.0 N所以h=FL-FfLmg=(1.5-1.0)×1.50.5×10m=0.15 m(2)设木块离开B点后,在水平桌面上滑行的最大距离为x,由动能定理得:mgh-Ffx=0所以x=mghFf=0.5×10×0.151.0m=0.75 m.针对训练2 图4中ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,BC段是与AB段和CD段都相切的一小段圆弧,其长度可以略去不计.一质量为m的小滑块在A点从静止释放,沿轨道滑下,最后停在D点,A 点和D点的位置如图4所示,现用一沿轨道方向的力推滑块,使它缓缓地由D点回到A点,设滑块与轨道间的动摩擦因数为μ,重力加速度为g,则推力对滑块做的功等于( )图4A.mghB.2mghC.μmg(s+hsin θ) D.μmg(s+h cos θ)答案 B解析滑块由A点运动至D点,设克服摩擦力做功为W AD,由动能定理得mgh -W AD=0,即W AD=mgh…①,滑块从D点回到A点,由于是缓慢推,说明动能变化量为零,设克服摩擦力做功为W DA,由动能定理知当滑块从D点被推回A点有WF-mgh-W DA=0…②,由A点运动至D点,克服摩擦力做的功为W AD=μmg cosθ·hsin θ+μmgs…③,从D→A的过程克服摩擦力做的功为W DA=μmg cosθ·hsin θ+μmgs…④,③④联立得W AD=W DA…⑤,①②⑤联立得W F=2mgh,故A、C、D错误,B正确.三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①可提供支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=0.②不可提供支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min=gR.如图5所示,一可以看成质点的质量m=2 kg的小球以初速度v0沿光滑的水平桌面飞出后,恰好从A点沿切线方向进入圆弧轨道,BC为圆弧竖直直径,其中B为轨道的最低点,C为最高点且与水平桌面等高,圆弧AB对应的圆心角θ=53°,轨道半径R=0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g取10 m/s2.图5(1)求小球的初速度v0的大小;(2)若小球恰好能通过最高点C,求在圆弧轨道上摩擦力对小球做的功.答案(1)3 m/s (2)-4 J解析(1)在A点由平抛运动规律得:v A =vcos 53°=53v小球由桌面到A点的过程中,由动能定理得mg(R+R cos θ)=12mvA2-12mv2联立得:v0=3 m/s;(2)若小球恰好能通过最高点C,在最高点C处有mg=mv 2CR,小球从桌面运动到C点的过程中,由动能定理得W f=12mvC2-12mv2代入数据解得W f=-4 J.四、动能定理在多过程往复运动中的应用某游乐场的滑梯可以简化为如图6所示竖直面内的ABCD轨道,AB为长L=6 m、倾角α=37°的斜轨道,BC为水平轨道,CD为半径R=15 m、圆心角β=37°的圆弧轨道,轨道AB段粗糙,其余各段均光滑.一小孩(可视为质点)从A点以初速度v0=2 3 m/s下滑,沿轨道运动到D点时的速度恰好为零(不计经过B点时的能量损失).已知该小孩的质量m=30 kg,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,不计空气阻力,设最大静摩擦力等于滑动摩擦力,求:图6(1)该小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力;(2)该小孩与AB段间的动摩擦因数;(3)该小孩在轨道AB上运动的总路程s.答案(1)420 N,方向向下(2)0.25 (3)21 m解析(1)由C到D速度减为0,由动能定理可得-mg(R-R cos β)=0-12mvC2,vC=215 m/s在C点,由牛顿第二定律得F N-mg=m v 2CR,可得:F N=420 N根据牛顿第三定律,小孩第一次经过圆弧轨道C点时,对圆弧轨道的压力为420 N,方向向下(2)小孩从A运动到D的过程中,由动能定理得:mgL sin α-μmgL cos α-mgR(1-cos β)=0-12 mv2可得:μ=0.25(3)在AB斜轨道上,μmg cos α<mg sin α,小孩不能静止在斜轨道上,则小孩从A点以初速度v0滑下,最后静止在BC轨道B处,由动能定理:mgL sin α-μmgs cos α=0-12mv2,解得s=21 m.1.在有摩擦力做功的往复运动过程中,注意两种力做功的区别:(1)重力做功只与初、末位置有关,而与路径无关;(2)滑动摩擦力(或全部阻力)做功与路径有关,克服摩擦力(或全部阻力)做的功W=F f s(s为路程).2.由于动能定理解题的优越性,求多过程往复运动问题中的路程,一般应用动能定理.【课堂同步练习】1.(用动能定理求变力做功)如图7所示为一水平的转台,半径为R,一质量为m的滑块放在转台的边缘,已知滑块与转台间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力,重力加速度为g.若转台的转速由零逐渐增大,当滑块在转台上刚好发生相对滑动时,转台对滑块所做的功为( )图7A.12μmgR B.2πmgRC.2μmgRD.0答案 A解析滑块即将开始滑动时,最大静摩擦力(等于滑动摩擦力)提供向心力,有μmg=mv2R,根据动能定理有W f=12mv2,解得Wf=12μmgR,A正确.2.(利用动能定理分析多过程问题)如图8所示,AB为四分之一圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道间的动摩擦因数都为μ,它由轨道顶端A从静止开始下滑,恰好运动到C 处停止,不计空气阻力,重力加速度为g,那么物体在AB段克服摩擦力所做的功为( )图8A.12μmgR B.12mgRC.mgRD.(1-μ)mgR答案 D解析设物体在AB段克服摩擦力所做的功为W AB,对物体从A到C的全过程,由动能定理得mgR-W AB-μmgR=0,故W AB=mgR-μmgR=(1-μ)mgR.3.(动能定理在平抛、圆周运动中的应用)如图9所示,一长L=0.45 m、不可伸长的轻绳上端悬挂于M点,下端系一质量m=1.0 kg的小球,CDE是一竖直固定的圆弧形轨道,半径R=0.50 m,OC与竖直方向的夹角θ=60°,现将小球拉到A点(保持绳绷直且水平)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后,从圆弧轨道的C点沿切线方向进入轨道,刚好能到达圆弧轨道的最高点E,重力加速度g取10 m/s2,求:图9(1)小球到B点时的速度大小;(2)轻绳所受的最大拉力大小;(3)小球在圆弧轨道上运动时克服阻力做的功.答案(1)3 m/s (2)30 N (3)8 J解析(1)小球从A到B的过程,由动能定理得mgL=12mv12,解得v1=3 m/s(2)小球在B点时,由牛顿第二定律得F-mg=m v21L,解得F=30 N,由牛顿第三定律可知,轻绳所受最大拉力大小为30 N(3)小球从B到C做平抛运动,从C点沿切线进入圆弧轨道,由平抛运动规律可得小球在C点的速度大小v2=v 1cos θ,解得v2=6 m/s小球刚好能到达E点,则mg=m v23R,解得v3= 5 m/s小球从C点到E点,由动能定理得-mg(R+R cos θ)-W f=12mv32-12mv22,解得W f=8 J.4.(利用动能定理分析多过程往复运动问题)如图10所示,ABCD为一竖直平面内的轨道,其中BC水平,A点比BC高出10 m,BC长1 m,AB和CD轨道光滑.一质量为1 kg的物体,从A点以4 m/s的速度沿轨道开始运动,经过BC后滑到高出C点10.3 m的D点时速度为0.求:(g取10 m/s2)图10(1)物体与BC轨道间的动摩擦因数;(2)物体第5次经过B点时的速度大小(结果可用根式表示);(3)物体最后停止的位置(距B点多少米).答案(1)0.5 (2)411 m/s (3)距B点0.4 m解析(1)由A到D,由动能定理得-mg(h-H)-μmgs BC=0-12 mv12解得μ=0.5(2)物体第5次经过B点时,物体在BC上滑动了4次,由动能定理得mgH-μmg·4sBC =12mv22-12mv12,解得v2=411 m/s(3)分析整个过程,由动能定理得mgH-μmgs=0-12 mv12解得s=21.6 m所以物体在轨道上来回运动了10次后,还有1.6 m,故最后停止的位置与B 点的距离为2 m-1.6 m=0.4 m.【课后强化训练】一、选择题1.一人用力踢质量为100 g的皮球,使球由静止以20 m/s的速度飞出.假定人踢球瞬间对球的平均作用力是200 N,球在水平方向运动了20 m停止.则人对球所做的功为( )A.20 JB.2 000 JC.500 JD.4 000 J答案 A解析根据题意可知,球的初状态速度为零,末状态速度为20 m/s,由动能定理可知W=12mv2-0=12×0.1×202 J=20 J,故选A.2.质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图1所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,重力加速度为g,则从开始碰撞到弹簧被压缩至最短(弹簧始终在弹性限度内),物体克服弹簧弹力所做的功为( )图1A.12mv2-μmg(s+x) B.12mv2-μmgxC.μmgsD.μmg(s+x) 答案 A解析由动能定理得-W-μmg(s+x)=0-12mv2,W=12mv2-μmg(s+x),A正确,B、C、D错误.3.在离水平地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到水平地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( )A.mgh-12mv2-12mv2 B.12mv2-12mv2-mghC.mgh+12mv2-12mv2 D.mgh+12mv2-12mv2答案 C解析对物块从刚抛出到落地的过程,由动能定理可得:mgh-Wf克=12mv2-12mv2解得:W f克=mgh+12mv2-12mv2.4.一质量为m的小球,用长为l的轻绳悬挂于O点,小球在水平拉力F作用下,从平衡位置P点缓慢地移动到Q点,如图2所示,重力加速度为g,则拉力F所做的功为( )图2A.mgl cos θB.mgl(1-cos θ)C.Fl cos θD.Fl sin θ答案 B解析小球缓慢移动,时时处于平衡状态,由平衡条件可知,F=mg tan θ,随着θ的增大,F也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于小球缓慢移动,动能保持不变,由动能定理得:-mgl(1-cos θ)+W=0,所以W=mgl(1-cos θ),B正确,A、C、D错误.5.如图3所示,一木块沿竖直放置的粗糙曲面从高处滑下,当它滑过A点的速度大小为5 m/s时,滑到B点的速度大小也为5 m/s.若使它滑过A点的速度大小变为7 m/s,则它滑到B点的速度大小( )图3A.大于7 m/sB.等于7 m/sC.小于7 m/sD.无法确定答案 C解析第一次从A点到B点的过程中:mgh-W f1=ΔE k=0,W f1=mgh第二次速度增大,木块对轨道的压力增大,W f2>W f1,故mgh-W f2<0,木块在B 点的动能小于在A点的动能,C正确.6.质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgRC.12mgR D.mgR答案 C解析小球通过最低点时,设绳的张力为F T,则F T -mg=mv21R,即6mg=mv21R①小球恰好通过最高点,绳子拉力为零,则有mg=m v2 2R②小球从最低点运动到最高点的过程中,由动能定理得-mg·2R-W f=12mv22-12mv12③由①②③式解得W f=12mgR,选C.7.一质量为2 kg的物体静止在水平桌面上,在水平拉力F的作用下,沿水平方向运动2 s后撤去外力,其v-t图像如图5所示,下列说法正确的是( )图5A.在0~2 s内,合外力做的功为4 JB.在0~2 s内,合外力做的功为8 JC.在0~6 s内,摩擦力做的功为-8 JD.在0~6 s内,摩擦力做的功为-4 J答案 A8.如图6所示,一薄木板斜放在高度一定的平台和水平地板上,其顶端与平台相平,末端置于地板的P处,并与地板平滑连接.将一可看成质点的滑块自木板顶端无初速度释放,沿木板下滑,接着在地板上滑动,最终停在Q处.滑块和木板及地板之间的动摩擦因数相同.现将木板截短一半,仍按上述方式放在该平台和水平地板上,再次将滑块自木板顶端无初速度释放(设滑块在木板和地面接触处平滑过渡),则滑块最终将停在( )图6A.P处B.P、Q之间C.Q处D.Q的右侧答案 C9.(多选)如图7所示为一滑草场.某条滑道由上、下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m的载人滑草车从坡顶由静止开始下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,重力加速度为g,sin 37°=0.6,cos 37°=0.8).则( )图7A.动摩擦因数μ=6 7B.载人滑草车最大速度为2gh 7C.载人滑草车克服摩擦力做功为mghD.载人滑草车在下段滑道上的加速度大小为3 5 g答案AB解析根据动能定理有2mgh-W f=0,即2mgh-μmg cos 45°·hsin 45°-μmg cos 37°·hsin 37°=0,得动摩擦因数μ=67,则A项正确,C项错误;载人滑草车在上、下两段的加速度分别为a1=g(sin 45°-μcos 45°)=214g,a 2=g(sin 37°-μcos 37°)=-335g,则载人滑草车在上、下两段滑道上分别做加速运动和减速运动,因此在上段滑道底端时达到最大速度v,由动能定理得:mgh-μmg cos 45°hsin 45°=12mv2,得v=27gh,故B项正确,D项错误.二、非选择题10.如图8所示,光滑水平面AB与一半圆形轨道在B点平滑连接,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,不计空气阻力,重力加速度为g.求:图8(1)弹簧弹力对物块做的功;(2)物块从B到C克服阻力所做的功;(3)物块离开C点后,再落回到水平面上时的动能.答案(1)3mgR(2)12mgR(3)52mgR解析(1)物块从开始运动到B点,由动能定理得W=12 mvB2在B点由牛顿第二定律得7mg-mg=m v 2 B R解得W=3mgR(2)物块从B到C由动能定理得-2mgR+W′=12mvC2-12mvB2物块在C点时mg=m v 2 C R解得W′=-12mgR,即物块从B到C克服阻力做功为12mgR.(3)物块从C点平抛到水平面的过程中,由动能定理得2mgR=E k-12mvC2,解得Ek=52mgR.11.如图9甲所示,半径R=0.9 m的光滑半圆形轨道BC固定于竖直平面内,最低点B与水平面相切.水平面上有一质量为m=2 kg的物块从A点以某一初速度向右运动,并恰能通过半圆形轨道的最高点C,物块与水平面间的动摩擦因数为μ,且μ随离A点的距离L按图乙所示规律变化,A、B两点间距离L=1.9 m,g 取10 m/s2,求:图9(1)物块经过最高点C时的速度大小;(2)物块经过半圆形轨道最低点B时对轨道压力的大小;(3)物块在A点时的初速度大小.答案(1)3 m/s (2)120 N (3)8 m/s解析(1)物块恰好通过C点,由牛顿第二定律可得mg=m v 2 C R解得v C=3 m/s(2)物块从B点到C点,由动能定理可得-mg·2R=12mvC2-12mvB2解得v B=3 5 m/s在B点由牛顿第二定律可得F N -mg=mv 2BR,解得F N=120 N.由牛顿第三定律可知物块通过B点时对轨道压力的大小为120 N (3)由题图乙可知摩擦力对物块做的功为W f =-12×(0.25+0.75)×1.9mg=-19 J物块从A到B,由动能定理得W f=12mvB2-12mvA2解得v A=8 m/s.12.如图10所示,光滑斜面AB的倾角θ=53°,BC为水平面,BC长度l BC=1.1 m,CD为光滑的14圆弧,半径R=0.6 m.一个质量m=2 kg的物体,从斜面上A点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点平滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.不计空气阻力,sin 53°=0.8,cos 53°=0.6,g取10 m/s2.求:图10(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s (2)1.02 m (3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-12 mvC2代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:mgH-μmglBC =12mvC2-0代入数据解得:H=1.02 m(3)从物体开始下滑到最终停止,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以物体最终停止的位置到C点的距离为:s=0.4 m.【强化训练二】1.如图1所示是一种常见的圆桌,桌面中间嵌一半径为r=1.5 m、可绕中心轴转动的圆盘,桌面与圆盘面在同一水平面内且两者间缝隙可不考虑.已知桌面离地高度为h=0.8 m,将一可视为质点的小碟子放置在圆盘边缘,若缓慢增大圆盘的角速度,碟子将从圆盘上甩出并滑上桌面,再从桌面飞出,落地点与桌面飞出点的水平距离是0.4 m.已知碟子质量m=0.1 kg,碟子与圆盘间的最大静摩擦力F fmax=0.6 N,g取10 m/s2,求:(不计空气阻力)图1(1)碟子从桌面飞出时的速度大小;(2)碟子在桌面上运动时,桌面摩擦力对它做的功;(3)若碟子与桌面间的动摩擦因数为μ=0.225,要使碟子不滑出桌面,则桌面半径至少是多少?答案(1)1 m/s (2)-0.4 J (3)2.5 m解析(1)根据平抛运动规律:h=12gt2,x=vt,得v=x g2h=1 m/s(2)碟子从圆盘上甩出时的速度为v0,则F fmax=m v2r,即v0=3 m/s由动能定理得:W f=12mv2-12mv2,代入数据得:Wf=-0.4 J(3)当碟子滑到桌面边缘时速度恰好减为零,对应的桌子半径取最小值. 设碟子在桌子上滑动的位移为x′,根据动能定理:-μmgx′=0-12 mv2代入数据得:x′=2 m由几何知识可得桌子半径的最小值为:R=r2+x′2=2.5 m.2.如图2所示为一遥控电动赛车(可视为质点)和它的运动轨道示意图.假设在某次演示中,赛车从A位置由静止开始运动,经2 s后关闭电动机,赛车继续前进至B点后水平飞出,赛车能从C点无碰撞地进入竖直平面内的圆形光滑轨道,D点和E点分别为圆形轨道的最高点和最低点.已知赛车在水平轨道AB段运动时受到的恒定阻力为0.4 N ,赛车质量为0.4 kg ,通电时赛车电动机的输出功率恒为2 W ,B 、C 两点间高度差为0.45 m ,C 与圆心O 的连线和竖直方向的夹角α=37°,空气阻力忽略不计, sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2,求:图2(1)赛车通过C 点时的速度大小; (2)赛道AB 的长度;(3)要使赛车能通过圆轨道最高点D 后回到水平赛道EG ,其半径需要满足什么条件?答案 (1)5 m/s (2)2 m (3)0<R ≤2546m 解析 (1)赛车在BC 间做平抛运动,则竖直方向v y =2gh =3 m/s 由图可知:v C =v ysin 37°=5 m/s(2)由(1)可知B 点速度v 0=v C cos 37°=4 m/s 则根据动能定理:Pt -F f l AB =12mv 02,解得l AB =2 m(3)当赛车恰好通过最高点D 时,有:mg =m v 2DR从C 到D ,由动能定理可知:-mgR (1+cos 37°)=12mv D 2-12mv C 2,解得R =2546m所以轨道半径0<R ≤2546m. 3.如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧轨道ab 和抛物线轨道bc 组成,圆弧轨道半径Oa 水平,b 点为抛物线轨道顶点.已知b 点距c 点的高度h =2 m ,水平距离s = 2 m.重力加速度g 取10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若小环套在b 点,因微小扰动而由静止开始滑下,求小环到达c 点时速度的水平分量的大小.答案 (1)0.25 m (2)2103m/s 解析 (1)小球在bc 段轨道运动时,与轨道之间无相互作用力,说明小环下落到b 点时的速度可使得小环做平抛运动的轨迹与轨道bc 重合,有s =v b t ,h =gt 22在ab 段轨道下滑过程中,根据动能定理可得mgR =mv 2b 2,联立解得R =0.25 m(2)小环在bc 段轨道下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =mv 2c2,因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设该夹角为θ,则根据平抛运动规律可知sin θ=v b v 2b +2gh,根据运动的合成与分解可得sin θ=v 水平v c,联立可得v 水平=2103m/s.4.某校科技兴趣小组设计了如图4所示的赛车轨道,轨道由水平直轨道AB 、圆轨道BCD(B点与D点在同一水平面上但不重合)、水平直轨道DE、圆弧轨道EP 和管道式圆弧轨道PF组成,整个轨道处在同一竖直面内,AB段粗糙,其他轨道均光滑,EO2和FO3均沿竖直方向,且EO2=FO3=R2.已知R1=0.5 m,R2=1.2 m,θ=60°.一遥控电动赛车(可视为质点)质量m=1 kg,其电动机额定输出功率P =10 W,静止放在A点.通电后,赛车开始向B点运动,t0=5 s后关闭电源,赛车继续运动,到达B点时速度v B=5 m/s.g=10 m/s2,求:图4(1)赛车运动到C点时的速度大小及其对轨道的压力大小;(2)赛车在AB段克服阻力所做的功;(3)要使赛车沿轨道运动到达F点水平飞出,且对管道F处的上壁无压力,赛车的通电时间应满足的条件.(假定赛车关闭电源时仍处于AB轨道上.管道上下壁间距比小车自身高度略大)答案(1) 5 m/s 0 (2)37.5 J (3)5 s≤t≤5.55 s解析(1)从B→C过程根据动能定理:-mg·2R1=12mvC2-12mvB2解得:v C= 5 m/s在C点根据牛顿第二定律:mg+F N=m v 2 C R1解得:F N=0根据牛顿第三定律得F N′=F N=0(2)A→B过程,设赛车克服阻力所做的功为W f根据动能定理:Pt0-W f=12 mvB2解得:W f=37.5 J(3)若t0=5 s时关闭电源,B→F过程:-mg·2R2(1-cos θ)=12mvF2-12mvB2解得:v F=1 m/s可知,在恰好能过C点的临界情况下,赛车到达F点时速度为1 m/s而要使赛车在F点对管道上壁无压力并从F点水平飞出,在F点的速度应满足0<v F≤gR2=2 3 m/s综合上述可得1 m/s≤v F≤2 3 m/sA→F过程:Pt-Wf -mg·2R2(1-cos θ)=12mvF2解得:5 s≤t≤5.55 s5.如图5所示,在竖直平面内,长为L、倾角θ=37°的粗糙斜面AB下端与半径R=1 m的光滑圆弧轨道BCDE平滑相接于B点,C点是轨迹最低点,D点与圆心O等高.现有一质量m=0.1 kg的小物体从斜面AB上端的A点无初速度下滑,恰能到达圆弧轨道的D点.若物体与斜面之间的动摩擦因数μ=0.25,不计空气阻力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:图5(1)斜面AB的长度L;(2)物体第一次通过C点时的速度大小v C1;(3)物体经过C点时,轨道对它的最小支持力F Nmin;(4)物体在粗糙斜面AB上滑行的总路程s总.答案(1)2 m (2)2 5 m/s (3)1.4 N (4)6 m解析(1)A到D过程,根据动能定理有mg(L sin θ-R cos θ)-μmgL cos θ=0解得:L=2 m;(2)物体从A到第一次通过C点过程,根据动能定理有mg (L sin θ+R -R cos θ)-μmgL cos θ=12mv C 12 解得:v C 1=2 5 m/s ;(3)物体经过C 点,轨道对它有最小支持力时,它将在B 点所处高度以下运动,所以有:mg (R -R cos θ)=12mv min 2根据牛顿第二定律有:F Nmin -mg =m v min 2R ,解得F Nmin =1.4 N ;(4)根据动能定理有:mgL sin θ-μmgs 总cos θ=0 解得s 总=6 m.。
高一物理必修二动能定理的应用-利用动能定理解决多过程问题
1 2
mv2-
1 2
mv02
气阻力做功为5 J
123
2.(利用动能定理分析多过程问题) 如图4所示,质量m=1 kg 的木块静
f Ff
止在高h=1.2 m的平台上,木块与平(1)在F和f作用下加速
台间的动摩擦因数μ=0.2,用水平推 (2)在f作用下减速
力F=20 N,使木块产生位移l1=3 m (3)在重力作用下平抛
数; 在BC上滑动了4次 然后用动能定理间接求变力做的功
1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子
(3) 全程应用动能定理:
mgH-mgs=0- 1 mv (2)物体第5次经过B点时的速度; 二、利用动能定理分析多过程问题
物体克服重力做功W克 =mgh =10J 4 m的圆形轨道相连接.一个质量为0.
A点比BC高出10 m,BC长1 m, 二、利用动能定理分析多过程问题 10m= 一、利用动能定理求变力的功 AB和CD轨道光滑且与BC平滑连 ∴当初速度加倍后,滑行的距离为4s
v=4m/s
接.一质量为1 kg的物体,从A 利用动能定理求变力的功是最常用的方法.
4块
D.
质量为m的物体从高h的斜面上由静止开始滑下,经过一段水平距离后停止.
10m=
v=4m/s
vD=0m/s =10.3m
接.一质量为1 kg的物体,从A
mg
点以4 m/s的速度开始运动,经过
BC后滑到高出C点10.3 m的D点
速度为零.(g取10 m/s2)求:
(1)物体与BC轨道间的动摩擦因
数;
在BC上滑动了4次
(1)由A到D,由动能定理:
-mg(h-H
=0.5
动能定理变力做功
变力做功的计算分析方法 动能定理法:
如图所示,倾斜轨道AB的倾角为37 o ,CD、EF轨道水平,AB与CD通过光滑圆弧管 道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道 内侧运动,从E滑出该轨道进入EF水平轨道。a、b为两完全相同的小球,a球由静 止从A点释放,在C处与b球发生弹性碰撞。已知AB长为5R,CD长为R,重力加速度 为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,圆弧管道BC入口B 与出口C的高度差为1.8R。求: ⑴a球滑到斜面底端C时速度为多大?a、b球在C处碰后速度各为多少? ⑵要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R′应该满足什么条 件?若R′=2.5R,两球最后所停位置距D(或E)多远?
变力做功的计算分析方法 动能定理法:
如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑 板静止在光滑水平地面 上,左端紧靠B点,上表面所在平面与两半圆分别相切于 B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带 速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板,滑板运动到C时被牢固粘 连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长 l=6.5R,板右端到C的距离L在R<L<5R范围内取值,E距A为s=5R,物块与传 送带、物块与滑板间的动摩擦因数均为μ=0.5,重力加速度取g。 (1)求物块滑到B点的速度大小。 (2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功Wf与L的 关Байду номын сангаас,并判断物块能否滑到CD轨道的中点。
变力做功的计算分析方法
动能定理法:
如图所示,半径R=0.5m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相 切于C、M点,O为圆弧圆心,D为圆弧最低点,斜面体ABC固定在地面上,顶端 B安装一定滑轮,一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P 、Q(两边细绳分别与对应斜面平行),并保持P、Q两物块静止,若P间距为 L1=0.25m,斜面MN足够长,物块PC质量m1=3kg,与MN间的动摩擦因数μ=1/3 ,(g取l0m/s2,斜面与水平面夹角如图所示,sin37°=0.60cos37°=0.80)求 (1)小物块Q的质量m2; (2)烧断细绳后,物块P第一次到达D点时对轨道的压力大小; (3)烧断细绳后,物块P在MN斜面上滑行的总路程.
高中物理 第七章 机械能守恒定律 第7节 动能和动能定理讲义(含解析)新人教版必修2-新人教版高中必
第7节动能和动能定理一、动能1.大小:E k =12mv 2。
2.单位:国际单位制单位为焦耳,1 J =1N·m=1 kg·m 2/s 2。
3.标矢性:动能是标量,只有大小,没有方向,只有正值,没有负值。
二、 动能定理1.推导:如图所示,物体的质量为m ,在与运动方向相同的恒力F 的作用下发生了一段位移l ,速度由v 1增加到v 2,此过程力F 做的功为W 。
1.物体由于运动而具有的能量叫做动能,表达式为E k =12mv 2。
动能是标量,具有相对性。
2.力在一个过程中对物体做的功,等于物体在这个过 程中动能的变化,这个结论叫动能定理,表达式为 W =E k2-E k1。
3.如果物体同时受到几个力的共同作用,则W 为合力 做的功,它等于各个力做功的代数和。
4.动能定理既适用于恒力做功,也适用于变力做功, 既适用于直线运动,也适用于曲线运动。
2.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
3.表达式:W=E k2-E k1。
4.适用范围:既适用于恒力做功也适用于变力做功;既适用于直线运动也适用于曲线运动。
1.自主思考——判一判(1)速度大的物体动能也大。
(×)(2)某物体的速度加倍,它的动能也加倍。
(×)(3)合外力做功不等于零,物体的动能一定变化。
(√)(4)物体的速度发生变化,合外力做功一定不等于零。
(×)(5)物体的动能增加,合外力做正功。
(√)2.合作探究——议一议(1)歼15战机是我国自主研发的第一款舰载战斗机,如图所示:①歼15战机起飞时,合力做什么功?速度怎么变化?动能怎么变化?②歼15战机着舰时,动能怎么变化?合力做什么功?增加阻拦索的原因是什么?提示:①歼15战机起飞时,合力做正功,速度、动能都不断增大。
②歼15战机着舰时,动能减小,合力做负功。
求变力做功的十种方法
变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。
一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。
分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。
因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。
【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。
这也是动能定理比牛顿运动定律优越的一个方面。
二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,具有普遍的适用性。
例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
用动能定理求变力做功
用动能定理求变力做功
动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功,因为使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.
典例1如图1所示,质量为m的小球用长L的细线悬挂而静止在竖直位置.现用水平拉力F将小球缓慢拉到细线与竖直方向成θ角的位置.在此过程中,拉力F做的功为()
图1
A.FL cos θ
B.FL sin θ
C.FL(1-cos θ)
D.mgL(1-cos θ)
答案D
解析在小球缓慢上升过程中,拉力F为变力,此变力F的功可用动能定理求解.由W F-mgL(1-cos θ)=0得W F=mgL(1-cos θ),故D正确.
第1页共1页。
动能定理——变力做功
动能定理——变力做功问题例1如图所示,一质量为m =2 kg 的物体从半径为R =5 m 的圆弧的A 端,在拉力作用下沿圆弧缓慢运动到B 端(圆弧AB 在竖直平面内).拉力F 大小不变始终为15 N ,方向始终与物体在该点的切线成37°角.圆弧所对应的圆心角为60°,BO 边为竖直方向。
(g 取10 m/s 2)求这一过程中:(1)拉力F 做的功。
(2)重力G 做的功。
(3)圆弧面对物体的支持力F N 做的功。
(4)圆弧面对物体的摩擦力F f 做的功。
例2质量为m 的机车,以恒定功率从静止开始起动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值v ,求机车的功率和机车所受阻力在这段时间内所做的功。
例3如图所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( )A.θcos FLB.θsin FLC.()θcos 1-FLD.()θcos 1-mgL 例4在光滑的桌面上,有一条粗细均匀的链条,全长为L ,垂下桌边的那部分的长度为a ,链条在上述的位置由静止释放,如图所示,则链条的上端离开桌边时,链条的速度为多少?a例5一个质量为m 的小球拴在细绳的一端,另一端用大小为F 1的拉力作用,在水平面上做半径为R 1的匀速圆周运动,如图所示。
今将力的大小改为F 2,使小球仍在水平面上做匀速圆周运动,但半径为R 2。
小球运动的半径由R 1变成R 2的过程中拉力对小球做的功多大?1.跳水运动员从高H 的跳台以速度V 1水平跳出,落水时速率为V 2,运动员质量为m ,若起跳时,运动员所做的功为W 1,在空气中克服阻力所做的功为W 2,则:( )A .W 1=2121mv ,B .W 1=mgH +2121mv C . W 2=2121mv +mgH -2221mv D .W 2=2121mv -2221mv 2.质量为m 的汽车在平直的公路上从速度v 0开始加速行驶,经过一段时间t 后,前进了距离s ,此时恰好达到其最大速度,设此过程中汽车发动机始终以额定功率P 工作,汽车所受的阻力为恒力F f ,则这段时间里,发动机所做的功为( ) A. B. C. D.3.改成斜面选B 如图2所示,质量为m 的物体,由高为h 处无初速滑下,至平面上A 点静止,不考虑B 点处能量转化,若施加平行于路径的外力使物体由A 点沿原路径返回C 点,则外力至少做功为( )A .mgh ;B .2mgh ;C .3mgh ;D .条件不足,无法计算。
利用动能定理解决变力做功问题
利用动能定理解决变力做功问题好啦,今天咱们来聊聊“动能定理”,而且还是那个大家最头疼的“变力做功”问题。
哎呀,很多人脑袋可能就跟打了结一样。
别急,别急,我带你走一遭,咱们轻松聊,保证你一听就懂,绝不晦涩难懂!首先啊,动能定理是什么呢?其实挺简单的,它告诉我们,物体的动能变化跟外力做的功是直接挂钩的。
就好像你推车,推的力越大,车加速得越快,动能增加得也越多。
你是不是觉得这个问题有点像推着冰箱搬家?对,没错,力量和动能就是这么一回事——推得越多,动得越快。
动能定理就是帮我们搞清楚,力和动能之间到底是怎样一回事儿的。
不过,问题就出在“变力”这个词上了。
大家是不是想,力能变啊?对啊,变力就是力的大小和方向可能随着时间变化。
比如你推一个物体,刚开始推得特别使劲,后来推得慢慢轻一些,最后可能几乎不推了,这就是力在变。
怎么解决这类问题呢?别着急,咱们慢慢捋。
其实解决“变力做功”的问题,有一个超级简单的思路。
只要记住两个字:分割。
什么意思呢?就是把变的力分成很多小段,每段力可以看成一个常力,计算每一小段的功,然后把这些小段的功加起来就行了。
就像你做饭时,不是把整个菜一口气做好,而是先切菜、再炒菜、最后加调料,一步步来。
这就是咱们常说的“积分”,把大问题分解成小问题,一点一点攻克。
举个例子,想象你站在滑雪场,雪坡上坡道上,滑雪板下面有个风力,风的速度不断变化。
哎,风力一会儿大,一会儿小,咋办呢?别着急,咱们从头来。
先把每一小段路程的风力看作一个常力,计算它在这一段路上做的功,然后再把这些功加起来。
哦,对了,咱们还得用到一个公式——“功=力×位移”,这点很简单,记住了就能顺利解决了。
别以为这就完了,真正的问题还在后头。
因为我们常说,力是会变化的,那位移也得变化啊。
怎么办呢?这就需要咱们利用动能定理来解了。
动能定理说,外力做的功,最终是让物体的动能发生了变化。
也就是说,风力做的功,最终让滑雪板的速度从某一刻变成了另一刻。
动能定理
s1
s2
h
小结
应用动能定理解题的基本方法
1、确定研究对象,明确运动过程。 2、分析物体受力,求总功。 3、明确研究过程初末状态的动能。 4、根据动能定理列方程求解。
高一物理组
作业验收
1.水平拉力F作用在物体上,使物体在光滑水平面上 沿力的方向移动s距离,恒力做功为W1,物体获得的 动能为Ek1.若该恒力使同一物体在水平粗糙面上移 动相同的距离,恒力做功为W2,物体获得的动能为 Ek2,则 ( 答案:C)
FN
vm
F
f
x
W F + W f = Ek2-Ek1 即Pt + (-fx) = Ek2-Ek1 G
答案(1)105N (2)1350 m
类型五、求多过程问题
【例5】物体从高出地面H处由静止自由落下,不考虑空气阻
力,落至沙坑表面后又进入沙坑h停止,求物体在沙坑中受
到的平均阻力是其重力的多少倍。 答案(H+h)/h
vo
S=50m
v=0
【变式训练2】
某人从距地面h=25m高处水平抛出一小球,小球质 量为m=100g,出手时速度大小为v0=10m/s,落地时 速度大小为V=16m/s,取g=10m/s2,试求: (1) 人抛球时对小球做多少功?
(2)小球在空中运动时克服阻力做功多少?
答案: 5J 17.2J
类型三、求变力做功问题1 【例3】一质量为m的小球,用长为L的轻绳悬挂于O
3、只涉及到初、末状态,适用于恒力、变力、 直线、曲线运动等情况。 4、应用动能定理解题的基本方法
1、确定研究对象,明确运动过程。 2、分析物体受力,求总功。 3、明确研究过程初末状态的动能。
4、根据动能定理列方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 、 解 决 变 力 做 功 的 方 法
1、与势能相关的变力,可以由势能的变 化来求解如弹簧弹力、万有引力和电场力 2、全程变力分段恒力,如滑动摩擦 力和空气阻力等 3、利用变力对位移的平均作用力来 求解,尤其是力与位移成正比时 4、利用F-S图像中的面积来解决
5、利用功率来解决,比如在机车以额定 功率启动过程中牵引力的做功。
3 2 mv0 mgh 8
例3、在一个粗糙斜面上一长为L的细线拴 一质量为m小球在倾角30°斜面上作圆周 运动,小球在通过最低点时绳上的拉力为 5mg,小球刚好能沿圆周通过最高点,求 在小球从最低点到最高点的过程中摩擦力 做的功。
-mgl
30°
例3拓展
1、斜面的变化,可由斜面变成竖直面或水平面分析,仍要 靠向心力来源来分析处末两个状态的动能。 2、在原先斜面的基础上再加上一些场力以实现其综合 效应,如电场磁场等(小球会带电,斜面会绝缘)。 3、位置变化,由地球上的情况转移到其他星球,再配以一 些条件综合万有引力的知识。凡是和重力加速度相关的题目 都可以和万有引力结合。
156000J
用动能定理解决变力做功的注意事项: 关注两个状态,解决这个过程中各个 力的做功情况
例2、如图8—4—5所示,人用跨过光滑滑轮 的细绳牵拉静止于水平平台上的质量为m的滑 块,滑块与平台间的动摩擦因数为µ,初始时 绳子竖直方向的长度为h,从绳竖直的位置到 绳与水平方向夹角为30°的过程中,人始终 以速度v0匀速走动,试求在这个过程中人拉滑 块做的功。
6、利用动能定理解决
二、利用动能定理解决问题应注意的问题
1 2 1 2 1、动能定理:W合 Ek2 Ek1 2 mv2 2 mv1
注:动能变化涉及两个状态, 做功涉及一个过程 2、求外力总功的方法
a 、先求合外力,再求合外力做的功 b 、先求各个力做的功,再求代数和
3、用动能定理解题的步骤:
a 、选择研究对象明确研究过程
b、对研究对象进行受力分析, 分析各个力所做的功
c、分析这个过程的初末两个状态, 解决初末动能问题 d 、列动能定理表达式员刚刚拉开伞 时的速度为40m/s,拉开伞后受到与速度相关 的空气阻力影响,下落200m后,速度变为 20m/s,求这个过程当中空气阻力做的功。
强调:完成题目以后的反思至关重要 ,
“三分做,七分想”