行程问题之环形跑道
五年级奥数行程环形跑道教师版
五年级奥数行程环形跑道教师版The document was prepared on January 2, 2021本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差 nS nS +相对(反向):路程和nS【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】☆☆【题型】解答例题精讲知识框架环形跑道【解析】黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
行程问题之环形跑道问题
第九讲:环形跑道问题教学目标:理解环形跑道问题即是一个封闭线路上的追及问题通过对环形跑道问题分析,培养学生的逻辑思维能力教学重点:环形跑道问题中的数量关系及解题思路的分析教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈正确将环形跑道问题转化成追及问题需要课时:2课时教学内容:解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。
400-375=25(米) 800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米)甲:12800÷800=16(圈) 乙:16-1=15(圈)例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)练习:1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
初中初奥:数行程问题之环形跑道经典例题
【导语】奥数能够有效地培养学⽣⽤数学观点看待和处理实际问题的能⼒,提⾼学⽣⽤数学语⾔和模型解决实际问题的意识和能⼒,提⾼学⽣揭⽰实际问题中隐含的数学概念及其关系的能⼒等等。
使学⽣能够在创造性思维过程中,看到数学的实际作⽤,感受到数学的魅⼒,增强学⽣对数学美的感受⼒。
以下是为您整理的相关资料,希望对您有⽤。
1、⼀般环形跑道 这⾥出现最多的就是我们现实⽣活中的由长⽅形和两个半圆组成的运动场形状的环形跑道! 例、⼩张和⼩王各以⼀定速度,在周长为500⽶的环形跑道上跑步,⼩王的速度是180⽶/分。
(1)⼩张和⼩王同时从同⼀地点出发反向跑步,75秒后两⼈第⼀次相遇,⼩张的速度是多少⽶/分? (2)⼩张和⼩王同时从同⼀点出发、同⼀⽅向跑步,⼩张跑多少⽶后才能第⼀次追上⼩王? 例1、如图所⽰,沿着某单位围墙外⾯的⼩路形成⼀个边长300⽶的正⽅形,甲、⼄两⼈分别从两个对⾓处沿逆时针⽅向同时出发。
已知甲每分⾛90⽶,⼄每分⾛70⽶。
问:⾄少经过多长时间甲才能看到⼄?(3⽉27⽇天天练) 例2、甲、⼄两⼈在周长400⽶正⽅形跑道上匀速跑步,假设正⽅形的四个顶点A、B、C、D的顺序依逆时针⽅向排列,起点是A,甲⽐⼄快,⼆⼈同向跑每隔3分20秒相遇⼀次,反向跑每隔80秒相遇⼀次。
如果甲、⼄⼆⼈先同向跑(逆时针)相遇⼀次,紧接着反向跑(甲⽅向不变,⼄按顺时针⽅向)相遇⼀次。
甲⼄⼆⼈第⼆次相遇地点离正⽅形的四个顶点A、B、C、D的哪⼀点最近?最近距离是多少? 2、圆形跑道 例1、在周长为220⽶的圆形跑道的⼀条直径的两端,涛涛、昊昊⼆⼈骑⾃⾏车分别以6⽶/秒和5⽶/秒的速度同时、相向出发(即⼀个顺时针,⼀个逆时针),沿跑道⾏驶,则210秒内涛涛昊昊相遇⼏次?(3⽉28⽇天天练) 例2、⼀个圆周长70厘⽶,甲、⼄两只蚂蚁从同⼀地点,同时出发同向爬⾏,甲以每秒4厘⽶的速度不停地爬⾏,⼄爬⾏15厘⽶后,⽴即反向爬⾏,并且速度增加1倍,在离出发点30厘⽶处与甲相遇。
行程问题 路程问题 环形跑道相遇问题与追及问题以及综合题型练习题
环形跑道中的相遇问题与追及问题以及综合题型一、环形路线中同地出发的环形相遇问题周期性:1、环形跑道中的相遇问题:路程和:每相遇一次,两人合走一圈;环形跑道一周的长=速度和×相遇时间2、相遇时间:毎隔相同时间,相遇1次;相遇时间=环形跑道一周的长÷速度和3、第n次相遇所花的时间=相遇一次的时间×n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。
1.一条环形跑道长500米,萱萱每分钟跑260米,小明每分钟跑240米,两人同时同向出发,经过多长时间两人相遇?2.环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?3.阳光小学圆形操场跑道的周长是1000米,小光与小阳同时同地背向而行.小光每分钟走56米,小阳每分钟走44米.经过多少分钟两人第一次相遇?经过多少分钟两人第六次相遇?4.小光和小阳在周长为2000米的环形跑道上同时同地背向而行.小光的速度是200米/分,小阳的速度是300米/分.经过多少分钟两人第一次迎面相遇?经过多少分钟两人第五次迎面相遇?5.小美的速度是4米/秒,小爱的速度是3米/秒。
跑道一圈长度是350米,那么她俩从同一地点同时反向出发,经过多长时间她们第4次相遇?第10次呢?6.阿呆、阿瓜两人在周长为600米的环形跑道上同时同地背向而行。
阿呆的速度是70米/分,阿瓜的速度是50米/分.两人第三次迎面相遇时,阿呆距离出发点多少米?7.高老师、张老师两人在周长为560米的环形跑道上同时同地背向而行。
高老师的速度是60米/分,张老师的速度是80米/分.两人第五次迎面相遇时,高老师距离出发点多少米?8.小美和小爱沿着周长为350米的操场跑,小美的速度是4米/秒,小爱的速度是3米/秒,若两人同时从同一点出发,背向而行,那两人第一次相遇的地点距离出发点有多远?9.周长为400米的圆形跑道上,有相距100米的A、B两点,甲乙两人分别从A、B两点同时相背而行,速度分别是2米/秒和3米/秒.请问:多少秒后两人第三次相遇?二、环形路线中同地出发的追及问题周期性:1、路程差:每追及一次,路程相差一圈;2、追及时间:每隔相同时间,追及1次;3、第n次追及所花的时间=追及一次的时间 x n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。
学生-行程问题之环形跑道问题
行程问题之环形跑道问题2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?6、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?求此圆形场地的周长?举一反三1、如图,A 、B 是圆的直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点6O 米.求这个圆的周长.2、如图,有一个圆,两只小虫分别从直径的两端A 与C 同时出发,绕圆周相 向而行.它们第一次相遇在离A 点8厘米处的B 点,第二次相遇在离C 点处6厘米的D 点,问,这个圆周的长是多少?第一次相遇第二次相遇DC BA3、A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?二、环形跑道——变道问题【例 1】如图是一个跑道的示意图,沿ACBEA 走一圈是400米,沿ACBDA 走一圈是275米,其中A 到B 的直线距离是75米.甲、乙二人同时从A 点出发练习长跑,甲沿ACBDA 的小圈跑,每100米用24秒,乙沿ACBEA 的大圈跑,每100米用21秒,问:⑴ 乙跑第几圈时第一次与甲相遇? ⑵ 发多长时间甲、乙再次在A 相遇?三、环形跑道——变速问题【例 1】(难度等级※※)甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
小学奥数教程:环形跑道问题_全国通用(含答案)
1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点 直径两端 同向:路程差nS nS +0.5S 相对(反向):路程和nS nS-0.5S模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟). 【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)知识精讲 教学目标环形跑道问题王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
通用版小学五年级奥数《环形跑道问题》讲义(含答案)
本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
【例 1】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【考点】行程问题之环形跑道 【难度】☆☆ 【题型】解答【解析】 第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=(米)。
小胖跑了4150600⨯=(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,例题精讲知识框架环形跑道小胖跑4圈,小亚跑6圈。
【答案】小胖跑4圈,小亚跑6圈【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.①冬冬第一次追上晶晶所需要的时间:20064100()(秒)÷-=②冬冬第一次追上晶晶时他所跑的路程应为:6100600⨯=(米)③晶晶第一次被追上时所跑的路程:4100400⨯=(米)④冬冬第二次追上晶晶时所跑的圈数:60022006()(圈)⨯÷=⑤晶晶第2次被追上时所跑的圈数:40022004()(圈)⨯÷=【答案】4圈【例 2】两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度可根据两人同向出发,45分钟后甲追上乙,由追及问题,两人速度差为:25020050-=(米/分),所以路程差为:50452250⨯=(米),即环形道一圈的长度为2250米.所以反向出发的相遇时间为:22502502005()(分钟).÷+=【答案】5分钟【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】甲乙的速度和为:4004010÷=(米/秒),甲乙的速度差为:4002002÷=(米/秒),甲的速度为:-÷=()(米/秒).+÷=10226()(米/秒),乙的速度为:10224【答案】4米/秒【例 3】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
环形跑道上的行程问题
环形跑道上的行程问题环形问题:环形跑道上的多次相遇追及:(1)从同点背向出发,每次相遇,两人都共行1个全程。
所用基础公式为:环形总长度÷速度和=相遇时间环形总长度÷相遇时间=速度和相遇时间×速度和=一个环形长度(2)从同点同向出发,每次追及,快者比慢者多行1个全程;所用基础公式为:环形长度÷速度差=追及时间环形长度÷追及时间=速度差追及时间×速度差=环形总长度典型题讲解例题1、黑、白两只小狗沿着周长为300米的湖边跑,黑狗的速度为每秒5米,白狗的速度为每秒7米,若两只小狗同时从同一点出发,背向而行,那么多少秒后第一次相遇?如果他们继续不停的跑下去,2分钟内一共会相遇多少次?最后一次相遇时距离出发点多远?例题2、有一个周长是40米的圆形水池,甲沿着水池散步,每秒钟走1米;乙沿着水池跑步,每秒跑3.5米,甲、乙从同一地点同时出发,同向而行,当乙第8次追上甲时,他还要跑多少米才能回到出发点?练习1、一环形跑到周长为400米,甲、乙两名运动员同时顺时针自起点出发,甲每分钟跑300米,乙每分钟跑275米.甲第4次追上乙时距离起点多少米?例题3、甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出.1分钟后,乙以每分钟280米的速度从起点同向跑出.请问:甲出发后多少分钟第一次追上乙?如果追上后他们的速度保持不变,甲还需要再过多少分钟才能第10次追上乙?例题4、甲、乙两人分别从一圆形场地的直径两端点A、B开始,同时匀速反向绕此圆形路线运动.当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处第二次相遇.求此圆形场地的周长?练习2、如图,有一个环形跑到,甲、乙二人分别从A、B两地同时出发相向而行,且乙的速度快于甲,第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的D点.已知AB长度是跑道总长的四分之一.请问跑道周长多少米?(1200米)例题5、环绕小山一周的公路长1920米,甲、乙两人沿公路竞走,两人同时同地出发,反向行走,甲比乙走的快,12分钟后两人相遇。
小学思维数学:行程问题之环形跑道问题-带详解
1、 掌握如下两个关系: (1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试知识精讲 教学目标环形跑道问题【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
老师-行程问题之环形跑道问题
行程问题之环形跑道问题400-375=25(米)800÷25=32(分钟)甲:400×32=12800(米) 乙:375×32=12000(米)甲:12800÷800=16(圈) 乙:16-1=15(圈)2 、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)3、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇4、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
如果同向而行,几秒后两人再次相遇5、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?X=100总共跑了100秒前50秒每秒跑5米,跑了250米后50秒每秒跑4米,跑了200米后一半的路程为450÷2=225米后一半的路程用的时间为(250-225)÷5+50=55秒举一反三1、某人在360米的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,则他后一半路程跑了多少秒?【解析】44【例 12】(难度等级※※)甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米,乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇。
小学数学行程问题之环形跑道含答案
环形跑道知识框架本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S例题精讲【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】右图中C表示甲、乙第一次相遇地点.因为乙从B到C又返回B时,甲恰好转一圈回到A,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C点距B点180-90=90(米).甲从A到C用了180÷20=9(分),所以乙每分行驶90÷9=10(米).甲、乙第二次相遇,即分别同时从A,B出发相向而行相遇需要90÷(20+10)=3(分).【答案】3分【巩固】周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】如下图,记甲乙相遇点为C.当甲跑了AC的路程时,乙跑了BC的路程;而当甲跑了400米时,乙跑了2BC的路程.由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A点所需时间的12.即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A,乙到达B时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.【答案】1000米【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】首先是一个相遇过程,相遇时间:6(6555)0.05÷+=小时,相遇地点距离A点:550.05 2.75⨯=千米.然后乙车调头,成为追及过程,追及时间:6(6555)0.6÷-=小时,乙车在此过程中走的路程:550.633⨯=千米,即5圈余3千米,那么这时距离A点3 2.750.25-=千米.甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离A点0.25 2.753+=千米,而第4次相遇时两车又重新回到了A点,并且行驶的方向与开始相同.所以,第8次相遇时两车肯定还是相遇在A点,又11332÷=,所以第11次相遇的地点与第3次相遇的地点是相同的,距离A点是3000米.【答案】3000米【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
小学奥数行程问题环形跑道问题解析【三篇】
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《⼩学奥数⾏程问题环形跑道问题解析【三篇】》供您查阅。
【第⼀篇:变相环形跑道】【第⼆篇:正⽅形问题】甲、⼄两⼈从周长为1600⽶的正⽅形⽔池ABCD相对的两个顶点A,C同时出发绕⽔池的边沿A---B---C---D----A的⽅向⾏⾛。
甲的速度是每分钟50⽶,⼄的速度是每分钟46⽶则甲、⼄第⼀次在同⼀边上⾏⾛,是发⽣在出发后的第多少分钟?第⼀次在同⼀边上⾏⾛了多少分钟? 解析: 要使两⼈在同⼀边⾏⾛,甲⼄相距必须⼩于⼀条边,并且甲要迈过顶点。
甲追⼄1600÷4=400⽶,⾄少需要400÷(50-46)=100分钟,此时甲⾏了50×100=5000⽶,5000÷400=12条边……200⽶。
因此还要⾏200÷50=4分钟,即出发后100+4=104分钟两⼈第⼀次在同⼀边上⾏⾛。
此时甲⼄相距400×2-104×(50-46)=384⽶,⼄⾏完这条边还有16⽶,因此第⼀次在同⼀边上⾛了16÷46=8/23分钟。
【第三篇:环形跑道多⼈⾏程】设A,B,C三⼈沿同⼀⽅向,以⼀定的速度绕校园⼀周的时间分别是6、7、11分。
由开始点A出发后,B⽐A晚1分钟出发,C⽐B晚5分钟出发,那么A,B,C第⼀次同时通过开始出发的地点是在A出发后⼏分钟? 解析: 从条件可以知道,C出发时,A刚好⾏了5+1=6分钟,即⼀圈,也就是说,A和C再次同时经过出发点时,是6×11=66的倍数分钟后。
由于B还需要7-5=2分钟才能通过,说明要满⾜66的倍数除以7余2分钟。
当66×3=198分钟时,198÷7=28……2分钟,满⾜条件。
因此ABC第⼀次同时通过出发地点是A出发后6+198=204分钟的时候。
小学思维数学:行程问题之环形跑道问题-带详解
环形跑道问题1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟). 【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)知识精讲 教学目标2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
环形跑道问题
环形跑道问题一、学习目标1.认识环形跑道问题;2.会用环形跑道模型解决实际问题.二、知识点讲解认识环形跑道问题环形跑道问题定义环形跑道问题特殊场地行程问题之一.是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析.环形跑道问题的含义1.从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;2.从同一地点出发,如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次),第几次追上就多跑几圈.环形跑道问题的等量关系1.同向而行的等量关系:乙程-甲程=跑道长;2.背向而行的等量关系:乙程+甲程=跑道长.在做出线段图后,反复的在每一段路程上利用路程和=相遇时间×速度和路程差=追及时间×速度差解环形跑道问题的一般方法环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键.解题方法1.审题:①看题目有几个人或物参与;②看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后"就是从开始计时;③看地点是指是同地还是两地甚至更多.④看方向是同向、背向还是相向;⑤看事件指的是结果是相遇还是追及,相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助.一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追及问题中一个重要环节就是确定追上地点,从而找到路程差,比如“用10秒钟快比慢多跑100米"我们立刻知道快慢的速度差,这个是追及问题经常用到的,通过路程差求速度差;2.简单题利用公式;3.复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来.相遇问题就找路程和,追及问题就找路程差.典型例题、认识环形跑道问题1.题干:在300米的环形跑道上,如果同向而跑快者2分30秒追上慢者,如果背向而跑两者半分钟相遇,求两人的速度.个人分析:环形跑道问题的解题思路是_______.答案:解:注意如果题目没有第几次追上或相遇,都默认为是第一次追上或相遇.“第几次追上就多跑几圈”,快者第一次追上慢者,就是比慢者多跑一圈,即用2分30秒比慢者多跑300米,那么快比慢1秒钟多跑(速度差):300÷150=2米“第几次相遇就合跑几圈”,第一次相遇就合跑一圈,即用半分钟合跑300米,1秒钟两人合跑(速度和):300÷30=10米慢者:(10-2)÷2=4米/秒快者:4+2=6米/秒答:快者的速度是6米/秒;慢者的速度是4米/秒.解题方法1.审题:①看题目有几个人或物参与;②看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后"就是从开始计时;③看地点是指是同地还是两地甚至更多.④看方向是同向、背向还是相向;⑤看事件指的是结果是相遇还是追及,相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助.一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追及问题中一个重要环节就是确定追上地点,从而找到路程差,比如“用10秒钟快比慢多跑100米"我们立刻知道快慢的速度差,这个是追及问题经常用到的,通过路程差求速度差.错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________1.题干:甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇.已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是?个人分析:环形跑道问题的解题思路是_______.答案:解:甲、乙两人三次相遇,共行了三个全程即是3╳400=1200(米)根据题意,甲乙两人的速度和为1200/8=150(米/分)因为甲乙两人的每分速度差为0.1╳60=6(米/分)所以甲的速度为(150+6)/2=78(米/分)甲8分钟行的路程为78╳8=624(米)离开原点624-400=224米因为224>400/2所以400-224=176(米)答:两人第三次相遇的地点与A点沿跑道上的最短距离是176米.解题方法1.审题:①看题目有几个人或物参与;②看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后"就是从开始计时;③看地点是指是同地还是两地甚至更多.④看方向是同向、背向还是相向;⑤看事件指的是结果是相遇还是追及,相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助.一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追及问题中一个重要环节就是确定追上地点,从而找到路程差,比如“用10秒钟快比慢多跑100米"我们立刻知道快慢的速度差,这个是追及问题经常用到的,通过路程差求速度差.错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________环形跑道问题分类同一地点出发我们在同一地点出发的基础上再根据运动方向可分为:同向和反向.1.同向如果出发地相同,若“同向”,快车从一开始就将会领先与慢车,直到快车比慢车多跑一圈时,他们才会产生出发后的第一次相遇.此时他们路程间的等量关系式为:一个周长=快车的路程-慢车的路程在相遇点再次出发,则又重复一开始的“同时同地同向而行”,唯一不同的是再次相遇地点不同罢了(出发地点不同).所以从第一次相遇到第二次相遇快车依然要比慢车多跑一圈.第二次相遇时快车需要比慢车多跑了两个周长.这样一直下去,我们可以得到一个等量关系式:快慢车的路程差=周长的n倍(n为相遇的次数)2.反向如果出发地相同,若“反向”当快车与慢车相遇时,快车与慢车正好共行完一个周长.此时他们路程间的等量关系式为:一个周长=快车的路程+慢车的路程.模仿“同向”的思路,将相遇点当作再次出发的起点.一直重复下去,我们可以推得一个等量关系式:快慢车的路程和=周长的n倍(n为相遇的次数)不同地点出发如果出发点不同,则需要通过观察示意图再进行判断.但是这一个不同也仅仅是在分析第一次相遇时有所区别.一旦相遇后,后面的过程则又可以视作同一地点出发.小结在环形跑道问题中,我们最好用不同颜色的笔画出各自行进的轨迹.1.环形跑道问题按出发地点分可分为:相同地点出发与不同地点出发2.同一地点出发,我们会得到一个数量关系:快慢车的路程差=周长的n倍(n为相遇的次数)反向我们会得到另外一个数量关系:快慢车的路程和=周长的n倍(n为相遇的次数)3.环形跑道问题的关键是通过示意图理解题目意思.典型例题、环形跑道应用题1.题干:绕湖环行一周是2700米,小张、小王、小李从同一地点出发绕湖行走,小张与小王同向,小李沿他们的反方向行走.小张的速度是135米/分,小王的速度是90米/分,小李的速度是45米/分.当小张和小李相遇后,小张马上转身反向而行,不久于小王相遇,问出发后多少分钟小张与小王相遇?个人分析:环形跑道应用题解题思路是_______.答案:解:先算出小张与小李的相遇时间:2700÷(135+45)=15(分钟)此刻小张与小王的路程差:(135-90)×15=675(米)张、王的路程差就是转身后他们的路程和:675÷(135+90)=3(分钟)3+15=18(分钟)答:出发18分钟后小张与小王相遇.解析:同一地点出发我们在同一地点出发的基础上再根据运动方向可分为:同向和反向.1.同向如果出发地相同,若“同向”,快车从一开始就将会领先与慢车,直到快车比慢车多跑一圈时,他们才会产生出发后的第一次相遇.此时他们路程间的等量关系式为:一个周长=快车的路程-慢车的路程在相遇点再次出发,则又重复一开始的“同时同地同向而行”,唯一不同的是再次相遇地点不同罢了(出发地点不同).所以从第一次相遇到第二次相遇快车依然要比慢车多跑一圈.第二次相遇时快车需要比慢车多跑了两个周长.这样一直下去,我们可以得到一个等量关系式:快慢车的路程差=周长的n倍(n为相遇的次数)2.反向如果出发地相同,若“反向”当快车与慢车相遇时,快车与慢车正好共行完一个周长.此时他们路程间的等量关系式为:一个周长=快车的路程+慢车的路程.模仿“同向”的思路,将相遇点当作再次出发的起点.一直重复下去,我们可以推得一个等量关系式:快慢车的路程和=周长的n倍(n为相遇的次数)错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________练习1.题干:一个运动场的环形跑道,周长500米,甲、乙两人同时同地出发,如果相背而行,5分钟相遇一次,如果同向而行,50分钟相遇一次,甲比乙走得快,问甲、乙两人每分钟各走多少米?个人分析:环形跑道问题解题方法是_______.答案:解:背向:路程和=1个周长.同向:路程差=1个周长.在借由路程和与路程差的公式得到速度和:500÷5=100(米/分)速度差:500÷50=10(米/分)在借由和差问题的公式较大数=(和+差)÷2较小数=(和-差)÷2题中已告知甲比乙走快,所以甲的速度:(100+10)÷2=55(米/分)乙的速度:(100-10)÷2=45(米/分)答:甲每分钟走55米,乙每分钟走45米.解析:根据题干意思以及一元一次方程的定义来计算.错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂改正方法:___________________。
小学数学 行程问题之环形跑道问题 完整版题型训练 PPT带答案带作业
练习2:
本题知识点【较复杂环形行程问题】 【分析】本题中,并没告诉我们环形跑道一圈的长度,我们不妨设其为1200米。 则甲、乙两人的速度和为:1200÷4=300(米/分钟) 甲、乙两人的速度差为:1200÷12=100(米/分钟) 甲的速度为:(300+100)÷2=200(米/分钟) 即甲走一圈的时间为:1200÷200=6(分钟) 乙的速度为:(300-100)÷2=100(米/分钟) 即乙走一圈的时间为:1200÷100=12(分钟) 答:甲跑一圈需要6分钟,乙需要12分钟。
练习1
练习1 (1)环形行程问题中,甲、乙若是相向而行,则属于(相遇),若 是背向而行,则属于(相遇),若是同向而行,则属于(追及)。
(2)环形行程问题中,甲、乙从同一地点背向而行,若两人相遇5次,则 说明(甲乙合走5圈 )。 (3)甲、乙两人绕着长600米的环形操场跑步,甲、乙同时、同一地点、 背向出发,甲一共跑了1500米,乙一共跑了2100米,则两人相遇(6)次。 (4)甲、乙两人绕着长400米的环形操场跑步,甲、乙同时、同一地点、 同向出发,甲一共跑了1500米,乙一共跑了3200米,则两人相遇(4)次。 (5)甲、乙两人绕着环形操场跑步,甲每秒跑5米,乙每秒跑7米,若两人 同时同地同向出发,乙5分钟第一次追上甲,则操场全长(600)米。
练习 2 (1)小张和小王各以一定速度,在周长为500米的环形跑道上跑步。小王的 速度是200米/分,小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一 次相遇,小张的速度是多少米每分钟?
用行程问题环形跑道
运动场一圈为400米,张森和丁烁一同参加学校运动 会的长跑比赛。已知丁烁然平均每分钟跑230米,张森每 分钟跑150米。
(1)若两人从同一处同时同向起跑,问经过多长时间两 人可以首次相遇?
(2)若两人从同一处同向起跑,且张森先跑2分钟。问经 过多长时间两人可以首次相遇?
(3)若两人从同一处同时反向起跑,问经过多长时间两 人可以首次相遇?
分析:圆形跑道中的规律:
(第1次相遇:)快者跑的路程+慢者跑的路程=1圈的长度 (第2次相遇:)快者跑的路程+慢者跑的路程=2圈的长度 (第3次相遇:)快者跑的路程+慢者跑的路程=3圈的长度
………. (第n次相遇:)快者跑的路程+慢者跑的路程=n圈的长度
解:设经过x分钟首次相遇,则依题意可得 350x+250x=400 解得:x= 2
行程问题
路程=速度×时间
时间
路程 速度
速度
路程 时间
例1、 运动场的跑道一圈长400m,甲练习骑自行车, 平均每分骑350m,乙练习跑步,平均每分250m.两 人从同一处同时同向出发,经过多少时间首次相遇?
分析:圆形跑道中的规律:
(第1次相遇:)快者跑的路程-慢者跑的路程=1圈的长度 (第2次相遇:)快者跑的路程-慢者跑的路程=2圈的长度 (第3次相遇:)快者跑的路程-慢者跑的路程=3圈的长度
(4)若两人从同一处反向起跑,且张森先跑2分钟。问经 过多长时间两人可以首次相遇?
错车问题
• 甲、乙两列火车的长为144m和180m, 甲车比乙车每秒多行4m.两列火车相 向而行,从相遇到全部错开需9s,问 两车的速度各是多少
超车问题
• 高速公路上,一辆长4m,速度为110km/h 的轿车准备超越一辆长12m,速度为 90km/h的卡车.估计轿车从开始追及到完 全超越卡车,大约需要多少秒?
第二讲 环形跑道 火车过桥
第二讲行程问题之环形跑道、火车过桥1、回顾第一讲中,我们学习了非封闭线上(直线上)的行程问题,并且只涉及到两个物体的运动。
本讲中,我们将非封闭线变化为封闭线,即环形跑道问题;另外,还学习一种考虑物体的长度的行程问题,如火车经过桥时,我们要考虑到火车本身的长度。
2、典型例题2.1环形跑道【例1】、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
【例2】、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要6分钟和12分钟。
解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间【例3】、甲、乙两个学生同时从同一起点沿着一个环形跑道相背而跑。
甲每秒钟跑8米,乙每秒钟跑7米,经过20秒钟两人相遇。
求环形跑道的周长。
(适于五年级程度)解:作图18-14。
从图中可看出,甲、乙两人跑的路程的总和就是圆的周长。
根据“速度和×相遇时间=相遇路程”,可求出环形跑道的周长:(7+8)×20=300(米)2.2火车过桥【例1】、一条隧道长360 米,某列火车从车头入洞到全车进洞用了8 秒钟,从车头入洞到全车出洞共用了20 秒钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环形路上的行程问题
1、环形运动问题:
环形周长=(大速度+小速度)×相遇的时间
环形周长=(大速度-小速度)×相遇的时间
环形运动的追及问题和相遇问题:同时同向起点运动,第一次相遇,速度快的比速度慢的多跑一圈。
在环形跑道上同时同向,速度快的在前,慢的在后。
不是封闭的跑道追及问题,速度慢的在前,快的在后。
1.两名运动员在沿湖的环形跑道上练习长跑,甲分钟跑250米,乙每分钟跑200米,两人人同时同地同向出发,45分钟后甲追上了乙,如果两人同时同地反向而跑,经过多少钟后两人相遇?
2.甲,乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处,问几分钟后,甲第1次追上乙?
3.如图,A、B是圆的直径的两端,小军在A点,小勇在B点,同时出发相向而行,他俩第1次在C点相遇,C离A点50米;第2次在D点相遇,D点离B点3O米.求这个圆的周长是多少米?
4.在一个长800米的环行湖边上,小明,小张两人同时从同一点出发,反向跑步,5分钟两人第一次相遇,小明每分钟跑100米,张静每分钟跑多少米?如果两人同时从同一点出发,同向跑步,多少分钟后小明能追上张静?(湘麓P29)
5.有一条长400米的环形跑道,甲乙二人同时同地出发,反向而行,1分钟后第一次相遇,若二人同时同地出发,同向而行,则10钟后第一次相遇,若甲比乙快,那第甲乙二人的速度分别是多少米?(湘麓P29)
6.跑马场一周之长为1080。
甲乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过45分钟,甲追上乙,如果甲的速度分钟减少50米,乙的速度每分钟增加30米,从同一地点同时背向而行,则经过3分钟两人相遇。
求原来甲,乙两人每分钟各行多少米?(湘麓P30)
※7.在300米的环形跑道上,甲,乙两从同时从起跑线出发反向而跑,甲每秒跑4米,乙每秒跑6米,当他们第一次相遇在起跑点时,他们已在途中想遇多少次?(湘麓P30)
8.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分。
①小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分②小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?
9.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问小张和小王的速度各是多少?
10.甲和乙在环湖路上晨跑,环湖路一周是1800米,甲分钟跑160米,乙分钟跑的路程是甲的1.25倍,如果两人同时同地同向出发,需要多少分钟两人第一次相遇?如果两人同时同地反向出发,需要多少分钟两人第一次相遇?(湘麓P31)
11.甲,乙两名自行车运动员在周长为6000米的湖边道路上进行训练,甲每分钟行400米,如果两人同时同地反向而行,6分钟相遇,问乙的速度是每分钟多少米?(湘麓P31)
12.甲,乙两人绕周长为1000米的环形广场竞走,已知甲分钟走125米,乙的速度是甲的2倍。
现在甲在乙的后面250米,乙追上甲需要多少分钟?(湘麓P31)
13.小红和小月两人骑车从同一地点出发,沿着长4000米环行湖堤行驶。
如果小红,小月同向行驶,小红每隔20分钟追上小月,如果反向行驶,两人经过4分钟相遇。
问:小红,小月两人的速度各是多少?(湘麓P31)
19.小明在330米长的环形跑道上跑了一圈,已知他前一半的时间每秒跑6米,后一半的时间每秒跑5米,那么后一半路程小明跑了()秒(预测卷P50)
20.甲乙两人分别从圆的直径两端同时出发,沿圆周行进。
若逆向行行走则50秒相遇,若同向行走则甲追上乙需300秒。
甲的速度是乙的速度的多少倍?(把圆的半周长看作300个单位)(五年级长麓P32)
21. 甲,乙两人在400米环形跑道上,都从O点同时向相反方向跑去,甲每分钟200米,乙每分钟300米,甲跑到A点后立即回到o点,然后又跑到A点,这时刚好用了1分钟,问这时两人能否相遇?(五年级湘麓P32)
22.甲乙两人在一个周长为160米正方形水塘边散步,甲在B点,乙在D点,两人沿着顺时针方向行走,甲每分钟走50米,乙每分钟走40米,请你算一算甲在哪里第一次追上乙?(五年级湘麓P32)
23.在一个周长为400米的环形跑道上,小鸣和小青两名运动员同时从同一地点背向而行,小鸣每分钟走48米,小青每分钟走52米,他们第六次相遇时离出发点有多少米?(五年级湘麓P32)
24.甲,乙两人匀速绕圆形跑道按相反方向跑步,出发点在直径的两个端点,如果他们同时出发,并在乙跑完100米时第一次相遇,甲跑一圈还差60米时第二次相遇,那么跑道长是多少米?(五年级湘麓P32)。